
Automated Reasoning in First-Order Logic

Peter Baumgartner

NICTA and ANU

August 2012

Thanks to Christoph Weidenbach (MPI, Germany) who provided the largest part

of this slide set.

1

Automated Reasoning

• An application-oriented subfield of logic in computer science and

artificial intelligence

• About algorithms and their implementation on computer for

reasoning with mathematical logic formulas

• Considers a variety of logics and reasoning tasks

• Applications in logics in computer science

Program verification, dynamic properties of reactive systems,

databases

• Applications in logic-based artificial intelligence

Mathematical theorem proving, planning, diagnosis, knowledge

representation (description logics), logic programming, constraint

solving
2

Automated Reasoning in First-Order Logic

. . . First-Order Logic: Can express (mathematical) structures, e.g.

groups

∀x 1 · x = x ∀x x · 1 = x (N)

∀x x−1 · x = 1 ∀x x · x−1 = 1 (I)

∀x , y , z (x · y) · z = x · (y · z) (A)

. . . Reasoning . . .:

• Object level: It follows ∀x (x · x) = 1 → ∀x , y x · y = y · x

• Meta-level: the word problem for groups is decidable

Automated . . .: Computer program to provide the above conclu-

sions automatically

3

Application Example: Compiler Validation

Prove equivalence of source (left) and target (right) program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

Formal proof obligation (indexes refer to line numbers above)

From y1 = 1 ∧ z0 = x0 ∗ x0 ∗ x0 ∧ y3 = x0 ∗ x0 + y1

and y ′

1 = 1 ∧ R12 = x ′

0 ∗ x
′

0 ∧ R23 = R12 ∗ x
′

0 ∧ z ′0 = R23

∧ y ′

5 = R12 + 1 ∧ x0 = x ′

0 ∧ y0 = y ′

0 ∧ z0 = z ′0

it follows y3 = y ′

5

4

These Lectures

• Automated theorem proving in first-order logic

(The slides below on propositional logic are for reference only)

• Standard concepts

Normal forms of logical formulas, unification, the modern

resolution calculus

• Standard results

Soundness and completeness of the resolution calculus with

redundancy criteria

• Provide a basis for further studies

• “How to build a theorem prover”

5

“How to Build a Theorem Prover”

1. Fix an input language for mathematical formulas.

2. Fix a semantics to define what the formulas mean. Will be

always “classical” here.

3. Determine the desired services from the theorem prover: the

questions we would like the prover be able to answer.

4. Design a calculus for the logic and the services.

Calculus: high-level description of the “logical analysis”

algorithm. This includes improvements for search space pruning.

5. Prove the calculus is correct (sound and complete) wrt. the logic

and the services, if possible.

6. Design and implement a proof procedure for the calculus.

6

Part 1: Propositional Logic

Propositional logic

• Logic of truth values

• Decidable (but NP-complete)

• Can be used to describe functions over a finite domain

• Implemented automated reasoning systems for propositional

logic (“SAT-solvers”) have many applications in, e.g., systems

verification, diagnosis, planning, constraint solving.

7

1.1 Syntax

• Propositional variables

• Logical symbols

⇒ Boolean combinations

8

Propositional Variables

Let Π be a set of propositional variables.

We use letters P , Q, R , S , to denote propositional variables.

9

Propositional Formulas

FΠ is the set of propositional formulas over Π defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| P , P ∈ Π (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

10

Notational Conventions

• We omit brackets according to the following rules:

– ¬ >p ∨ >p ∧ >p → >p ↔

(binding precedences)

– ∨ and ∧ are associative

– → is right-associative,

i. e., F → G → H means F → (G → H).

11

1.2 Semantics

In classical logic (dating back to Aristoteles) there are “only” two

truth values “true” and “false” which we shall denote, respectively,

by 1 and 0.

There are multi-valued logics having more than two truth values.

12

Valuations

A propositional variable has no intrinsic meaning. The meaning of a

propositional variable has to be defined by a valuation.

A Π-valuation is a map

A : Π → {0, 1}.

where {0, 1} is the set of truth values.

13

Truth Value of a Formula in A

Given a Π-valuation A, the function A∗ : Σ-formulas → {0, 1} is

defined inductively over the structure of F as follows:

A∗(⊥) = 0

A∗(⊤) = 1

A∗(P) = A(P)

A∗(¬F) = B¬(A
∗(F))

A∗(FρG) = Bρ(A
∗(F),A∗(G))

where Bρ is the Boolean function associated with ρ

defined by the usual truth table.

14

Truth Value of a Formula in A

For simplicity, we write A instead of A∗.

We also write ρ instead of Bρ, i. e., we use the same notation for

a logical symbol and for its meaning (but remember that formally

these are different things.)

15

1.3 Models, Validity, and Satisfiability

F is valid in A (A is a model of F ; F holds under A):

A |= F :⇔ A(F) = 1

F is valid (or is a tautology):

|= F :⇔ A |= F for all Π-valuations A

F is called satisfiable if there exists an A such that A |= F .

Otherwise F is called unsatisfiable (or contradictory).

16

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G ,

if for all Π-valuations A, whenever A |= F then A |= G .

F and G are called equivalent, written F |=| G , if for all Π-valuations

A we have A |= F ⇔ A |= G .

Proposition 1.1:

F |= G if and only if |= (F → G).(Proof follows)

Proposition 1.2:

F |=| G if and only if |= (F ↔ G).

17

Entailment and Equivalence

Extension to sets of formulas N in the “natural way”:

N |= F if for all Π-valuations A:

if A |= G for all G ∈ N, then A |= F .

18

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 1.3:

F is valid if and only if ¬F is unsatisfiable.(Proof follows)

Hence in order to design a theorem prover (validity checker) it is

sufficient to design a checker for unsatisfiability.

19

Validity vs. Unsatisfiability

In a similar way, entailment N |= F can be reduced to unsatisfiability:

Proposition 1.4:

N |= F if and only if N ∪ {¬F} is unsatisfiable.

20

Checking Unsatisfiability

Every formula F contains only finitely many propositional variables.

Obviously, A(F) depends only on the values of those finitely many

variables in F under A.

If F contains n distinct propositional variables, then it is sufficient to

check 2n valuations to see whether F is satisfiable or not.

⇒ truth table.

So the satisfiability problem is clearly deciadable

(but, by Cook’s Theorem, NP-complete).

Nevertheless, in practice, there are (much) better methods than

truth tables to check the satisfiability of a formula. See lecture by

Alwen Tiu on DPLL.

21

Substitution Theorem

Proposition 1.5:

Let F and G be equivalent formulas, let H be a formula in which F

occurs as a subformula.

Then H is equivalent to H′ where H′ is obtained from H by replacing

the occurrence of the subformula F by G .

(Notation: H = H[F], H′ = H[G]. Proof follows)

22

Some Important Equivalences

Proposition 1.6:

The following equivalences are valid for all formulas F ,G ,H:

(F ∧ F) ↔ F

(F ∨ F) ↔ F (Idempotency)

(F ∧ G) ↔ (G ∧ F)

(F ∨ G) ↔ (G ∨ F) (Commutativity)

(F ∧ (G ∧ H)) ↔ ((F ∧ G) ∧ H)

(F ∨ (G ∨ H)) ↔ ((F ∨ G) ∨ H) (Associativity)

(F ∧ (G ∨ H)) ↔ ((F ∧ G) ∨ (F ∧ H))

(F ∨ (G ∧ H)) ↔ ((F ∨ G) ∧ (F ∨ H)) (Distributivity)

23

Some Important Equivalences

The following equivalences are valid for all formulas F ,G ,H:

(F ∧ (F ∨ G)) ↔ F

(F ∨ (F ∧ G)) ↔ F (Absorption)

(¬¬F) ↔ F (Double Negation)

¬(F ∧ G) ↔ (¬F ∨ ¬G)

¬(F ∨ G) ↔ (¬F ∧ ¬G) (De Morgan’s Laws)

(F ∧ G) ↔ F , if G is a tautology

(F ∨ G) ↔ ⊤, if G is a tautology

(F ∧ G) ↔ ⊥, if G is unsatisfiable

(F ∨ G) ↔ F , if G is unsatisfiable (Tautology Laws)

24

Some Important Equivalences

The following equivalences are valid for all formulas F ,G ,H:

(F ↔ G) ↔ ((F → G) ∧ (G → F)) (Equivalence)

(F → G) ↔ (¬F ∨ G) (Implication)

25

1.4 Normal Forms

We define conjunctions of formulas as follows:
∧0

i=1 Fi = ⊤.
∧1

i=1 Fi = F1.
∧n+1

i=1 Fi =
∧n

i=1 Fi ∧ Fn+1.

and analogously disjunctions:
∨0

i=1 Fi = ⊥.
∨1

i=1 Fi = F1.
∨n+1

i=1 Fi =
∨n

i=1 Fi ∨ Fn+1.

26

Literals and Clauses

A literal is either a propositional variable P or a negated propositional

variable ¬P .

A clause is a (possibly empty) disjunction of literals.

27

CNF and DNF

A formula is in conjunctive normal form (CNF, clause normal form),

if it is a conjunction of disjunctions of literals (or in other words, a

conjunction of clauses).

A formula is in disjunctive normal form (DNF), if it is a disjunction

of conjunctions of literals.

Warning: definitions in the literature differ:

are complementary literals permitted?

are duplicated literals permitted?

are empty disjunctions/conjunctions permitted?

28

CNF and DNF

Checking the validity of CNF formulas or the unsatisfiability of DNF

formulas is easy:

A formula in CNF is valid, if and only if each of its disjunctions

contains a pair of complementary literals P and ¬P .

Conversely, a formula in DNF is unsatisfiable, if and only if each

of its conjunctions contains a pair of complementary literals P and

¬P .

On the other hand, checking the unsatisfiability of CNF formulas or

the validity of DNF formulas is known to be coNP-complete.

29

Conversion to CNF/DNF

Proposition 1.7:

For every formula there is an equivalent formula in CNF (and also

an equivalent formula in DNF).

Proof:

We consider the case of CNF.

Apply the following rules as long as possible (modulo associativity

and commutativity of ∧ and ∨):

Step 1: Eliminate equivalences:

(F ↔ G) ⇒K (F → G) ∧ (G → F)

30

Conversion to CNF/DNF

Step 2: Eliminate implications:

(F → G) ⇒K (¬F ∨ G)

Step 3: Push negations downward:

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

Step 4: Eliminate multiple negations:

¬¬F ⇒K F

31

Conversion to CNF/DNF

Step 5: Push disjunctions downward:

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

Step 6: Eliminate ⊤ and ⊥:

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

¬⊥ ⇒K ⊤

¬⊤ ⇒K ⊥

32

Conversion to CNF/DNF

Proving termination is easy for most of the steps; only step 3 and

step 5 are a bit more complicated.

The resulting formula is equivalent to the original one and in CNF.

The conversion of a formula to DNF works in the same way, except

that conjunctions have to be pushed downward in step 5. ✷

33

Complexity

Conversion to CNF (or DNF) may produce a formula whose size is

exponential in the size of the original one.

34

Satisfiability-preserving Transformations

The goal

“find a formula G in CNF such that F |=| G”

is unpractical.

But if we relax the requirement to

“find a formula G in CNF such that F |= ⊥ ⇔ G |= ⊥”

we can get an efficient transformation.

35

Satisfiability-preserving Transformations

Idea: A formula F [F ′] is satisfiable if and only if F [P] ∧ (P ↔ F ′) is

satisfiable

(where P is a new propositional variable that works as an abbreviation

for F ′).

We can use this rule recursively for all subformulas in the original

formula (this introduces a linear number of new propositional

variables).

Conversion of the resulting formula to CNF increases the size only

by an additional factor (each formula P ↔ F ′ gives rise to at most

one application of the distributivity law).

36

Part 2: First-Order Logic

→First-order logic

• formalizes fundamental mathematical concepts

• is expressive (Turing-complete)

• is not too expressive

(e. g. not axiomatizable: natural numbers, uncountable sets)

• has a rich structure of decidable fragments

• has a rich model and proof theory

First-order logic is also called (first-order) predicate logic.

37

2.1 Syntax

Syntax:

• non-logical symbols (domain-specific)

⇒ terms, atomic formulas

• logical symbols (domain-independent)

⇒ Boolean combinations, quantifiers

38

Signature

A signature

Σ = (Ω,Π),

fixes an alphabet of non-logical symbols, where

• Ω is a set of function symbols f with arity n ≥ 0,

written arity(f) = n,

• Π is a set of predicate symbols p with arity m ≥ 0,

written arity(p) = m.

If n = 0 then f is also called a constant (symbol).

If m = 0 then p is also called a propositional variable.

We use letters P , Q, R , S , to denote propositional variables.

39

Signature

Refined concept for practical applications:

many-sorted signatures (corresponds to simple type systems in

programming languages);

not so interesting from a logical point of view.

40

Variables

Predicate logic admits the formulation of abstract, schematic

assertions.

(Object) variables are the technical tool for schematization.

We assume that

X

is a given countably infinite set of symbols which we use for (the

denotation of) variables.

41

Terms

Terms over Σ (resp., Σ-terms) are formed according to these

syntactic rules:

s, t, u, v ::= x , x ∈ X (variable)

| f (s1, ..., sn) , f ∈ Ω, arity(f) = n (functional term)

By TΣ(X) we denote the set of Σ-terms (over X).

A term not containing any variable is called a ground term.

By TΣ we denote the set of Σ-ground terms.

42

Terms

In other words, terms are formal expressions with well-balanced

brackets which we may also view as marked, ordered trees.

The markings are function symbols or variables.

The nodes correspond to the subterms of the term.

A node v that is marked with a function symbol f of arity n has

exactly n subtrees representing the n immediate subterms of v .

43

Atoms

Atoms (also called atomic formulas) over Σ are formed according to

this syntax:

A,B ::= p(s1, ..., sm) , p ∈ Π, arity(p) = m[
| (s ≈ t) (equation)

]

Whenever we admit equations as atomic formulas we are in the realm

of first-order logic with equality. Admitting equality does not really

increase the expressiveness of first-order logic, but deductive systems

where equality is treated specifically can be much more efficient.

44

Literals

L ::= A (positive literal)

| ¬A (negative literal)

45

Clauses

C ,D ::= ⊥ (empty clause)

| L1 ∨ . . . ∨ Lk , k ≥ 1 (non-empty clause)

46

General First-Order Formulas

FΣ(X) is the set of first-order formulas over Σ defined as follows:

F ,G ,H ::= ⊥ (falsum)

| ⊤ (verum)

| A (atomic formula)

| ¬F (negation)

| (F ∧ G) (conjunction)

| (F ∨ G) (disjunction)

| (F → G) (implication)

| (F ↔ G) (equivalence)

| ∀x F (universal quantification)

| ∃x F (existential quantification)

47

Notational Conventions

We omit brackets according to the following rules:

• ¬ >p ∨ >p ∧ >p → >p ↔

(binding precedences)

• ∨ and ∧ are associative and commutative

• → is right-associative

Qx1, . . . , xn F abbreviates Qx1 . . .Qxn F .

48

Notational Conventions

We use infix-, prefix-, postfix-, or mixfix-notation with the usual

operator precedences.

Examples:

s + t ∗ u for +(s, ∗(t, u))

s ∗ u ≤ t + v for ≤ (∗(s, u), +(t, v))

−s for −(s)

0 for 0()

49

Example: Peano Arithmetic

ΣPA = (ΩPA, ΠPA)

ΩPA = {0/0, +/2, ∗/2, s/1}

ΠPA = {≤ /2, < /2}

+, ∗, <, ≤ infix; ∗ >p + >p < >p ≤

Examples of formulas over this signature are:

∀x , y (x ≤ y ↔ ∃z(x + z ≈ y))

∃x∀y (x + y ≈ y)

∀x , y (x ∗ s(y) ≈ x ∗ y + x)

∀x , y (s(x) ≈ s(y) → x ≈ y)

∀x∃y (x < y ∧ ¬∃z(x < z ∧ z < y))

50

Remarks About the Example

We observe that the symbols ≤, <, 0, s are redundant as they can

be defined in first-order logic with equality just with the help of +.

The first formula defines ≤, while the second defines zero. The last

formula, respectively, defines s.

Eliminating the existential quantifiers by Skolemization (cf. below)

reintroduces the “redundant” symbols.

Consequently there is a trade-off between the complexity of the

quantification structure and the complexity of the signature.

51

Bound and Free Variables

In QxF , Q ∈ {∃, ∀}, we call F the scope of the quantifier Qx .

An occurrence of a variable x is called bound, if it is inside the scope

of a quantifier Qx .

Any other occurrence of a variable is called free.

Formulas without free variables are also called closed formulas or

sentential forms.

Formulas without variables are called ground.

52

Bound and Free Variables

Example:

∀

scope︷ ︸︸ ︷

y (∀

scope︷ ︸︸ ︷
x p(x) → q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The

second occurrence of x is a free occurrence.

53

Substitutions

Substitution is a fundamental operation on terms and formulas that

occurs in all inference systems for first-order logic.

In general, substitutions are mappings

σ : X → TΣ(X)

such that the domain of σ, that is, the set

dom(σ) = {x ∈ X | σ(x) 6= x},

is finite. The set of variables introduced by σ, that is, the set of

variables occurring in one of the terms σ(x), with x ∈ dom(σ), is

denoted by codom(σ).

54

Substitutions

Substitutions are often written as [s1/x1, . . . , sn/xn], with xi pairwise

distinct, and then denote the mapping

[s1/x1, . . . , sn/xn](y) =




si , if y = xi

y , otherwise

We also write xσ for σ(x).

The modification of a substitution σ at x is defined as follows:

σ[x 7→ t](y) =




t, if y = x

σ(y), otherwise

55

Why Substitution is Complicated

We define the application of a substitution σ to a term t or formula

F by structural induction over the syntactic structure of t or F by

the equations depicted on the next page.

In the presence of quantification it is surprisingly complex:

We need to make sure that the (free) variables in the codomain of

σ are not captured upon placing them into the scope of a quantifier

Qy , hence the bound variable must be renamed into a “fresh”, that

is, previously unused, variable z .

56

Application of a Substitution

“Homomorphic” extension of σ to terms and formulas:

f (s1, . . . , sn)σ = f (s1σ, . . . , snσ)

⊥σ = ⊥

⊤σ = ⊤

p(s1, . . . , sn)σ = p(s1σ, . . . , snσ)

(u ≈ v)σ = (uσ ≈ vσ)

¬Fσ = ¬(Fσ)

(FρG)σ = (Fσ ρGσ) ; for each binary connective ρ

(Qx F)σ = Qz (F σ[x 7→ z]) ; with z a fresh variable

57

Structural Induction on Terms

Proposition 2.1:

Let q be a property of the elements of TΣ(X), the Σ-terms over

X . Then, q holds for all t ∈ TΣ(X), whenever one can prove the

following two properties:

1. (base case)

q holds for every x ∈ X .

2. (step case)

for every f ∈ Ω with arity(f) = n,

for all terms s1, . . . , sn ∈ TΣ(X),

if q holds for every s1, . . . , sn then q also holds for

f (s1, . . . , sn).

Analogously: structural induction on formulas

58

2.2 Semantics

To give semantics to a logical system means to define a notion of

truth for the formulas. The concept of truth that we will now define

for first-order logic goes back to Tarski.

As in the propositional case, we use a two-valued logic with truth

values “true” and “false” denoted by 1 and 0, respectively.

59

Structures

A Σ-algebra (also called Σ-interpretation or Σ-structure) is a triple

A = (UA, (fA : Un → U)f∈Ω, (pA ⊆ Um
A)p∈Π)

where arity(f) = n, arity(p) = m, UA 6= ∅ is a set, called the

universe of A.

By Σ-Alg we denote the class of all Σ-algebras.

60

Assignments

A variable has no intrinsic meaning. The meaning of a variable has

to be defined externally (explicitly or implicitly in a given context)

by an assignment.

A (variable) assignment, also called a valuation (over a given

Σ-algebra A), is a map β : X → UA.

Variable assignments are the semantic counterparts of substitutions.

61

Value of a Term in A with Respect to β

By structural induction we define

A(β) : TΣ(X) → UA

as follows:

A(β)(x) = β(x), x ∈ X

A(β)(f (s1, . . . , sn)) = fA(A(β)(s1), . . . ,A(β)(sn)),

f ∈ Ω, arity(f) = n

62

Value of a Term in A with Respect to β

In the scope of a quantifier we need to evaluate terms with respect

to modified assignments. To that end, let β[x 7→ a] : X → UA, for

x ∈ X and a ∈ A, denote the assignment

β[x 7→ a](y) :=




a if x = y

β(y) otherwise

63

Truth Value of a Formula in A with Respect to β

A(β) : FΣ(X) → {0, 1} is defined inductively as follows:

A(β)(⊥) = 0

A(β)(⊤) = 1

A(β)(p(s1, . . . , sn)) = 1 ⇔ (A(β)(s1), . . . ,A(β)(sn)) ∈ pA

A(β)(s ≈ t) = 1 ⇔ A(β)(s) = A(β)(t)

A(β)(¬F) = 1 ⇔ A(β)(F) = 0

A(β)(FρG) = Bρ(A(β)(F),A(β)(G))

with Bρ the Boolean function associated with ρ

A(β)(∀xF) = min
a∈U

{A(β[x 7→ a])(F)}

A(β)(∃xF) = max
a∈U

{A(β[x 7→ a])(F)}

64

Example

The “Standard” Interpretation for Peano Arithmetic:

UN = {0, 1, 2, . . .}

0N = 0

sN : n 7→ n + 1

+N : (n,m) 7→ n +m

∗N : (n,m) 7→ n ∗m

≤N = {(n,m) | n less than or equal to m}

<N = {(n,m) | n less than m}

Note that N is just one out of many possible ΣPA-interpretations.

65

Example

Values over N for Sample Terms and Formulas:

Under the assignment β : x 7→ 1, y 7→ 3 we obtain

N(β)(s(x) + s(0)) = 3

N(β)(x + y ≈ s(y)) = 1

N(β)(∀x , y(x + y ≈ y + x)) = 1

N(β)(∀z z ≤ y) = 0

N(β)(∀x∃y x < y) = 1

66

2.3 Models, Validity, and Satisfiability

F is valid in A under assignment β:

A,β |= F :⇔ A(β)(F) = 1

F is valid in A (A is a model of F):

A |= F :⇔ A,β |= F , for all β ∈ X → UA

F is valid (or is a tautology):

|= F :⇔ A |= F , for all A ∈ Σ-Alg

F is called satisfiable iff there exist A and β such that A,β |= F .

Otherwise F is called unsatisfiable.

67

Entailment and Equivalence

F entails (implies) G (or G is a consequence of F), written F |= G ,

if for all A ∈ Σ-Alg and β ∈ X → UA,

whenever A,β |= F , then A,β |= G .

F and G are called equivalent, written F |=| G , if for all A ∈ Σ-Alg

und β ∈ X → UA we have

A,β |= F ⇔ A,β |= G .

68

Entailment and Equivalence

Proposition 2.2:

F entails G iff (F → G) is valid

Proposition 2.3:

F and G are equivalent iff (F ↔ G) is valid.

Extension to sets of formulas N in the “natural way”, e. g., N |= F

:⇔ for all A ∈ Σ-Alg and β ∈ X → UA:

if A,β |= G , for all G ∈ N, then A,β |= F .

69

Validity vs. Unsatisfiability

Validity and unsatisfiability are just two sides of the same medal as

explained by the following proposition.

Proposition 2.4:

Let F and G be formulas, let N be a set of formulas. Then

(i) F is valid if and only if ¬F is unsatisfiable.

(ii) F |= G if and only if F ∧ ¬G is unsatisfiable.

(iii) N |= G if and only if N ∪ {¬G} is unsatisfiable.

Hence in order to design a theorem prover (validity checker) it is

sufficient to design a checker for unsatisfiability.

70

Algorithmic Problems

This is a more comprehensive list of services an automated reasoning

system might provide:

Validity(F): |= F ?

Satisfiability(F): F satisfiable?

Entailment(F ,G): does F entail G?

Model(A,F): A |= F?

Solve(A,F): find an assignment β such that A,β |= F .

Solve(F): find a substitution σ such that |= Fσ.

Abduce(F): find G with “certain properties” such that G |= F .

71

2.4 Normal Forms and Skolemization (Traditional)

Study of normal forms motivated by

• reduction of logical concepts,

• efficient data structures for theorem proving.

The main problem in first-order logic is the treatment of quantifiers.

The subsequent normal form transformations are intended to

eliminate many of them.

72

Prenex Normal Form

Prenex formulas have the form

Q1x1 . . .Qnxn F ,

where F is quantifier-free and Qi ∈ {∀, ∃};

we call Q1x1 . . .Qnxn the quantifier prefix and F the matrix of the

formula.

73

Prenex Normal Form

Computing prenex normal form by the rewrite relation ⇒P :

(F ↔ G) ⇒P (F → G) ∧ (G → F)

¬QxF ⇒P Qx¬F (¬Q)

(QxF ρ G) ⇒P Qy(F [y/x] ρ G), y fresh, ρ ∈ {∧,∨}

(QxF → G) ⇒P Qy(F [y/x] → G), y fresh

(F ρ QxG) ⇒P Qy(F ρ G [y/x]), y fresh, ρ ∈ {∧,∨,→}

Here Q denotes the quantifier dual to Q, i. e., ∀ = ∃ and ∃ = ∀.

74

Skolemization

Intuition: replacement of ∃y by a concrete choice function

computing y from all the arguments y depends on.

Transformation ⇒S (to be applied outermost, not in subformulas):

∀x1, . . . , xn∃yF ⇒S ∀x1, . . . , xnF [f (x1, . . . , xn)/y]

where f , where arity(f) = n, is a new function symbol (Skolem

function).

75

Skolemization

Together: F
∗

⇒P G︸︷︷︸
prenex

∗
⇒S H︸︷︷︸

prenex, no ∃

Theorem 2.5:

Let F , G , and H as defined above and closed. Then

(i) F and G are equivalent.

(ii) H |= G but the converse is not true in general.

(iii) G satisfiable (w. r. t. Σ-Alg) ⇔ H satisfiable (w. r. t. Σ′-Alg)

where Σ′ = (Ω ∪ SKF , Π), if Σ = (Ω,Π).

76

Clausal Normal Form (ConjunctiveNormal Form)

(F ↔ G) ⇒K (F → G) ∧ (G → F)

(F → G) ⇒K (¬F ∨ G)

¬(F ∨ G) ⇒K (¬F ∧ ¬G)

¬(F ∧ G) ⇒K (¬F ∨ ¬G)

¬¬F ⇒K F

(F ∧ G) ∨ H ⇒K (F ∨ H) ∧ (G ∨ H)

(F ∧ ⊤) ⇒K F

(F ∧ ⊥) ⇒K ⊥

(F ∨ ⊤) ⇒K ⊤

(F ∨ ⊥) ⇒K F

These rules are to be applied modulo associativity and commutativity of

∧ and ∨. The first five rules, plus the rule (¬Q), compute the negation

normal form (NNF) of a formula.

77

The Complete Picture

F
∗

⇒P Q1y1 . . .Qnyn G (G quantifier-free)

∗
⇒S ∀x1, . . . , xm H (m ≤ n, H quantifier-free)

∗
⇒K ∀x1, . . . , xm︸ ︷︷ ︸

leave out

k∧

i=1

ni∨

j=1

Lij

︸ ︷︷ ︸
clauses Ci︸ ︷︷ ︸

F ′

N = {C1, . . . ,Ck} is called the clausal (normal) form (CNF) of F .

Note: the variables in the clauses are implicitly universally quantified.

78

The Complete Picture

Theorem 2.6:

Let F be closed. Then F ′ |= F .

(The converse is not true in general.)

Theorem 2.7:

Let F be closed. Then F is satisfiable iff F ′ is satisfiable iff

N is satisfiable

79

Optimization

Here is lots of room for optimization since we only can preserve

satisfiability anyway:

• size of the CNF exponential when done naively;

but see the transformations we introduced for propositional logic

• want small arity of Skolem functions (not discussed here)

80

2.5 Herbrand Interpretations

From now an we shall consider PL without equality. Ω shall contains

at least one constant symbol.

A Herbrand interpretation (over Σ) is a Σ-algebra A such that

• UA = TΣ (= the set of ground terms over Σ)

• fA : (s1, . . . , sn) 7→ f (s1, . . . , sn), f ∈ Ω, arity(f) = n

f

fA(△, . . . ,△) =

△ . . . △

81

Herbrand Interpretations

In other words, values are fixed to be ground terms and functions are

fixed to be the term constructors. Only predicate symbols p ∈ Π,

arity(p) = m may be freely interpreted as relations pA ⊆ Tm
Σ .

Proposition 2.8:

Every set of ground atoms I uniquely determines a Herbrand

interpretation A via

(s1, . . . , sn) ∈ pA :⇔ p(s1, . . . , sn) ∈ I

Thus we shall identify Herbrand interpretations (over Σ) with sets of

Σ-ground atoms.

82

Herbrand Interpretations

Example: ΣPres = ({0/0, s/1,+/2}, {</2,≤/2})

N as Herbrand interpretation over ΣPres :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}

83

Existence of Herbrand Models

A Herbrand interpretation I is called a Herbrand model of F ,

if I |= F .

Theorem 2.9 (Herbrand):

Let N be a set of Σ-clauses.

N satisfiable ⇔ N has a Herbrand model (over Σ)

⇔ GΣ(N) has a Herbrand model (over Σ)

where GΣ(N) = {Cσ ground clause | C ∈ N, σ : X → TΣ} is the

set of ground instances of N.

[The proof will be given below in the context of the completeness

proof for resolution.]

84

Example of a GΣ

For ΣPres one obtains for

C = (x < y) ∨ (y ≤ s(x))

the following ground instances:

(0 < 0) ∨ (0 ≤ s(0))

(s(0) < 0) ∨ (0 ≤ s(s(0)))

. . .

(s(0) + s(0) < s(0) + 0) ∨ (s(0) + 0 ≤ s(s(0) + s(0)))

. . .

85

2.6 Inference Systems and Proofs

Inference systems Γ (proof calculi) are sets of tuples

(F1, . . . ,Fn,Fn+1), n ≥ 0,

called inferences or inference rules, and written

premises︷ ︸︸ ︷
F1 . . . Fn

Fn+1︸︷︷︸
conclusion

.

Clausal inference system: premises and conclusions are clauses.

One also considers inference systems over other data structures (cf.

below).

86

Proofs

A proof in Γ of a formula F from a a set of formulas N (called

assumptions) is a sequence F1, . . . ,Fk of formulas where

(i) Fk = F ,

(ii) for all 1 ≤ i ≤ k : Fi ∈ N, or else there exists an inference

Fi1 . . . Fini

Fi

in Γ, such that 0 ≤ ij < i , for 1 ≤ j ≤ ni .

87

Soundness and Completeness

Provability ⊢Γ of F from N in Γ:

N ⊢Γ F :⇔ there exists a proof Γ of F from N.

Γ is called sound :⇔

F1 . . . Fn

F
∈ Γ ⇒ F1, . . . ,Fn |= F

Γ is called complete :⇔

N |= F ⇒ N ⊢Γ F

Γ is called refutationally complete :⇔

N |= ⊥ ⇒ N ⊢Γ ⊥

88

Soundness and Completeness

Proposition 2.10:

(i) Let Γ be sound. Then N ⊢Γ F ⇒ N |= F

(ii) N ⊢Γ F ⇒ there exist F1, . . . ,Fn ∈ N s.t. F1, . . . ,Fn ⊢Γ F

(resembles compactness).

89

Proofs as Trees

markings =̂ formulas

leaves =̂ assumptions and axioms

other nodes =̂ inferences: conclusion =̂ ancestor

premises =̂ direct descendants

P(f (c))

P(f (c)) ∨ Q(b)

P(f (c)) ∨ Q(b) ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b)

¬P(f (c)) ∨ Q(b) ∨ Q(b)

¬P(f (c)) ∨ Q(b)

Q(b) ∨ Q(b)

Q(b) ¬P(f (c)) ∨ ¬Q(b)

¬P(f (c))

⊥

90

2.7 Propositional Resolution

We observe that propositional clauses and ground clauses are the

same concept.

In this section we only deal with ground clauses.

91

The Resolution Calculus Res

Resolution inference rule:

D ∨ A ¬A ∨ C

D ∨ C

Terminology: D ∨ C : resolvent; A: resolved atom

(Positive) factorisation inference rule:

C ∨ A ∨ A

C ∨ A

92

The Resolution Calculus Res

These are schematic inference rules; for each substitution of the

schematic variables C , D, and A, respectively, by ground clauses and

ground atoms we obtain an inference rule.

As “∨” is considered associative and commutative, we assume that

A and ¬A can occur anywhere in their respective clauses.

93

Sample Refutation

1. ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b) (given)

2. P(f (c)) ∨ Q(b) (given)

3. ¬P(g(b, c)) ∨ ¬Q(b) (given)

4. P(g(b, c)) (given)

5. ¬P(f (c)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. ¬P(f (c)) ∨ Q(b) (Fact. 5.)

7. Q(b) ∨ Q(b) (Res. 2. into 6.)

8. Q(b) (Fact. 7.)

9. ¬P(g(b, c)) (Res. 8. into 3.)

10. ⊥ (Res. 4. into 9.)

94

Resolution with Implicit Factorization RIF

D ∨ A ∨ . . . ∨ A ¬A ∨ C

D ∨ C

1. ¬P(f (c)) ∨ ¬P(f (c)) ∨ Q(b) (given)

2. P(f (c)) ∨ Q(b) (given)

3. ¬P(g(b, c)) ∨ ¬Q(b) (given)

4. P(g(b, c)) (given)

5. ¬P(f (c)) ∨ Q(b) ∨ Q(b) (Res. 2. into 1.)

6. Q(b) ∨ Q(b) ∨ Q(b) (Res. 2. into 5.)

7. ¬P(g(b, c)) (Res. 6. into 3.)

8. ⊥ (Res. 4. into 7.)

95

Soundness of Resolution

Theorem 2.11:

Propositional resolution is sound.

Proof:

Let I ∈ Σ-Alg. To be shown:

(i) for resolution: I |= D ∨ A, I |= C ∨ ¬A ⇒ I |= D ∨ C

(ii) for factorization: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

(i): Assume premises are valid in I . Two cases need to be considered:

If I |= A, then I |= C , hence I |= D ∨ C .

Otherwise, I |= ¬A, then I |= D, and again I |= D ∨ C .

(ii): even simpler. ✷

96

Soundness of Resolution

Note: In propositional logic (ground clauses) we have:

1. I |= L1 ∨ . . . ∨ Ln ⇔ there exists i : I |= Li .

2. I |= A or I |= ¬A.

This does not hold for formulas with variables!

97

2.8 Refutational Completeness of Resolution

How to show refutational completeness of propositional resolution:

• We have to show: N |= ⊥ ⇒ N ⊢Res ⊥,

or equivalently: If N 6⊢Res ⊥, then N has a model.

• Idea: Suppose that we have computed sufficiently many

inferences (and not derived ⊥).

• Now order the clauses in N according to some appropriate

ordering, inspect the clauses in ascending order, and construct a

series of Herbrand interpretations.

• The limit interpretation can be shown to be a model of N.

98

Multi-Sets

Let M be a set. A multi-set S over M is a mapping S : M → N.

Hereby S(m) specifies the number of occurrences of elements m of

the base set M within the multi-set S .

We say that m is an element of S , if S(m) > 0.

We use set notation (∈, ⊂, ⊆, ∪, ∩, etc.) with analogous meaning

also for multi-sets, e. g.,

(S1 ∪ S2)(m) = S1(m) + S2(m)

(S1 ∩ S2)(m) = min{S1(m), S2(m)}

99

Multi-Sets

A multi-set is called finite, if

|{m ∈ M| s(m) > 0}| < ∞,

for each m in M.

From now on we only consider finite multi-sets.

Example. S = {a, a, a, b, b} is a multi-set over {a, b, c}, where

S(a) = 3, S(b) = 2, S(c) = 0.

100

Multi-Sets

Let (M,≻) be a partial ordering. The multi-set extension of ≻ to

multi-sets over M is defined by

S1 ≻mul S2 :⇔ S1 6= S2

and ∀m ∈ M : [S2(m) > S1(m)

⇒ ∃m′ ∈ M : (m′ ≻ m and S1(m
′) > S2(m

′))]

Theorem 2.12:

(a) ≻mul is a partial ordering.

(b) ≻ well-founded ⇒ ≻mul well-founded.

(c) ≻ total ⇒ ≻mul total.

101

Clause Orderings

1. We assume that ≻ is any fixed ordering on ground atoms that is

total and well-founded. (There exist many such orderings, e. g.,

the lenght-based ordering on atoms when these are viewed as

words over a suitable alphabet.)

2. Extend ≻ to an ordering ≻L on ground literals:

[¬]A ≻L [¬]B , if A ≻ B

¬A ≻L A

3. Extend ≻L to an ordering ≻C on ground clauses:

≻C = (≻L)mul, the multi-set extension of ≻L.

Notation: ≻ also for ≻L and ≻C .

102

Example

Suppose A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0. Then:

A0 ∨ A1

≺ A1 ∨ A2

≺ ¬A1 ∨ A2

≺ ¬A1 ∨ A4 ∨ A3

≺ ¬A1 ∨ ¬A4 ∨ A3

≺ ¬A5 ∨ A5

103

Properties of the Clause Ordering

Proposition 2.13:

1. The orderings on literals and clauses are total and well-founded.

2. Let C and D be clauses with A = max(C), B = max(D), where

max(C) denotes the maximal atom in C .

(i) If A ≻ B then C ≻ D.

(ii) If A = B , A occurs negatively in C but only positively in

D, then C ≻ D.

104

Stratified Structure of Clause Sets

Let A ≻ B . Clause sets are then stratified in this form:

{

{
.
.
.

.

.

.
≺

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .
. . .

all D where max(D) = B

all C where max(C) = A

105

Closure of Clause Sets under Res

Res(N) = {C | C is concl. of a rule in Res w/ premises in N}

Res0(N) = N

Resn+1(N) = Res(Resn(N)) ∪ Resn(N), for n ≥ 0

Res∗(N) =
⋃

n≥0 Res
n(N)

N is called saturated (w. r. t. resolution), if Res(N) ⊆ N.

Proposition 2.14:

(i) Res∗(N) is saturated.

(ii) Res is refutationally complete, iff for each set N of ground

clauses:

N |= ⊥ ⇔ ⊥ ∈ Res∗(N)

106

Construction of Interpretations

Given: set N of ground clauses, atom ordering ≻.

Wanted: Herbrand interpretation I such that

• “many” clauses from N are valid in I ;

• I |= N, if N is saturated and ⊥ 6∈ N.

Construction according to ≻, starting with the minimal clause.

107

Example

Let A5 ≻ A4 ≻ A3 ≻ A2 ≻ A1 ≻ A0 (max. literals in red)

clauses C IC ∆C Remarks

1 ¬A0 ∅ ∅ true in IC

2 A0 ∨ A1 ∅ {A1} A1 maximal

3 A1 ∨ A2 {A1} ∅ true in IC

4 ¬A1 ∨ A2 {A1} {A2} A2 maximal

5 ¬A1 ∨ A4 ∨ A3 ∨ A0 {A1,A2} {A4} A4 maximal

6 ¬A1 ∨ ¬A4 ∨ A3 {A1,A2,A4} ∅ A3 not maximal;

min. counter-ex.

7 ¬A1 ∨ A5 {A1,A2,A4} {A5}

I = {A1,A2,A4,A5} is not a model of the clause set

⇒ there exists a counterexample.

108

Main Ideas of the Construction

• Clauses are considered in the order given by ≺.

• When considering C , one already has a partial interpretation IC

(initially IC = ∅) available.

• If C is true in the partial interpretation IC , nothing is done.

(∆C = ∅).

• If C is false, one would like to change IC such that C becomes

true.

109

Main Ideas of the Construction

• Changes should, however, be monotone. One never deletes

anything from IC and the truth value of clauses smaller than C

should be maintained the way it was in IC .

• Hence, one chooses ∆C = {A} if, and only if, C is false in IC ,

if A occurs positively in C (adding A will make C become true)

and if this occurrence in C is strictly maximal in the ordering on

literals (changing the truth value of A has no effect on smaller

clauses).

110

Resolution Reduces Counterexamples

¬A1 ∨ A4 ∨ A3 ∨ A0 ¬A1 ∨ ¬A4 ∨ A3

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

¬A0 ∅ ∅

A0 ∨ A1 ∅ {A1}

A1 ∨ A2 {A1} ∅

¬A1 ∨ A2 {A1} {A2}

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1,A2} ∅ A3 occurs twice

minimal counter-ex.

¬A1 ∨ A4 ∨ A3 ∨ A0 {A1,A2} {A4}

¬A1 ∨ ¬A4 ∨ A3 {A1,A2,A4} ∅ counterexample

¬A1 ∨ A5 {A1,A2,A4} {A5}

The same I , but smaller counterexample, hence some progress was made.

111

Factorization Reduces Counterexamples

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0

¬A1 ∨ ¬A1 ∨ A3 ∨ A0

Construction of I for the extended clause set:

clauses C IC ∆C Remarks

¬A0 ∅ ∅

A0 ∨ A1 ∅ {A1}

A1 ∨ A2 {A1} ∅

¬A1 ∨ A2 {A1} {A2}

¬A1 ∨ ¬A1 ∨ A3 ∨ A0 {A1,A2} {A3}

¬A1 ∨ ¬A1 ∨ A3 ∨ A3 ∨ A0 {A1,A2,A3} ∅ true in IC

¬A1 ∨ A4 ∨ A3 ∨ A0 {A1,A2,A3} ∅

¬A1 ∨ ¬A4 ∨ A3 {A1,A2,A3} ∅ true in IC

¬A3 ∨ A5 {A1,A2,A3} {A5}

The resulting I = {A1,A2,A3,A5} is a model of the clause set.

112

Construction of Candidate Interpretations

Let N,≻ be given. We define sets IC and ∆C for all ground clauses

C over the given signature inductively over ≻:

IC :=
⋃

C≻D ∆D

∆C :=





{A}, if C ∈ N, C = C ′ ∨ A, A ≻ C ′, IC 6|= C

∅, otherwise

We say that C produces A, if ∆C = {A}.

The candidate interpretation for N (w. r. t. ≻) is given as I≻N :=⋃
C ∆C . (We also simply write IN or I for I≻N if ≻ is either irrelevant

or known from the context.)

113

Structure of N ,≻

Let A ≻ B; producing a new atom does not affect smaller clauses.

{

{
.
.
.

.

.

.
≺

possibly productive

A

B
. . . ∨ B

. . .

. . . ∨ B ∨ B
. . .

¬B ∨ . . .

. . . ∨ A
. . .

. . . ∨ A ∨ A
. . .

¬A ∨ . . .
. . .

all D with max(D) = B

all C with max(C) = A

114

Some Properties of the Construction

Proposition 2.15:

(i) C = ¬A ∨ C ′ ⇒ no D � C produces A.

(ii) C productive ⇒ IC ∪∆C |= C .

(iii) Let D′ ≻ D � C . Then

ID ∪∆D |= C ⇒ ID′ ∪∆D′ |= C and IN |= C .

If, in addition, C ∈ N or max(D) ≻ max(C):

ID ∪∆D 6|= C ⇒ ID′ ∪∆D′ 6|= C and IN 6|= C .

115

Some Properties of the Construction

(iv) Let D′ ≻ D ≻ C . Then

ID |= C ⇒ ID′ |= C and IN |= C .

If, in addition, C ∈ N or max(D) ≻ max(C):

ID 6|= C ⇒ ID′ 6|= C and IN 6|= C .

(v) D = C ∨ A produces A ⇒ IN 6|= C .

116

Model Existence Theorem

Theorem 2.16 (Bachmair & Ganzinger 1990):

Let ≻ be a clause ordering, let N be saturated w. r. t. Res, and

suppose that ⊥ 6∈ N. Then I≻N |= N.

Corollary 2.17:

Let N be saturated w. r. t. Res. Then N |= ⊥ ⇔ ⊥ ∈ N.

117

Model Existence Theorem

Proof of Theorem 2.16:

Suppose ⊥ 6∈ N, but I≻N 6|= N. Let C ∈ N minimal (in ≻) such that

I≻N 6|= C . Since C is false in IN , C is not productive. As C 6= ⊥ there

exists a maximal atom A in C .

Case 1: C = ¬A ∨ C ′ (i. e., the maximal atom occurs negatively)

⇒ IN |= A and IN 6|= C ′

⇒ some D = D′ ∨ A ∈ N produces A. As D′∨A ¬A∨C ′

D′∨C ′
, we infer

that D′ ∨ C ′ ∈ N, and C ≻ D′ ∨ C ′ and IN 6|= D′ ∨ C ′

⇒ contradicts minimality of C .

Case 2: C = C ′ ∨ A ∨ A. Then C ′∨A∨A
C ′∨A

yields a smaller

counterexample C ′ ∨ A ∈ N. ⇒ contradicts minimality of C . ✷

118

Compactness of Propositional Logic

Theorem 2.18 (Compactness):

Let N be a set of propositional formulas. Then N is unsatisfiable, if

and only if some finite subset M ⊆ N is unsatisfiable.

Proof:

“⇐”: trivial.

“⇒”: Let N be unsatisfiable.

⇒ Res∗(N) unsatisfiable

⇒ ⊥ ∈ Res∗(N) by refutational completeness of resolution

⇒ ∃n ≥ 0 : ⊥ ∈ Resn(N)

⇒ ⊥ has a finite resolution proof P ;

choose M as the set of assumptions in P . ✷

119

2.9 General Resolution

Propositional resolution:

refutationally complete,

in its most naive version:

not guaranteed to terminate for satisfiable sets of clauses,

(improved versions do terminate, however)

in practice clearly inferior to the DPLL procedure

(even with various improvements).

But: in contrast to the DPLL procedure, resolution can be easily

extended to non-ground clauses.

120

General Resolution through Instantiation
Idea: instantiate clauses appropriately:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

[a/z ′, f (a, b)/z] [a/y] [b/y] [a/x ′, b/x]

121

General Resolution through Instantiation

Problems:

More than one instance of a clause can participate in a proof.

Even worse: There are infinitely many possible instances.

Observation:

Instantiation must produce complementary literals

(so that inferences become possible).

Idea:

Do not instantiate more than necessary to get complementary

literals.
122

General Resolution through Instantiation
Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y] [b/y] [a/x ′]

[f (a, x)/z]

123

Lifting Principle

Problem: Make saturation of infinite sets of clauses as they arise

from taking the (ground) instances of finitely many general

clauses (with variables) effective and efficient.

Idea (Robinson 1965):

• Resolution for general clauses:

• Equality of ground atoms is generalized to unifiability of

general atoms;

• Only compute most general (minimal) unifiers.

124

Lifting Principle

Significance: The advantage of the method in (Robinson 1965)

compared with (Gilmore 1960) is that unification enumerates

only those instances of clauses that participate in an inference.

Moreover, clauses are not right away instantiated into ground

clauses. Rather they are instantiated only as far as required

for an inference. Inferences with non-ground clauses in general

represent infinite sets of ground inferences which are computed

simultaneously in a single step.

125

Resolution for General Clauses

General binary resolution Res:

D ∨ B C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factorization]

General resolution RIF with implicit factorization:

D ∨ B1 ∨ . . . ∨ Bn C ∨ ¬A

(D ∨ C)σ
if σ = mgu(A,B1, . . . ,Bn)

[RIF]

126

Resolution for General Clauses

For inferences with more than one premise, we assume that the

variables in the premises are (bijectively) renamed such that they

become different to any variable in the other premises.

We do not formalize this. Which names one uses for variables is

otherwise irrelevant.

127

Unification

Let E = {s1
.
= t1, . . . , sn

.
= tn} (si , ti terms or atoms) a multi-set

of equality problems. A substitution σ is called a unifier of E if

siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

128

Unification

A substitution σ is called more general than a substitution τ , denoted

by σ ≤ τ , if there exists a substitution ρ such that ρ ◦ σ = τ , where

(ρ ◦ σ)(x) := (xσ)ρ is the composition of σ and ρ as mappings.

(Note that ρ ◦ σ has a finite domain as required for a substitution.)

If a unifier of E is more general than any other unifier of E , then we

speak of a most general unifier of E , denoted by mgu(E).

129

Unification

Proposition 2.19:

(i) ≤ is a quasi-ordering on substitutions, and ◦ is associative.

(ii) If σ ≤ τ and τ ≤ σ (we write σ ∼ τ in this case), then xσ and

xτ are equal up to (bijective) variable renaming, for any x in

X .

A substitution σ is called idempotent, if σ ◦ σ = σ.

Proposition 2.20:

σ is idempotent iff dom(σ) ∩ codom(σ) = ∅.

130

Rule Based Naive Standard Unification

t
.
= t,E ⇒SU E

f (s1, . . . , sn)
.
= f (t1, . . . , tn),E ⇒SU s1

.
= t1, . . . , sn

.
= tn,E

f (. . .)
.
= g(. . .),E ⇒SU ⊥

x
.
= t,E ⇒SU x

.
= t,E [t/x]

if x ∈ var(E), x 6∈ var(t)

x
.
= t,E ⇒SU ⊥

if x 6= t, x ∈ var(t)

t
.
= x ,E ⇒SU x

.
= t,E

if t 6∈ X

131

SU: Main Properties

If E = x1
.
= u1, . . . , xk

.
= uk , with xi pairwise distinct, xi 6∈ var(uj),

then E is called an (equational problem in)

solved form representing the solution σE = [u1/x1, . . . , uk/xk].

Proposition 2.21:

If E is a solved form then σE is an mgu of E .

132

SU: Main Properties

Theorem 2.22:

1. If E ⇒SU E ′ then σ is a unifier of E iff σ is a unifier of E ′

2. If E
∗

⇒SU ⊥ then E is not unifiable.

3. If E
∗

⇒SU E ′ with E ′ in solved form, then σE ′ is an mgu of E .

Proof:

(1) We have to show this for each of the rules. Let’s treat the case for

the 4th rule here. Suppose σ is a unifier of x
.
= t, that is, xσ = tσ.

Thus, σ ◦ [t/x] = σ[x 7→ tσ] = σ[x 7→ xσ] = σ. Therefore, for any

equation u
.
= v in E : uσ = vσ, iff u[t/x]σ = v [t/x]σ. (2) and (3)

follow by induction from (1) using Proposition 2.21. ✷

133

Main Unification Theorem

Theorem 2.23:

E is unifiable if and only if there is a most general unifier σ of E ,

such that σ is idempotent and dom(σ) ∪ codom(σ) ⊆ var(E).

Problem: exponential growth of terms possible

There are better, linear unification algorithms (not discussed here)

134

Main Unification Theorem

Proof of Theorem 2.23:

• ⇒SU is Noetherian. A suitable lexicographic ordering on the

multisets E (with ⊥ minimal) shows this. Compare in this order:

1. the number of defined variables (d.h. variables x in equations

x
.
= t with x 6∈ var(t)), which also occur outside their

definition elsewhere in E ;

2. the multi-set ordering induced by (i) the size (number of

symbols) in an equation; (ii) if sizes are equal consider x
.
= t

smaller than t
.
= x , if t 6∈ X . ✷

135

Main Unification Theorem

• A system E that is irreducible w. r. t. ⇒SU is either ⊥ or a solved

form.

• Therefore, reducing any E by SU will end (no matter what

reduction strategy we apply) in an irreducible E ′ having the same

unifiers as E , and we can read off the mgu (or non-unifiability)

of E from E ′ (Theorem 2.22, Proposition 2.21).

• σ is idempotent because of the substitution in rule 4.

dom(σ) ∪ codom(σ) ⊆ var(E), as no new variables are

generated.

136

Lifting Lemma
Lemma 2.24:

Let C and D be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ

C ′
[propositional resolution]

then there exists a substitution τ such that

D C

C ′′

y τ

C ′ = C ′′τ

[general resolution]

137

Lifting Lemma

An analogous lifting lemma holds for factorization.

138

Saturation of Sets of General Clauses

Corollary 2.25:

Let N be a set of general clauses saturated under Res, i. e.,

Res(N) ⊆ N. Then also GΣ(N) is saturated, that is,

Res(GΣ(N)) ⊆ GΣ(N).

139

Saturation of Sets of General Clauses

Proof:

W.l.o.g. we may assume that clauses in N are pairwise variable-

disjoint. (Otherwise make them disjoint, and this renaming process

changes neither Res(N) nor GΣ(N).)

Let C ′ ∈ Res(GΣ(N)), meaning (i) there exist resolvable ground

instances Dσ and Cρ of N with resolvent C ′, or else (ii) C ′ is a

factor of a ground instance Cσ of C .

Case (i): By the Lifting Lemma, D and C are resolvable with a

resolvent C ′′ with C ′′τ = C ′, for a suitable substitution τ . As

C ′′ ∈ N by assumption, we obtain that C ′ ∈ GΣ(N).

Case (ii): Similar. ✷

140

Herbrand’s Theorem

Lemma 2.26:

Let N be a set of Σ-clauses, let A be an interpretation.

Then A |= N implies A |= GΣ(N).

Lemma 2.27:

Let N be a set of Σ-clauses, let A be a Herbrand interpretation.

Then A |= GΣ(N) implies A |= N.

141

Herbrand’s Theorem

Theorem 2.28 (Herbrand):

A set N of Σ-clauses is satisfiable if and only if it has a Herbrand

model over Σ.

Proof:

The “⇐” part is trivial. For the “⇒” part let N 6|= ⊥.

N 6|= ⊥ ⇒ ⊥ 6∈ Res∗(N) (resolution is sound)

⇒ ⊥ 6∈ GΣ(Res
∗(N))

⇒ IGΣ(Res∗(N)) |= GΣ(Res
∗(N)) (Thm. 2.16; Cor. 2.25)

⇒ IGΣ(Res∗(N)) |= Res∗(N) (Lemma 2.27)

⇒ IGΣ(Res∗(N)) |= N (N ⊆ Res∗(N)) ✷

142

Refutational Completeness of General Resolution

Theorem 2.29:

Let N be a set of general clauses where Res(N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N.

Proof:

Let Res(N) ⊆ N. By Corollary 2.25: Res(GΣ(N)) ⊆ GΣ(N)

N |= ⊥ ⇔ GΣ(N) |= ⊥ (Lemma 2.26/2.27; Theorem 2.28)

⇔ ⊥ ∈ GΣ(N) (propositional resolution sound and complete)

⇔ ⊥ ∈ N ✷

143

2.10 Ordered Resolution with Selection

Motivation: Search space for Res very large.

Ideas for improvement:

1. In the completeness proof (Model Existence Theorem 2.16) one

only needs to resolve and factor maximal atoms

⇒ if the calculus is restricted to inferences involving maximal

atoms, the proof remains correct

⇒ order restrictions

2. In the proof, it does not really matter with which negative literal

an inference is performed

⇒ choose a negative literal don’t-care-nondeterministically

⇒ selection

144

Selection Functions

A selection function is a mapping

S : C 7→ set of occurrences of negative literals in C

Example of selection with selected literals indicated as X :

¬A ∨ ¬A ∨ B

¬B0 ∨ ¬B1 ∨ A

145

Resolution Calculus Res
≻
S

In the completeness proof, we talk about (strictly) maximal literals

of ground clauses.

In the non-ground calculus, we have to consider those literals that

correspond to (strictly) maximal literals of ground instances:

Let ≻ be a total and well-founded ordering on ground atoms.

A literal L is called [strictly] maximal in a clause C if and only if

there exists a ground substitution σ such that for no other L′ in C :

Lσ ≺ L′σ [Lσ � L′σ].

146

Resolution Calculus Res
≻
S

Let ≻ be an atom ordering and S a selection function.

D ∨ B C ∨ ¬A

(D ∨ C)σ
[ordered resolution with selection]

if σ = mgu(A,B) and

(i) Bσ strictly maximal w. r. t. Dσ;

(ii) nothing is selected in D by S ;

(iii) either ¬A is selected,

or else nothing is selected in C ∨ ¬A and ¬Aσ is maximal in

Cσ.

147

Resolution Calculus Res
≻
S

C ∨ A ∨ B

(C ∨ A)σ
[ordered factoring]

if σ = mgu(A,B) and Aσ is maximal in Cσ and nothing is selected

in C .

148

Special Case: Propositional Logic

For ground clauses the resolution inference simplifies to

D ∨ A C ∨ ¬A

D ∨ C

if

(i) A ≻ D;

(ii) nothing is selected in D by. S;

(iii) ¬A is selected in C ∨ ¬A,

or else nothing is selected in C ∨ ¬A and ¬A � max(C).

Note: For positive literals, A ≻ D is the same as A ≻ max(D).

149

Search Spaces Become Smaller

1 A ∨ B

2 A ∨ ¬B

3 ¬A ∨ B

4 ¬A ∨ ¬B

5 B ∨ B Res 1, 3

6 B Fact 5

7 ¬A Res 6, 4

8 A Res 6, 2

9 ⊥ Res 8, 7

we assume A ≻ B and S as in-

dicated by X . The maximal

literal in a clause is depicted

in red.

With this ordering and selection function the refutation proceeds strictly

deterministically in this example. Generally, proof search will still be

non-deterministic but the search space will be much smaller than with

unrestricted resolution.

150

Avoiding Rotation Redundancy

From
C1 ∨ A C2 ∨ ¬A ∨ B

C1 ∨ C2 ∨ B C3 ∨ ¬B

C1 ∨ C2 ∨ C3

we can obtain by rotation

C1 ∨ A

C2 ∨ ¬A ∨ B C3 ∨ ¬B

C2 ∨ ¬A ∨ C3

C1 ∨ C2 ∨ C3

another proof of the same clause. In large proofs many rotations are

possible. However, if A ≻ B , then the second proof does not fulfill

the orderings restrictions.

151

Avoiding Rotation Redundancy

Conclusion: In the presence of orderings restrictions (however one

chooses ≻) no rotations are possible. In other words, orderings

identify exactly one representant in any class of of rotation-equivalent

proofs.

152

Lifting Lemma for Res≻S
Lemma 2.30:

Let D and C be variable-disjoint clauses. If

D




y

σ

Dσ

C




y

ρ

Cρ

C ′
[propositional inference in Res≻S]

and if S(Dσ) ≃ S(D), S(Cρ) ≃ S(C) (that is, “corresponding” literals

are selected), then there exists a substitution τ such that

D C

C ′′





y

τ

C ′ = C ′′
τ

[inference in Res≻S]

153

Lifting Lemma for Res≻S

An analogous lifting lemma holds for factorization.

154

Saturation of General Clause Sets
Corollary 2.31:

Let N be a set of general clauses saturated under Res≻S , i. e.,

Res≻S (N) ⊆ N. Then there exists a selection function S ′ such that

S |N = S ′|N and GΣ(N) is also saturated, i. e.,

Res≻S′(GΣ(N)) ⊆ GΣ(N).

Proof:

We first define the selection function S ′ such that S ′(C) = S(C)

for all clauses C ∈ GΣ(N) ∩ N. For C ∈ GΣ(N) \ N we choose a

fixed but arbitrary clause D ∈ N with C ∈ GΣ(D) and define S ′(C)

to be those occurrences of literals that are ground instances of the

occurrences selected by S in D. Then proceed as in the proof of

Corollary 2.25 using the above lifting lemma. ✷

155

Soundness and Refutational Completeness

Theorem 2.32:

Let ≻ be an atom ordering and S a selection function such that

Res≻S (N) ⊆ N. Then

N |= ⊥ ⇔ ⊥ ∈ N

Proof:

The “⇐” part is trivial. For the “⇒” part consider first the

propositional level: Construct a candidate interpretation IN as for

unrestricted resolution, except that clauses C in N that have selected

literals are not productive, even when they are false in IC and when

their maximal atom occurs only once and positively.

The result for general clauses follows using Corollary 2.31. ✷

156

Redundancy

So far: local restrictions of the resolution inference rules using

orderings and selection functions.

Is it also possible to delete clauses altogether?

Under which circumstances are clauses unnecessary?

(Conjecture: e. g., if they are tautologies or if they are subsumed by

other clauses.)

Intuition: If a clause is guaranteed to be neither a minimal

counterexample nor productive, then we do not need it.

157

A Formal Notion of Redundancy

Let N be a set of ground clauses and C a ground clause (not

necessarily in N). C is called redundant w. r. t. N, if there exist

C1, . . . ,Cn ∈ N, n ≥ 0, such that Ci ≺ C and C1, . . . ,Cn |= C .

Redundancy for general clauses:

C is called redundant w. r. t. N, if all ground instances Cσ of C are

redundant w. r. t. GΣ(N).

Intuition: Redundant clauses are neither minimal counterexamples

nor productive.

Note: The same ordering ≺ is used for ordering restrictions and for

redundancy (and for the completeness proof).

158

Examples of Redundancy

Proposition 2.33:

Some redundancy criteria:

• C tautology (i. e., |= C) ⇒ C redundant w. r. t. any set N.

• Cσ ⊂ D ⇒ D redundant w. r. t. N ∪ {C}.

• Cσ ⊆ D ⇒ D ∨ Lσ redundant w. r. t. N ∪ {C ∨ L, D}.

(Under certain conditions one may also use non-strict subsumption,

but this requires a slightly more complicated definition of redundancy.)

159

Saturation up to Redundancy

N is called saturated up to redundancy (w. r. t. Res≻S)

:⇔ Res≻S (N \ Red(N)) ⊆ N ∪ Red(N)

Theorem 2.34:

Let N be saturated up to redundancy. Then

N |= ⊥ ⇔ ⊥ ∈ N

160

Saturation up to Redundancy

Proof (Sketch):

(i) Ground case:

• consider the construction of the candidate interpretation I≻N
for Res≻S

• redundant clauses are not productive

• redundant clauses in N are not minimal counterexamples for I≻N

The premises of “essential” inferences are either minimal counterex-

amples or productive.

(ii) Lifting: no additional problems over the proof of Theorem 2.32.

✷

161

Monotonicity Properties of Redundancy

Theorem 2.35:

(i) N ⊆ M ⇒ Red(N) ⊆ Red(M)

(ii) M ⊆ Red(N) ⇒ Red(N) ⊆ Red(N \M)

Proof:

Exercise. ✷

We conclude that redundancy is preserved when, during a theorem

proving process, one adds (derives) new clauses or deletes redundant

clauses.

162

A Resolution Prover

So far: static view on completeness of resolution:

Saturated sets are inconsistent if and only if they contain ⊥.

We will now consider a dynamic view:

How can we get saturated sets in practice?

The theorems 2.34 and 2.35 are the basis for the completeness

proof of our prover RP .

163

Rules for Simplifications and Deletion

We want to employ the following rules for simplification of prover

states N:

• Deletion of tautologies

N ∪ {C ∨ A ∨ ¬A} ⊲ N

• Deletion of subsumed clauses

N ∪ {C ,D} ⊲ N ∪ {C}

if Cσ ⊆ D (C subsumes D).

• Reduction (also called subsumption resolution)

N ∪ {C ∨ L, D ∨ Cσ ∨ Lσ} ⊲ N ∪ {C ∨ L,D ∨ Cσ}

164

Resolution Prover RP

3 clause sets: N(ew) containing new resolvents

P(rocessed) containing simplified resolvents

clauses get into O(ld) once their inferences have been computed

Strategy: Inferences will only be computed when there are no

possibilities for simplification

165

Transition Rules for RP (I)

Tautology elimination

NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP | OOO

if C is a tautology

Forward subsumption

NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP | OOO

if some D ∈ PPP ∪OOO subsumes C

Backward subsumption

NNN ∪ {C} | PPP ∪ {D} | OOO ⊲ NNN ∪ {C} | PPP | OOO

NNN ∪ {C} | PPP | OOO ∪ {D} ⊲ NNN ∪ {C} | PPP | OOO

if C strictly subsumes D

166

Transition Rules for RP (II)

Forward reduction

NNN ∪ {C ∨ L} | PPP | OOO ⊲ NNN ∪ {C} | PPP | OOO

if there exists D ∨ L′ ∈ PPP ∪OOO

such that L = L′σ and Dσ ⊆ C

Backward reduction

NNN | PPP ∪ {C ∨ L} | OOO ⊲ NNN | PPP ∪ {C} | OOO

NNN | PPP | OOO ∪ {C ∨ L} ⊲ NNN | PPP ∪ {C} | OOO

if there exists D ∨ L′ ∈ NNN

such that L = L′σ and Dσ ⊆ C

167

Transition Rules for RP (III)

Clause processing

NNN ∪ {C} | PPP | OOO ⊲ NNN | PPP ∪ {C} | OOO

Inference computation

∅ | PPP ∪ {C} | OOO ⊲ NNN | PPP | OOO ∪ {C},

with NNN = Res≻S (OOO ∪ {C})

168

Soundness and Completeness

Theorem 2.36:

N |= ⊥ ⇔ N | ∅ | ∅
∗
⊲ N′ ∪ {⊥} | |

Proof in

L. Bachmair, H. Ganzinger: Resolution Theorem Proving

appeared in the Handbook of Automated Reasoning, 2001

169

Fairness

Problem:

If N is inconsistent, then N | ∅ | ∅
∗
⊲ N′ ∪ {⊥} | | .

Does this imply that every derivation starting from an inconsistent

set N eventually produces ⊥ ?

No: a clause could be kept in PPP without ever being used for an

inference.

170

Fairness

We need in addition a fairness condition:

If an inference is possible forever (that is, none of its premises is

ever deleted), then it must be computed eventually.

One possible way to guarantee fairness:

Implement PPP as a queue

(there are other techniques to guarantee fairness).

With this additional requirement, we get a stronger result:

If N is inconsistent, then every fair derivation will eventually

produce ⊥.

171

Hyperresolution

There are many variants of resolution.

(We refer to [Bachmair, Ganzinger: Resolution Theorem Proving]

for further reading.)

One well-known example is hyperresolution (Robinson 1965):

Assume that several negative literals are selected in a clause C .

If we perform an inference with C , then one of the selected literals

is eliminated.

Suppose that the remaining selected literals of C are again selected

in the conclusion. Then we must eliminate the remaining selected

literals one by one by further resolution steps.

172

Hyperresolution

Hyperresolution replaces these successive steps by a single inference.

As for Res≻S , the calculus is parameterized by an atom ordering ≻

and a selection function S .

173

Hyperresolution

D1 ∨ B1 . . . Dn ∨ Bn C ∨ ¬A1 ∨ . . . ∨ ¬An

(D1 ∨ . . . ∨ Dn ∨ C)σ

with σ = mgu(A1
.
= B1, . . . ,An

.
= Bn), if

(i) Biσ strictly maximal in Diσ, 1 ≤ i ≤ n;

(ii) nothing is selected in Di ;

(iii) the indicated occurrences of the ¬Ai are exactly the ones

selected by S , or else nothing is selected in the right premise

and n = 1 and ¬A1σ is maximal in Cσ.

Similarly to resolution, hyperresolution has to be complemented by

a factoring inference.

174

Hyperresolution

As we have seen, hyperresolution can be simulated by iterated binary

resolution.

However this yields intermediate clauses which HR might not derive,

and many of them might not be extendable into a full HR inference.

175

2.11 Summary: Resolution Theorem Proving

• Resolution is a machine calculus.

• Subtle interleaving of enumerating ground instances and proving

inconsistency through the use of unification.

• Parameters: atom ordering ≻ and selection function S .

On the non-ground level, ordering constraints can (only) be

solved approximatively.

• Completeness proof by constructing candidate interpretations

from productive clauses C ∨ A, A ≻ C ; inferences with those

reduce counterexamples.

176

Summary: Resolution Theorem Proving

• Local restrictions of inferences via ≻ and S

⇒ fewer proof variants.

• Global restrictions of the search space via elimination of

redundancy

⇒ computing with “smaller” clause sets;

⇒ termination on many decidable fragments.

• However: not good enough for dealing with orderings, equality

and more specific algebraic theories (lattices, abelian groups,

rings, fields)

⇒ further specialization of inference systems required.

177

2.12 Other Inference Systems

Instantiation-based methods for FOL:

• (Analytic) Tableau;

• Resolution-based instance generation;

• Disconnection calculus;

• First-Order DPLL (Model Evolution)

Further (mainly propositional) proof systems:

• Hilbert calculus;

• Sequent calculus;

• Natural deduction.

178

Tableau

• Proof by refutation by analyzing the given formula’s boolean

structure, and by instantiating quantifed sub-formulas

• Hence, no normal form required and no “new” formulas

generated (unlike Resolution)

• “Free variable” variant uses unification and can be used for

first-order logic theorem proving

• Main applications, however, as decision procedures for

– Description logics

– (Propositional) modal logics

179

Constructing Tableau Proofs

Data structure: a proof is represented as a tableau — a binary

tree, the nodes of which are labelled with formulas

Start: put the premises and the negated conclusion into the root of

an otherwise empty tableau

Expansion: apply expansion rules to the formulas on the tree,

thereby adding (instantiated, sub-)formulas and splitting

branches

Closure: close (abandon) branches that are obviously contradictory

Refutation: a tableau expansion such that all branches are closed

180

Propositional Tableau Expansion Rules

(“Smullyan-style”)

φ, φ1, φ2 are propositional formulas

Alpha Rules

φ1 ∧ φ2

φ1

φ2

¬(φ1 ∨ φ2)

¬φ1

¬φ2

¬(φ1 → φ2)

φ1

¬φ2

¬¬-Elimination

¬¬φ

φ

Beta Rules

φ1 ∨ φ2

φ1 | φ2

¬(φ1 ∧ φ2)

¬φ1 | ¬φ2

¬(φ1 → φ2)

¬φ1

φ2

Branch Closure

φ

¬φ

×

181

Example

(5) ¬B

(8) ¬A

(9) ¬(B ∨ C)

(10) ¬B

(11) ¬C

(6) ¬¬C

(7) C

×

✧
✧

✧

❛
❛
❛
❛

(3) ¬(A ∨ (B ∨ C))

(4) ¬(B ∧ ¬C)

(1) ¬(A ∨ (B ∨ C)) ∧ ¬(B ∧ ¬C)

(2) ¬C

(3) and (4) from (1); (5) and (6) from (4); (8) and (9) from (3); (10) and (11) from (9)

182

Smullyan’s Uniform Notation

Formulas are of conjunctive (α) or disjunctive (β) type:

α α1 α2

φ1 ∧ φ2 φ1 φ2

¬(φ1 ∨ φ2) ¬φ1 ¬φ2

¬(φ1 → φ2) φ1 ¬φ2

β β1 β2

φ1 ∨ φ2 φ1 φ2

φ1 → φ2 ¬φ1 φ2

¬(φ1 ∧ φ2) ¬φ1 ¬φ2

The alpha and beta rules can be stated now as follows:

α

α1

α2

β

β1 | β2

183

Important Properties (Informally)

A branch in a tableau is satisfiable iff the conjunction of its formulas is

satisfiable. A tableau is satisfiable iff some of its branches is satisfiable.

A tableau expansion is strict iff every rule is applied at most once to every

formula occurence in every branch.

Termination. Every strict tableau expansion is finite.

Soundness. No tableau expansion starting with a satisfiable set of

formulas is a refutation.

Completeness. A tableau expansion is fair iff every rule aplicable to a

formula occurence in a branch is applied eventually.

Every fair strict tableau expansion starting with an unsatisfiable set

of formulas is a refutation.

Contrapositive: every open branch in a fair strict tableau expansion

provides a model for the clause set in the root.

184

Tableaux for First-Order Logic

Formulas of universal (γ) or existential (δ) type:

γ γ1(u)

∀x φ φ[u/x]

¬∃x φ ¬φ[u/x]

δ δ1(u)

∃x φ φ[u/x]

¬∀x φ ¬φ[u/x]

The gamma and delta rules can be stated now as follows:

γ

γ1(t)

δ

δ1(c)

where

• t is an arbitrary ground term

• c is a constant symbol new to

the branch

N.B: To obtain a complete calculus, the number of γ-rule applications

to the same formula cannot be finitely bounded
185

Instantiation-Based Methods for FOL

Idea:

Overlaps of complementary literals produce instantiations (as in

resolution);

However, contrary to resolution, clauses are not recombined.

Clauses are temporarily grounded – replace every variable by

a constant – and checked for unsatisfiability; use an efficient

propositional proof method, a “SAT-solver” for that.

Main variants: (ordered) semantic hyperlinking [Plaisted et al.],

resolution-based instance generation (Inst-Gen) [Ganzinger and

Korovin]

186

Resolution-Based Instance Generation

D ∨ B C ∨ ¬A

(D ∨ B)σ (C ∨ ¬A)σ
[Inst-Gen]

if σ = mgu(A,B) and at least one conclusion is a proper instance of

its premise.

The instance-generation calculus saturates a given clause set under

Inst-Gen and periodically passes the ground-instantiated version of

the current clause set to a SAT-solver.

A refutation has been found if the SAT-solver determines unsatisfia-

bility.

187

Resolution-Based Instance Generation

Other methods do not use a SAT-solver as a subroutine;

Instead, the same base calculus is used to generate new clause

instances and test for unsatisfiability of grounded data structures.

Main variants: tableau variants, such as the disconnection calculus

[Billon; Letz and Stenz], and a variant of the DPLL procedure for

first-order logic [Baumgartner and Tinelli].

188

Part 3: Implementation Issues

Problem:

Refutational completeness is nice in theory, but . . .

. . . it guarantees only that proofs will be found eventually,

not that they will be found quickly.

Even though orderings and selection functions reduce the number

of possible inferences, the search space problem is enormous.

First-order provers “look for a needle in a haystack”:

It may be necessary to make some millions of inferences to find a

proof that is only a few dozens of steps long.

189

Coping with Large Sets of Formulas

Consequently:

• We must deal with large sets of formulas.

• We must use efficient techniques to find formulas that can be

used as partners in an inference.

• We must simplify/eliminate as many formulas as possible.

• We must use efficient techniques to check whether a formula

can be simplified/eliminated.

190

Coping with Large Sets of Formulas

Note:

Often there are several competing implementation techniques.

Design decisions are not independent of each other.

Design decisions are not independent of the particular class of

problems we want to solve.

(FOL without equality/FOL with equality/unit equations,

size of the signature,

special algebraic properties like AC, etc.)

191

3.1 The Main Loop

Standard approach:

Select one clause (“Given clause”).

Find many partner clauses that can be used in inferences together

with the “given clause” using an appropriate index data structure.

Compute the conclusions of these inferences; add them to the set

of clauses.

192

The Main Loop

Consequently: split the set of clauses into two subsets.

• W = “Worked-off” (or “active”) clauses:

Have already been selected as “given clause”.

(So all inferences between these clauses have already been

computed.)

• U = “Usable” (or “passive”) clauses:

Have not yet been selected as “given clause”.

193

The Main Loop

During each iteration of the main loop:

Select a new given clause C from U;

U := U \ {C}.

Find partner clauses Di from W ;

New = Infer({Di | i ∈ I },C);

U = U ∪ New ;

W = W ∪ {C}

194

The Main Loop

Additionally:

Try to simplify C using W .

(Skip the remainder of the iteration, if C can be eliminated.)

Try to simplify (or even eliminate) clauses from W using C .

195

The Main Loop

Design decision: should one also simplify U using W ?

yes ❀ “Otter loop”:

Advantage: simplifications of U may be useful to derive the empty

clause.

no ❀ “Discount loop”:

Advantage: clauses in U are really passive;

only clauses in W have to be kept in index data structure.

(Hence: can use index data structure for which retrieval is faster,

even if update is slower and space consumption is higher.)

196

3.2 Term Representations

The obvious data structure for terms: Trees

f (g(x1), f (g(x1), x2))

f

g f

x1 g x2

x1

optionally: (full) sharing

197

Term Representations

An alternative: Flatterms

f (g(x1), f (g(x1), x2))

f g x1 f g x1 x2

need more memory;

but: better suited for preorder term traversal

and easier memory management.

198

3.3 Index Data Structures

Problem:

For a term t, we want to find all terms s such that

• s is an instance of t,

• s is a generalization of t (i. e., t is an instance of s),

• s and t are unifiable,

• s is a generalization of some subterm of t,

• . . .

199

Index Data Structures

Requirements:

fast insertion,

fast deletion,

fast retrieval,

small memory consumption.

Note: In applications like functional or logic programming, the

requirements are different (insertion and deletion are much less

important).

200

Index Data Structures

Many different approaches:

• Path indexing

• Discrimination trees

• Substitution trees

• Context trees

• Feature vector indexing

• . . .

201

Index Data Structures

Perfect filtering:

The indexing technique returns exactly those terms satisfying the

query.

Imperfect filtering:

The indexing technique returns some superset of the set of all

terms satisfying the query.

Retrieval operations must be followed by an additional check,

but the index can often be implemented more efficiently.

Frequently: All occurrences of variables are treated as different

variables.

202

Path Indexing

Path indexing:

Paths of terms are encoded in a trie (“retrieval tree”).

A star ∗ represents arbitrary variables.

Example: Paths of f (g(∗, b), ∗): f .1.g .1.∗

f .1.g .2.b

f .2.∗

Each leaf of the trie contains the set of (pointers to) all terms

that contain the respective path.

203

Path Indexing

Example: Path index for {f (g(d , ∗), c)}

{1}

{1} {1}

f
1 2

g
c

1 2

d ∗

204

Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗)}

{1}
{2}

{2} {1} {2} {1}

f
1 2

g
c

∗

1 2

∗ d b ∗

205

Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗), f (g(d , b), c)}

{1, 3}
{2}

{2} {1, 3} {2, 3} {1}

f
1 2

g
c

∗

1 2

∗ d b ∗

206

Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗), f (g(d , b), c),

f (g(∗, c), b)}

{4}
{1, 3}

{2}

{2, 4} {1, 3} {2, 3} {4} {1}

f
1 2

g b
c

∗

1 2

∗ d b
c

∗

207

Path Indexing

Example: Path index for {f (g(d , ∗), c), f (g(∗, b), ∗), f (g(d , b), c),

f (g(∗, c), b), f (∗, ∗)}

{5} {4}
{1, 3}

{2, 5}

{2, 4} {1, 3} {2, 3} {4} {1}

f
1 2

∗ g b
c

∗

1 2

∗ d b
c

∗

208

Path Indexing

Advantages:

Uses little space.

No backtracking for retrieval.

Efficient insertion and deletion.

Good for finding instances.

Disadvantages:

Retrieval requires combining intermediate results for subterms.

209

Discrimination Trees

Discrimination trees:

Preorder traversals of terms are encoded in a trie.

A star ∗ represents arbitrary variables.

Example: String of f (g(∗, b), ∗): f .g .∗.b.∗

Each leaf of the trie contains (a pointer to) the term that is

represented by the path.

210

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c)}

{1}

f
g

d

∗

c

211

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗)}

{1} {2}

f
g

d ∗

∗ b

c ∗

212

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c)}

{3} {1} {2}

f
g

d ∗

b ∗ b

c c ∗

213

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c), f (g(∗, c), b)}

{3} {1} {2} {4}

f
g

d ∗

b ∗ b c

c c ∗ b

214

Discrimination Trees

Example: Discrimination tree for {f (g(d , ∗), c), f (g(∗, b), ∗),

f (g(d , b), c), f (g(∗, c), b), f (∗, ∗)}

{5}

{3} {1} {2} {4}

f
g ∗

d ∗
∗

b ∗ b c

c c ∗ b

215

Discrimination Trees

Advantages:

Each leaf yields one term, hence retrieval does not require

intersections of intermediate results for subterms.

Good for finding generalizations.

Disadvantages:

Uses more storage than path indexing (due to less sharing).

Uses still more storage, if jump lists are maintained to speed up

the search for instances or unifiable terms.

Backtracking required for retrieval.

216

Literature

Melvin Fitting: First-Order Logic and Automated Theorem Proving,

Springer, 1996.

Leo Bachmair, and Harald Ganzinger: Resolution Theorem Proving,

Ch. 2 in Robinson and Voronkov (eds.), Handbook of Automated

Reasoning, Vol. I, Elsevier, 2001.

Preprint: http://www.mpi-inf.mpg.de/~hg/papers/reports/

MPI-I-97-2-005.ps.gz

The Wikipedia article on “Automated theorem proving”:

http://en.wikipedia.org/wiki/Automated theorem proving

217

Further Reading

R. Sekar, I. V. Ramakrishnan, and Andrei Voronkov: Term Indexing,

Ch. 26 in Robinson and Voronkov (eds.), Handbook of Automated

Reasoning, Vol. II, Elsevier, 2001.

Christoph Weidenbach: Combining Superposition, Sorts and

Splitting,

Ch. 27 in Robinson and Voronkov (eds.), Handbook of Automated

Reasoning, Vol. II, Elsevier, 2001.

218

The End

219

