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Automated Reasoning in First-Order Logic

. . . First-Order Logic
Can express (mathematical) structures, e.g. groups

∀x 1 · x = x ∀x x · 1 = x (N)

∀x x−1 · x = 1 ∀x x · x−1 = 1 (I)

∀x , y , z (x · y) · z = x · (y · z) (A)

. . . Reasoning . . .

I Object level: It follows ∀x (x · x) = 1→ ∀x , y x · y = y · x
I Meta-level: the word problem for groups is decidable

Automated . . .
Computer program to provide the above conclusions automatically
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Application: Compiler Validation

Problem: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers; index 0 = initial
values)

From y1 = 1 ∧ z0 = x0 ∗ x0 ∗ x0 ∧ y3 = x0 ∗ x0 + y1

and y ′1 = 1 ∧ R12 = x ′0 ∗ x ′0 ∧ R23 = R12 ∗ x ′0 ∧ z ′0 = R23

∧ y ′5 = R12 + 1 ∧ x0 = x ′0 ∧ y0 = y ′0 ∧ z0 = z ′0

it follows y3 = y ′5
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Issues

I Previous slides gave motivation: logical analysis of systems

System can be “anything that makes sense” and can be described using logic
(group theory, computer programs, . . .)

I First-order logic is expressive but not too expressive, i.e., admits complete
reasoning procedures

I So, reasoning with it can be automated on computer. BUT
I How to do it in the first place: suitable calculi?
I How to do it efficiently: search space control?
I How to do it optimally: reasoning support for specific theories like equality and

arithmetic?

I The lecture will touch on some of these issues and explain basic approaches
to their solution
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More on “Reasoning”
Example

A1: Socrates is a human

A2: All humans are mortal
Translation into first-order logic:

A1: human(socrates)

A2: ∀X (human(X )→ mortal(X ))
Which of the following statements hold true?

1. {A1, A2} |= mortal(socrates)

2. {A1, A2} |= mortal(apollo)

3. {A1, A2} 6|= mortal(socrates)

4. {A1, A2} 6|= mortal(apollo)

5. {A1, A2} |= ¬mortal(socrates)

6. {A1, A2} |= ¬mortal(apollo)

Non-trivial issues: what do these statements mean exactly? How to design a
theorem prover that can correctly answer all/some such questions?
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Contents

I Some history

I Propositional logic: syntax, semantics, some important results, automated
reasoning (“Resolution”) – all in view of reusability for first-order logic.

I First-order logic: syntax, semantics, automated reasoning (“Resolution”)

I A specific Resolution method – SLD-Resolution – for logic programming
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History I

I Aristotle’s: ”‘Syllogisms”’.

I Peano/Boole/Frege, end of 19. century: formal notation (propositional logic,
predicate logic).
”‘Mathematical Logic”’: a mathematical theory (like differential calculus,
say), which aims to analyze the structure of mathematics itself. Example:
paradoxes in set theory and their rectification.

I Gödel 1930: Complete calculus for first-order logic.

I Beginning of 19th century: Whitehead/Russel: ”‘Principia Mathematica”’ -
Attempt to completely formalize and prove mathematics.

I Gödel 1931: ”‘Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme”’. Verdict: this plan cannot be achieved.

Peter Baumgartner (NICTA and ANU) Automated Reasoning in First-Order Logic 7/11/2011 7 / 88



History II

I Herbrand 1930, Davis/Putnam/Logeman/Loveland 1962: Mechanical
procedures for theorem proving in first-order logic (”‘British Museum
Procedures”’).

I Robinson 1965: ”‘A Machine Oriented Logic Based on the Resolution
Principle”’.

I 1990s: refined theory of Resolution - used today.
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Propositional Logic

Propositional logic (PL) is concerned with statements about truth values of
propositions on account of their form.

Definition 1 (Syntax of Propositional Logic)
Given

I a denumerable set of atomic formulas Pi (also: “propositional variables”,
“atoms”), where i = 1, 2, 3 . . ., and

I the connectives ∧, ∨ and ¬, and

I the symbols ( and ).

The propositional formulas (PF) are defined inductively as follows:

1. Pi ∈ PF , where i = 1, 2, 3 . . ..

2. If F ∈ PF and G ∈ PF , then (F ∧ G ) ∈ PF , (F ∨ G ) ∈ PF and
¬F ∈ PF .

In the following just “formula” instead of “propositional formula”.
A subformula of a formula F is a substring of F that is again a formula.
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Abbreviations and Conventions
We use the following abbreviations, where Fi ∈ PF :

Abbreviation Expansion

A, B, C , . . . P1, P2, P3, . . .

(F1 → F2) (¬F1 ∨ F2)

(F2 ← F1) (¬F1 ∨ F2)

(F1 ↔ F2) ((F1 ∧ F2) ∨ (¬F1 ∧ ¬F2))∨n
i=1 Fi (· · · ((F1 ∨ F2) ∨ F3) ∨ · · · ∨ Fn)∧n
i=1 Fi (· · · ((F1 ∧ F2) ∧ F3) ∧ · · · ∧ Fn)

The symbols →,← and ↔ are also called connectives.
We use the following precedences (in increasing binding power):

↔ →
← ∧ ∨ ¬

A formula of the form (F ∧ G ) is called a conjunction, (F ∨ G ) a disjunction, and
¬F a negation. Parenthesis can be left away if the formula can be reconstructed
modulo associativity of ∧ and ∨.
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Semantics of Propositional Logic

The set of truth values is {T,F}.

Definition 2 (Assignment)
An assignment for a set D of atomic formulas is a function AD that maps each
A ∈ D to a truth value, i.e. AD(A) ∈ {T,F} for every A ∈ D.

Definition 3 (Suitable Assignment)
Let F be a formula. An assignment A is called suitable for F iff A is defined for
all atomic subformulas in F .
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Definition 4 (Extensionality principle)
Let H be a formula and A a suitable assignment for H. The extension of A to H
is the function B that assigns a truth value to H, recursively defined according to
the form of H, as follows:

1. B(H) = A(H) if H is an atom

2. B(F ∧ G ) =

{
T if B(F ) = T and B(G ) = T

F otherwise

3. B(F ∨ G ) =

{
T if B(F ) = T or B(G ) = T

F otherwise

4. B(¬F ) =

{
T if B(F ) = F

F otherwise

Notation: Instead of AD and B just A. That is, A is identified with its extension
to formulas.
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Inductive definitions (like Definition 1) enable inductive proofs:

Remark 5 (Induction on the structure of formulas)
To prove that a property P holds for every formula F it suffices to show the
following:

Induction start: P holds for every atomic formula A.

Induction step: Assume P holds for arbitrary formulas F and G (induction
hypothesis).
Show that P holds for ¬F , F ∧ G and F ∨ G as well.

Example application:

Lemma 6
Let A and A′ be suitable assignments for a formula H such that A(A) = A′(A)
for all atomic subformulas of H.
Then, A(H) = A′(H).
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Some Important Definitions

We say that an assignment A is suitable for a set M of formulas iff A is suitable
for every F ∈ M.

The following notions are all defined to be equivalent:

I A is suitable for F and A(F ) = T.

I A |= F .

I A is a model of F .

I F is valid under A.

Note that these definitions apply only to suitable assignments.

The notation A 6|= F means “not A |= F ”.

For example, if D = {B} and, say, AD(B) = T then AD 6|= A ∨ ¬A just because
AD is not suitable for A ∨ ¬A.
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Satisfiability and Validity

A formula F is called

I satisfiable if F has at least one model

I unsatisfiable if F has no model

I valid (tautological, tautology) iff every suitable assignment is a model of F .
Notation: |= F for “F is tautology”. 6|= F for “F is not tautology”.

Let M be a set of formulas. M is called satisfiable iff there is an assignment A
such that for all F ∈ M it holds A |= F . If this is the case we write A |= M.

Similarly: validity, unsatisfiability.

Proposition 7 (“≈ Proof by contradiction”)
A formula F is a tautology iff ¬F is unsatisfiable.
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Definition 8 (Logical Consequence)
Let M be a set of formulas and G a formula.
G is a logical consequence of M, written as M |= G , iff

for every suitable assignment A for M and G : if A |= M then A |= G .

For a formula F define F |= G as {F} |= G .

Proposition 9

1. The following are equivalent:

1.1 G is a logical consequence of F .
1.2 (F → G ) is a tautology.
1.3 (F ∧ ¬G ) is unsatisfiable.

2. The following are equivalent:

2.1 G is a logical consequence of M.
2.2 M ∪ {¬G} is unsatisfiable.
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Equivalence and Normal Forms

Most theorem provers assume that the input formulas have been transformed into
a normal form, one that facilities the design of the core inference rules.

The most important normal form is “clause normal form”, or “conjunctive normal
form”, introduced in the following. Clause normal form is obtained by rewriting as
long as possible a formula into an equivalent one based on certain logical
equivalences.

Definition 10 (Logical Equivalence)
Two formulas F and G are equivalent, written as F ≡ G , iff

for all suitable assignments for F and G it holds A(F ) = A(G ).
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Proposition 11 (Substitution Theorem)
Assume F ≡ G . If H is a formula with at least one occurrence of F as a
subformula then H ≡ H ′, where H ′ is obtained from H by replacing some
occurrence of F in H by G .

Proof.
(Sketch) By induction on the formula structure. For the induction start, if H is an
atom A and A = F then H ′ = G , and H ≡ H ′ follows from F ≡ G . The proof of
the induction step is similar to the proof of Lemma 6.

The relevance of Proposition 11 is given by the following equivalences, which
justifies to replace subformulas by equivalent ones.
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Proposition 12
All of the following hold:

(F ∧ F ) ≡ F (Idempotency)

(F ∨ F ) ≡ F

(F ∧ G ) ≡ (G ∧ F ) (Commutativity)

(F ∨ G ) ≡ (G ∨ F )

((F ∧ G ) ∧ H) ≡ (F ∧ (G ∧ H)) (Associativity)

((F ∨ G ) ∨ H) ≡ (F ∨ (G ∨ H))

(F ∧ (F ∨ G )) ≡ F (Absorption)

(F ∨ (F ∧ G )) ≡ F

(F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H)) (Distributivity)

(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H))
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(Proposition 12 continued)

¬¬F ≡ F (Double Negation)

¬(F ∧ G ) ≡ (¬F ∨ ¬G ) (deMorgan)

¬(F ∨ G ) ≡ (¬F ∧ ¬G )

(F ∨ G ) ≡ F , if F is a tautology (Tautologies)

(F ∧ G ) ≡ G , if F is a tautology

(F ∨ G ) ≡ G , if F is unsatisfiable (Unsatisfiability)

(F ∧ G ) ≡ F , if F is unsatisfiable

Proof.
(Sketch) Use truth tables.
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Example

Proof of the equivalence

((A ∨ (B ∨ C )) ∧ (C ∨ ¬A)) ≡ ((B ∧ ¬A) ∨ C )

((A ∨ (B ∨ C )) ∧ (C ∨ ¬A))

≡ (((A ∨ B) ∨ C ) ∧ (C ∨ ¬A)) (Associativity and ST)

≡ ((C ∨ (A ∨ B)) ∧ (C ∨ ¬A)) (Commutativity and ST)

≡ (C ∨ ((A ∨ B) ∧ ¬A)) (Distributivity and ST)

≡ (C ∨ (¬A ∧ (A ∨ B))) (Commutativity and ST)

≡ (C ∨ ((¬A ∧ A) ∨ (¬A ∧ B))) (Distributivity and ST)

≡ (C ∨ (¬A ∧ B)) (Unsatisfiability and ST)

≡ (C ∨ (B ∧ ¬A)) (Commutativity and ST)

≡ ((B ∧ ¬A) ∨ C ) (Commutativity and ST)
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Application

Proposition 13
For every formula F there is an equivalent formula that contains the connectives
∨ and ¬ only.

Proof.
Starting with F , repeat as long as possible removing conjunctive subformulas by
using the equivalence (F ∧ G ) ≡ ¬(¬F ∨ ¬G ).
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Conjunctive and Disjunctive Normal Form

Definition 14 (Literal, Normal Forms)
A literal is an atom or the negation of an atom. In the first case the literal is
positive, in the second case it is negative.
Literals are usually denoted by the letters K and L in the following.

A formula F is in conjunctive normal form (CNF) iff it is a conjunction of
disjunction of literals:

F = (
n∧

i=1

(

mi∨
j=1

Li,j))

A formula F is in disjunctive normal form (DNF) iff it is a disjunction of
conjunction of literals:

F = (
n∨

i=1

(

mi∧
j=1

Li,j))
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Theorem 15
For every formula there is an equivalent one in CNF and an equivalent one in DNF.

Proof.
Sketch, for the CNF part: starting with the given formula, using Proposition 12,
apply the following equivalences from left to right, in the given order, as long as
possible:

¬¬G ≡ G (1)

¬(G ∧ H) ≡ (¬G ∨ ¬H) (2)

¬(G ∨ H) ≡ (¬G ∧ ¬H) (3)

(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H)) (4)

((G ∧ H) ∨ F ) ≡ ((F ∨ G ) ∧ (F ∨ H)) (5)

It remains to show:

1. The above procedure always terminates.

2. The resulting formula is in CNF.
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Clause Logic

Let F = (
∧n

i=1 (
∨mi

j=1 Li,j)) be a formula in CNF. The formula F can also be
written as

(¬A1,1 ∨ · · · ∨ ¬A1,k1 ∨ A1,k1+1 ∨ · · · ∨ A1,m1)F =

∧ ( · · · )
...

...

∧ (¬An,1 ∨ · · · ∨ ¬An,kn ∨ An,kn+1 ∨ · · · ∨ An,mn) ,

or, equivalently, as

(A1,1 ∧ · · · ∧ A1,k1 → A1,k1+1 ∨ · · · ∨ A1,m1)F =

∧ ( · · · )
...

...

∧ (An,1 ∧ · · · ∧ An,kn → An,kn+1 ∨ · · · ∨ An,mn)

Relevancy: Many problems naturally come as if-then rules, i.e., following the
second pattern.
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The Resolution method (see below) uses a set representation of formulas in CNF,
as follows:

{ {¬A1,1, . . . ,¬A1,k1 ,A1,k1+1, . . . ,A1,m1},MF =
...

{¬An,1, . . . ,¬An,kn ,An,kn+1, . . . ,An,mn}︸ ︷︷ ︸
Clause

Definition 16 (Clause, Clause Set)
A clause is a set of literals. The empty clause is written as . A clause set is a set
of clauses.

Any clause set corresponds in an obvious way to a formula in CNF and to a
(different) formula in DNF, and vice versa. We sometimes also write clauses as
disjunctions, e.g., A ∨ ¬B ∨ C instead of {A,¬B,C}.
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More Notation

A clause
{¬A1 ∨ · · · ∨ ¬Ak ∨ Ak+1 ∨ · · · ∨ Am}

is also written as
A1, . . . ,Ak → Ak+1, . . . ,Am

The atoms A1, . . . ,Ak are also called the body (of the clause) and the atoms
Ak+1, . . . ,Am are also called the head (of the clause).
Special cases:

m = 0 : A1, . . . ,Ak → (Negative clause)

k = 0 : → A1, . . . ,Am (Positive clause)
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Semantic Trees
(Robinson 1968, Kowalski and Hayes 1969.)

Semantic trees are a convenient device to represent assignments (for possibly
infinitely many) atoms.

Applications

I To prove the completeness of the propositional Resolution calculus.

I Characterizes a specific, refined Resolution calculus.

I To prove the compactness theorem of propositional logic.
Application: completeness proof of first-order logic Resolution.
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Definition 17 (Tree)
A tree

I is an acyclic, connected, directed graph, where

I every node has at most one incoming edge.

A rooted tree has a dedicated node, called root that has no incoming edge.

A tree is finite iff it has finitely many vertices (and edges) only.

In a finitely branching tree every node has only finitely many edges.

A binary tree every node has at most two outgoing edges. It is complete iff every
node has either no or two outgoing edges.
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A path P in a rooted tree is a possibly infinite sequence of nodes
P = (N0,N1, . . .), where N0 is the root, and Ni is a direct successor of Ni−1, for
all i = 1, . . . , n.

A path to a node N is a finite path of the form (N0,N1, . . . ,Nn) such that
N = Nn; the value n is the length of the path.
The node Nn−1 is called the immediate predecessor of N
Every node N0,N1, . . . ,Nn−1 is called a predecessor of N.

A (node-)labelled tree is a tree together with a labelling function λ that maps
each node to an element in a given set.
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Let L be a literal. The complement of L is the literal

L :=

{
¬A if L is the atom A

A if L is the negated atom ¬A.

Definition 18 (Semantic Tree)
A semantic tree B (for a set of atoms D) is a labelled, complete, rooted, binary
tree such that

1. the root is labelled by the Symbol >,

2. for every inner node N, one successor of N is labeled with the literal A, and
the other successor is labeled with the literal ¬A, for some A ∈ D, and

3. for every node N, there is no literal L such that L ∈ I(N) and L ∈ I(N),
where

I(N) = {λ(Ni ) | N0,N1, . . . , (Nn = N) is a path to N

and 1 ≤ i ≤ n} .
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Remark 19 (Semantics of >)
Convention: the symbol > is identified with T.

Definition 20 (Atom Set)
For a clause set M let the atom set (of M) be the set of atoms occurring in
clauses in M. A semantic tree for M is a semantic tree for the atom set M.

Definition 21 (Complete Semantic Tree)
A semantic tree for D is complete iff for every leaf N it holds that

A ∈ I(N) or ¬A ∈ I(N), for all A ∈ D.
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Interpretation Induced by a Semantic Tree

1. Every node N in a semantic tree for D induces an assignment AN for some
D ′ ⊆ D as follows:

AN(A) =

{
T if A ∈ I(N)

F if ¬A ∈ I(N)

2. If the atom set of M is finite, in every complete semantic tree and each of its
leafs N the assignment AN is suitable for M.

3. If the atom set of M is infinite, every complete semantic tree for M is infinite
(even more: does not have any leafs).

4. A complete semantic tree can be seen as an enumeration of all possible
assignments for M (it holds AN 6= AN′ whenever N 6= N ′).
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If a clause set M is unsatisfiable then every assignment A falsifies some clause in
M (by definition), i.e., A 6|= C for some C ∈ M. This motivates the following
definition:

Definition 22 (Failure Node)
A node N in a semantic tree for M is a failure node, if

1. there is a clause C ∈ M such that AN is suitable for C and AN 6|= C, and

2. for every predecessor N ′ of N it holds:

there is no clause C ∈ M such that AN′ is suitable for C
and AN′ 6|= C.

Definition 23 (Open, Closed)
A path P in a semantic tree for M is closed iff P contains failure node, otherwise
it is P open.
A semantic tree B for M is closed iff every path is closed, otherwise B is open.

Every closed semantic tree can be turned into a finite closed one by removing all
subtrees below all failure nodes.
The construction of (closed or open) finite semantic trees is the core of the
propositional DPLL procedure.
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Compactness

Lemma 24
A clause set M is unsatisfiable iff there is a closed semantic tree for M.

Proof.
See whiteboard.

Theorem 25 (Compactness)
A clause set M is unsatisfiable iff some finite subset of M is unsatisfiable.

Proof.
The if-direction is trivial. For the only-if direction, Lemma 24 gives us a finite
unsatisfiable subset of M as identified by the finitely many failure nodes in the
semantic tree.

Theorem 25 gives a hint how to reduce proof search in first-order logic to
propositional logic, see below for details.

Peter Baumgartner (NICTA and ANU) Automated Reasoning in First-Order Logic 7/11/2011 35 / 88



The Resolution Calculus

The Resolution calculus (short: Resolution) (Robinson, 1965) is a calculus for
first-order logic. Refined versions are the most widely used calculi that are
implemented in contemporary automated theorem provers for first-order logic.
We discuss the version for propositional logic first.

Calculus
A calculus consists of, roughly,

I a decidable set of formulas, called axioms,

I a collection of transformation rules between formulas, called inference rules,

I a notion of derivation that prescribes how inference rules, axioms and another
given formula (hypothesis) are to be combined, and

I a notion of proof that singles out certain derivations.
“Proofs” then give rise to soundness and completeness theorems.
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In the case of Resolution:

I Axioms: None

I Inference rules: the Resolution inference rule combines two clauses into a new
clause. (The first-order version requires an additional “factoring” rule.)

I Derivation: a sequence of clauses, starting with the hypothesis clauses, called
a Resolution derivation.

I Proof: a Resolution derivation that contains the empty clause , also called
a (Resolution) refutation

Refutations thus have the following form:

C1, . . . , Ck︸ ︷︷ ︸
Hypothesis

clauses

, Ck+1, . . . , (Cn = )︸ ︷︷ ︸
Derived

clauses
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Common problem statement:

Given: (i) T = {Ax1, . . . ,Axn} a finite set of formulas, and

(ii) A formula F .

Question: does T |= F hold ? (is F a consequence of T ?)

How to show that with Resolution:

T |= F (1)

iff T ∪ {¬F} is unsatisfiable (Proposition 9-2) (2)

iff the clausal form of Ax1 ∧ · · · ∧ Axn ∧ ¬F is unsatisfiable (Theorem 15) (3)

iff there is a Resolution refutation of (Ax1, . . . ,Axn,¬F ) (4)

The transition from (3) to (4) is given by the completeness theorem, and the
transition from (4) to (3) is given by the soundness theorem of Resolution.
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Definition 26 (Resolution Inference Rule)
Let C1 and C2 be clauses. A clause C is called a (binary) resolvent of C1 and C2 iff

1. there is a literal L with L ∈ C1 and L ∈ C2, and

2. C = (C1 \ {L}) ∪ (C2 \ {L})

Resolution inference rule schematically:

C1 C2
(C1 \ {L}) ∪ (C2 \ {L})

An inference is an instance of an inference rule. The upper clauses are called the
premises of the inference rule or inference, and the lower clause the conclusion.
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Soundness of Resolution

The following lemma is essential in proving the soundness of the Resolution
calculus.

Lemma 27
Let M be a clause set and C a resolvent of of C1 ∈ M and C2 ∈ M. Then
M ≡ M ∪ {C}.

Theorem 28 (Soundness)
The resolution calculus is refutationally sound. That is, if there is a Resolution
refutation starting with the hypothesis clauses C1, . . . , Ck , then {C1, . . . , Ck} is
unsatisfiable.

Proof.
By contradiction. Assume a refutation C1, . . . , Ck , Ck+1, . . . , (Cn = ) and that
M := {C1, . . . , Ck} is satisfiable. Let I be a model of M. By applying Lemma 27
n − (k + 1) times conclude I |= . However, no interpretation can satisfy the
empty clause, a plain contradiction.
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Finding Resolution Refutations
It is unpractical to enumerate derivations until a refutation comes up. It is better
to close the given set of hypothesis M under (all possible) Resolution inferences
and extract a refutation afterwards if is among the derived clauses More
precisely:

Definition 29 (Resolution Closure)
Let M be a clause set. Define

1. Res(M) = M ∪ {C | C is a resolvent of two clauses in M}
2. Res0(M) = M

Resn+1(M) = Res(Resn(M)) , for all n ≥ 0.

3. Res?(M) =
⋃

n≥0 Res
n(M)

Theorem 30 (Completeness, Closure Version)
The resolution calculus is refutationally complete. That is, if M = {C1, . . . , Ck} is
unsatisfiable then ∈ Res?(M).

Proof.
Use semantic trees, see whiteboard.
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Propositional Logic – Final Remarks

The above Resolution calculus is very basic and can be improved considerably.
There are two important classes of improvements:

Inference rule restrictions
That is, forbid certain Resolution inferences (that are not needed to get a
complete calculus).

Example: the completeness proof based on semantic trees justifies certain
“ordering restrictions”.

Clause Deletion
E.g., subsumption deletion, the most important deletion rule: remove a clause C
from M if there is a clause C′ ∈ M such that C′ ⊂ C.

That subsumption deletion preserves completeness can also be justified by the
semantic tree completeness proof.
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First-Order Logic

First-order logic (FOL), or predicate logic, is an extension of propositional logic by
language elements for formulating that certain relations hold between all or some
objects of a domain.

Plan of Attack

1. Syntax and Semantics

2. Normal forms

3. Herbrand theory

4. First-Order Resolution
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First-Order Logic (FOL)

“The function f is continuous”, expressed in FOL:

∀ε(0 < ε =⇒ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ =⇒ |f (x)− f (a)| < ε)))

Underlying Language

Variables ε, a, δ, x

Function symbols 0, | |, − , f ( )

Predicate symbols < , =

Boolean connectives ∧, ∨, =⇒ , ¬
Quantifiers ∀, ∃
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First-Order Logic

“The function f is continuous”, expressed in FOL:

∀ε(0 < ε =⇒ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ =⇒ |f (x)− f (a)| < ε)))

Meaning of language elements (informally)
A structure is a pair A = (UA, IA) where UA is a denumerable set (“universe”)
and IA provides the meaning of function and predicate symbols:

Variables 7→ elements from UA (“valuation”)

Function symbols 7→ (total) function Un
A 7→ UA

Predicate symbols 7→ relation ⊆ Un
A

Boolean connectives 7→ the usual boolean functions

Quantifiers 7→ “for all ... holds”, “there is a ..., such that”
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Syntax

We need denumerable sets of variables, predicate symbols and function symbols.
Let i = 1, 2, 3, . . . and k = 0, 1, 2, . . . (i numbers these symbols, k is the arity):

I A variable has the form xi .

I A predicate symbol has the form Pk
i

I A function symbol has the form f k
i

A 0-ary function symbol is also called a constant.

Notational conventions:
u, v ,w , x , y , z for variables

a, b, c for constants

f , g , h for function symbols

P,Q,R for predicate symbols
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Terms

The set of terms is defined inductively as follows:

1. Every variable is a term.

2. If f is a k-ary function symbol and t1, . . . , tk are terms then f (t1, . . . , tk) is a
term (a function term).

Notation: c instead of c(), where c is a constant.

We take the liberty to write function terms in infix notation for better readability.
For example, f (x)− f (a) instead of −(f (x), f (a)).
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Formulas
The set FOF of first-order logic formulas is defined inductively as follows:

1. If P is a k-ary predicate symbol and t1, . . . , tk are terms then
P(t1, . . . , tk) ∈ FOF (called atomic formula or atom).

2. If F ∈ FOF and G ∈ FOF then (F ∧ G ) ∈ FOF and (F ∨ G ) ∈ FOF.

3. If F ∈ FOF then ¬F ∈ FOF.

4. If F ∈ FOF and x is a variable then
I ∀x F ∈ FOF (universally quantified formula), and
I ∃x F ∈ FOF (existentially quantified formula).

The symbols ∀ and ∃ are called universal quantifier and existential
quantifier , respectively.

Conventions
The following notions carry over from propositional logic in the expected way:

I The connectives → , ← , ↔ .

I The precedences of the connectives. The quantifiers ∀ and ∃ have highest
precedence.

I The definition of subformula.
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Free and Bound Variables

Definition 31 (Free and Bound Variables, Sentence)
An occurrence of a variable x in a formula F is called bound if that occurrence is
within a subformula of F of the form ∃x G or ∀x G . Otherwise that occurrence is
called free.
The formula G is called the scope of ∃x or ∀x
A formula without occurrences of free variables is called closed, or a sentence.

Example

∀

scope︷ ︸︸ ︷
y (∀

scope︷ ︸︸ ︷
x P(x) → Q(x , y))

The occurrence of y is bound, as is the first occurrence of x . The second
occurrence of x is a free occurrence.
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Semantics

Definition 32 (Structure)
A structure is a pair A = (UA, IA), where

1. UA is a non-empty set, called domain or universe), and

2. IA is a function (interpretation function) that maps
I every k-ary predicate symbol P in its domain to a k-ary relation over UA,

that is, IA(P) ⊆ Uk
A,

I every k-ary function symbol in its domain f to a k-ary function over UA
to UA
that is, IA(f ) : Uk

A 7→ UA, and
I every variable x in its domain to an element from UA, that is,

IA(x) ∈ UA.

Notation:
We write PA instead of IA(P), f A instead of IA(f ), and xA instead of IA(x).
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Notice that IA is allowed to be a partial function. This gives rise to the following
definition, in analogy to Definition 3 for PL:

Definition 33 (Suitable Structure)
Let A be a structure and F a formula. We say that A is suitable for F iff IA is
defined on every predicate symbol, function symbol and every variable that occurs
free in F , and analogously for sets of formulas.

Remarks

I We have fixed a priori one set of predicate symbols and one set of function
symbols. Hence we deal with “the” first-order logic. It is also customary to
parametrize the logic wrt a signature, i.e., sets of predicate symbols and
function symbols.

I It is also customary to separate IA into two components, corresponding to
the interpretations functions for predicate symbols and function symbols on
the one hand, and the interpretation function of free variables on the other
hand, called a valuation.

None of the above makes an essential difference.
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Example

Let F = ∀x P(x , f (x)) ∧ Q(g(a, z)).

A suitable structure A for F is:

UA = {0, 1, 2, . . .}
PA = {(m, n) | m, n ∈ UA and m < n}
QA = {n ∈ UA | n is a prime number}
f A = the successor function on UA, i.e., f A(n) = n + 1

gA = the addition function on UA, i.e. gA(m, n) = m + n

aA = 2

zA = 3

Example of a different universe (“Herbrand universe”):

UA = {a, f (a), g(a, a), f (g(a, a)), g(f (a), a), . . .}
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Evaluation of Terms and Formulas
Definition 34 (Evaluation of Terms)
Let t be a term and A a suitable structure for t. The value of t in A, A(t), is
defined recursively as follows:

1. If t is a variable x then A(x) = xA.

2. If t has the form f (t1, . . . , tk), where f is a k-ary function symbol and
t1, . . . , tk are terms, then

A(f (t1, . . . , tk)) = f A(A(t1), . . . ,A(tk))

In order to define the evaluation of quantified formulas we need an “update”
operation on variable valuations:

Definition 35 (Update)
For any structure A, A[x/d ] is the structure that is the same as except for the
value of x in A, which is d . More formally,

A[x/d ](y) =

{
d if y = x

A(x) otherwise
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Definition 36 (Evaluation of Formulas)
Let H be a formula and A a suitable structure for H. The value of H in A, A(F ),
is defined recursively as follows:

1. If H is of the form P(t1, . . . , tk), where P is a k-ary predicate symbol and
t1, . . . , tk are terms,

A(P(t1, . . . , tk)) =

{
T if (A(t1), . . . ,A(tk)) ∈ PA

F otherwise

2. If H is of the form F ∧ G , F ∨ G or ¬F then A(H) is defined analogously as
for PL, see Def. 4.

3. If H is of the form ∀x G then

A(∀x G ) =

{
T if for all d ∈ UA it holds A[x/d ](G ) = T

F otherwise

4. If H is of the form ∃x G then

A(∃x G ) =

{
T if there is a d ∈ UA with A[x/d ](G ) = T

F otherwise

Peter Baumgartner (NICTA and ANU) Automated Reasoning in First-Order Logic 7/11/2011 54 / 88



Some Important Definitions

Let F be a formula and A a structure.
The following notions are all defined to be equivalent:

I A is suitable for F and A(F ) = T.

I A |= F .

I A is a model of F .

I F is valid under A.

The notation A 6|= F means “not A |= F ”.

Notice these definitions have the same formulations as their counterparts for PL.
The only difference is that A is now a structure instead of an assignment.

The notions of (un)satisfiability and validity are adapted in the same way from PL
to FOF.
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Definition 37 (Logical Consequence)
Let M be a set of formulas and G a formula. G is a logical consequence of M,
written as M |= G , iff

for every suitable structure A for M and G : if A |= M then A |= G .

For a formula F define F |= G as {F} |= G .

Notice that free variables in M and in G with the same name are evaluated to the
same value by A.

Proposition 38

1. The following are equivalent:

1.1 G is a logical consequence of F .
1.2 (F → G ) is a tautology.
1.3 (F ∧ ¬G ) is unsatisfiable.

2. The following are equivalent:

2.1 G is a logical consequence of M.
2.2 M ∪ {¬G} is unsatisfiable.

Proof.
As for Proposition 9.
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Equivalence and Normal Forms

I All equivalences in Proposition 12 are valid in FOF, too.

I The Substitution Theorem (Theorem 11) holds analogously.

I In addition, all of the following equivalences hold:

1. ¬∀x F ≡ ∃x ¬F

¬∃x F ≡ ∀x ¬F

2. If x does not occur free in G :

(∀x F ∧ G ) ≡ ∀x (F ∧ G )

(∀x F ∨ G ) ≡ ∀x (F ∨ G )

(∃x F ∧ G ) ≡ ∃x (F ∧ G )

(∃x F ∨ G ) ≡ ∃x (F ∨ G )

3. (∀x F ∧ ∀x G ) ≡ ∀x (F ∧ G )

(∃x F ∨ ∃x G ) ≡ ∃x (F ∨ G )

4. ∀x ∀y F ≡ ∀y ∀x F

∃x ∃y F ≡ ∃y ∃x F
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Definition 39 (Prenex Normal Form)
A formula F is in prenex normal form iff it is of the form

F = Q1x1 · · · Qnxn G

where n ≥ 0, Q1, . . . ,Qn ∈ {∀,∃}, and G , the matrix of F , contains no
quantifiers.

To apply the resolution calculus, the given formula needs first to be converted into
a specific prenex normal form, more precisely it needs to be of the form

F ′ = ∀x1 · · · ∀xn G ′ , where G ′ is in CNF.

Ideas/Problems for doing that:

1. Idea: The equivalences 1–3 above can be used to push quantifiers outwards.
Problem 1: The equivalences 2 are applicable only under certain
circumstances

2. Problem 2: How to remove the existential quantifiers?

3. Idea: Finally, given ∀x1 · · · ∀xn G , the CNF G ′ is obtained by purely
propositional means from G (cf. Theorem 15).
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Example: Application of Equivalences 1–3

(Notice the “unofficial” connective →)

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇓

∀ε∀a(0 < ε→ ∃δ(0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε)))

⇓

∀ε∀a∃δ(0 < ε→ 0 < δ ∧ ∀x(|x − a| < δ → |f (x)− f (a)| < ε))

⇓

∀ε∀a∃δ(0 < ε→ ∀x(0 < δ ∧ |x − a| < δ → |f (x)− f (a)| < ε))

⇓

∀ε∀a∃δ∀x(0 < ε→ (0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε)))

“Problem 1” does not show up here
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Problem 1: The equivalences 2 are applicable only under certain
circumstances

Definition 40 (Substitution)
Let F be a formula, x a variable and t a term. Then, F [x/t] denotes the formula
that is obtained from F by replacing every free occurrence of x in F by t.

Lemma 41 (Bound Renaming)
Let F = Qx G be a formula, where Q ∈ {∃,∀}. Let y be a variable that does not
occur in G . Then F ≡ Qy G [x/y ]

Proposition 42
For every formula F there is an equivalent formula F ′ in prenex normal form.

Proof.
Similarly to the proof of Theorem 15, using additionally the equivalences 1-3 and
Lemma 41 to enable the application of the equivalences 2.
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Problem 2: How to remove the existential quantifiers?

Definition 43 (Skolemization)
Let F be a formula of the form

F = ∀x1 · · · ∀xn ∃y G

The immediate Skolemization of F is the formula

F ′ = ∀x1 · · · ∀xn G [y/f (x1, . . . , xn)] ,

where f is a new (wrt. F ) n-ary function symbol.

The Skolemization of F (or Skolem normal form of F ) is the formula F Sk that is
obtained from F by repeated immediate Skolemization, as long as possible.
Obviously, F Sk does not contain ∃-quantifiers, if F is in prenex normal form.
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Example

∀ε∀a∃δ∀x(0 < ε→ 0 < δ ∧ (|x − a| < δ → |f (x)− f (a)| < ε))

⇓ (Skolemization)

∀ε∀a∀x(0 < ε→ (0 < d(ε, a) ∧ (|x − a| < d(ε, a)→ |f (x)− f (a)| < ε)))

⇓ (matrix in CNF)

∀ε∀a∀x((0 < ε→ 0 < d(ε, a)) ∧ (0 < ε ∧ |x − a| < d(ε, a)→ |f (x)− f (a)| < ε))

Theorem 44
A formula F is satisfiable iff the Skolem normal form F Sk is satisfiable.

Notice that Theorem 44 is about equisatisfiability, not logical equivalence.
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Summary: Transformation Steps

Input: a predicate logic formula F , possibly containing free variables.
Output: an equisatisfiable formula in Skolem normal form and matrix in CNF.

1. Let y1, . . . , yn be all variables that occur free in F .
Let F1 = ∃y1 · · · ∃yn F (F1 is equisatisfiable with F ).

2. Let F2 be the prenex normal form of F 1 (see Proposition 42).

3. Let F3 be the Skolem normal form of F2

(F3 is equisatisfiable with F2, see Theorem 44).

4. Let F4 be obtained from F3 by replacing the matrix of F3 by an equivalent
CNF (see Theorem 15).

Then, F4 is the desired output formula.
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Herbrand Theory

“Problem”
In a structure A = (UA, IA) the universe UA can be an arbitrary set, and the
interpretation function IA can be arbitrary, too.

How could a calculus deal with that? “Search” all possible UA and IA?

“Solution”
Work with Herbrand structures.
A Herbrand structure has the following properties:

I It fixes a priori a single domain UA, the Herbrand universe.

I The interpretation function IA for function symbols is fixed, too.

I Only the interpretation function IA for predicate symbols can vary in
Herbrand structures.
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Herbrand Universe

Definition 45 (Herbrand Universe)
Let F be a sentence in Skolem normal form. The Herbrand universe for F , D(F ),
is defined inductively as follows:

1. Every constant symbol occurring in F is in D(F ).
If no constant occurs in F then a fresh constant c is in D(F ).

2. For every n-ary function symbol occurring in F and terms t1, . . . , tn in D(F )
the term f (t1, . . . , tn) is in D(F ).

Example
Assume a constant 0, a unary function symbol +1 written postfix and a binary
predicate symbol >. Let A the structure over the natural numbers
UA = {0, 1, 2, . . .} with the usual interpretation functions.

Let F = ∀x x +1 > 0.

Then, D(F ) = {0, 0 +1, 0 +1 +1, . . .}
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Herbrand Structure
Definition 46 (Herbrand Structure)
Let F be a sentence in Skolem normal form. A suitable structure A = (UA, IA) is
called a Herbrand structure (for F ) if all of the following holds:

1. UA = D(F )

2. for every n-ary function symbol f occurring in F and t1, . . . , tn ∈ D(F ) it
holds f A(t1, . . . , tn) = f (t1, . . . , tn)

Remarks

I Variable-free terms are mapped to “themselves”: syntax and semantics
coincide.
Example: A(0 +1) = 0 +1.

I Notation: the interpretation function IA for predicate symbols can be
specified indirectly, by a set of variable-free atoms, those that are true in IA,
and A is identified with that set, e.g.,

A = {0 +1 > 0, 0 +1 +1 > 0, . . .}

stands for >A = {(0 +1, 0), (0 +1 +1, 0), . . .}
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Herbrand Expansion

Because syntax and semantics of variable-free terms coincide, universal
quantification of x is equivalent to expanding x with all variable-free terms. More
precisely:

Definition 47 (Herbrand Expansion)
Let

F = ∀y1 · · · ∀yn G

be a sentence in Skolem normal form. Define E (F ), the Herbrand expansion of F
as

E (F ) = {G [y1/t1] · · · [yn/tn] | t1, . . . , tn ∈ D(F )}

It follows immediately:

Lemma 48
Let F be a sentence in Skolem normal form and A a Herbrand structure for F .
Then A |= F iff A |= E (F ).
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The relevance of Herbrand structures is given by the following theorem:

Theorem 49
Let F be a sentence in Skolem normal form. Then F is satisfiable iff F has a
Herbrand model.

The relevance of Theorem 49 is given by the following chain, which provides a
(naive) semi-decision procedure for first-order logic by reduction to propositional
logic (“Gilmore procedure”).

M |= F , for a finite set M of sentences and a sentence F

iff M ∪ {¬F} is unsatisfiable (Proposition 38.2.a)

iff G =
∧

H∈M H ∧ ¬F is unsatisfiable

iff the Skolem normal form GSk of G is unsatisfiable (Theorem 44)

iff GSk has no Herbrand model (Theorem 49)

iff the Herbrand expansion E (GSk) is unsatisfiable (Lemma 48)

iff some finite subset N ⊆ E (GSk) is unsatisfiable (Compactness, Theorem 25)

iff N is unsatisfiable (N can be identified with a set of propositional logic clauses)

Corollary: every satisfiable formula has a model with denumerable domain. As a

consequence, real number arithmetic cannot be axiomatized in FOL.
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For the proof of Theorem 49 we need the following lemma (recall Definition 40
“Substitution”), which can be proven by structural induction.

Lemma 50 (Substitution Lemma)
Let A be a suitable structure for a formula G and t a variable-free term. Then

A[x/A(t)](G ) = A(G [x/t])

Example for the base case
It holds

A[x/A(0 +1)](x > 0) = ((A[x/A(0 +1)](x), A[x/A(0 +1)](0)) ∈ >A) = ((1, 0) ∈ >A)

and

A(x > 0 [x/0 +1]) = A(0 +1 > 0) = ((A(0 +1), A(0)) ∈ >A) = ((1, 0) ∈ >A)

(We could continue ((1, 0) ∈ >A) = (1>0) = T)
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Proof of Theorem 49

(Sketch)
The “if”-direction is trivial.
For the “only-if” direction assume B |= F , for some suitable structure B. Let A
be the Herbrand structure with each predicate symbol P defined as follows:

P(t1, . . . , tn) ∈ A iff (B(t1), . . . ,B(tn)) ∈ PB

(In the example,
A = {0 +1 > 0, 0 +1 +1 > 0, . . . , 0 +1 +1 > 0 +1, 0 +1 +1 +1 > 0 +1, . . .})

It suffices to show A |= F .

The claim is proven by induction over the number k of universal quantifiers in F .

Induction start (k = 0)
In this case F is variable-free. Use structural induction, where the base case (atom
case) follows immediately from the definition of A.
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Induction step (k > 0)
As the induction hypothesis assume A |= F ′ whenever B |= F ′ and F ′ has strictly
less universal quantifiers than F , for every sentence F ′.

With k > 0 it follows F is of the form ∀x G . We have

B |= F (1)

iff B |= ∀x G (2)

iff for all d ∈ UA: B[x/d ](G ) = T (3)

then for all d ∈ UB s. th. d = B(t) for some t ∈ D(G ): B[x/d ](G ) = T (4)

iff for all t ∈ D(G ): B[x/B(t)](G ) = T (5)

iff for all t ∈ D(G ): B(G [x/t]) = T (by Lemma 50) (6)

then for all t ∈ D(G ): A(G [x/t]) = T (by Ind. Hyp.) (7)

iff A |= ∀x G (8)

iff A |= F
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Gilmore’s Algorithm

(1) Input: a sentence F in Skolem normal form.
(2) Let F1,F2, . . . ,Fn, . . . an enumeration of E (F ).
(3) n := 0;
(4) Repeat
(5) n := n + 1
(6) until (F1 ∧ F2 ∧ · · · ∧ Fn) is unsatisfiable
(7)

(8) Output: “unsatisfiable”

Gilmore’s algorithm is partially correct, i.e., if it terminates then F is unsatisfiable.

Gilmore’s algorithm is very inefficient, and algorithms based on the same of
reduction to propositional logic were the state of the art until the invention of the
Resolution calculus for first-order logic (in 1965), introduced next.
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The First-Order Resolution Calculus

Motivation
The satisfiability test in Gilmore’s algorithm can be done – in principle – by
propositional Resolution, say. However, that would not be optimal.
Example: Let F = ∀x (P(x) ∧ ¬P(f (x))) be in Skolem normal form. Then:

D(F ) = {a, f (a), f (f (a)), . . .}
E (F ) = {P(a) ∧ ¬P(f (a)), P(f (a)) ∧ ¬P(f (f (a))), . . .}

The clause representation of the first two elements of E (F ) is

{{P(a)}, {¬P(f (a))}, {P(f (a))}, {¬P(f (f (a)))}}

Of those clauses, only two are needed to derive the empty clause , but there is
no guarantee that such “relevant” clauses are enumerated early.
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The restriction to those elements of E (D) that were needed to derive the empty
clause can be expressed as follows:

Substitutions

Resolution inference

Variable-free clauses

{¬P(f (x))}

{¬P(f (a))}

[x/a]

{P(f (a))}

[x/f (a)]

{P(x)} First-order clauses

In the following: a first-order logic Resolution calculus that works directly on the
first-order logic clauses, without having to “guess” the substitutions.
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Clause Form

Let F = ∀x1 · · · ∀xn C1 ∧ · · · ∧ Cn in Skolem normal form, where each Ci is a
disjunction of literals.

The clause form of F is the clause set {C′1, . . . , C′n} where C′i is the set
representation of Ci .
Because ∀ distributes over ∧, the universal quantifiers can be left away, and each
clause is implicitly universally quantified over all its variables. Obviously, the
clause form of F is equivalent to F .
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Substitutions

A substitution σ is a finite set of pairs x/t, called bindings, with x a variable and
t a term, such that all bindings are pairwise different wrt. their variables.
Notation:

σ = [x1/t1, . . . , xn/tn] .

Because xi 6= xj for i 6= j , σ can be seen as a function on terms and formulas that
replaces free variables by terms, as specified by the bindings.

We write Fσ for the formula that is obtained by simultaneously replacing every
free occurrence of xi by ti . (This generalizes Definition 40.) The formula Fσ is
called an instance of F (via σ).

Similarly for tσ where t is a term, and also for sets of terms, formulas, and sets of
formulas (in particular clauses).

Ground Substitution
Let X be a term, an atom, a literal or a set of these. A substitution σ is called a
ground substitution for X if Xσ is variable-free.

Every such Xσ is called a ground instance (of X ).

Peter Baumgartner (NICTA and ANU) Automated Reasoning in First-Order Logic 7/11/2011 76 / 88



With the notions above the results so far can be reformulated as follows:

Proposition 51 (Propositional Resolution Correctness)
A clause set M is unsatisfiable iff there is a refutation of MGr by propositional
resolution, where MGr is some finite set of ground instances of clauses from M.

Proposition 51 will be instrumental for proving the completeness of first-order
Resolution.
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Unification

Question: given two terms s and t, possible containing variables. What are the
terms that match both s and t, i.e., the common instances? Unification will find
the answer.

Definition 52 (Unifier)
Given two terms s and t. A substitution σ is a unifier (for s and t) iff sσ = tσ.

A unifier σ is called a most general unifier (mgu) iff for every unifier σ′ (of the
same terms) there is a substitution δ such that σδ = σ′

Definition 52 also applies to atoms. The expression σδ denotes functional
composition of σ and δ (first apply σ, then δ).

Example
s = car(red , y , z)
t = car(u, v , ferrari)
Then σ′ = [u/red , y/fast, v/fast, z/ferrari ] is a unifier for s and t,
and σ = [u/red , y/v , z/ferrari ] is a mgu for s and t.
With δ = [v/fast] obtain σδ = σ′.
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A Unification Algorithm
A unification problem U is a finite set of pairs of terms, written as

U = {s1 = t1, . . . , sn = tn} .
Input: Two terms s and t. Let U = {s = t} initially, and apply the following
transformation rules as long as possible.

{x = x} ∪ N −→ N (Trivial)

{x = t} ∪ N −→ {x = t} ∪ N[x/t] (Binding)

if x occurs in N and x does not occur in t

{x = t} ∪ N −→ FAIL (Occur check)

if t is not a variable and x occurs in t

{f (s1, . . . , sm) = f (t1, . . . , tm)} ∪ N −→
{s1 = t1, . . . , sm = tm} ∪ N (Decomposition)

{f (s1, . . . , sm) = g(t1, . . . , tm)} ∪ N −→ FAIL if f 6= g (Conflict)

{t = x} ∪ N −→ {x = t} ∪ N (Orientation)

if t is not a variable

Output: See Proposition 53
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Proposition 53 (Correctness and Completeness of the Unification
Algorithm)
The unification algorithm above terminates for any input terms s and t, and one
of the following cases applies.

1. Success:

1.1 U is of the form U = {x1 = t1, . . . , xn = tn},
1.2 xi 6= xj , for all 1 ≤ i < j ≤ n, and
1.3 xi does not occur in tj , for all 1 ≤ i ≤ j ≤ n

Furthermore,
σ = [x1/t1, . . . , xn/tn]

is a mgu of s and t

2. Failure: U = FAIL.
In this case there is no unifier of s and t
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We need one more preliminary definition for defining the Resolution inference rules.

Definition 54 (Variant, variable disjoint)
Two clauses C1 and C2 are called variants if there are substitutions ρ1 and ρ2 such
that

C1ρ1 = C2 and C1 = C2ρ2 .

The substitutions ρ1 and ρ2 are called renaming substitutions.
Two clauses C1 and C2 are called variable disjoint iff there is no variable that
occurs both in C1 and in C2.

Intuitively, a variant of a clause is obtained by systematically replacing all variables
by other variables in a one-to-one way.

Examples

I {p(x), q(x)} and {p(y), q(y)} are variants

I {p(x , y), q(x , y)} and {p(y , x), q(y , x)} are variants

I {p(x), q(x)} and {p(y), q(z)} are no variants

I {p(x), q(x)} and {p(y), q(a)} are no variants
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First-Order Logic Resolution

We need two inference rules: (FO-)Resolution and Factoring

Definition 55 ((First-Order) Resolution Inference Rule)
Let C1 and C2 be clauses. W.l.o.g. assume C1 and C2 are variable disjoint
(otherwise take a variant of C1 that is variable disjoint with C2).
A clause C is called a (binary) resolvent of C1 and C2 if

1. there are literals P(s1, . . . , sn) ∈ C1 and ¬P(t1, . . . , tn) ∈ C2, and

2. there es a mgu σ of P(s1, . . . , sn) and P(t1, . . . , tn), and

3. C = (C1σ \ {P(s1, . . . , sn)σ}) ∪ (C2σ \ {¬P(t1, . . . , tn)σ})
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Schematic Notation

C1 C2

(C1σ \ {P(s1, . . . , sn)σ}) ∪ (C2σ \ {¬P(t1, . . . , tn)σ})
σ

Example

{P(x , y), P(y , x), P(x , a)} {¬P(f (z), f (z)), Q(z)}

{P(y(z), a),Q(z)}
σ

where σ = [x/f (z), y/f (z)].

Notice the two literals P(x , y) and P(y , x) in the left premise collapse to the same
literal after applying σ to the left premise.
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Definition 56 (Factoring Inference Rule)
Let C1 be a clause. A clause C is called a factor of C1 if

1. there are two literals P(s1, . . . , sn),P(t1, . . . , tn) ∈ C1, and

2. there is a mgu σ of P(s1, . . . , sn) and P(t1, . . . , tn), and

3. C = C1σ

Remark: this rule is not needed in the propositional resolution calculus; it is
subsumed by the set notation of clauses

Schematic Notation

C1
C1σ

σ

Example

{P(x , y), P(y , x), P(x , a)}

{P(x , a), P(a, x)}
σ

where σ = [y/a].
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Resolution Closure

As for propositional logic (Def. 29):

Definition 57 (Resolution Closure)
Let M be a clause set. Define

1. Res(M) = M ∪ {C | C is a binary resolvent of two clauses in M}
∪ {C | C is a factor of a clause in M}

2. Res0(M) = M

Resn+1(M) = Res(Resn(M)) , for all n ≥ 0.

3. Res?(M) =
⋃

n≥0 Res
n(M)
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Main Result

Theorem 58 (Soundness and Completeness of Resolution)
A clause set M is unsatisfiable iff ∈ Res?(M).

Proof Sketch: Soundness: similarly as for propositional Resolution calculus.

Completeness: assume M is unsatisfiable. By Proposition 51 there is a finite set
MGr of ground instances of clauses in M and a propositional Resolution refutation
RGr of MGr .
The refutation RGr can be simulated step by step by a first-order refutation R.
Illustration:

MGr :

M : C12 , . . . , C
m2

2 ,

Factoring

CGr1 , CGr2 ,

( = R)

( = RGr )

C11 , . . . , C
m1

1 ,

Factoring
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More precisely:

I Every clause in MGr is an instance of a clause in M (this is easy to see), and

I If CGr in RGr is a binary resolvent of two clauses CGr1 and CGr2 in RGr then
put into R a binary resolvent C obtained from factors of clauses C1 and of
factors C2 in R such that CGr is an instance of C. Such a clause C exists by
Lemma 59.

Hence, for every clause in the refutation RGr there is a corresponding more
general clause in R. Because RGr ends with the empty clause so does R.
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Lifting Lemma

Lemma 59 (Lifting)
Let C1 and C2 be variable disjoint clauses. If

C1y γ1
C1γ1

C2y γ2
C2γ2

C′
(propositional resolvent)

then there exists clauses Cf1 and Cf2 obtained from C1 and C2, respectively, by
repeated factoring, and there exists a substitution δ such that

Cf1 Cf2
C′′y δ

C′ = C ′′δ

(first-order resolvent)
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