
Overview of Automated Reasoning

Peter Baumgartner

Peter.Baumgartner@nicta.com.au

http://users.cecs.anu.edu.au/˜baumgart/

1

Peter.Baumgartner@nicta.com.au
http://users.cecs.anu.edu.au/~baumgart/

What is Automated Reasoning?

Theme

Building push-button technology (software) for mathematical-logical

reasoning on computer

Relevant fields

• Mathematical logic and philosophy: formal logics and calculi

• Theoretical computer science: computability theory, complexity theory

• Applied and practical computer science: artifical intelligence, data

structures and algorithms

Applications: Software verification, hardware verification, analysing dynamic

properties of reactive systems, databases, mathematical theorem proving,

planning, diagnosis, knowledge representation (description logics), logic

programming, constraint solving

Automated Reasoning systems parametrized in

logic and reasoning service

2

Logics and Reasoning Service: Constraint Solving

The n-queens problem:

Given: An n × n chessboard

Question: Is it possible to place n queens so that no queen attacks any other?

A solution for n = 8

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

Use a constraint solver to find a solution

3

Logics and Reasoning Service: Constraint Solving

A Zinc model, ready to be run by a constraint solver:

int: n = 8;

array [1..n] of var 1..n: p;

constraint

forall (i in 1..n, j in i + 1..n) (

p[i] != p[j]

/\ p[i] + i != p[j] + j

/\ p[i] - i != p[j] - j

);

solve satisfy; output ["Solution: ", show(p), "\n"];

Logic: Integer arithmetic, quantifiers, arrays

Reasoning Service: Constraint solving

Search assignments for all vars p[1] to p[n] such that constraint is

satisfied

With n fixed, all variables and i and j range over finite domains.

This is typical for “constraint solving”
4

Logics and Reasoning Service: Constraint Solving

The same problem, written in sorted first-order logic:

n : Z (Declaration of n)

p : Z 7→ Z (Declaration of p)

n = 8

∀i : Z j : Z (1 ≤ i ∧ i ≤ n ∧ i + 1 ≤ j ∧ j < n⇒

p(i) 6= p(j) ∧ p(i) + i 6= p(j) + j ∧ p(i)− i 6= p(j)− j)
(Queens)

p(1) = 1 ∨ p(1) = 2 ∨ · · · ∨ p(1) = 8 (p(1) ∈ {1, . . . , n})

...

p(8) = 1 ∨ p(8) = 2 ∨ · · · ∨ p(8) = 8 (p(n) ∈ {1, . . . , n})

Logic: Integer arithmetic, quantifiers, “free” symbol p

Reasoning Service: Satisfiability: find a satisfying interpretation I (a model)

and evaluate I (p(1)), . . . , I (p(n)) to read off the answer

5

Logics and Reasoning Service: Constraint Solving

Summary so far

• Constraint solvers are applicable when all variables range over finite

domains. They can exploit this fact when searching for a solution, in

particular for “constraint propagation”

• Theorem provers are intended to work on infinite domains. In the

N-queens example the variables are quantified over finite domains only

coincidentially.

• On finite search problems constraint solvers perform usually much better

So, why theorem proving?

Answer: for analysing the problem for any board size n

6

Logical Analysis Example: N-Queens

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

Number of solutions, depending on n:

“unique” is “distinct” modulo reflection/rotation symmetry

For efficiency reasons better avoid searching symmetric solutions

7

Logical Analysis Example: N-Queens

p[1] = 6

p[2] = 3

p[3] = 5

p[4] = 8

p[5] = 1

p[6] = 4

p[7] = 2

p[8] = 7

• The n-queens has variable symmetry: mapping p[i] 7→ p[n + 1− i]

preserves solutions, for any n

• Therefore, it is justified to add (to the formalization) a constraint

p[1] < p[n], for search space pruning

• But how can we know that the problem has symmetries?

This is a theorem proving task!

8

Proving Symmetry: Formalization

We need two “copies” (Queens p) and (Queens q) of the constraint:

n : Z (Declaration of n)

p, q : Z 7→ Z (Declaration of p, q)

perm : Z 7→ Z (Declaration of perm)

∀i : Z j : Z (1 ≤ i ∧ i ≤ n ∧ i + 1 ≤ j ∧ j < n⇒

p(i) 6= p(j) ∧ p(i) + i 6= p(j) + j ∧ p(i)− i 6= p(j)− j)
(Queens p)

∀i : Z j : Z (1 ≤ i ∧ i ≤ n ∧ i + 1 ≤ j ∧ j < n⇒

q(i) 6= q(j) ∧ q(i) + i 6= q(j) + j ∧ q(i)− i 6= q(j)− j)
(Queens q)

∀i : Z perm(i) = n + 1− i (Def. permutation)

Logic: Integer arithmetic, quantifiers, “free” symbol p

Reasoning Service: Entailment

The above entails (Queens p) ∧ (∀i : Z q(i) = p(perm(i)))⇒ (Queens q)

which expresses the symmetry property. Use a theorem prover
9

Logics and Reasoning Service - Spectrum

Logics

Base logic: propositional/first-order/higher-order

Syntactic fragments

(Description Logics, Datalog, ...)

Classical/non-monotonic

Modalities (temporal, deontic, ...)

Over structures (finite trees, graphs,...)

Modulo Theories (equality, arithmetic, ...)

Services

Model checking

(evaluation)

Satisfiability

(minimal models)

Validity

Induction

Abduction

Almost any subset of the left column (potentially) makes sense

The challenge is to build “decent” calculi/theorem provers:

theoretically analysed, avoiding redundancies, practically useful,

meaningful answers (proofs, models), ...

10

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
11

Propositional Logic

Syntax

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

• A formula is either an atom or some formulas combined with a connective

in the proper way. Example: (A⇒ B)⇒ (B ∨ ¬A)

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

• A formula is either an atom or some formulas combined with a connective

in the proper way. Example: (A⇒ B)⇒ (B ∨ ¬A)

Clause Logic

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

• A formula is either an atom or some formulas combined with a connective

in the proper way. Example: (A⇒ B)⇒ (B ∨ ¬A)

Clause Logic

• A literal is either an atom or the negation of an atom. Example: A, ¬A

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

• A formula is either an atom or some formulas combined with a connective

in the proper way. Example: (A⇒ B)⇒ (B ∨ ¬A)

Clause Logic

• A literal is either an atom or the negation of an atom. Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals.

Example: ¬B ∨ C ∨ ¬D

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

• A formula is either an atom or some formulas combined with a connective

in the proper way. Example: (A⇒ B)⇒ (B ∨ ¬A)

Clause Logic

• A literal is either an atom or the negation of an atom. Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals.

Example: ¬B ∨ C ∨ ¬D

• A formula is in clause normal form, or conjunctive normal form (CNF) iff

it is a conjunction of clauses. Example: (¬A ∨ B) ∧ A ∧ (¬B ∨ C ∨ ¬D)

12

Propositional Logic

Syntax

• Propositional variables (aka (propositional) atoms) A, B, C

• Boolean connectives ¬ (negation), ∧ (and), ∨ (or), ⇒ (implication)

• Parenthesis (and)

• A formula is either an atom or some formulas combined with a connective

in the proper way. Example: (A⇒ B)⇒ (B ∨ ¬A)

Clause Logic

• A literal is either an atom or the negation of an atom. Example: A, ¬A

• A clause is a (possibly empty) disjunction of literals.

Example: ¬B ∨ C ∨ ¬D

• A formula is in clause normal form, or conjunctive normal form (CNF) iff

it is a conjunction of clauses. Example: (¬A ∨ B) ∧ A ∧ (¬B ∨ C ∨ ¬D)

• Most theorem proving methods work with clause logic

Every formula can be transformed into an equivalent CNF

12

Propositional Logic

Semantics

13

Propositional Logic

Semantics

• An interpretation I maps every atom to a truth value True or False

Often I is specified by the set of True atoms. Example: if I = {A,C ,D}

then I (A) = I (C) = I (D) = True and all other atoms are False

13

Propositional Logic

Semantics

• An interpretation I maps every atom to a truth value True or False

Often I is specified by the set of True atoms. Example: if I = {A,C ,D}

then I (A) = I (C) = I (D) = True and all other atoms are False

• The semantics of the connectives is fixed by the usual truth tables

13

Propositional Logic

Semantics

• An interpretation I maps every atom to a truth value True or False

Often I is specified by the set of True atoms. Example: if I = {A,C ,D}

then I (A) = I (C) = I (D) = True and all other atoms are False

• The semantics of the connectives is fixed by the usual truth tables

• Every interpretation I extends to a mapping of formulas to truth values

by way of recursion and using the semantics of the connectives.

We identify I with this extension. Example: I (A ∧ (¬C ∨ B)) = False

Notation: I |= F iff I (F) = True (I satisfies F , I is a model of F)

13

Propositional Logic

Semantics

• An interpretation I maps every atom to a truth value True or False

Often I is specified by the set of True atoms. Example: if I = {A,C ,D}

then I (A) = I (C) = I (D) = True and all other atoms are False

• The semantics of the connectives is fixed by the usual truth tables

• Every interpretation I extends to a mapping of formulas to truth values

by way of recursion and using the semantics of the connectives.

We identify I with this extension. Example: I (A ∧ (¬C ∨ B)) = False

Notation: I |= F iff I (F) = True (I satisfies F , I is a model of F)

• A formula F is

- satisfiable iff it has a model

- unsatisfiable iff it has no model

- valid iff every interpretation is a model of F

- entailed by a set of formulas M iff every model of every formula in M

is a model of F . Notation: M |= F
13

Propositional SAT Solving

Question
Theorem Prover

Formula(s)
Yes

No

Formula: Propositional logic formula φ

Question: Is φ satisfiable?

(Minimal model? Maximal consistent subsets?)

Theorem Prover:

• Stochastic local search (not covered here)

• DPLL: Davis-Putnam-Logemann-Loveland method, historic (1960s),

one component of current CDCL methods

• CDCL: Conflict-Driven Clause Learning

Problem: the formula φ can be BIG

14

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{} 6|= A ∨ B

{} |= C ∨ ¬A

{} |= D ∨ ¬C ∨ ¬A

{} |= ¬D ∨ ¬B

〈empty tree〉

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)

15

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A} |= A ∨ B

{A} 6|= C ∨ ¬A

{A} |= D ∨ ¬C ∨ ¬A

{A} |= ¬D ∨ ¬B

A ¬A

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)

16

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C} |= A ∨ B

{A,C} |= C ∨ ¬A

{A,C} 6|= D ∨ ¬C ∨ ¬A

{A,C} |= ¬D ∨ ¬B

A

C ¬C

¬A

⋆

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)

17

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C ,D} |= A ∨ B

{A,C ,D} |= C ∨ ¬A

{A,C ,D} |= D ∨ ¬C ∨ ¬A

{A,C ,D} |= ¬D ∨ ¬B

A

C ¬C

D ¬D

¬A

⋆

⋆

Model {A,C ,D} found.

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)

18

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{B} |= A ∨ B

{B} |= C ∨ ¬A

{B} |= D ∨ ¬C ∨ ¬A

{B} |= ¬D ∨ ¬B

A

C ¬C

D ¬D

¬A

¬B

⋆

⋆ ⋆

Model {B} found.

B

• A Branch stands for an interpretation

• Purpose of splitting: satisfy a clause that is currently falsified

• Close branch if some clause is plainly falsified by it (⋆)

19

DPLL Pseudocode

literal L: a variable A or its negation ¬A

clause: a set of literals, e.g., {A,¬B ,C}, connected by “or”

function DPLL(N) %% N is a set of clauses, connected by "and"

while N contains a unit clause {L}

N := simplify(N, L);

if N = {} then return true;

if {} ∈ N then return false;

L := choose-literal(N);

if DPLL(simplify(N, L)) then return true;

else return DPLL(simplify(N, ¬L));

function simplify(N, L) %% also called unit propagation

remove all clauses from N that contain L;

delete ¬L from all remaining clauses;

return the resulting clause set;

20

Making DPLL Fast – Overview

Conflict Driven Clause Learning (CDCL) solvers extend DPLL:

Lemma learning: add new clauses to the clause set as branches get closed

(“conflict driven”)

Goal: reuse information that is obtained in one branch for subsequent

derivation steps.

Backtracking: replace chronological backtracking by “dependency-directed

backtracking”, aka “backjumping”: on backtracking, skip splits that are

not necessary to close a branch

Randomized restarts: every now and then start over, with learned clauses

Variable selection heuristics: what literal to split on. E.g., use literals that

occur often

Make unit-propagation fast: 2-watched literal technique

21

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

B

 (1)

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

22

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

23

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

24

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates

 by Resolution:

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

25

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates

 by Resolution:

D ∨ ¬C

¬B ∨ ¬C

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

26

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates

 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

27

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates

 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma
"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

28

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates

 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma

A ¬A

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

29

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates

 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma

A ¬A

¬C

(¬C ∨ ¬A)

"Avoid making the

same mistake twice"
w/o Lemma

. . .

B ∨ ¬A (1)

D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

30

Making DPLL Fast

2-watched literal technique

A technique to implement unit propagation efficiently.

• In each clause, select two (currently undefined) “watched” literals.

• For each variable A, keep a list of all clauses in which A is watched and a

list of all clauses in which ¬A is watched.

• If an undefined variable is set to 0 (or to 1), check all clauses in which A

(or ¬A) is watched and watch another literal (that is true or undefined) in

this clause if possible.

• As long as there are two watched literals in a n-literal clause, this clause

cannot be used for unit propagation, because n − 1 of its literals have to

be false to provide a unit conclusion.

• Important: Watched literal information need not be restored upon

backtracking.

31

Further Information

The ideas described so far heve been implemented in the SAT checker zChaff:

Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean Satisfiability

Solvers, Proc. CADE-18, LNAI 2392, pp. 295–312, Springer, 2002.

Other Overviews

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solvin SAT and SAT

Modulo Theories: From an abstract Davis-Putnam-Logemann-Loveland

precedure to DPLL(T), pp 937–977, Journal of the ACM, 53(6), 2006.

Armin Biere and Marijn Heule and Hans van Maaren and Toby Walsh.

Handbook of Satisability, IOS Press, 2009.

32

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
33

First-Order Logic Quiz

A1: Socrates is a human

A2: All humans are mortal

Translation into first-order logic:

A1: human(socrates)

A2: ∀x (human(x)→ mortal(x))

Which of the following (non-)entailment statements hold true?

1. {A1, A2} |= mortal(socrates)

2. {A1, A2} |= mortal(apollo)

3. {A1, A2} 6|= mortal(socrates)

4. {A1, A2} 6|= mortal(apollo)

5. {A1, A2} |= ¬mortal(socrates)

6. {A1, A2} |= ¬mortal(apollo)

34

First-Order Logic Reasoning Services

Question
Theorem Prover

Formula(s)
Yes

No (sometimes)

Formula: First-order logic formula φ (e.g. the n-queens formulas above)

Usually with equality =

Sometimes from syntactically resricted fragment (e.g., Description logics)

Question: Is φ formula valid? (satisfiable?, entailed by another formula?)

Calculi: Superposition (Resolution), Instance-based methods, Tableaux, ...

Issues

• Efficient treatment of equality

• Decision procedure for sub-languages or useful reductions?

• Built-in inference rules for arrays, lists, arithmetics (still open research)

35

First-Order Logic

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

Underlying Language

Variables ε, a, δ, x

Function symbols 0, | |, − , f ()

Terms are well-formed expressions over variables and function symbols

Predicate symbols < , =

Atoms are applications of predicate symbols to terms

Boolean connectives ∧, ∨, →, ¬

Quantifiers ∀, ∃

The function symbols and predicate symbols comprise a signature Σ

36

First-Order Logic

“The function f is continuous”, expressed in (first-order) predicate logic:

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

Semantics: (Σ-)Algebras, or (Σ-)Interpretations

Universe (aka Domain): Set U

Variables 7→ values in U (mapping is called “assignment”)

Function symbols 7→ (total) functions over U

Predicate symbols 7→ relations over U

Boolean connectives 7→ the usual boolean functions

Quantifiers 7→ “for all ... holds”, “there is a ..., such that”

Terms 7→ values in U

Formulas 7→ Boolean (Truth-) values

37

Semantics - Example

Let ΣPA be the standard signature of Peano Arithmetic

The standard interpretation N for Peano Arithmetic then is:

UN = {0, 1, 2, . . .}

0N : 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations

38

Semantics - Example

Evaluation of terms and formulas

Under the interpretation N and the assignment β : x 7→ 1, y 7→ 3 (to evaluate

the free variables) we obtain

(N, β)(s(x) + s(0)) = 3

(N, β)(x + y
.
= s(y)) = True

(N, β)(∀z z ≤ y) = False

(N, β)(∀x∃y x < y) = True

N(∀x∃y x < y) = True (Short notation when β irrelevant)

Important Basic Notion: Model

If φ is a closed formula, then, instead of I (φ) = True one writes

I |= φ (“I is a model of φ”)

E.g. N |= ∀x∃y x < y

39

Reasoning Services Semantically

E.g. “entailment”:

Axioms over R ∧ continuous(f) ∧ continuous(g) |= continuous(f + g) ?

Model(I ,φ): I |= φ ? (Is I a model for φ?)

Validity(φ): |= φ ? (I |= φ for every interpretation?)

Satisfiability(φ): φ satisfiable? (I |= φ for some interpretation?)

Entailment(φ,ψ): φ |= ψ ? (does φ entail ψ?, i.e.

for every interpretation I : if I |= φ then I |= ψ?)

Solve(I ,φ): find an assignment β such that (I , β)(φ) = True

(φ is not closed)

Solve(φ): find an interpretation and assignment β such that (I , β)(φ) = True

(φ is not closed)

Additional complication: fix interpretation of some symbols (as in N above)

40

Reasoning Services Semantically

E.g. “entailment”:

Axioms over R ∧ continuous(f) ∧ continuous(g) |= continuous(f + g) ?

Model(I ,φ): I |= φ ? (Is I a model for φ?)

Validity(φ): |= φ ? (I |= φ for every interpretation?)

Satisfiability(φ): φ satisfiable? (I |= φ for some interpretation?)

Entailment(φ,ψ): φ |= ψ ? (does φ entail ψ?, i.e.

for every interpretation I : if I |= φ then I |= ψ?)

Solve(I ,φ): find an assignment β such that (I , β)(φ) = True

(φ is not closed)

Solve(φ): find an interpretation and assignment β such that (I , β)(φ) = True

(φ is not closed)

Additional complication: fix interpretation of some symbols (as in N above)

In the following focus on “entailment”

40

Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

41

Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

41

Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

41

Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

• Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

41

Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

• Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

Basis for (predominant) refutational theorem proving

41

Reduction of Entailment to Unsatisfiability

• Suppose we want to prove an entailment φ |= ψ

• Equivalently, prove |= φ→ ψ, i.e. that φ→ ψ is valid

• Equivalently, prove that ¬(φ→ ψ) is not satisfiable (unsatisfiable)

• Equivalently, prove that φ ∧ ¬ψ is unsatisfiable

Basis for (predominant) refutational theorem proving

Dual problem, much harder: to disprove an entailment φ |= ψ find a model of

φ ∧ ¬ψ

One motivation for (finite) model generation procedures

41

Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

• Reduction of logical concepts (operators, quantifiers)

• Reduction of syntactical structure (nesting of subformulas)

• Can be exploited for efficient data structures and control

42

Normal Forms

Most first-order theorem provers take formulas in clause normal form

Why Normal Forms?

• Reduction of logical concepts (operators, quantifiers)

• Reduction of syntactical structure (nesting of subformulas)

• Can be exploited for efficient data structures and control

Translation into Clause Normal Form

Clausal

Theorem Prover

Prenex
normal
form

Skolem
normal
form

Clause
normal
form

Formula

Prop: the given formula and its clause normal form are equi-satisfiable

42

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃}

43

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃}

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G → F)

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF → G) ⇒P Qy(F [y/x]→ G), y fresh

(F ρ QxG) ⇒P Qy(F ρ G [y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i.e., ∀ = ∃ and ∃ = ∀.

43

In the Example

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a(0 < ε→ ∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇒P

∀ε∀a∃δ(0 < ε→ 0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ(0 < ε→ ∀x(0 < δ ∧ |x − a| < δ → |f (x)− f (a)| < ε))

⇒P

∀ε∀a∃δ∀x(0 < ε→ (0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε)))

44

Skolem Normal Form

Clausal

Theorem Prover

Prenex
normal
form

Skolem
normal
form

Clause
normal
form

Formula

Intuition: replacement of ∃y by a concrete choice function computing y from

all the arguments y depends on.

Transformation ⇒S

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F [f (x1, . . . , xn)/y]

where f /n is a new function symbol (Skolem function).

45

Skolem Normal Form

Clausal

Theorem Prover

Prenex
normal
form

Skolem
normal
form

Clause
normal
form

Formula

Intuition: replacement of ∃y by a concrete choice function computing y from

all the arguments y depends on.

Transformation ⇒S

∀x1, . . . , xn∃y F ⇒S ∀x1, . . . , xn F [f (x1, . . . , xn)/y]

where f /n is a new function symbol (Skolem function).

In the Example

∀ε∀a∃δ∀x(0 < ε→ 0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε))

⇒S

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))

45

Clausal Normal Form (Conjunctive Normal Form)

Rules to convert the matrix of the formula in Skolem normal form into a

conjunction of disjunctions of literals:

(F ↔ G) ⇒K (F → G) ∧ (G → F)

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

They are to be applied modulo commutativity of ∧ and ∨

46

In the Example

∀ε∀a∀x(0 < ε→ 0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε))

⇒K

0 < d(ε, a) ∨ ¬ (0 < ε)

¬ (|x − a| < d(ε, a)) ∨ |f (x)− f (a)| < ε ∨ ¬ (0 < ε)

Note: The universal quantifiers for the variables ε, a and x , as well as the

conjunction symbol ∧ between the clauses are not written, for convenience

47

The Complete Picture

F
∗
⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm

︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸

clauses Ci

Notions

An atom is the (arity respecting) application of a predicate symbol to some

terms. A literal L is an atom or a negated atom. A clause is a disjunction of

literals L1 ∨ · · · ∨ Ln, where n ≥ 0. The empty clause is written as ✷. A clause

set is a set of clauses, The set N = {C1, . . . ,Ck} is called the clausal (normal)

form (CNF) of F .

Note: Variables in clauses are implicitly universally quantified

48

Where are we?

Instead of showing that a formula F is unsatisfiable, the proof problem from

now is to show that its CNF N is unsatisfiable

A CNF provides a simple syntactic structure, but does not give a clue how to

prove unsatisfiability. The naive approach of “checking all interpretations”

does not work: In general, there are infinitely many, even uncountably many

interpretations for a signature Σ.

So how to do that? “Herbrand theory” provides the answer

49

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
50

Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)

51

Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)

Proposition (Herbrand): Let N be a clause set and Ngr be the set of all

ground instances of all clauses in N.

N is unsatisfiable iff Ngr is unsatisfiable wrt. Herbrand interpretations

(essentially: propositional-logic unsatisfiable)

51

Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)

Proposition (Herbrand): Let N be a clause set and Ngr be the set of all

ground instances of all clauses in N.

N is unsatisfiable iff Ngr is unsatisfiable wrt. Herbrand interpretations

(essentially: propositional-logic unsatisfiable)

Proposition (compactness): Ngr is unsatisfiable wrt. Herbrand interpretations iff

some finite subset M ⊆ Ngr is unsatisfiable wrt. Herbrand interpretations

51

Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)

Proposition (Herbrand): Let N be a clause set and Ngr be the set of all

ground instances of all clauses in N.

N is unsatisfiable iff Ngr is unsatisfiable wrt. Herbrand interpretations

(essentially: propositional-logic unsatisfiable)

Proposition (compactness): Ngr is unsatisfiable wrt. Herbrand interpretations iff

some finite subset M ⊆ Ngr is unsatisfiable wrt. Herbrand interpretations

Propositional logic phase: Decide the satisfability of such finite sets M with a

SAT solver; Gilmore’s method

51

Proof Procedures Based on Herbrand’s Theorem

Proving unsatisfiabilty of a clause set becomes feasible (semi-decidable) by

working with the set of its ground instances instead. Plan of attack:

Definition: A ground instance of a clause is obtained by replacing each of its

variables by some variable-free term (“ground term”)

Proposition (Herbrand): Let N be a clause set and Ngr be the set of all

ground instances of all clauses in N.

N is unsatisfiable iff Ngr is unsatisfiable wrt. Herbrand interpretations

(essentially: propositional-logic unsatisfiable)

Proposition (compactness): Ngr is unsatisfiable wrt. Herbrand interpretations iff

some finite subset M ⊆ Ngr is unsatisfiable wrt. Herbrand interpretations

Propositional logic phase: Decide the satisfability of such finite sets M with a

SAT solver; Gilmore’s method

The above recasts usual notions of “Herbrand theory” in our application to

clause logic. “Herbrand’s Theorem” (1930s) is a stronger version of the two

propositions above combined
51

Ground Instances

Example: Let N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

52

Ground Instances

Example: Let N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

The underlying signature is Σ = {P/1, Q/2} ∪ {a/0, f /a}

52

Ground Instances

Example: Let N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

The underlying signature is Σ = {P/1, Q/2} ∪ {a/0, f /a}

The ground terms (of Σ) are UH = {a, f (a), f (f (a)), f (f (f (a))), . . .

(aka Herbrand universe)

52

Ground Instances

Example: Let N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

The underlying signature is Σ = {P/1, Q/2} ∪ {a/0, f /a}

The ground terms (of Σ) are UH = {a, f (a), f (f (a)), f (f (f (a))), . . .

(aka Herbrand universe)

The ground instances of N is the set

Ngr = {P(a)}

∪ {¬P(a) ∨ P(f (a)), ¬P(f (a)) ∨ P(f (f (a))),

¬P(f (f (a))) ∨ P(f (f (f (a)))), . . .}

∪ {Q(a, a), Q(a, f (a)), Q(f (a), a), Q(f (a), f (a)), . . .}

∪ {¬P(f (f (a)))}

52

Mapping to Propositional Logic

The Herbrand base, i.e., the set of all ground atoms is

HB = {P(a)
︸︷︷︸

A0

, P(f (a))
︸ ︷︷ ︸

A1

, P(f (f (a)))
︸ ︷︷ ︸

A2

, P(f (f (f (a))))
︸ ︷︷ ︸

A3

, . . .}

∪ {Q(a, a)
︸ ︷︷ ︸

B0

, Q(a, f (a))
︸ ︷︷ ︸

B1

, Q(f (a), a)
︸ ︷︷ ︸

B2

, Q(f (a), f (a))
︸ ︷︷ ︸

B3

, . . .}

By construction, every atom in Ngr occurs in HB

Replace in Ngr every (ground) atom by its propositional counterpart:

Ngr
prop = {A0}

∪ {¬A0 ∨ A1, ¬A1 ∨ A2,¬A2 ∨ A3, . . .}

∪ {B0, B1, B2, B3, . . .}

∪ {¬A2}

The subset {A0, ¬A0 ∨ A1, ¬A1 ∨ A2, ¬A2} is unsatisfiable, hence so is N.

53

Herbrand Proposition

A Herbrand interpretation I is an interpretation such that (in the example)

U = UH = {a, f (a), f (f (a)), f (f (f (a))), . . .

a : a

f : t 7→ f (t)

In every Herbrand interpretation every ground term is always interpreted as

“itself”, e.g. I (f (f (a))) = f (f (a))

The universe UH of ground terms justifies expanding clauses into their ground

instances instead of using a separate mapping β from variables to U

With the universe U and the interpretation of the function symbols uniquely

fixed in every Herbrand interpretation, Herbrand interpretations vary only with

the interpretation of the predicate symbols.

This justifies to specify a Herbrand interpretation as a subset of HB, those

atoms that are True by definition. In the example, e.g., I = {P(a),Q(a, f (a))}

54

Herbrand Proposition

Prove idea for the non-trivial direction

• Suppose N has a model J |= N

E.g., UJ = N, aJ : 0, fJ : n 7→ n + 1, PJ : n 7→ n ≥ 0, QJ : m, n 7→ m > n

55

Herbrand Proposition

Prove idea for the non-trivial direction

• Suppose N has a model J |= N

E.g., UJ = N, aJ : 0, fJ : n 7→ n + 1, PJ : n 7→ n ≥ 0, QJ : m, n 7→ m > n

• Define a Herbrand interpretation I ⊆ HB as follows:

For every ground atom K ∈ HB put K ∈ I iff J(K) = True

That is, evaluate K in J to get a (the same) truth value for K in I .

Example : P(f (a)) ∈ I as 0 + 1 ≥ 0

55

Herbrand Proposition

Prove idea for the non-trivial direction

• Suppose N has a model J |= N

E.g., UJ = N, aJ : 0, fJ : n 7→ n + 1, PJ : n 7→ n ≥ 0, QJ : m, n 7→ m > n

• Define a Herbrand interpretation I ⊆ HB as follows:

For every ground atom K ∈ HB put K ∈ I iff J(K) = True

That is, evaluate K in J to get a (the same) truth value for K in I .

Example : P(f (a)) ∈ I as 0 + 1 ≥ 0

• Given an atom A[x] (with free variables x) and a ground term t.

Then I |= A[t] iff (J, [x 7→ J(t)] |= A[x].

Example: let A[x] = P(f (x)) and t = f (f (a))

I |= P(f (f (f (a))))

iff J |= P(f (f (f (a)))) (By definition)

iff J, [x 7→ J(f (f (a)))] |= P(f (x)) (Use structural induction)

55

Herbrand Proposition

Prove idea for the non-trivial direction

• Suppose N has a model J |= N

E.g., UJ = N, aJ : 0, fJ : n 7→ n + 1, PJ : n 7→ n ≥ 0, QJ : m, n 7→ m > n

• Define a Herbrand interpretation I ⊆ HB as follows:

For every ground atom K ∈ HB put K ∈ I iff J(K) = True

That is, evaluate K in J to get a (the same) truth value for K in I .

Example : P(f (a)) ∈ I as 0 + 1 ≥ 0

• Given an atom A[x] (with free variables x) and a ground term t.

Then I |= A[t] iff (J, [x 7→ J(t)] |= A[x].

Example: let A[x] = P(f (x)) and t = f (f (a))

I |= P(f (f (f (a))))

iff J |= P(f (f (f (a)))) (By definition)

iff J, [x 7→ J(f (f (a)))] |= P(f (x)) (Use structural induction)

• From that the proposition follows easily. Compactness: see whiteboard
55

Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

∧ ∀z ¬P(z , a)

Given Formula

P(f (x), x)
¬P(z , a)

Clause Form

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:

56

Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

∧ ∀z ¬P(z , a)

Given Formula

P(f (x), x)
¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:

56

Gilmore’s Method - Based on Herbrand’s Theorem

Proof found

Grounding

Propositional
Method

Outer Loop
STOP:

∧ ∀z ¬P(z , a)

Given Formula

P(f (x), x)
¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

Sat?

∀x ∃y P(y , x)

No

Preprocessing:

Outer loop:

Inner loop:

Yes

Continue

56

Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

∧ ∀z ¬P(z , a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:

¬P(f (a), a)

56

Gilmore’s Method - Based on Herbrand’s Theorem

Grounding

Propositional
Method

Outer LoopProof found

∧ ∀z ¬P(z , a)

Given Formula

P(f (a), a)
¬P(a, a)

P(f (x), x)
¬P(z , a)

Clause Form

P(f (a), a)
¬P(a, a)

∀x ∃y P(y , x)
Preprocessing:

Outer loop:

Inner loop:
Sat?

No Yes

ContinueSTOP:

¬P(f (a), a)

56

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
57

The Resolution Calculus

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

58

The Resolution Calculus

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

• Main problem is the unguided generation of (very many) ground clauses

58

The Resolution Calculus

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

• Main problem is the unguided generation of (very many) ground clauses

• All modern calculi address this problem in one way or another, e.g.

- Avoidance: Resolution calculi do not need to generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

- Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way (see below)

58

The Resolution Calculus

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

• Main problem is the unguided generation of (very many) ground clauses

• All modern calculi address this problem in one way or another, e.g.

- Avoidance: Resolution calculi do not need to generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

- Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way (see below)

Modern versions of the resolution calculus [Robinson 1965] are (still) the most

important calculi for first-order theorem proving today

We first consider the special case for propositional logic

58

The Propositional Resolution Calculus

Propositional resolution inference rule:

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

Propositional (positive) factoring inference rule:

C ∨ A ∨ A

C ∨ A

Terminology: C ∨ A: factor

These are schematic inference rules:

C and D – propositional clauses

A – propositional atom

“∨” is considered associative and commutative

59

Derivations

Let N = {C1, . . . ,Ck} be a set of input clauses (propositional, for now).

A derivation (from N) is a sequence of the form

C1, . . . ,Ck
︸ ︷︷ ︸

Input

clauses

,Ck+1, . . . ,Cn, . . .
︸ ︷︷ ︸

Derived

clauses

such that for every n ≥ k + 1

• Cn is a resolvent of Ci and Cj , for some 1 ≤ i , j < n, or

• Cn is a factor of Ci , for some 1 ≤ i < n.

A refutation (of N) is a derivation from N that contains the empty clause ✷

Important results:

Soundness: If there is a refutation of N then N is unsatisfiable

Completeness: If N is unsatisfiable then there is a refutation of N

60

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

61

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

61

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

61

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

61

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

61

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

61

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

10. ✷ (Res. 4. into 9.)

61

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

62

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

62

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

62

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A⇒ I |= C ⇒ I |= C ∨ D

62

Soundness of Propositional Resolution

Proposition

Propositional resolution is sound

Proof:

Let I ∈ Σ-Alg. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (i): Assume premises are valid in I . Two cases need to be considered:

(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A⇒ I |= C ⇒ I |= C ∨ D

Ad (ii): even simpler

62

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

63

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

• That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ✷ eventually

63

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

• That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

63

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

• That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

• Perhaps easiest proof: semantic tree proof technique (see blackboard)

63

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

• That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

• Perhaps easiest proof: semantic tree proof technique (see blackboard)

• This result can be considerably strengthened, some strengthenings come

for free from the proof

63

Completeness of Propositional Resolution

Theorem:

Propositional Resolution is refutationally complete

• That is, if a propositional clause set is unsatisfiable, then Resolution will

derive the empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

• Perhaps easiest proof: semantic tree proof technique (see blackboard)

• This result can be considerably strengthened, some strengthenings come

for free from the proof

Propositional resolution is not suitable for first-order clause sets

63

First-Order Resolution

Propositional resolution:

• refutationally complete,

• in its most naive version: not guaranteed to terminate for satisfiable sets

of clauses, (improved versions do terminate, however)

• in practice clearly inferior to the DPLL procedure (even with various

improvements).

But: in contrast to the DPLL procedure, resolution can be easily extended to

non-ground clauses (but see below First-order DPLL)

64

First-Order Resolution through Instantiation

Idea: instantiate clauses appropriately:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

[a/z ′, f (a, b)/z] [a/y] [b/y] [a/x ′, b/x]

65

First-Order Resolution through Instantiation

Problems:

• More than one instance of a clause can participate in a proof.

• Even worse: There are infinitely many possible instances.

Observation:

• Instantiation must produce complementary literals (so that inferences

become possible).

Idea:

• Do not instantiate more than necessary to get complementary literals.

66

First-Order Resolution through Instantiation

Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y] [b/y] [a/x ′]

[f (a, x)/z]

67

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise from taking

the (ground) instances of finitely many first-order clauses (with variables)

effective and efficient.

Idea (Robinson 1965):

• Resolution for first-order clauses:

• Equality of ground atoms is generalized to unifiability of first-order

atoms;

• Only compute most general (minimal) unifiers.

68

First-Order Resolution through Instantiation

Significance: The advantage of the method in (Robinson 1965) compared

with (Gilmore 1960) is that unification enumerates only those instances of

clauses that participate in an inference. Moreover, clauses are not right

away instantiated into ground clauses. Rather they are instantiated only

as far as required for an inference. Inferences with non-ground clauses in

general represent infinite sets of ground inferences which are computed

simultaneously in a single step.

69

Substitutions and Unifiers

• A substitution σ is a mapping from variables to terms which is the

identity almost everywhere. Example: σ = [y 7→ f (x), z 7→ f (x)]

70

Substitutions and Unifiers

• A substitution σ is a mapping from variables to terms which is the

identity almost everywhere. Example: σ = [y 7→ f (x), z 7→ f (x)]

• A substitution σ is applied to a term or atom t by replacing every

occurrence of every variable x in t by σ(x).

Instead of σ(t) one usually writes tσ

Example, with σ is from above: P(f (x), y)σ = P(f (x), f (x))

70

Substitutions and Unifiers

• A substitution σ is a mapping from variables to terms which is the

identity almost everywhere. Example: σ = [y 7→ f (x), z 7→ f (x)]

• A substitution σ is applied to a term or atom t by replacing every

occurrence of every variable x in t by σ(x).

Instead of σ(t) one usually writes tσ

Example, with σ is from above: P(f (x), y)σ = P(f (x), f (x))

• A substitution γ is a unifier of s and t iff sγ = tγ.

A unifier σ is most general iff for every unifier γ of the same terms there

is a substitution δ such that γ = δ ◦ σ (=: σδ). Notation: σ = mgu(s, t)

Example:

s = car(red , y , z)

t = car(u, v , ferrari)

Then γ = [u 7→ red , y 7→ fast, v 7→ fast, z 7→ ferrari] is a unifier,

and σ = [u 7→ red , y 7→ v , z 7→ ferrari] is a mgu for s and t.

With δ = [v 7→ fast] obtain σδ = γ.
70

Substitutions and Unifiers

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set of equality

problems. A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

The rule system on the next slide computes a most general unifer of a

multiset of equality problems or “fail” (⊥) if none exists.

71

Rule Based Naive Standard Unification

t
.
= t,E ⇒SU E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒SU s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒SU ⊥

x
.
= t,E ⇒SU x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t,E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒SU x

.
= t,E

if t 6∈ X

72

Main Properties

The above unification algorithm is sound and complete:

Given E = s1
.
= t1, . . . , sn

.
= tn, exhaustive application of the above rules

always terminates, and one of the following holds:

• The result is a set equations in solved form, that is, is of the form

x1
.
= u1, . . . , xk

.
= uk

with xi pairwise distinct variables, and xi 6∈ var(uj).

In this case, the solved form represents the substitution

σE = [x1 7→ u1, . . . , xk 7→ uk] and it is a mgu for E .

• The result is ⊥. In this case no unifier for E exists.

73

First-Order Resolution Inference Rules

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factoring]

For the resolution inference rule, the premise clauses have to be renamed

apart (made variable disjoint)

74

First-Order Resolution Inference Rules

C ∨ A D ∨ ¬B

(C ∨ D)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factoring]

For the resolution inference rule, the premise clauses have to be renamed

apart (made variable disjoint)

Example

Q(z) ∨ P(z , z) ¬P(x , y)

Q(x)
where σ = [z 7→ x , y 7→ x] [resolution]

Q(z) ∨ P(z , a) ∨ P(a, y)

Q(a) ∨ P(a, a)
where σ = [z 7→ a, y 7→ a] [factoring]

74

Sample Refutation – The Barber Problem

set(binary_res). %% This is an "otter" input file

formula_list(sos).

%% Every barber shaves all persons who do not shave themselves:

all x (B(x) -> (all y (-S(y,y) -> S(x,y)))).

%% No barber shaves a person who shaves himself:

all x (B(x) -> (all y (S(y,y) -> -S(x,y)))).

%% Negation of "there are no barbers"

exists x B(x).

end_of_list.

otter finds the following refutation (clauses 1 – 3 are the CNF of the above):

1 [] -B(x)|S(y,y)|S(x,y).

2 [] -B(x)| -S(y,y)| -S(x,y).

3 [] B($c1).

4 [binary,1.1,3.1] S(x,x)|S($c1,x).

5 [factor,4.1.2] S($c1,$c1).

6 [binary,2.1,3.1] -S(x,x)| -S($c1,x).

10 [factor,6.1.2] -S($c1,$c1).

11 [binary,10.1,5.1] $F.
75

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

76

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

• That is, if a clause set is unsatisfiable, then Resolution will derive the

empty clause ✷ eventually

76

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

• That is, if a clause set is unsatisfiable, then Resolution will derive the

empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

76

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete

• That is, if a clause set is unsatisfiable, then Resolution will derive the

empty clause ✷ eventually

• More precisely: If a clause set is unsatisfiable and closed under the

application of the Resolution and Factoring inference rules, then it

contains the empty clause ✷

• Perhaps easiest proof: Herbrand Theorem + Completeness of

propositional resolution + Lifting Lemma

76

Lifting Lemma

Lemma 0.1 Let C and D be variable-disjoint clauses. If

D


y σ

Dσ

C


y ρ

Cρ

C ′
[propositional resolution]

then there exists a substitution τ such that

D C

C ′′



y τ

C ′ = C ′′τ

[first-order resolution]

77

Lifting Lemma

An analogous lifting lemma holds for factoring.

Corollary: if N is a set of clauses closed under resolution and factoring, then

also the set of all ground instances of all clauses from N is closed under

resolution and factoring.

With this result, it only remains to be shown how a given set of clauses can

be closed under resolution and factoring. For this use, e.g., the “Given Clause

Loop”.

78

The “Given Clause Loop”

As used in the Otter theorem prover:

Lists of clauses maintained by the algorithm: usable and sos.

Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.

79

The “Given Clause Loop” - Graphically

80

The “Given Clause Loop” - Graphically

set of

support

usable list

80

The “Given Clause Loop” - Graphically

set of

support

usable list

✣

✍✌✎☞
given

clause

✤ ✲

80

The “Given Clause Loop” - Graphically

set of

support

usable list

✣

✍✌✎☞
given

clause

✤ ✲
✟✟

❳❳❳

✍✌✎☞
✍✌✎☞

✍✌✎☞

consequences

80

The “Given Clause Loop” - Graphically

set of

support

usable list

✣

✍✌✎☞
given

clause

✤ ✲
✟✟

❳❳❳

✍✌✎☞
✍✌✎☞

✍✌✎☞

consequences

☞
✩

✩

❄ ❄ ❄
filters

80

The “Given Clause Loop” - Graphically

set of

support

usable list

✣

✍✌✎☞
given

clause

✤ ✲
✟✟

❳❳❳

✍✌✎☞
✍✌✎☞

✍✌✎☞

consequences

☞
✩

✩

❄ ❄ ❄
filters

✢✛

80

Resolution – Further Topics

Overcoming the search space

• Restricting inference rules, in particular by ordering refinements.

A-ordered resolution permits resolution inferences only if the literals

resolved upon are maximal in their parent clauses.

• Resolution strategies, to compute (hopefully small) subsets of the full

closure under inference rule applications.

Set-of-support, Linear Resolution, Hyperresolution (see below), and more.

• Deleting clauses that are not needed to find a refutation.

In particular subsumption deletion: delete clause C in presence of a

(different) clause D such that Dσ ⊆ C , for some substitution σ.

• Simplification of clauses.

Implementation techniques: in particular term indexing techniques

81

Hyperresolution

There are many variants of resolution. (We refer to [Bachmair, Ganzinger:

Resolution Theorem Proving] for further reading.)

One well-known example is hyperresolution (Robinson 1965):

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . ,An

.
= Bn).

Similarly to resolution, hyperresolution has to be complemented by a factoring

inference.

82

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
83

Instance-Based Methods

Recall:

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

84

Instance-Based Methods

Recall:

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

• Main problem is the unguided generation of (very many) ground clauses

84

Instance-Based Methods

Recall:

• Gilmore’s method reduces proof search in first-order logic to propositional

logic unsatisfiability problems

• Main problem is the unguided generation of (very many) ground clauses

• All modern calculi address this problem in one way or another, e.g.

- Avoidance: Resolution calculi do not need to generate the ground

instances at all

Resolution inferences operate directly on clauses, not on their ground

instances

- Guidance: Instance-Based Methods are similar to Gilmore’s method

but generate ground instances in a guided way

84

Two-Level Instance-Based Methods

Idea:

• Overlaps of complementary literals produce instantiations (as in

resolution);

• However, contrary to resolution, clauses are not recombined.

• Clauses are temporarily grounded – replace every variable by a constant –

and checked for unsatisfiability; use an efficient propositional proof

method, a “SAT-solver” for that.

• Main variants: (ordered) semantic hyperlinking [Plaisted],

resolution-based instance generation (Inst-Gen) [Ganzinger and Korovin].

85

Resolution-Based Instance Generation

Resolution-based instance generation has only one inference rule:

D ∨ B C ∨ ¬A

(D ∨ B)σ (C ∨ ¬A)σ
[Inst-Gen]

if σ = mgu(A,B) and at least one conclusion is a proper instance of its

premise.

The instance-generation calculus saturates a given clause set under Inst-Gen

and periodically passes the ground-instantiated version of the current clause

set to a SAT-solver.

A refutation has been found if the SAT-solver determines unsatisfiability.

86

One-Level Instance-Based Methods

• Other methods do not use a SAT-solver as a subroutine;

• Instead, the same base calculus is used to generate new clause instances

and test for unsatisfiability of grounded data structures.

• Main variants: tableau variants, such as the disconnection calculus [Billon;

Letz and Stenz], and a variant of the DPLL procedure for first-order logic,

FDPLL [Baumgartner and Tinelli].

87

Instance-Based Method – FDPLL

Lifted data structures:

Propositional
Reasoning

First-Order
Reasoning

Clauses ¬A ∨ B ∨ C ¬P(x , x) ∨ P(x , a) ∨ Q(x , x)

88

Instance-Based Method – FDPLL

Lifted data structures:

Propositional
Reasoning

First-Order
Reasoning

Clauses ¬A ∨ B ∨ C ¬P(x , x) ∨ P(x , a) ∨ Q(x , x)

Trees

B

A ¬A

¬B

C ¬C
⋆

P(x , y) ¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

Q(x , y)

First-Order Semantic Trees

88

First-Order Semantic Trees

P(x , y) ¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

Q(x , y)

Issues:

• One-branch-at-a-time approach desired

89

First-Order Semantic Trees

P(x , y) ¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

Q(x , y)

Issues:

• One-branch-at-a-time approach desired

• How to extract an interpretation from a branch?

89

First-Order Semantic Trees

P(x , y) ¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

Q(x , y)

Issues:

• One-branch-at-a-time approach desired

• How to extract an interpretation from a branch?

• When is a branch closed?

89

First-Order Semantic Trees

P(x , y) ¬P(x , y)

¬P(x , a) P(x , a)

¬Q(x , y)
⋆

Q(x , y)

Issues:

• One-branch-at-a-time approach desired

• How to extract an interpretation from a branch?

• When is a branch closed?

• How to construct such trees (calculus)?

89

Extracting an Interpretation from a Branch

Branch B:

P(x , y)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

P(a, a)

P(a, b)

P(b, a)

P(b, b)

P(x , y)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

P(a, a)

P(a, b)

P(b, a)

P(b, b)

P(x , y)

¬P(a, y)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

P(b, b)

P(x , y)

¬P(a, y)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

¬P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

¬P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

P(a, b)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

P(a, b)

P(b, a)

¬P(b, b)

P(x , y)

¬P(a, y)

¬P(b, b)

P(a, b)

Interpretation [[B]] = {...}:

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

90

Extracting an Interpretation from a Branch

Branch B: Interpretation [[B]] = {. . .}:

{

}

, ,

,

P(x , y)

P(a, b)

P(a, b)

¬P(a, y)

¬P(b, b)

¬P(a, a) P(b, a)

¬P(b, b)

• A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

• The order of literals does not matter.

90

Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

Propositional case:

¬C

¬B

⋆

¬AA

C B ∨ Cclosed by

B

91

Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

First-Order case:

closed by¬Q(x , y)

¬P(x , a)

¬P(x , y)P(x , y)

Q(x , y)

P(x , a)

P(x , y) ∨ Q(x , x)?

91

Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

First-Order case:

¬Q($, $)

¬P($, a)

¬P($, $)P($, $)

P(x , y) ∨ Q(x , x)

P($, a)

Q($, $)

1. Replace all variables in tree by a constant $. Gives propositional tree

2.

3.

91

Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

First-Order case:

¬Q($, $)

¬P($, a)

¬P($, $)P($, $)

Q($, $) P($, a) ∨ Q($, $)

γ = {x/$, y/a}

P(x , y) ∨ Q(x , x)P($, a)

1. Replace all variables in tree by a constant $. Gives propositional tree

2. Compute matcher γ to propositionally close branch

3.

91

Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

First-Order case:

closed by¬Q(x , y)

¬P(x , a)

¬P(x , y)P(x , y)

Q(x , y) P(x , y) ∨ Q(x , x)

P(x , a)

⋆

1. Replace all variables in tree by a constant $. Gives propositional tree

2. Compute matcher γ to propositionally close branch

3. Mark branch as closed (⋆)

91

Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

First-Order case:

closed by¬Q(x , y)

¬P(x , a)

¬P(x , y)P(x , y)

Q(x , y) P(x , y) ∨ Q(x , x)

P(x , a)

⋆

1. Replace all variables in tree by a constant $. Gives propositional tree

2. Compute matcher γ to propositionally close branch

3. Mark branch as closed (⋆)

Theorem: FDPLL is sound (because propositional DPLL is sound), and

splitting can be done with arbitrary literal.

91

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

〈empty
tree〉

Init

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

⋆ ⋆

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

⋆ ⋆

Closed?
No Yes

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

unsatisfiable

⋆ ⋆

Closed?
No

STOP:

Yes

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

unsatisfiablebranch B

⋆ ⋆

⋆ ⋆

Closed?

STOP:

Yes

B

No

Select open

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable

B

⋆ ⋆

⋆ ⋆

No

Yes

Closed?

STOP:

No

Select open

Yes

[[B]]
?

|= S

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable

satisfiable

⋆ ⋆

⋆ ⋆

No

Closed?

STOP:

No

Select open

Yes

[[B]]
?

|= S

Yes

STOP:

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B

satisfiable

unsatisfiable
and split B

with L and ¬L

L ¬L

⋆ ⋆

STOP:

Yes

Closed?

STOP:

No

Select open

Yes

[[B]]
?

|= S

Select literal L

No

⋆ ⋆

92

FDPLL Calculus
Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable
and split B

with L and ¬L

satisfiable

L ¬L

⋆ ⋆

Closed?

STOP:

No

Select open

Yes
Select literal L

No

[[B]]
?

|= S

Yes

STOP:

⋆ ⋆

Next: Testing [[B]] |= S and splitting

92

Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

P(x , y) ∨ ¬P(y , x)¬P(a, b)

¬P(a, y ′)

P(y ′′, x′′)

Some clause
from S

1.

2.

3.

93

Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

¬P(a, b)

¬P(a, y ′)

P(y ′′, x′′)

σ = {x/a, . . .}

P(x , y) ∨ ¬P(y , x)
σ

P(a, y) ∨ ¬P(y , a)

1. Compute simultaneous most general unifier σ

2.

3.

93

Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y ′′, x′′)

¬P(a, y ′)

¬P(a, b) P(x , y) ∨ ¬P(y , x)

P(a, y) ∨ ¬P(y , a)

σ = {x/a, . . .}

litsel1. Compute simultaneous most general unifier σ

2. Select from clause instance a literal not on branch

3.

93

Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

P(y ′′, x′′)

¬P(a, b)

¬P(a, y ′)

P(x , y) ∨ ¬P(y , x)

P(a, y) ∨ ¬P(y , a)

σ = {x/a, . . .}

1. Compute simultaneous most general unifier σ

2. Select from clause instance a literal not on branch

3. Split with this literal

93

Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

¬P(a, b) P(x , y) ∨ ¬P(y , x)

¬P(a, y ′)

P(y ′′, x′′)

{¬P(a, c),P(c, a), . . .} P(a, c) ∨ ¬P(c, a)6|=

1. Compute simultaneous most general unifier σ

2. Select from clause instance a literal not on branch

3. Split with this literal

This split was really necessary!

93

Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

¬P(a, b) P(x , y) ∨ ¬P(y , x)

¬P(a, y ′)

P(y ′′, x′′)

{¬P(a, c),P(c, a), . . .} P(a, c) ∨ ¬P(c, a)6|=

1. Compute simultaneous most general unifier σ

2. Select from clause instance a literal not on branch

3. Split with this literal

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S

93

Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

P(x , y) ∨ ¬P(a, x)¬P(a, b)

¬P(a, y ′)

P(y ′′, x′′)

Some clause
from S

1.

2.

94

Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”

P(y , a)¬P(y , a)

σ

¬P(a, b)

P(a, y) ∨ ¬P(a, a)

¬P(a, y ′)

P(y ′′, x′′)

σ = {x/a, . . .}

P(x , y) ∨ ¬P(a, x)

1. Compute MGU σ of clause against branch literals

2.

94

Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”

P(y ′′, x′′)

¬P(a, y ′)

¬P(a, b) P(x , y) ∨ ¬P(a, x)

P(a, y) ∨ ¬P(a, a)

σ = {x/a, . . .}

1. Compute MGU σ of clause against branch literals

2. If clause contains “true” literal, then split is not applicable

94

Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”

P(y ′′, x′′)

¬P(a, y ′)

¬P(a, b) P(x , y) ∨ ¬P(a, x)

P(a, y) ∨ ¬P(a, a)

σ = {x/a, . . .}

1. Compute MGU σ of clause against branch literals

2. If clause contains “true” literal, then split is not applicable

Non-applicability is a redundancy test

94

Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”

P(y ′′, x′′)

¬P(a, y ′)

¬P(a, b) P(x , y) ∨ ¬P(a, x)

P(a, y) ∨ ¬P(a, a)

σ = {x/a, . . .}

1. Compute MGU σ of clause against branch literals

2. If clause contains “true” literal, then split is not applicable

Non-applicability is a redundancy test

Proposition: If for no clause split is applicable, [[B]] |= S holds

94

FDPLL Complete Example

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight from X to Y.

(2) -flight(koblenz,X). %% no flight from koblenz to anywhere.

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric.

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection.

(5) connect(X,Y) :- train(X,Y). %% a train is a connection.

(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive relation.

connect(Y,Z).

95

FDPLL Complete Example

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight from X to Y.

(2) -flight(koblenz,X). %% no flight from koblenz to anywhere.

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric.

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection.

(5) connect(X,Y) :- train(X,Y). %% a train is a connection.

(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive relation.

connect(Y,Z).

Computed Model (as output by implementation)

(1) + flight(X, Y)

(2) - flight(koblenz, X)

(3) - flight(X, koblenz)

(4) + train(koblenz, Y)

(5) + train(Y, koblenz)

(6) + connect(X, Y)

95

FDPLL Model Computation Example - Derivation

〈empyty tree〉

Clause instance used in inference: train(x , y) ∨ flight(x , y)

96

FDPLL Model Computation Example - Derivation

¬flight(x , y)flight(x , y)

Clause instance used in inference: ¬flight(ko, x)

96

FDPLL Model Computation Example - Derivation

flight(x , y) ¬flight(x , y)

flight(ko, x)¬flight(ko, x)

Clause instance used in inference: train(ko, y) ∨ flight(ko, y)

96

FDPLL Model Computation Example - Derivation

flight(x , y) ¬flight(x , y)

flight(ko, x)

¬train(ko, y)train(ko, y)

¬flight(ko, x)

Clause instance used in inference: flight(ko, y) ∨ ¬flight(y , ko)

96

FDPLL Model Computation Example - Derivation

flight(x , y)

¬flight(ko, x)

train(ko, y)

¬flight(x , y)

flight(ko, x)

¬train(ko, y)

flight(y , ko)¬flight(y , ko)

Clause instance used in inference: train(x , ko) ∨ flight(x , ko)

96

FDPLL Model Computation Example - Derivation

¬flight(ko, x)

train(ko, y)

¬flight(y , ko)

train(x , ko)

¬flight(x , y)

flight(ko, x)

¬train(ko, y)

flight(y , ko)

¬train(x , ko)

flight(x , y)

Clause instance used in inference: connect(x , y) ∨ ¬flight(x , y).

96

FDPLL Model Computation Example - Derivation

flight(x , y)

¬flight(ko, x)

train(ko, y)

¬flight(y , ko)

train(x , ko)

connect(x , y)

¬flight(x , y)

flight(ko, x)

¬train(ko, y)

flight(y , ko)

¬train(x , ko)

¬connect(x , y)

Done. Return “satisfiable with model {flight(x , y), . . . , connect(x , y)}”

96

FDPLL Model Computation Example - Derivation

flight(x , y)

¬flight(ko, x)

train(ko, y)

¬flight(y , ko)

connect(x , y)

¬flight(x , y)

flight(ko, x)

¬train(ko, y)

flight(y , ko)

¬train(x , ko)

¬connect(x , y)

train(x , ko)

Done. Return “satisfiable with model {flight(x , y), . . . , connect(x , y)}”

Redundancy: Instance not used in inference: connect(x , ko) ∨ ¬train(x , ko)

96

Summary / Properties

Summary

• DPLL data structure lifted to first-order logic level

• Two simple inference rules, controlled by unification

• Computes with interpretations/models

• Semantical redundancy criterion

97

Summary / Properties

Summary

• DPLL data structure lifted to first-order logic level

• Two simple inference rules, controlled by unification

• Computes with interpretations/models

• Semantical redundancy criterion

Properties

• Soundness and completeness (with fair strategy).

• Extension: More efficient reasoning with unit clauses (e.g. ∀x P(x , a))

• Proof convergence (avoids backtracking the semantics trees)

• Decides function-free clause logic (Bernays-Schönfinkel class)

Covers e.g. Basic modal logic, Description logic, DataLog

Returns model in satisfiable case

• Can be combined with Resolution, equality inference rules

97

Calculi in Comparison

Consider a transitivity clause P(x , z)← P(x , y) ∧ P(y , z).

Resolution:

P(x , z ′)← P(x , y) ∧ P(y , z) ∧ P(z , z ′)

[Bachmair &

Ganzinger, Handbook

AR 2001], [Fermüller

et. al., Handbook AR

2001]

P(x , z ′′)← P(x , y) ∧ P(y , z) ∧ P(z , z ′) ∧ P(z ′, z ′′)

Does not terminate for function-free clause sets

Complicated to extract model

Very good on other classes, Equality

Rigid Variable Approaches:

P(x ′, z ′)← P(x ′, y ′) ∧ P(y ′, z ′)

P(x ′′, z ′′)← P(x ′′, y ′′) ∧ P(y ′′, z ′′)
Tableaux and Connection

Methods

Unpredictable number of variants, weak redundancy test

Difficult to avoid unnecessary (!) backtracking

Difficult to extract model

98

Calculi in Comparison

Consider a transitivity clause P(x , z)← P(x , y) ∧ P(y , z).

Instance Based Methods:

P(x , z)← P(x , y) ∧ P(y , z)

P(a, z)← P(a, y) ∧ P(y , b)

FDPLL, Model Evolution,

Inst-Gen, Disconnection Tableaux,

Overview paper on my web page

Weak redundancy criterion (no subsumption)

Need to keep clause instances (memory problem)

Clauses do not become longer (cf. Resolution)

May delete variant clauses (cf. Rigid Variable Approach)

99

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
100

Model Generation

For every FOL formula F exactly one of these three cases applies:

1. F is unsatisfiable

(Complete) theorem prover will detect this eventually (in theory)

2. F is satisfiable with only infinite models

Example: nat(0) lt(x , succ(N))← nat(x)

nat(succ(x))← nat(x) lt(x , z)← lt(x , y) ∧ lt(y , z)

¬lt(x , x)

Sometimes resolution refinements help to detect such cases

3. F is satisfiable with a finite model

A finite model-finder will detect this eventually (in theory)

The rest of this section is concerned with computing finite models.

101

Model Generation

Two main applications:

• To disprove a “false” theorem by means of a counterexample, i.e., a

“countermodel”

• A model provides the expected answer, as in the n-queens puzzle

Some applications

Planning: Can be formalised as propositional satisfiability problem.

[Kautz& Selman, AAAI96; Dimopolous et al, ECP97]

Diagnosis: Minimal models of abnormal literals (circumscription). [Reiter, AI87]

Databases: View materialisation, View Updates, Integrity Constraints.

Nonmonotonic reasoning: Various semantics (GCWA, Well-founded, Perfect,

Stable,. . .), all based on minimal models. [Inoue et al, CADE 92]

Software Verification: Counterexamples to conjectured theorems.

Theorem proving: Counterexamples to conjectured theorems.

Finite models of quasigroups, (MGTP/G). [Fujita et al, IJCAI 93]
102

Example - Discourse Representation

Natural Language Processing:

• Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far

103

Example - Discourse Representation

Natural Language Processing:

• Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far

• Consistency checks (“Mia’s husband loves Sally. She is not married.”)

BG -Knowledge ∪ Discourse so far 6|= ¬New utterance

iff BG -Knowledge ∪ Discourse so far ∪ New utterance is satisfiable

103

Example - Discourse Representation

Natural Language Processing:

• Maintain models I1, . . . , In as different readings of discourses:

Ii |= BG -Knowledge ∪ Discourse so far

• Consistency checks (“Mia’s husband loves Sally. She is not married.”)

BG -Knowledge ∪ Discourse so far 6|= ¬New utterance

iff BG -Knowledge ∪ Discourse so far ∪ New utterance is satisfiable

• Informativity checks (“Mia’s husband loves Sally. She is married.”)

BG -Knowledge ∪ Discourse so far 6|= New utterance

iff BG -Knowledge ∪ Discourse so far ∪ ¬New utterance is satisfiable

103

Example - Model-Based Diagnosis [Reiter 87]

✲ ✛

✻

❄ ❄
Predicted

Behavior

Behavior

Differences
Observed

Behavior

System

Model Diagnosis
Actual

System

[0] [0]

inv1 inv2

or1

[0]

Formal Treatment:

COMP = Components

SD = System description, components are allowed to perform “abnormal”

OBS = Observations

Def. Diagnosis: Some minimal ∆ ⊆ COMP such that

SD ∪ OBS ∪ {ab(∆)} ∪ {¬ab(COMP −∆)} is satisfiable

104

Formal Treatment

System Description SD =

OR1: ¬(ab(or1)) → high(or1, o) ↔ (high(or1, i1) ∨ high(or1, i2))

INV1: ¬(ab(inv1)) → high(inv1, o) ↔ ¬(high(inv1, i))

INV2: ¬(ab(inv2)) → high(inv2, o) ↔ ¬(high(inv2, i))

CONN1: high(inv1, o) ↔ high(or1, i1)

CONN2: high(inv2, o) ↔ high(or1, i2)

Observations OBS =

LOW INV1 I: ¬(high(inv1, i))

LOW INV1 I: ¬(high(inv2, i))

LOW OR1 O: ¬(high(or1, o))

Task: Find minimal ∆ ⊆ {ab(or1), ab(inv1), ab(inv2)} such that

SD ∪ OBS ∪ ∆ ∪ ¬∆ is satisfiable

105

Example - Group Theory

The following axioms specify a group

∀x , y , z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)

∀x : e ∗ x = x (left− identity)

∀x : i(x) ∗ x = e (left− inverse)

Does

∀x , y : x ∗ y = y ∗ x (commutat.)

follow?

106

Example - Group Theory

The following axioms specify a group

∀x , y , z : (x ∗ y) ∗ z = x ∗ (y ∗ z) (associativity)

∀x : e ∗ x = x (left− identity)

∀x : i(x) ∗ x = e (left− inverse)

Does

∀x , y : x ∗ y = y ∗ x (commutat.)

follow?

No, it does not

106

Example - Group Theory

Counterexample: a group with finite domain of size 6, where the elements 2

and 3 are not commutative: Domain: {1, 2, 3, 4, 5, 6}

e : 1

i :
1 2 3 4 5 6

1 2 3 5 4 6

∗ :

1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 1 4 3 6 5

3 3 5 1 6 2 4

4 4 6 2 5 1 3

5 5 3 6 1 4 2

6 6 4 5 2 3 1

107

Finite Model Finding

Def: A formula F has the finite model property iff F has a model with a finite

domain. (The finite model property is undecidable.)

Question here: how to compute (“efficiently”) finite models?

Today’s finite model finders all follow a generate-and-test approach:

• Given a formula F in clause normal form.

• For each domain size n = 1, 2, . . . transform F into a clause set G (F , n)

such that G (F , n) is satisfiable iff F is satisfiable with the domain

D = {1, 2, . . . , n}

For each n, use a theorem prover to determine if G (F , n) is satisfiable.

If so, stop and report the model. Otherwise continue.

108

Group Theory Example – G (F , n) as Reduction to SAT

Domain: {1, 2}

Clauses: {p(a) ∨ f (x) = a}

Flattened: p(y) ∨ f (x) = y ∨ a 6= y

Instances: p(1) ∨ f (1) = 1 ∨ a 6= 1

p(2) ∨ f (1) = 1 ∨ a 6= 2

p(1) ∨ f (2) = 1 ∨ a 6= 1

p(2) ∨ f (2) = 1 ∨ a 6= 2

Totality: a = 1 ∨ a = 2

f (1) = 1 ∨ f (1) = 2

f (2) = 1 ∨ f (2) = 2

Functionality: a 6= 1 ∨ a 6= 2

f (1) 6= 1 ∨ f (1) 6= 2

f (2) 6= 1 ∨ f (2) 6= 2

A model is obtained by setting the blue literals true

109

Difficult Example

• Consider the clause set consisting of the n · (n − 1)/2 + 1 unit clauses:

P(c1, . . . , cn)

¬P(x1, . . . , xi−1, x , xi+1, . . . , xj−1, x , xj+1, . . . , xn)

• The model must contain (at least) n domain elements.

• Example for n = 3:

Clauses Model

p(c1, c2, c3) c1 = 1

¬p(x1, x1, x3) c2 = 2

¬p(x1, x2, x1) c3 = 3

¬p(x1, x2, x2) p(1, 2, 3)

• Guess: For which n do propositional model finders give up?

110

Difficult Example

• Answer: n = 8.

• There are nn−1 instances of the clause

¬p(x1, . . . , xi−1, x , xi+1, . . . , xj−1, x , xj+1, . . . , xn).

• Memory consumption is the main bottleneck.

• Encoding in function-free clause logic requires only quadratically many

clauses (savings are on not having to apply the domain substitutions γ).

But instance-based methods are not the solution either. Scalability

remains the issue.

111

Contents

Introduction

Logics and Reasoning Service (already done)

Methods for Automated Theorem Proving

Overview of some widely used general methods

• Propositional SAT solving

• First-order logic and clause normal forms

• Proof Procedures Based on Herbrand’s Theorem

• The Resolution calculus

• Instance-based methods

• Model generation

Theory Reasoning

Methods to reason with specific background theories

• Paramodulation (Equality)

• Satisfiability Modulo Theories (SMT)

• Quantifier elimination for linear real arithmetic

• Combining multiple theories
112

Theory Reasoning

Let T be a first-order theory of signature Σ and L be a class of Σ-formulas.

• T can be given as a set of axioms (e.g., the theory of groups), or

• T can be given as a class of interpretations (e.g., the standard model of peano

arithmetic)

The T -validity Problem

• Given φ in L, is it the case that T |= φ ? More accurately:

• Given φ in L, is it the case that T |= ∀ φ ?

Examples

• “0/0, s/1, +/2, = /2, ≤ /2′′ |= ∃y .y > x

• The theory of equality E |= φ (φ arbitrary formula)

• “An equational theory” |= ∃ s1 = t1 ∧ · · · ∧ sn = tn

(E-Unification problem)

• “Some group theory” |= s = t (Word problem)

The T -validity problem is decidable (even semi-decidable) only for restricted L and T

113

Approaches to Theory Reasoning

Theory-Reasoning in Automated First-Order Theorem Proving

• Semi-decide the T -validity problem, T |= φ ?

• φ arbitrary first-order formula, T set of formulas (axioms for T)

• Generality is strength and weakness at the same time

• Really successful only for specific instance:

T = equality, inference rules like paramodulation (see below)

Satisfiability Modulo Theories (SMT)

• Decide the T -validity problem, T |= φ ?

• Usual restriction: φ is quantifier-free, i.e. all variables implicitly universally

quantified

• Applications in particular to formal verification

Simple example where T = “arrays+integers”:

{m ≥ 0 ∧ a[i] ≥ 0} a[i] := a[i] +m {a[i] ≥ 0}

114

Equality

Reserve a binary predicate symbol ≈ (“equality”).

Intuitively, we expect that from the clauses

P(a) a ≈ b b ≈ c f (x) ≈ x f (x) ≈ g(x)

it follows, e.g.,

P(g(f (c)))

This requires to fix the meaning of ≈. Two options:

• Semantically: define ≈ = {(d , d) | d ∈ U}

(Recall that predicate symbols are interpreted as relations, U is the

universe)

• Syntactically: add equality axioms to the given clause set

The semantic approach cannot be used in conjunction with Herbrand models,

but the syntactic approach can.

115

Handling Equality Naively - Equality Axioms

Let F be a first-order clause set with equality. The clause set EqAx(F)

consists of the clauses

x ≈ x

x ≈ y → y ≈ x

x ≈ y ∧ y ≈ z → x ≈ z

x1 ≈ y1 ∧ · · · ∧ xn ≈ yn → f (x1, . . . , xn) ≈ f (y1, . . . , yn)

x1 ≈ y1 ∧ · · · ∧ xm ≈ ym ∧ P(x1, . . . , xm)→ P(y1, . . . , ym)

for every n-ary function symbol f occurring in F and every m-ary predicate

symbol P occurring in F .

EqAx(F) are the axioms of a congruence relation on terms and atoms.

It holds: F is satisfiable, where ≈ is defined semantically as in the previous

slide, if and only if F ∪ EqAx(Σ) is satisfiable, where ≈ is left undefined.

116

Handling Equality Naively - Equality Axioms

By giving the equality axioms explicitly, first-order problems with equality can

in principle be solved by a standard resolution prover or instance-based

method.

But this is unfortunately not efficient (mainly due to the transitivity and

congruence axioms).

Modern systems “build-in” equality by dedicated inference rules, which are

(restricted) versions of the Paramodulation inference rule.

117

Recapitulation: Resolution

Resolution: inference rules:

Ground case: Non-ground case:

Resolution:
D′ ∨ A C ′ ∨ ¬A

D′ ∨ C ′

D′ ∨ A C ′ ∨ ¬A′

(D′ ∨ C ′)σ

where σ = mgu(A,A′).

Factoring:
C ′ ∨ A ∨ A

C ′ ∨ A

C ′ ∨ A ∨ A′

(C ′ ∨ A)σ

where σ = mgu(A,A′).

118

Paramodulation

Ground inference rules:

Paramodulation:
D′ ∨ t ≈ t′ C ′ ∨ L[t]

D′ ∨ C ′ ∨ L[t′]

Equality Resolution:
C ′ ∨ s 6≈ s

C ′

In the Paramodulation rule, L[t] means that the literal L contains the term t,

and L[t′] means that one occurrence of t in L has been replaced by t′.

119

Paramodulation

First-order inference rules:

Paramodulation:
D′ ∨ t ≈ t′ C ′ ∨ L[u]

(D′ ∨ C ′ ∨ L[t′])σ

where σ = mgu(t, u) and

u is not a variable.

Equality Resolution:
C ′ ∨ s 6≈ s′

C ′σ

where σ = mgu(s, s′).

These are the main inference rules for equality reasoning. Together with the

Resolution and Factoring inference rules, and an additional inference rule (not

shown here), one obtains a refutationally complete and sound calculus.

The calculus can still be considerably improved by means of ordering

restrictions.

120

Satisfiability Modulo Theories (SMT)

Question
Theorem Prover

Formula(s)
Yes

No

Formula: first-order logic formula φ, over equality and other theories

Question: Is φ valid? (satisfiable? entailed by another formula?)

|=N∪L ∀l (c = 5→ car(cons(3 + c , l))
.
= 8)

Theorem Prover: DPLL(T), translation into SAT, first-order provers

Issue: essentially undecidable for non-variable free fragment (∀-quantifier left

of |=):

P(0) ∧ (∀x P(x)→ P(x + 1)) |=N ∀x P(x)

Design a “good” prover anyways (ongoing research)

121

Checking Satisfiability Modulo Theories

Given: A quantifier-free formula φ (implicitly existentially quantified)

Task: Decide whether φ is T-satisfiable

(T -validity via “T |= ∀ φ” iff “∃ ¬φ is not T -satisfiable”)

Approach: eager translation into SAT

• Encode problem into a T -equisatisfiable propositional formula

• Feed formula to a SAT-solver

• Example: T = equality (Ackermann encoding)

Approach: lazy translation into SAT

• Couple a SAT solver with a given decision procedure for T-satisfiability of

ground literals, “DPLL(T)”

• For instance if T is “equality” then the Nelson-Oppen congruence closure

method can be used

• If T is “linear arithmetic”, a quantifier elimination method (see below)

122

Lazy Translation into SAT

123

Lazy Translation into SAT

124

Lazy Translation into SAT

125

Lazy Translation into SAT

126

Lazy Translation into SAT

127

Lazy Translation into SAT

128

Lazy Translation into SAT

129

Lazy Translation into SAT: Summary

• Abstract T -atoms as propositional variables

• SAT solver computes a model, i.e. satisfying boolean assignment for

propositional abstraction (or fails)

• Solution from SAT solver may not be a T -model. If so,

• Refine (strengthen) propositional formula by incorporating reason for

false solution

• Start again with computing a model

130

Optimizations

Theory Consequences

• The theory solver may return consequences (typically literals) to guide the

SAT solver

Online SAT solving

• The SAT solver continues its search after accepting additional clauses

(rather than restarting from scratch)

Preprocessing atoms

• Atoms are rewritten into normal form, using theory-specific atoms (e.g.

associativity, commutativity)

Several layers of decision procedures

• “Cheaper” ones are applied first

131

Example Theory: Linear Arithmetic

Linear Rational Arithmetic (LRA) is the interpretation

ILA = (Q, (+ALA
,−ALA

, ∗ALA
), (≤ALA

,≥ALA
,<ALA

,>ALA
))

where +ALA
,−ALA

, ∗ALA
,≤ALA

,≥ALA
,<ALA

,>ALA
are the “standard”

intepretations of +,−, ∗,≤,≥,<,>, respectively.

The Problem

Within the DPLL(T) framework it is enough to design a decision procedure

for LRA-satisfiability of sets N (conjunctions) of literals. Note that (hence) all

variables in N are implicitly existentially quantified

Example:

N = {2x ≤ y , y < 6, 3 < y , 1 < x}

Question: Is there an assignment β for the variables x and y such that

(ILA, β) |= N ?

132

Some Important LA Equivalences

The following equivalences are valid for all LA terms s, t:

¬s ≥ t ↔ s < t

¬s ≤ t ↔ s > t (Negation)

(s = t)↔ (s ≤ t ∧ s ≥ t) (Equality)

s ≥ t ↔ t ≤ s

s > t ↔ t < s (Swap)

With . we abbreviate < or ≤.

133

The Fourier-Motzkin Procedure

boolean FM(Set N of LA atoms) {

if (N = ∅) return true;

elsif (N is ground) return ILA(N);

else {

select a variable x from N;

transform all atoms in N containing x into si . x , x . tj

and the subset N′ of atoms not containing x ;

compute N∗ := {si .i , j tj | si .i x ∈ N, x .j tj ∈ N for all i , j}

where .i , j is strict iff at least one of .i , .j is strict

return FM(N′ ∪ N∗);

}

}

134

Properties of the Fourier-Motzkin Procedure

• Any ground set N of linear arithmetic atoms can be easily decided.

• FM(N) terminates on any N as in recursive calls N has strictly less

variables.

• The set N ′ ∪ N∗ is worst case of size O(|N|2).

• FM(N)=true iff N is satisfiable in ILA.

• The procedure was invented by Fourier (1826), forgotten, and then

rediscovered by Dines (1919) and Motzkin (1936).

• There are more efficient methods known, e.g., the simplex algorithm.

• As said, the Fourier-Motzkin Procedure decides the satisfiability of a set

(conjunction) of linear arithmetic atoms, which is what is needed to build

a sound and complete DPLL(T)-solver.

135

Combining Theories

136

Nelson-Oppen Combination Method

137

Nelson-Oppen Combination Method

138

Nelson-Oppen Combination Method

139

Nelson-Oppen Combination Method

140

Nelson-Oppen Combination Method

141

Nelson-Oppen Combination Method

142

Nelson-Oppen Combination Method

143

Nelson-Oppen Combination Method

144

Nelson-Oppen Combination Method

145

Nelson-Oppen Combination Method

146

Conclusions

• Talked about the role of first-order theorem proving

• Talked about some standard techniques (Normal forms of formulas, Resolution

calculus, unification, Instance-based method, Model computation)

• Talked about DPLL and Satisfiability Modulo Theories (SMT)

Further Topics

• Redundancy elimination, efficient equality reasoning, adding arithmetics to

first-order theorem provers

• FOTP methods as decision procedures in special cases

E.g. reducing planning problems and temporal logic model checking problems to

function-free clause logic and using an instance-based method as a decision

procedure

• Implementation techniques

• Competition CASC and TPTP problem library

• Instance-based methods (a lot to do here, cf. my home page)

Attractive because of complementary features to more established methods

147

Further Reading

• Wikipedia article on Automated Theorem Proving

en.wikipedia.org/wiki/Automated_theorem_proving

• Wikipedia article on Boolean Satisfiability Problem (propositional logic)

en.wikipedia.org/wiki/Boolean_satisfiability_problem

• Wikipedia article on Satisfiability Modulo Theories (SMT)

en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

• A good textbook with an emphasis on theory reasoning (arithmetic,

arrays) for software verification:

Aaron Bradley and Zohar Manna, The Calculus of Computation,

Springer, 2007

• Another good one, on what the title says, comes with OCaml code:

John Harrison. Handbook of Practical Logic and Automated

Reasoning, Cambridge University Press, 2009

148

en.wikipedia.org/wiki/Automated_theorem_proving
en.wikipedia.org/wiki/Boolean_satisfiability_problem
en.wikipedia.org/wiki/Satisfiability_Modulo_Theories

Implemented Systems

• The TPTP (Thousands of Problems for Theorem Provers) is a library of

test problems for automated theorem proving

www.tptp.org

• The automated theorem prover SPASS is an implementation of the

“modern” version of resolution with equality, the superposition calculus,

and comes with a comprehensive set of examples and documentation. A

good choice to start with.

www.spass-prover.org

• users.cecs.anu.edu.au/˜baumgart/systems/

149

www.tptp.org
www.spass-prover.org
users.cecs.anu.edu.au/~baumgart/systems/

	What is Automated Reasoning?
	Logics and Reasoning Service: Constraint Solving
	Logics and Reasoning Service: Constraint Solving
	Logics and Reasoning Service: Constraint Solving
	Logics and Reasoning Service: Constraint Solving
	Logical Analysis Example: N-Queens
	Logical Analysis Example: N-Queens
	Proving Symmetry: Formalization
	Logics and Reasoning Service - Spectrum
	Contents
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic

	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic
	Propositional Logic

	Propositional SAT Solving
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL as a Semantic Tree Method
	DPLL Pseudocode
	Making DPLL Fast -- Overview
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Lemma Learning
	Making DPLL Fast
	Further Information
	Contents
	First-Order Logic Quiz
	First-Order Logic Reasoning Services
	First-Order Logic
	First-Order Logic
	Semantics - Example
	Semantics - Example
	Reasoning Services Semantically
	Reasoning Services Semantically

	Reduction of Entailment to Unsatisfiability
	Reduction of Entailment to Unsatisfiability
	Reduction of Entailment to Unsatisfiability
	Reduction of Entailment to Unsatisfiability
	Reduction of Entailment to Unsatisfiability
	Reduction of Entailment to Unsatisfiability

	Normal Forms
	Normal Forms

	Prenex Normal Form
	Prenex Normal Form

	In the Example
	Skolem Normal Form
	Skolem Normal Form

	Clausal Normal Form (Conjunctive Normal Form)
	In the Example
	The Complete Picture
	Where are we?
	Contents
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem
	Proof Procedures Based on Herbrand's Theorem

	Ground Instances
	Ground Instances
	Ground Instances
	Ground Instances

	Mapping to Propositional Logic
	Herbrand Proposition
	Herbrand Proposition
	Herbrand Proposition
	Herbrand Proposition
	Herbrand Proposition

	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem
	Gilmore's Method - Based on Herbrand's Theorem

	Contents
	The Resolution Calculus
	The Resolution Calculus
	The Resolution Calculus
	The Resolution Calculus

	The Propositional Resolution Calculus
	Derivations
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation
	Sample Refutation

	Soundness of Propositional Resolution
	Soundness of Propositional Resolution
	Soundness of Propositional Resolution
	Soundness of Propositional Resolution
	Soundness of Propositional Resolution

	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution
	Completeness of Propositional Resolution

	First-Order Resolution
	First-Order Resolution through Instantiation
	First-Order Resolution through Instantiation
	First-Order Resolution through Instantiation
	Lifting Principle
	First-Order Resolution through Instantiation
	Substitutions and Unifiers
	Substitutions and Unifiers
	Substitutions and Unifiers

	Substitutions and Unifiers
	Rule Based Naive Standard Unification
	Main Properties
	First-Order Resolution Inference Rules
	First-Order Resolution Inference Rules

	Sample Refutation -- The Barber Problem
	Completeness of First-Order Resolution
	Completeness of First-Order Resolution
	Completeness of First-Order Resolution
	Completeness of First-Order Resolution

	Lifting Lemma
	Lifting Lemma
	The ``Given Clause Loop''
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically
	The ``Given Clause Loop'' - Graphically

	Resolution -- Further Topics
	Hyperresolution
	Contents
	Instance-Based Methods
	Instance-Based Methods
	Instance-Based Methods

	Two-Level Instance-Based Methods
	Resolution-Based Instance Generation
	One-Level Instance-Based Methods
	Instance-Based Method -- FDPLL
	Instance-Based Method -- FDPLL

	First-Order Semantic Trees
	First-Order Semantic Trees
	First-Order Semantic Trees
	First-Order Semantic Trees

	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch
	Extracting an Interpretation from a Branch

	Calculus: Branch Closure
	Calculus: Branch Closure
	Calculus: Branch Closure
	Calculus: Branch Closure
	Calculus: Branch Closure
	Calculus: Branch Closure

	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus
	FDPLL Calculus

	Calculus: The Splitting Rule
	Calculus: The Splitting Rule
	Calculus: The Splitting Rule
	Calculus: The Splitting Rule
	Calculus: The Splitting Rule
	Calculus: The Splitting Rule

	Calculus: The Splitting Rule -- Another Example
	Calculus: The Splitting Rule -- Another Example
	Calculus: The Splitting Rule -- Another Example
	Calculus: The Splitting Rule -- Another Example
	Calculus: The Splitting Rule -- Another Example

	FDPLL Complete Example
	FDPLL Complete Example

	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation
	FDPLL Model Computation Example - Derivation

	Summary / Properties
	Summary / Properties

	Calculi in Comparison
	Calculi in Comparison
	Contents
	Model Generation
	Model Generation
	Example - Discourse Representation
	Example - Discourse Representation
	Example - Discourse Representation

	Example - Model-Based Diagnosis [Reiter 87]
	Formal Treatment
	Example - Group Theory
	Example - Group Theory

	Example - Group Theory
	Finite Model Finding
	Group Theory Example -- $G(F, n)$
as Reduction to SAT
	Difficult Example
	Difficult Example
	Contents
	Theory Reasoning
	Approaches to Theory Reasoning
	Equality
	Handling Equality Naively - Equality Axioms
	Handling Equality Naively - Equality Axioms
	Recapitulation: Resolution
	Paramodulation
	Paramodulation
	Satisfiability Modulo Theories (SMT)
	Checking Satisfiability Modulo Theories
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT
	Lazy Translation into SAT: Summary
	Optimizations
	Example Theory: Linear Arithmetic
	Some Important LA Equivalences
	The Fourier-Motzkin Procedure
	Properties of the Fourier-Motzkin Procedure
	Combining Theories
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Nelson-Oppen Combination Method
	Conclusions
	Further Reading
	Implemented Systems

