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Substitution Example: σ = [y/x, x+ 1/y, 5/z]

We have
dom(σ) = {x, y, z}
codom(σ) = {x, y}.

Applying σ to the variables w and y gives

wσ = w
yσ = x+ 1.

Notice in the second example the result is not (y + 1). That is, the bindings in σ are not applied
“one after the other”, they are applied in parallel.

”Update” example: σ[y → x+ 2] = [y/x, x+ 2/y]
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What substitutions will be needed for: suppose we want to refute the disequation 0 + s(0) 6= s(0)
given the axiom 0 + x = x.

Applying the substitution [s(0)/x] to the axiom, that is,

(0 + x = x)[s(0)/x],

gives 0 + s(0) = s(0).

This equality replaces the left-hand-side of the disequation to produce s(0) 6= s(0), which is
obviously false.

In fact, the substitution above is a ”unifier” (see later).
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Let V ar(t) be the set of variables occurring in term t.

Proposition For every term t, subsitution σ, and variable y,
if y /∈ V ar(t) then (t[y/z])[s/y] = t[s/z].

We shall denote the whole proposition above by q.

Example:

(f(z)[y/z])[s/y] = f(y)[s/y]

= f(s)

= f(z)[s/z]

Proof By structural induction.

1. Base case: t = x for some x ∈ X .

1.1 x = y, then q holds trivially as y ∈ V ar(x).

1.2 x 6= y, then y /∈ V ar(x) = x.

If x 6= z it follows

(x[y/z])[s/y] = x[s/y] as x 6= z

= x as x 6= y

= x[s/z] as x 6= z

If x = z it follows in a similar way

(z[y/z])[s/y] = y[s/y]

= s

= z[s/z]

2. Step case: let t = f(t1, . . . , tn) ∈ TΣ(X) arbitrarily.
Assume q holds for all terms t1, . . . , tn (induction hypothesis).
Assume that y /∈ V ar(t) (otherwise the step case follows trivially).
It follows trivially y /∈ V ar(ti) for all i = 1, . . . , n.

By the induction hypothesis

(ti[y/z])[s/y] = ti[s/z] (*)

Now,

(f(t1, . . . , tn)[y/z])[s/y] = f((t1[y/z])[s/y], . . . , (tn[y/z])[s/y]) by homomorphic extension
= f(t1[s/z], . . . , tn[s/z] by (*)
= f(t1, . . . , tn)[s/z] by homomorphic extension

This completes the proof. �
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Let F = ∃x P (x, z).

Is F valid? Is F satisfiable?

It holds that F is satisfiable. Take e.g.

A = (N, ∅, P : {(0, 1)}).

It follows A, [z → 1] |= F .

But we also have A, [z → 0] 6|= F , hence F is not valid.
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Proposition F entails G iff (F → G) is valid.

That is, entailment between two formulas is equivalent to the validity of the corresponding implic-
ation.

Proof By expanding defintions:

F entails G
iff (for all A ∈ Σ-Alg and β ∈ X → UA)

if A, β |= F then A, β |= G

iff if A(β)(F ) = 1 then A(β)(G) = 1

iff A(β)(F → G) = 1

iff A, β |= F → G

iff F → G is valid. �
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Consider the entailment

∃xP (x) ∧ ∀x(P (x)→ ∃yQ(y)) |= ∃zQ(z)

By Proposition 2.4, this entailment holds if and only if the formula

∃xP (x) ∧ ∀x(P (x)→ ∃yQ(y)) ∧ ¬∃zQ(z)

is unsatisfiable.

We are going to transform the formula into Prenex Normal Form. Recall that pulling quantifiers
outside involves renaming the bound variables by fresh ones. As a compromise, for better readab-
ility, we do this only if necesssary, i.e., when variables would otherwise be bound unintentionally.

Working on the underlined subformulas above gives

∃x(P (x) ∧ ∀x∃y(P (x)→ Q(y)) ∧ ∀z¬Q(z)).

Now, we pull out the quantifiers in the underlined subformula. Notice that this time the variable x
must be renamed. Let us chose [w/x] for that, and so we get

∃x∀w∃y∀z(P (x) ∧ (P (w)→ Q(y)) ∧ ¬Q(z)).

This formula is in Prenex Normal Form. The next step is Skolemization, to remove (all) existential
quantifiers. We proceed from the left to right, i.e., outermost existential quantifiers are removed
first:

For ∃x, pick [a/x], where a is a fresh constant, giving

∀w∃y∀z(P (a) ∧ (P (w)→ Q(y)) ∧ ¬Q(z)).

For ∃y, which occurs in the scope of ∀w, pick [f(w)/y], where f is a fresh unary function symbol,
giving

∀w∀z(P (a) ∧ (P (w)→ Q(f(w))) ∧ ¬Q(z)).

Finally, removing the universal quantifiers, transforming the resulting formula into CNF and writ-
ing it as a set gives the Clause Normal Form

{P (a),¬P (w) ∨Q(f(w)),¬Q(z)}.

Page 81

UA : The ”Herband Universe”.

Example: ΣA = ({0/0, s/1,+/2}, {< /2,≤ /2})

Then UA = {0, s(0), s(s(0)), . . .
0 + 0, 0 + s(0), 0 + s(s(0)), . . .
s(0) + 0, s(s(0)) + 0, . . .
. . . }

That is, the set of all ground terms.

Consequences:
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• Assignments are nothing but substitutions with empty codomain.

• Interpretation function maps every term to ”itself”

e.g. β = [x→ s(0)] $ [s(0)/x]

A(β)(x+ s(0)) = s(0) + s(0)
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E.g. For a suitable A : A |= x > 0 ∨ ¬(x > 0) (note: “∀x” implicit)

but neither A |= x > 0 nor A |= ¬(x > 0).
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Example: let a > b > c > d. Then

S1 = {a, a, a, b, c}
�mul

S2 = {a, a, b, b, b, d}

Alternatively: S1 �mul S2 iff
S2 can be obtained by replacing some (at least one) element(s) in S1 by (zero or more) smaller
elements.

Example: in S1, replacing the third a by two b’s, and the last c by d gives S2, with the picture:

{a, a, a, b, c}
|\ \

{a, a, b, b, b, d}
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Resolution inference example:

R(y) ∨ P (y) Q(x) ∨ ¬P (f(x))

R(f(x)) ∨Q(x)

where σ = mgu(P (y), P (f(x))) = [f(x)/y].

Notice that the two clauses in the premise are variable disjoint.

However, the resolution inference rule is not applicable with the premisesR(x)∨P (x) andQ(x)∨
¬P (f(x)), as these clauses are not variable disjoint; the substitution σ = [f(x)/x] is not a unifier
for P (x) and P (f(x)).
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Unification example 1 (“rule (i)” refers to the rule on line i in “Rule Based Naive Standard Unific-
ation”):

E1 = f(x, x)
.
= f(g(y), z)

⇒SU x
.
= g(y), x

.
= z (by rule (2))

⇒SU x
.
= g(y), g(y)

.
= z (by rule (4))

⇒SU x
.
= g(y), z

.
= g(y) (by rule (6))

No more rule is applicable to the set in the last line. It follows mgu(E1) = [g(y)/x, g(y)/z].

Unification example 2:

E2 = f(f(x))
.
= f(x)

⇒SU f(x)
.
= x (by rule (2))

⇒SU x
.
= f(x) (by rule (6))

⇒SU ⊥ (by rule (5))

The result ⊥ indicates that E2 does not have a unifier.
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