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What is an Ontology

• An ontology is a formal conceptualisation of the world: a conceptual schema.

• An ontology specifies a set of constraints, which declare what should

necessarily hold in any possible world.

• Any possible world should conform to the constraints expressed by the

ontology.

• Given an ontology, a legal world description is a finite possible world

satisfying the constraints.
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Ontology languages and Conceptual Data Models

• An ontology language usually introduces concepts (aka classes, entities),

properties of concepts (aka slots, attributes, roles), relationships between

concepts (aka associations), and additional constraints.

• Ontology languages may be simple (e.g., having only concepts and

taxonomies), frame-based (having only concepts and properties), or

logic-based (e.g. Ontolingua and DAML+OIL).

• Ontology languages are typically expressed by means of diagrams.

• Entity-Relationship schemas and UML class diagrams can be considered

as ontologies.
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UML Class Diagram

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages
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Entity-Relationship Schema

Employee

PaySlipNumber(Integer)

Salary(Integer)

Project

ProjectCode(String)

Manager

TopManagerAreaManager

×

Works-for

Manages

(1,n)

(1,1)
(1,1)
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Semantics

In a specific world:

• A class is a set of instances;

• a n-ary relationship is a set of n-tuples of instances;

• an attribute is a set of pairs of an instance and a domain element.
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A world is described by sets of instances

E1

E2

E3

E4

E5

P1

P2

P3

〈E1,P1〉
〈E2,P1〉

〈E2,P2〉
〈E2,P3〉

〈E3,P1〉
〈E4,P2〉

〈E4,P3〉
〈E5,P3〉

Employee Project Works-for
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The relational representation of a world

Employee

employeeId

E1

E2

E3

E4

E5

Project

projectId

P1

P2

P3

String

anystring

“P12a”

“P02b”

“P2a/1”

“P9”

· · ·

Works-for
employeeId projectId

E1 P1

E2 P1

E2 P2

E2 P3

E3 P1

E4 P2

E4 P3

E5 P3

ProjectCode

projectId pcode

P1 “P12a”

P2 “P02b”

P3 “P2a/1”
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The graph representation of a world – e.g. RDF triples

Works-for

ProjectCode

E1:Employee

E2:Employee

E3:Employee

E4:Employee

E5:Employee

P1:Project

P2:Project

P3:Project

“P12a”:String

“P02b”:String

“P2a/1”:String

“P9”:String
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Employee ProjectWorks-for
A1 A2
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Constraints introduced by Attributes
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Constraints introduced by Attributes

Project

ProjectCode : String

Project ⊆ {p | ](ProjectCode ∩ ({p} × String)) ≥ 1}
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Constraints introduced by Cardinality Constraints

TopManager ProjectManagesmin..max
A1 A2

TopManager ⊆ {m | max ≥ ](Manages ∩ ({m} × Ω)) ≥ min}

(where Ω is the set of all instances)
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The Cardinality Construct: An Example

Professor StudentSupervises2..3 1..1

A valid Database is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul
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The Cardinality Construct: An Example

Professor StudentSupervises2..3 1..1

An invalid Database is:

Professor

professorId

Alex

Bob

Student

studentId

John

Mary

Nick

Paul

Laura

Supervises

professorId studentId

Alex John

Bob Laura

Alex Mary

Bob Nick

Alex Paul

Alex Laura (17/68)



Constraints introduced by ISA
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Employee

Manager

Manager ⊆ Employee
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Disjoint and Total constraints
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Disjoint and Total constraints

AreaManager TopManager

Manager

{disjoint,complete}

• ISA: AreaManager ⊆ Manager

• ISA: TopManager ⊆ Manager

• disjoint: AreaManager ∩ TopManager = ∅

• total: Manager ⊆ AreaManager ∪ TopManager
(19/68)



Constraints introduced by the initial diagram

Works-for ⊆ Employee × Project

Manages ⊆ TopManager × Project

Employee ⊆ {e | ](PaySlipNumber ∩ ({e} × Integer)) ≥ 1}

Employee ⊆ {e | ](Salary ∩ ({e} × Integer)) ≥ 1}

Project ⊆ {p | ](ProjectCode ∩ ({p} × String)) ≥ 1}

TopManager ⊆ {m | 1 ≥ ](Manages ∩ ({m} × Ω)) ≥ 1}

Project ⊆ {p | 1 ≥ ](Manages ∩ (Ω × {p})) ≥ 1}

Project ⊆ {p | ](Works-for ∩ (Ω × {p})) ≥ 1}

Manager ⊆ Employee

AreaManager ⊆ Manager

TopManager ⊆ Manager

AreaManager ∩ TopManager = ∅

Manager ⊆ AreaManager ∪ TopManager
(20/68)



Reasoning

Given an ontology – seen as a collection of constraints – it is possible that

additional constraints can be inferred.

• A class is inconsistent if it denotes the empty set in any legal world

description.

• A class is a subclass of another class if the former denotes a subset of the set

denoted by the latter in any legal world description.

• Two classes are equivalent if they denote the same set in any legal world

description.

• A stricter constraint is inferred – e.g., a cardinality constraint – if it holds in in

any legal world description.

• . . .

(21/68)



Simple reasoning example

Italian English

Person

Lazy LatinLover

{disjoint,covering}

Gentleman Hooligan

{disjoint}
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Simple reasoning example

Italian English

Person

Lazy LatinLover

{disjoint,covering}

Gentleman Hooligan

{disjoint}

implies

LatinLover = ∅

Italian ⊆ Lazy

Italian ≡ Lazy
(22/68)



Reasoning by cases

LatinLoverLazy Mafioso ItalianProf

Italian

{disjoint,complete}

{disjoint}
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Reasoning by cases

LatinLoverLazy Mafioso ItalianProf

Italian

{disjoint,complete}

{disjoint}

implies

ItalianProf ⊆ LatinLover

(23/68)



ISA and Inheritance
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ISA and Inheritance

Employee

Salary:Integer

Manager

Salary:Integer

implies

Manager ⊆ {m | ](Salary ∩ ({m} × Integer)) ≥ 1}

(24/68)



Infinite worlds
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Infinite worlds

Supervisor

Employee

supervises

0..1

2..2

implies

“the classes Employee and Supervisor contain an infinite number of instances”.

Therefore, the schema is inconsistent.

(25/68)



Bijection
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Bijection

Natural Number

Even Number

rel

1..1

1..1

implies

“the classes ’Natural Number’ and ’Even Number’ contain the same number of

instances”.

If the domain is finite: Natural Number ≡ Even Number

(26/68)



i•com: Intelligent Conceptual Modelling tool

• i•com allows for the specification of multiple UML (or EER) diagrams and

inter- and intra-schema constraints;

• Complete logical reasoning is employed by the tool using a hidden underlying

(description logic) inference engine;

• i•com verifies the specification, infers implicit facts and stricter constraints,

and manifests any inconsistencies during the conceptual modelling phase.

• www.cs.man.ac.uk/˜franconi/icom/
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Ontologies in First Order Logic

• We have introduced ontology languages that specify a set of constraints that

should be satisfied by the world of interest.

• The interpretation of an ontology is therefore defined as the collection of all

the legal world descriptions – i.e., all the (finite) relational structures which

conform to the constraints imposed by the ontology.

• An alternative way to define the interpretation: an ontology is mapped into a

set of First Order Logic (FOL) formulas.

• The legal world descriptions (i.e., the interpretation) of an ontology are all the

models of the FOL theory associated to it.
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FOL: The Alphabet

The Alphabet of the FOL language will have the following set of Predicate

symbols:

• 1-ary predicate symbols: E1, E2, . . . , En for each Class (Entity);

D1, D2, . . . , Dm for each Basic Domain.

• binary predicate symbols: A1, A2, . . . , Ak for each Attribute.

• n-ary predicate symbols: R1, R2, . . . , Rp for each Association (Relation).
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FOL Notation

• Vector variables indicated as x stand for an n-tuple of variables:

x = x1, . . . , xn

• Counting existential quantifier indicated as ∃≤n or ∃≥n.

∃≤nx. ϕ(x) ≡

∀x1, . . . , xn, xn+1. ϕ(x1) ∧ . . . ∧ ϕ(xn) ∧ ϕ(xn+1) →

(x1 = x2) ∨ . . . ∨ (x1 = xn) ∨ (x1 = xn+1) ∨

(x2 = x3) ∨ . . . ∨ (x2 = xn) ∨ (x2 = xn+1) ∨

. . . . . . ∨ (xn = xn+1)

∃≥nx. ϕ(x) ≡

∃x1, . . . , xn. ϕ(x1) ∧ . . . ∧ ϕ(xn) ∧

¬(x1 = x2) ∧ . . . ∧ ¬(x1 = xn) ∧

¬(x2 = x3) ∧ . . . ∧ ¬(x2 = xn) ∧

. . . . . . ∧ (xn−1 = xn) (30/68)



The Interpretation function

Interpretation : I = 〈D, ·I〉, where D is an arbitrary non-empty set such that:

• D = Ω ∪ B, where:

• B = ∪m
i=1BDi. BDi is the set of values associated with each basic

domain (i.e., integer, string, etc.); and BDi ∩ BDj = ∅, ∀i, j. i 6= j

• Ω is the abstract entity domain such that B ∩ Ω = ∅.

(31/68)



The Formal Semantics for the Atoms

I is the interpretation function that maps:

• Basic Domain Predicates to elements of the relative basic domain:

Di
I = BDi (e.g., StringI = BString).

• Entity-set Predicates to elements of the entity domain:

Ei
I ⊆ Ω.

• Attribute Predicates to binary relations such that:

Ai
I ⊆ Ω × B.

• Relationship-set Predicates to n-ary relations over the entity domain:

Ri
I ⊆ Ω × Ω . . . × Ω = Ωn.

(32/68)



The Relationship Construct
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• The meaning of this constraint is:

RI ⊆ E1
I × . . . × En

I

• The FOL translation is the formula:

∀x1, . . . , xn. R(x1, . . . , xn) → E1(x1) ∧ . . . ∧ En(xn)
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The Attribute Construct
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The Attribute Construct

E

A : D

• The meaning of this constraint is:

EI ⊆ {e ∈ Ω | ](AI ∩ ({e} × BD)) ≥ 1}

• The FOL translation is the formula:

∀x. E(x) → ∃y.A(x, y) ∧ D(y)

(34/68)



The Cardinality Construct

E1

Ei

En

p..q

R

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤ ](RI ∩ (Ω × {ei} × Ω)) ≤ q}

(35/68)



The Cardinality Construct

E1

Ei

En

p..q

R

• The meaning of this constraint is:

Ei
I ⊆ {ei ∈ Ω | p ≤ ](RI ∩ (Ω × {ei} × Ω)) ≤ q}

• The FOL translation is the formula:

∀xi. E(xi) → ∃≥px1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn) ∧

∃≤qx1, . . . , xi−1, xi+1, . . . xn. R(x1, . . . , xn)

(35/68)



The Cardinality Construct: An Example

Professor StudentSupervises2..3 1..1

• The FOL translation is:

∀x, y. Supervises(x, y) → Professor(x) ∧ Student(y)

∀x. Professor(x) → ∃≥2y. Supervises(x, y) ∧

∃≤3y. Supervises(x, y)
∀y. Student(y) → ∃=1x. Supervises(x, y)

(36/68)



ISA Relations

E

E1 . . . En

• The meaning of this constraint is:

Ei
I ⊆ EI , for all i = 1, . . . , n.

• The FOL translation is the formula:

∀x. Ei(x) → E(x), for all i = 1, . . . , n.

(37/68)



Disjoint and covering constraints

The encoding in FOL of disjoint and covering constraints is left as an exercise.
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FOL encoding

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x, y. Works-for(x, y) → Employee(x) ∧ Project(y)

∀x, y. Manages(x, y) → Top-Manager(x) ∧ Project(y)

∀y. Project(y) → ∃x. Works-for(x, y)

∀y. Project(y) → ∃=1x. Manages(x, y)

∀x. Top-Manager(x) → ∃=1y. Manages(x, y)

∀x. Manager(x) → Employee(x)

∀x. Manager(x) → Area-Manager(x) ∨ Top-Manager(x)

∀x. Area-Manager(x) → Manager(x) ∧ ¬Top-Manager(x)

∀x. Top-Manager(x) → Manager(x)
(39/68)



Key constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Project(x) → ∃=1y. ProjectCode(x, y) ∧ String(y)

∀y. ∃x. ProjectCode(x, y) → ∃=1x. ProjectCode(x, y) ∧ Project(x)
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Additional constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)
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Additional constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

1..?
Works-for

1..1

1..1

Manages

• Managers do not work for a project (she/he just manages it):

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

• If the minimum cardinality for the participation of employees to the works-for

relationship is increased, then . . .
(41/68)
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The DLR Description Logic – a fragment of FOL

• relationships: interpreted as sets of tuples of a given arity

R → >n | RN | ¬R | R1 u R2 | R1 t R2 | i/n : C

• classes: interpreted as sets of objects

C → > | CN | ¬C | C1 u C2 | C1 t C2 | ∃≶k[i]R

• conceptual schema : R v R′ | C v C ′ | R 6v R′ | C 6v C ′

Works-for v subj/2 : Employee u obj/2 : Project

TopManager v Manager u ∃=1[man]Manages

(43/68)



Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., DAML+OIL)
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Encoding ontologies in Description Logics

• Object-oriented data models (e.g., UML and ODMG)

• Semantic data models (e.g., EER and ORM)

• Frame-based ontology languages (e.g., DAML+OIL)

• Theorems prove that an ontology and its encoding as DL knowledge bases

constrain every world description in the same way – i.e., the models of the DL

theory correspond to the legal world descriptions of the ontology, and

vice-versa.

(44/68)



AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Works-for v emp/2 : Employee u act/2 : Project

Manages v man/2 : TopManager u prj/2 : Project

Employee v ∃=1[worker](PaySlipNumber u num/2 : Integer)u

∃=1[payee](Salary u amount/2 : Integer)
> v ∃≤1[num](PaySlipNumber u worker/2 : Employee)

Manager v Employee u (AreaManager t TopManager)

AreaManager v Manager u ¬TopManager

TopManager v Manager u ∃=1[man]Manages

Project v ∃≥1[act]Works-for u ∃=1[prj]Manages

· · · (45/68)



Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)
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Deducing constraints

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

Managers are employees who do not work for a project (she/he just manages it):

Employee u ¬(∃≥1[emp]Works-for) v Manager, Manager v ¬(∃≥1[emp]Works-for)

=⇒ For every project, there is at least one employee who is not a manager:

Project v ∃≥1[act](Works-for u emp : ¬Manager) (46/68)



Extensions of DLR

• DLRreg : regular expressions and recursive views (beyond FOL)

• DLRUS : temporal constructs to model temporal databases (temporal logic)

• DLRkey : general key constraints

(47/68)



Reasoning with Ontologies

• Exploit the DLR reasoning procedures for solving reasoning problems in the

ontology enriched with constraints.

• Logical implication and consistency for DLR knowledge bases is decidable

and EXPTIME-complete, and practical, proved correct and complete

algorithms exist in implemented systems.
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Reasoning with Ontologies

• Exploit the DLR reasoning procedures for solving reasoning problems in the

ontology enriched with constraints.

• Logical implication and consistency for DLR knowledge bases is decidable

and EXPTIME-complete, and practical, proved correct and complete

algorithms exist in implemented systems.

•  Ontology consistency checking with constraints and logical implication of

constraints in ontologies are all decidable EXPTIME-complete problems.

• i•com is an implemented conceptual modelling tool using in the background a

DLR ontology server supporting the ontology design.

(48/68)



Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

(49/68)



The role of a Conceptual Schema – revisited
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Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary
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Queries with Ontologies: the DB assumption

• Basic assumption: consistent information with respect to the constraints

introduced by the ontology

• DB assumption: complete information about each term appearing in the

ontology

• Problem: answer a query over the ontology vocabulary

• Solution: use a standard DB technology (e.g., SQL, datalog, etc)

(51/68)
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Example

Manager

Employee Project1..?Works-for

Employee = { John, Mary, Paul }

Manager = { John, Paul }

Works-for = { ( John, Prj-A), ( Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ { John } (52/68)



Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.
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Weakening the DB assumption

• The DB assumption is against the principle that an ontology presents a richer

vocabulary than the data stores.

• Partial DB assumption: complete information about some term appearing in

the ontology

• Standard DB technologies do not apply

• The query answering problem in this context is inherently complex
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Simple Example

Manager

Employee Project1..?Works-for

Manager = { John, Paul }

Works-for = { ( John, Prj-A), ( Mary, Prj-B) }

Project = { Prj-A, Prj-B }

Q(X) :- Employee(X)

=⇒ { John, Paul, Mary }
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Andrea’s Example
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Manager
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Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { ( John, Andrea), ( John, Mary) }

OfficeMate = { ( Mary, Andrea), ( Andrea, Paul) }
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Andrea’s Example

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate Employee = { Andrea, Paul, Mary, John }

Manager = { Andrea, Paul, Mary}

AreaManager p = { Paul }

TopManager p = { Mary }

Supervised = { ( John, Andrea), ( John, Mary) }

OfficeMate = { ( Mary, Andrea), ( Andrea, Paul) }

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate
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Andrea’s Example (cont.)
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Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee
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Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John
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Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised( X, Y), TopManager( Y),

Officemate( Y, Z), AreaManager( Z)
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Andrea’s Example (cont.)

AreaManager p TopManager p

AreaManager TopManager

Manager

Employee

{disjoint,complete}

Supervised

OfficeMate

Paul: AreaManager p

Andrea: Manager Mary: TopManager p

John

?

�

�
�

�
��	

@
@

@
@@R

Supervised Supervised

OfficeMate

OfficeMate

Q(X) :- Supervised( X, Y), TopManager( Y),

Officemate( Y, Z), AreaManager( Z)

=⇒ { John }

(56/68)
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In general, the mapping between the ontology and the information source terms

can be given in terms of a set of views:
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View based query processing

In general, the mapping between the ontology and the information source terms

can be given in terms of a set of views:

• GAV (global-as-view): a view over the information source is given for some

term in the ontology;

• an ER schema can be easily mapped to its corresponding relational

schema in normal form via a total GAV mapping.

• LAV (local-as-view): a view over the ontology terms is given for each term in

the information source;

• GLAV : mixed from the above.

(57/68)



Total GAV mapping

Manager
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1..?Works-for
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Total GAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode )

Employee(X) :- NF-Employee(X,Y,Z)

Manager(X) :- NF-Employee(X,Y, true)

Salary(X,Y) :- NF-Employee(X,Y,Z)

Works-for(X,Y) :- NF-Works-for(X,Y)

Project(X) :- NF-Works-for(X,Y)
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LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode )

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

NF-Works-for(X,Y) :- Works-for(X,Y)
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Queries with LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode )

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true
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NF-Works-for(X,Y) :- Works-for(X,Y)
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PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode )

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false
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Queries with LAV mapping

Manager

Employee

PaySlipNumber:Integer

Salary:Integer

Project

ProjectCode:String

1..?Works-for

NF-Employee(PaySlipNumber ,Salary,ManagerP)

NF-Works-for(PaySlipNumber ,ProjectCode )

NF-Employee(X,Y,Z) :- Manager(X), Salary(X,Y), Z=true

NF-Employee(X,Y,Z) :- Employee(X), ¬Manager(X), Salary(X,Y), Z=false

NF-Works-for(X,Y) :- Works-for(X,Y)

Q(X) :- Manager(X), Works-for(X,Y), Project(Y)

=⇒ Q’(X) :- NF-Employee(X,Y, true), NF-Works-for(X,Z)
(60/68)



Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)
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Reasoning over queries

Q(X,Y) :- Employee(X), Works-for(X,Y), Manages(X,Y)

AreaManager TopManager

Manager
Project

ProjectCode:String

Employee

PaySlipNumber:Integer

Salary:Integer

{disjoint,complete}

1..?

Works-for

1..1

1..1

Manages

∀x. Manager(x) → ∀y.¬WORKS-FOR(x, y)

 INCONSISTENT QUERY!

(61/68)



Summary

• Logic and Conceptual Modelling

• Description Logics for Conceptual Modelling

• Queries with an Ontology

• Ontology Integration
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Usefulness of View-based Query Processing

• In data integration, the views represent the only information sources

accessible to answer a query.

• A data warehouse can be seen as a set of materialised views, and, therefore,

query processing reduces to view-based query answering.

• In query optimisation, view-based query processing is relevant because using

the views may speed up query processing.

• Since the views provide partial knowledge on the database, view-based query

processing can be seen as a special case query answering with incomplete

information.
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Mediator Architecture for Ontology Integration

Mediator

Result

Inter-schema Constraints

Query

Query

Conceptual
Global Schema

Database1

Logical
Schema1

Conceptual
Schema1

Databasen

Logical
Scheman

Conceptual
Scheman

· · ·
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Local-as-view vs. Global-as-view

Local-as-view

• High modularity and reusability (when a source changes, only its view definition is changed).

• Relationships between sources can be inferred.

• Computationally more difficult (query reformulation).

Global-as-view

• Whenever the source changes or a new one is added, the view needs to be reconsidered.

• Needs to understand the relationships between the sources.

• Query processing sometimes easy (unfolding), when the ontology is very simple. Otherwise it

requires sophisticated query evaluation procedures.
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Possible scenarios

• Empty ontology / very simple Ontology

• Global-as-view

• The problem reduces to standard DB technology.
• Can not express Ontology Integration needs.
• Not modular.

• Local-as-view

• “Standard” view-based query processing.
• Can express only few Ontology Integration needs.
• Modular.

• Full Ontology / Integrity Constraints

• Global-as-view

• Requires sophisticated query evaluation procedures (involving deduction).
• Can express Ontology Integration needs.
• Not modular.

• Local-as-view

• View-based query processing under constraints.
• Can express Ontology Integration needs.
• Modular.

(66/68)



Current Practice

• Most implemented ontology based systems:
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Current Practice

• Most implemented ontology based systems:

• either assume no Ontology or a very simple Ontology with a

global-as-view approach,

• or include an Ontology or Integrity Constraints in their framework, but

adopt a naive query evaluation procedure, based on query unfolding: no

correctness of the query answering can be proved.

(67/68)
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Conclusions

Do you have an ontology in your application?
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Conclusions

Do you have an ontology in your application?

Pay attention!

(68/68)
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