
Automated Reasoning in First-Order Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/~baumgart/

7/11/2011

Automated Reasoning in First-Order Logic

. . . First-Order Logic
Can express (mathematical) structures, e.g. groups

∀x 1 · x = x ∀x x · 1 = x (N)

∀x x−1 · x = 1 ∀x x · x−1 = 1 (I)

∀x, y, z (x · y) · z = x · (y · z) (A)

. . . Reasoning . . .

• Object level: It follows ∀x (x · x) = 1→ ∀x, y x · y = y · x

• Meta-level: the word problem for groups is decidable

Automated . . .
Computer program to provide the above conclusions automatically

Application: Compiler Validation

Problem: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers; index 0 = initial values)

From y1 = 1 ∧ z0 = x0 ∗ x0 ∗ x0 ∧ y3 = x0 ∗ x0 + y1

and y′1 = 1 ∧ R12 = x′0 ∗ x′0 ∧ R23 = R12 ∗ x′0 ∧ z′0 = R23

∧ y′5 = R12 + 1 ∧ x0 = x′0 ∧ y0 = y′0 ∧ z0 = z′0

it follows y3 = y′5

1

Issues

• Previous slides gave motivation: logical analysis of systems

System can be “anything that makes sense” and can be described using logic (group
theory, computer programs, . . .)

• First-order logic is expressive but not too expressive, i.e., admits complete reason-
ing procedures

• So, reasoning with it can be automated on computer. BUT

– How to do it in the first place: suitable calculi?

– How to do it efficiently: search space control?

– How to do it optimally: reasoning support for specific theories like equality
and arithmetic?

• The lecture will touch on some of these issues and explain basic approaches to
their solution

More on “Reasoning” Example
A1: Socrates is a human

A2: All humans are mortal
Translation into first-order logic:
A1: human(socrates)

A2: ∀X (human(X)→ mortal(X))
Which of the following statements hold true?

1. {A1, A2} |= mortal(socrates)

2. {A1, A2} |= mortal(apollo)

3. {A1, A2} 6|= mortal(socrates)

4. {A1, A2} 6|= mortal(apollo)

5. {A1, A2} |= ¬mortal(socrates)

6. {A1, A2} |= ¬mortal(apollo)

Non-trivial issues: what do these statements mean exactly? How to design a theorem
prover that can correctly answer all/some such questions?

2

Contents

• Some history

• Propositional logic: syntax, semantics, some important results, automated reason-
ing (“Resolution”) – all in view of reusability for first-order logic.

• First-order logic: syntax, semantics, automated reasoning (“Resolution”)

• A specific Resolution method – SLD-Resolution – for logic programming

History

• Aristotle’s: ”‘Syllogisms”’.

• Peano/Boole/Frege, end of 19. century: formal notation (propositional logic, pred-
icate logic).

”‘Mathematical Logic”’: a mathematical theory (like differential calculus, say),
which aims to analyze the structure of mathematics itself. Example: paradoxes in
set theory and their rectification.

• Gödel 1930: Complete calculus for first-order logic.

• Beginning of 19th century: Whitehead/Russel: ”‘Principia Mathematica”’ - At-
tempt to completely formalize and prove mathematics.

• Gödel 1931: ”‘Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme”’. Verdict: this plan cannot be achieved.

• Herbrand 1930, Davis/Putnam/Logeman/Loveland 1962: Mechanical procedures
for theorem proving in first-order logic (”‘British Museum Procedures”’).

• Robinson 1965: ”‘A Machine Oriented Logic Based on the Resolution Principle”’.

• 1990s: refined theory of Resolution - used today.

Propositional Logic
Propositional logic (PL) is concerned with statements about truth values of propo-

sitions on account of their form.

Definition 1 (Syntax of Propositional Logic). Given

• a denumerable set of atomic formulas Pi (also: “propositional variables”, “atoms”),
where i = 1, 2, 3 . . ., and

• the connectives ∧, ∨ and ¬, and

• the symbols (and).

3

The propositional formulas (PF) are defined inductively as follows:

1. Pi ∈ PF , where i = 1, 2, 3

2. If F ∈ PF and G ∈ PF , then (F ∧G) ∈ PF , (F ∨G) ∈ PF and ¬F ∈ PF .

In the following just “formula” instead of “propositional formula”.
A subformula of a formula F is a substring of F that is again a formula.

Abbreviations and Conventions
We use the following abbreviations, where Fi ∈ PF :

Abbreviation Expansion

A, B, C, . . . P1, P2, P3, . . .

(F1 → F2) (¬F1 ∨ F2)

(F2 ← F1) (¬F1 ∨ F2)

(F1 ↔ F2) ((F1 ∧ F2) ∨ (¬F1 ∧ ¬F2))∨n
i=1 Fi (· · · ((F1 ∨ F2) ∨ F3) ∨ · · · ∨ Fn)∧n
i=1 Fi (· · · ((F1 ∧ F2) ∧ F3) ∧ · · · ∧ Fn)

The symbols →,← and ↔ are also called connectives.
We use the following precedences (in increasing binding power):

↔ →
← ∧ ∨ ¬

A formula of the form (F ∧ G) is called a conjunction, (F ∨ G) a disjunction, and
¬F a negation. Parenthesis can be left away if the formula can be reconstructed modulo
associativity of ∧ and ∨.

Semantics of Propositional Logic
The set of truth values is {T,F}.

Definition 2 (Assignment). An assignment for a set D of atomic formulas is a function
AD that maps each A ∈ D to a truth value, i.e. AD(A) ∈ {T,F} for every A ∈ D.

Definition 3 (Suitable Assignment). Let F be a formula. An assignment A is called
suitable for F iff A is defined for all atomic subformulas in F .

Definition 4 (Extensionality principle). LetH be a formula andA a suitable assignment
for H. The extension of A to H is the function B that assigns a truth value to H,
recursively defined according to the form of H, as follows:

1. B(H) = A(H) if H is an atom

2. B(F ∧G) =

{
T if B(F) = T and B(G) = T

F otherwise

4

3. B(F ∨G) =

{
T if B(F) = T or B(G) = T

F otherwise

4. B(¬F) =

{
T if B(F) = F

F otherwise

Notation: Instead of AD and B just A. That is, A is identified with its extension to
formulas.

Inductive definitions (like Definition 1) enable inductive proofs:

Remark 5 (Induction on the structure of formulas). To prove that a property P holds
for every formula F it suffices to show the following:

Induction start: P holds for every atomic formula A.

Induction step: Assume P holds for arbitrary formulas F and G (induction hypoth-
esis).

Show that P holds for ¬F , F ∧G and F ∨G as well.

Example application:

Lemma 6. Let A and A′ be suitable assignments for a formula H such that A(A) =
A′(A) for all atomic subformulas of H.

Then, A(H) = A′(H).

Some Important Definitions
We say that an assignment A is suitable for a set M of formulas iff A is suitable for

every F ∈M .

The following notions are all defined to be equivalent:

• A is suitable for F and A(F) = T.

• A |= F .

• A is a model of F .

• F is valid under A.

Note that these definitions apply only to suitable assignments.

The notation A 6|= F means “not A |= F”.

For example, if D = {B} and, say, AD(B) = T then AD 6|= A∨¬A just because AD

is not suitable for A ∨ ¬A.

5

Satisfiability and Validity
A formula F is called

• satisfiable if F has at least one model

• unsatisfiable if F has no model

• valid (tautological, tautology) iff every suitable assignment is a model of F . Nota-
tion: |= F for “F is tautology”. 6|= F for “F is not tautology”.

Let M be a set of formulas. M is called satisfiable iff there is an assignment A such
that for all F ∈M it holds A |= F . If this is the case we write A |= M .

Similarly: validity, unsatisfiability.

Proposition 7 (“≈ Proof by contradiction”). A formula F is a tautology iff ¬F is
unsatisfiable.

Definition 8 (Logical Consequence). Let M be a set of formulas and G a formula.
G is a logical consequence of M , written as M |= G, iff

for every suitable assignment A for M and G: if A |= M then A |= G.

For a formula F define F |= G as {F} |= G.

Proposition 9. 1. The following are equivalent:

(a) G is a logical consequence of F .

(b) (F → G) is a tautology.

(c) (F ∧ ¬G) is unsatisfiable.

2. The following are equivalent:

(a) G is a logical consequence of M .

(b) M ∪ {¬G} is unsatisfiable.

Equivalence and Normal Forms
Most theorem provers assume that the input formulas have been transformed into a

normal form, one that facilities the design of the core inference rules.

The most important normal form is “clause normal form”, or “conjunctive normal
form”, introduced in the following. Clause normal form is obtained by rewriting as long
as possible a formula into an equivalent one based on certain logical equivalences.

Definition 10 (Logical Equivalence). Two formulas F and G are equivalent, written as
F ≡ G, iff

6

for all suitable assignments for F and G it holds A(F) = A(G).

Proposition 11 (Substitution Theorem). Assume F ≡ G. If H is a formula with at
least one occurrence of F as a subformula then H ≡ H ′, where H ′ is obtained from H
by replacing some occurrence of F in H by G.

Proof. (Sketch) By induction on the formula structure. For the induction start, if H is
an atom A and A = F then H ′ = G, and H ≡ H ′ follows from F ≡ G. The proof of the
induction step is similar to the proof of Lemma 6.

The relevance of Proposition 11 is given by the following equivalences, which justifies
to replace subformulas by equivalent ones.

Proposition 12. All of the following hold:

(F ∧ F) ≡ F (Idempotency)

(F ∨ F) ≡ F
(F ∧G) ≡ (G ∧ F) (Commutativity)

(F ∨G) ≡ (G ∨ F)

((F ∧G) ∧H) ≡ (F ∧ (G ∧H)) (Associativity)

((F ∨G) ∨H) ≡ (F ∨ (G ∨H))

(F ∧ (F ∨G)) ≡ F (Absorption)

(F ∨ (F ∧G)) ≡ F
(F ∧ (G ∨H)) ≡ ((F ∧G) ∨ (F ∧H)) (Distributivity)

(F ∨ (G ∧H)) ≡ ((F ∨G) ∧ (F ∨H))

(Proposition 12 continued)

¬¬F ≡ F (Double Negation)

¬(F ∧G) ≡ (¬F ∨ ¬G) (deMorgan)

¬(F ∨G) ≡ (¬F ∧ ¬G)

(F ∨G) ≡ F , if F is a tautology (Tautologies)

(F ∧G) ≡ G , if F is a tautology

(F ∨G) ≡ G , if F is unsatisfiable (Unsatisfiability)

(F ∧G) ≡ F , if F is unsatisfiable

Proof. (Sketch) Use truth tables.

7

Example
Proof of the equivalence

((A ∨ (B ∨ C)) ∧ (C ∨ ¬A)) ≡ ((B ∧ ¬A) ∨ C)

((A ∨ (B ∨ C)) ∧ (C ∨ ¬A))

≡ (((A ∨B) ∨ C) ∧ (C ∨ ¬A)) (Associativity and ST)

≡ ((C ∨ (A ∨B)) ∧ (C ∨ ¬A)) (Commutativity and ST)

≡ (C ∨ ((A ∨B) ∧ ¬A)) (Distributivity and ST)

≡ (C ∨ (¬A ∧ (A ∨B))) (Commutativity and ST)

≡ (C ∨ ((¬A ∧A) ∨ (¬A ∧B))) (Distributivity and ST)

≡ (C ∨ (¬A ∧B)) (Unsatisfiability and ST)

≡ (C ∨ (B ∧ ¬A)) (Commutativity and ST)

≡ ((B ∧ ¬A) ∨ C) (Commutativity and ST)

Application

Proposition 13. For every formula F there is an equivalent formula that contains the
connectives ∨ and ¬ only.

Proof. Starting with F , repeat as long as possible removing conjunctive subformulas by
using the equivalence (F ∧G) ≡ ¬(¬F ∨ ¬G).

Conjunctive and Disjunctive Normal Form

Definition 14 (Literal, Normal Forms). A literal is an atom or the negation of an atom.
In the first case the literal is positive, in the second case it is negative.

Literals are usually denoted by the letters K and L in the following.

A formula F is in conjunctive normal form (CNF) iff it is a conjunction of disjunction
of literals:

F = (
n∧

i=1

(

mi∨
j=1

Li,j))

A formula F is in disjunctive normal form (DNF) iff it is a disjunction of conjunction
of literals:

F = (

n∨
i=1

(

mi∧
j=1

Li,j))

8

Theorem 15. For every formula there is an equivalent one in CNF and an equivalent
one in DNF.

Proof. Sketch, for the CNF part: starting with the given formula, using Proposition 12,
apply the following equivalences from left to right, in the given order, as long as possible:

¬¬G ≡ G (1)

¬(G ∧H) ≡ (¬G ∨ ¬H) (2)

¬(G ∨H) ≡ (¬G ∧ ¬H) (3)

(F ∨ (G ∧H)) ≡ ((F ∨G) ∧ (F ∨H)) (4)

((G ∧H) ∨ F) ≡ ((F ∨G) ∧ (F ∨H)) (5)

It remains to show:

1. The above procedure always terminates.

2. The resulting formula is in CNF.

Clause Logic
Let F = (

∧n
i=1 (

∨mi
j=1 Li,j)) be a formula in CNF. The formula F can also be written

as

(¬A1,1 ∨ · · · ∨ ¬A1,k1 ∨A1,k1+1 ∨ · · · ∨A1,m1)F =

∧ (· · ·)
...

...

∧ (¬An,1 ∨ · · · ∨ ¬An,kn ∨An,kn+1 ∨ · · · ∨An,mn) ,

or, equivalently, as

(A1,1 ∧ · · · ∧A1,k1 → A1,k1+1 ∨ · · · ∨A1,m1)F =

∧ (· · ·)
...

...

∧ (An,1 ∧ · · · ∧An,kn → An,kn+1 ∨ · · · ∨An,mn)

Relevancy: Many problems naturally come as if-then rules, i.e., following the second
pattern.

The Resolution method (see below) uses a set representation of formulas in CNF, as
follows:

{ {¬A1,1, . . . ,¬A1,k1 , A1,k1+1, . . . , A1,m1},MF =
...

{¬An,1, . . . ,¬An,kn , An,kn+1, . . . , An,mn}︸ ︷︷ ︸
Clause

9

Definition 16 (Clause, Clause Set). A clause is a set of literals. The empty clause is
written as . A clause set is a set of clauses.

Any clause set corresponds in an obvious way to a formula in CNF and to a (different)
formula in DNF, and vice versa. We sometimes also write clauses as disjunctions, e.g.,
A ∨ ¬B ∨ C instead of {A,¬B,C}.

More Notation
A clause

{¬A1 ∨ · · · ∨ ¬Ak ∨Ak+1 ∨ · · · ∨Am}

is also written as
A1, . . . , Ak → Ak+1, . . . , Am

The atoms A1, . . . , Ak are also called the body (of the clause) and the atoms Ak+1, . . . , Am

are also called the head (of the clause).
Special cases:

m = 0 : A1, . . . , Ak → (Negative clause)

k = 0 : → A1, . . . , Am (Positive clause)

Semantic Trees (Robinson 1968, Kowalski and Hayes 1969.)
Semantic trees are a convenient device to represent assignments (for possibly in-

finitely many) atoms.

Applications

• To prove the completeness of the propositional Resolution calculus.

• Characterizes a specific, refined Resolution calculus.

• To prove the compactness theorem of propositional logic. Application: complete-
ness proof of first-order logic Resolution.

Definition 17 (Tree). A tree

• is an acyclic, connected, directed graph, where

• every node has at most one incoming edge.

A rooted tree has a dedicated node, called root that has no incoming edge.

A tree is finite iff it has finitely many vertices (and edges) only.

In a finitely branching tree every node has only finitely many edges.

A binary tree every node has at most two outgoing edges. It is complete iff every
node has either no or two outgoing edges.

10

A path P in a rooted tree is a possibly infinite sequence of nodes P = (N0, N1, . . .),
where N0 is the root, and Ni is a direct successor of Ni−1, for all i = 1, . . . , n.

A path to a node N is a finite path of the form (N0, N1, . . . , Nn) such that N = Nn;
the value n is the length of the path. The node Nn−1 is called the immediate predecessor
of N Every node N0, N1, . . . , Nn−1 is called a predecessor of N .

A (node-)labelled tree is a tree together with a labelling function λ that maps each
node to an element in a given set.

Let L be a literal. The complement of L is the literal

L :=

{
¬A if L is the atom A

A if L is the negated atom ¬A.

Definition 18 (Semantic Tree). A semantic tree B (for a set of atoms D) is a labelled,
complete, rooted, binary tree such that

1. the root is labelled by the Symbol >,

2. for every inner node N , one successor of N is labeled with the literal A, and the
other successor is labeled with the literal ¬A, for some A ∈ D, and

3. for every node N , there is no literal L such that L ∈ I(N) and L ∈ I(N), where

I(N) = {λ(Ni) | N0, N1, . . . , (Nn = N) is a path to N

and 1 ≤ i ≤ n} .

Remark 19 (Semantics of >). Convention: the symbol > is identified with T.

Definition 20 (Atom Set). For a clause set M let the atom set (of M) be the set of
atoms occurring in clauses in M . A semantic tree for M is a semantic tree for the atom
set M .

Definition 21 (Complete Semantic Tree). A semantic tree for D is complete iff for
every leaf N it holds that

A ∈ I(N) or ¬A ∈ I(N), for all A ∈ D.

Interpretation Induced by a Semantic Tree

1. Every node N in a semantic tree for D induces an assignment AN for some D′ ⊆ D
as follows:

AN (A) =

{
T if A ∈ I(N)

F if ¬A ∈ I(N)

2. If the atom set of M is finite, in every complete semantic tree and each of its leafs
N the assignment AN is suitable for M .

11

3. If the atom set of M is infinite, every complete semantic tree for M is infinite (even
more: does not have any leafs).

4. A complete semantic tree can be seen as an enumeration of all possible assignments
for M (it holds AN 6= AN ′ whenever N 6= N ′).

If a clause set M is unsatisfiable then every assignment A falsifies some clause in M
(by definition), i.e., A 6|= C for some C ∈M . This motivates the following definition:

Definition 22 (Failure Node). A node N in a semantic tree for M is a failure node, if

1. there is a clause C ∈M such that AN is suitable for C and AN 6|= C, and

2. for every predecessor N ′ of N it holds:

there is no clause C ∈M such that AN ′ is suitable for C and AN ′ 6|= C.

Definition 23 (Open, Closed). A path P in a semantic tree for M is closed iff P
contains failure node, otherwise it is P open.

A semantic tree B for M is closed iff every path is closed, otherwise B is open.

Every closed semantic tree can be turned into a finite closed one by removing all
subtrees below all failure nodes.

The construction of (closed or open) finite semantic trees is the core of the proposi-
tional DPLL procedure.

Compactness

Lemma 24. A clause set M is unsatisfiable iff there is a closed semantic tree for M .

Proof. See whiteboard.

Theorem 25 (Compactness). A clause set M is unsatisfiable iff some finite subset of
M is unsatisfiable.

Proof. The if-direction is trivial. For the only-if direction, Lemma 24 gives us a finite
unsatisfiable subset of M as identified by the finitely many failure nodes in the semantic
tree.

Theorem 25 gives a hint how to reduce proof search in first-order logic to propositional
logic, see below for details.

12

The Resolution Calculus
The Resolution calculus (short: Resolution) (Robinson, 1965) is a calculus for first-

order logic. Refined versions are the most widely used calculi that are implemented in
contemporary automated theorem provers for first-order logic.

We discuss the version for propositional logic first.

Calculus
A calculus consists of, roughly,

• a decidable set of formulas, called axioms,

• a collection of transformation rules between formulas, called inference rules,

• a notion of derivation that prescribes how inference rules, axioms and another
given formula (hypothesis) are to be combined, and

• a notion of proof that singles out certain derivations.

“Proofs” then give rise to soundness and completeness theorems.

In the case of Resolution:

• Axioms: None

• Inference rules: the Resolution inference rule combines two clauses into a new
clause. (The first-order version requires an additional “factoring” rule.)

• Derivation: a sequence of clauses, starting with the hypothesis clauses, called a
Resolution derivation.

• Proof: a Resolution derivation that contains the empty clause , also called a
(Resolution) refutation

Refutations thus have the following form:

C1, . . . , Ck︸ ︷︷ ︸
Hypothesis

clauses

, Ck+1, . . . , (Cn =)︸ ︷︷ ︸
Derived

clauses

Common problem statement:

Given: (i) T = {Ax1, . . . , Axn} a finite set of formulas, and

(ii) A formula F .

Question: does T |= F hold ? (is F a consequence of T ?)

13

How to show that with Resolution:

T |= F (1)

iff T ∪ {¬F} is unsatisfiable (Proposition 9-2) (2)

iff the clausal form of Ax1 ∧ · · · ∧Axn ∧ ¬F is unsatisfiable (Theorem 15) (3)

iff there is a Resolution refutation of (Ax1, . . . , Axn,¬F) (4)

The transition from (3) to (4) is given by the completeness theorem, and the transition
from (4) to (3) is given by the soundness theorem of Resolution.

Definition 26 (Resolution Inference Rule). Let C1 and C2 be clauses. A clause C is
called a (binary) resolvent of C1 and C2 iff

1. there is a literal L with L ∈ C1 and L ∈ C2, and

2. C = (C1 \ {L}) ∪ (C2 \ {L})

Resolution inference rule schematically:

C1 C2
(C1 \ {L}) ∪ (C2 \ {L})

An inference is an instance of an inference rule. The upper clauses are called the
premises of the inference rule or inference, and the lower clause the conclusion.

Soundness of Resolution
The following lemma is essential in proving the soundness of the Resolution calculus.

Lemma 27. Let M be a clause set and C a resolvent of of C1 ∈ M and C2 ∈ M . Then
M ≡M ∪ {C}.

Theorem 28 (Soundness). The resolution calculus is refutationally sound. That is,
if there is a Resolution refutation starting with the hypothesis clauses C1, . . . , Ck, then
{C1, . . . , Ck} is unsatisfiable.

Proof. By contradiction. Assume a refutation C1, . . . , Ck, Ck+1, . . . , (Cn =) and that
M := {C1, . . . , Ck} is satisfiable. Let I be a model of M . By applying Lemma 27
n − (k + 1) times conclude I |= . However, no interpretation can satisfy the empty
clause, a plain contradiction.

Finding Resolution Refutations
It is unpractical to enumerate derivations until a refutation comes up. It is better

to close the given set of hypothesis M under (all possible) Resolution inferences and
extract a refutation afterwards if is among the derived clauses More precisely:

Definition 29 (Resolution Closure). Let M be a clause set. Define

14

1. Res(M) = M ∪ {C | C is a resolvent of two clauses in M}

2. Res0(M) = M

Resn+1(M) = Res(Resn(M)) , for all n ≥ 0.

3. Res?(M) =
⋃

n≥0 Resn(M)

Theorem 30 (Completeness, Closure Version). The resolution calculus is refutationally
complete. That is, if M = {C1, . . . , Ck} is unsatisfiable then ∈ Res?(M).

Proof. Use semantic trees, see whiteboard.

Propositional Logic – Final Remarks
The above Resolution calculus is very basic and can be improved considerably. There

are two important classes of improvements:

Inference rule restrictions
That is, forbid certain Resolution inferences (that are not needed to get a complete
calculus).

Example: the completeness proof based on semantic trees justifies certain “ordering
restrictions”.

Clause Deletion
E.g., subsumption deletion, the most important deletion rule: remove a clause C from
M if there is a clause C′ ∈M such that C′ ⊂ C.

That subsumption deletion preserves completeness can also be justified by the se-
mantic tree completeness proof.

First-Order Logic
First-order logic (FOL), or predicate logic, is an extension of propositional logic by

language elements for formulating that certain relations hold between all or some objects
of a domain.

Plan of Attack

1. Syntax and Semantics

2. Normal forms

3. Herbrand theory

4. First-Order Resolution

15

First-Order Logic (FOL)
“The function f is continuous”, expressed in FOL:

∀ε(0 < ε =⇒ ∀a∃δ(0 < δ ∧ ∀x(|x− a| < δ =⇒ |f(x)− f(a)| < ε)))

Underlying Language

Variables ε, a, δ, x

Function symbols 0, | |, − , f()

Predicate symbols < , =

Boolean connectives ∧, ∨, =⇒ , ¬
Quantifiers ∀, ∃

First-Order Logic
“The function f is continuous”, expressed in FOL:

∀ε(0 < ε =⇒ ∀a∃δ(0 < δ ∧ ∀x(|x− a| < δ =⇒ |f(x)− f(a)| < ε)))

Meaning of language elements (informally)
A structure is a pair A = (UA, IA) where UA is a denumerable set (“universe”) and IA
provides the meaning of function and predicate symbols:

Variables 7→ elements from UA (“valuation”)

Function symbols 7→ (total) function Un
A 7→ UA

Predicate symbols 7→ relation ⊆ Un
A

Boolean connectives 7→ the usual boolean functions

Quantifiers 7→ “for all ... holds”, “there is a ..., such that”

Syntax
We need denumerable sets of variables, predicate symbols and function symbols. Let

i = 1, 2, 3, . . . and k = 0, 1, 2, . . . (i numbers these symbols, k is the arity):

• A variable has the form xi.

• A predicate symbol has the form P k
i

• A function symbol has the form fki A 0-ary function symbol is also called a
constant .

Notational conventions:
u, v, w, x, y, z for variables

a, b, c for constants

f, g, h for function symbols

P,Q,R for predicate symbols

16

Terms
The set of terms is defined inductively as follows:

1. Every variable is a term.

2. If f is a k-ary function symbol and t1, . . . , tk are terms then f(t1, . . . , tk) is a term
(a function term).

Notation: c instead of c(), where c is a constant.

We take the liberty to write function terms in infix notation for better readability.
For example, f(x)− f(a) instead of −(f(x), f(a)).

Formulas
The set FOF of first-order logic formulas is defined inductively as follows:

1. If P is a k-ary predicate symbol and t1, . . . , tk are terms then P (t1, . . . , tk) ∈ FOF
(called atomic formula or atom).

2. If F ∈ FOF and G ∈ FOF then (F ∧G) ∈ FOF and (F ∨G) ∈ FOF.

3. If F ∈ FOF then ¬F ∈ FOF.

4. If F ∈ FOF and x is a variable then

• ∀x F ∈ FOF (universally quantified formula), and

• ∃x F ∈ FOF (existentially quantified formula).

The symbols ∀ and ∃ are called universal quantifier and existential quantifier ,
respectively.

Conventions
The following notions carry over from propositional logic in the expected way:

• The connectives → , ← , ↔ .

• The precedences of the connectives. The quantifiers ∀ and ∃ have highest prece-
dence.

• The definition of subformula.

17

Free and Bound Variables

Definition 31 (Free and Bound Variables, Sentence). An occurrence of a variable x in
a formula F is called bound if that occurrence is within a subformula of F of the form
∃x G or ∀x G. Otherwise that occurrence is called free.

The formula G is called the scope of ∃x or ∀x
A formula without occurrences of free variables is called closed, or a sentence.

Example

∀

scope︷ ︸︸ ︷
y (∀

scope︷ ︸︸ ︷
x P (x) → Q(x, y))

The occurrence of y is bound, as is the first occurrence of x. The second occurrence of
x is a free occurrence.

Semantics

Definition 32 (Structure). A structure is a pair A = (UA, IA), where

1. UA is a non-empty set, called domain or universe), and

2. IA is a function (interpretation function) that maps

• every k-ary predicate symbol P in its domain to a k-ary relation over UA,
that is, IA(P) ⊆ Uk

A,

• every k-ary function symbol in its domain f to a k-ary function over UA to
UA that is, IA(f) : Uk

A 7→ UA, and

• every variable x in its domain to an element from UA, that is, IA(x) ∈ UA.

Notation: We write PA instead of IA(P), fA instead of IA(f), and xA instead of
IA(x).

Notice that IA is allowed to be a partial function. This gives rise to the following
definition, in analogy to Definition 3 for PL:

Definition 33 (Suitable Structure). Let A be a structure and F a formula. We say
that A is suitable for F iff IA is defined on every predicate symbol, function symbol and
every variable that occurs free in F , and analogously for sets of formulas.

Remarks

• We have fixed a priori one set of predicate symbols and one set of function symbols.
Hence we deal with “the” first-order logic. It is also customary to parametrize the
logic wrt a signature, i.e., sets of predicate symbols and function symbols.

18

• It is also customary to separate IA into two components, corresponding to the
interpretations functions for predicate symbols and function symbols on the one
hand, and the interpretation function of free variables on the other hand, called a
valuation.

None of the above makes an essential difference.

Example
Let F = ∀x P (x, f(x)) ∧Q(g(a, z)).

A suitable structure A for F is:

UA = {0, 1, 2, . . .}
PA = {(m,n) | m,n ∈ UA and m < n}
QA = {n ∈ UA | n is a prime number}
fA = the successor function on UA, i.e., fA(n) = n+ 1

gA = the addition function on UA, i.e. gA(m,n) = m+ n

aA = 2

zA = 3

Example of a different universe (“Herbrand universe”):

UA = {a, f(a), g(a, a), f(g(a, a)), g(f(a), a), . . .}

Evaluation of Terms and Formulas

Definition 34 (Evaluation of Terms). Let t be a term and A a suitable structure for t.
The value of t in A, A(t), is defined recursively as follows:

1. If t is a variable x then A(x) = xA.

2. If t has the form f(t1, . . . , tk), where f is a k-ary function symbol and t1, . . . , tk
are terms, then

A(f(t1, . . . , tk)) = fA(A(t1), . . . ,A(tk))

In order to define the evaluation of quantified formulas we need an “update” operation
on variable valuations:

Definition 35 (Update). For any structure A, A[x/d] is the structure that is the same
as except for the value of x in A, which is d. More formally,

A[x/d](y) =

{
d if y = x

A(x) otherwise

19

Definition 36 (Evaluation of Formulas). Let H be a formula and A a suitable structure
for H. The value of H in A, A(F), is defined recursively as follows:

1. If H is of the form P (t1, . . . , tk), where P is a k-ary predicate symbol and t1, . . . , tk
are terms,

A(P (t1, . . . , tk)) =

{
T if (A(t1), . . . ,A(tk)) ∈ PA

F otherwise

2. If H is of the form F ∧ G, F ∨ G or ¬F then A(H) is defined analogously as for
PL, see Def. 4.

3. If H is of the form ∀x G then

A(∀x G) =

{
T if for all d ∈ UA it holds A[x/d](G) = T

F otherwise

4. If H is of the form ∃x G then

A(∃x G) =

{
T if there is a d ∈ UA with A[x/d](G) = T

F otherwise

Some Important Definitions
Let F be a formula and A a structure.
The following notions are all defined to be equivalent:

• A is suitable for F and A(F) = T.

• A |= F .

• A is a model of F .

• F is valid under A.

The notation A 6|= F means “not A |= F”.

Notice these definitions have the same formulations as their counterparts for PL. The
only difference is that A is now a structure instead of an assignment.

The notions of (un)satisfiability and validity are adapted in the same way from PL
to FOF.

Definition 37 (Logical Consequence). Let M be a set of formulas and G a formula. G
is a logical consequence of M , written as M |= G, iff

for every suitable structure A for M and G: if A |= M then A |= G.

For a formula F define F |= G as {F} |= G.

20

Notice that free variables in M and in G with the same name are evaluated to the
same value by A.

Proposition 38. 1. The following are equivalent:

(a) G is a logical consequence of F .

(b) (F → G) is a tautology.

(c) (F ∧ ¬G) is unsatisfiable.

2. The following are equivalent:

(a) G is a logical consequence of M .

(b) M ∪ {¬G} is unsatisfiable.

Proof. As for Proposition 9.

Equivalence and Normal Forms

• All equivalences in Proposition 12 are valid in FOF, too.

• The Substitution Theorem (Theorem 11) holds analogously.

• In addition, all of the following equivalences hold:

1. ¬∀x F ≡ ∃x ¬F
¬∃x F ≡ ∀x ¬F

2. If x does not occur free in G: [1ex]

(∀x F ∧G) ≡ ∀x (F ∧G)

(∀x F ∨G) ≡ ∀x (F ∨G)

(∃x F ∧G) ≡ ∃x (F ∧G)

(∃x F ∨G) ≡ ∃x (F ∨G)

3. (∀x F ∧ ∀x G) ≡ ∀x (F ∧G)

(∃x F ∨ ∃x G) ≡ ∃x (F ∨G)

4. ∀x ∀y F ≡ ∀y ∀x F
∃x ∃y F ≡ ∃y ∃x F

Definition 39 (Prenex Normal Form). A formula F is in prenex normal form iff it is
of the form

F = Q1x1 · · · Qnxn G

where n ≥ 0, Q1, . . . , Qn ∈ {∀,∃}, and G, the matrix of F , contains no quantifiers.

21

To apply the resolution calculus, the given formula needs first to be converted into
a specific prenex normal form, more precisely it needs to be of the form

F ′ = ∀x1 · · · ∀xn G′ , where G′ is in CNF.

Ideas/Problems for doing that :

1. Idea: The equivalences 1–3 above can be used to push quantifiers outwards. Prob-
lem 1: The equivalences 2 are applicable only under certain circumstances

2. Problem 2: How to remove the existential quantifiers?

3. Idea: Finally, given ∀x1 · · · ∀xn G, the CNF G′ is obtained by purely propositional
means from G (cf. Theorem 15).

Example: Application of Equivalences 1–3
(Notice the “unofficial” connective →)

∀ε(0 < ε→ ∀a∃δ(0 < δ ∧ ∀x(|x− a| < δ → |f(x)− f(a)| < ε)))

⇓

∀ε∀a(0 < ε→ ∃δ(0 < δ ∧ ∀x(|x− a| < δ → |f(x)− f(a)| < ε)))

⇓

∀ε∀a∃δ(0 < ε→ 0 < δ ∧ ∀x(|x− a| < δ → |f(x)− f(a)| < ε))

⇓

∀ε∀a∃δ(0 < ε→ ∀x(0 < δ ∧ |x− a| < δ → |f(x)− f(a)| < ε))

⇓

∀ε∀a∃δ∀x(0 < ε→ (0 < δ ∧ (|x− a| < δ → |f(x)− f(a)| < ε)))

“Problem 1” does not show up here

Problem 1: The equivalences 2 are applicable only under certain circum-
stances

Definition 40 (Substitution). Let F be a formula, x a variable and t a term. Then,
F [x/t] denotes the formula that is obtained from F by replacing every free occurrence
of x in F by t.

Lemma 41 (Bound Renaming). Let F = Qx G be a formula, where Q ∈ {∃, ∀}. Let y
be a variable that does not occur in G. Then F ≡ Qy G[x/y]

Proposition 42. For every formula F there is an equivalent formula F ′ in prenex
normal form.

Proof. Similarly to the proof of Theorem 15, using additionally the equivalences 1-3 and
Lemma 41 to enable the application of the equivalences 2.

22

Problem 2: How to remove the existential quantifiers?

Definition 43 (Skolemization). Let F be a formula of the form

F = ∀x1 · · · ∀xn ∃y G

The immediate Skolemization of F is the formula

F ′ = ∀x1 · · · ∀xn G[y/f(x1, . . . , xn)] ,

where f is a new (wrt. F) n-ary function symbol.

The Skolemization of F (or Skolem normal form of F) is the formula FSk that is
obtained from F by repeated immediate Skolemization, as long as possible.

Obviously, FSk does not contain ∃-quantifiers, if F is in prenex normal form.

Example
∀ε∀a∃δ∀x(0 < ε→ 0 < δ ∧ (|x− a| < δ → |f(x)− f(a)| < ε))

⇓ (Skolemization)

∀ε∀a∀x(0 < ε→ (0 < d(ε, a) ∧ (|x− a| < d(ε, a)→ |f(x)− f(a)| < ε)))

⇓ (matrix in CNF)

∀ε∀a∀x((0 < ε→ 0 < d(ε, a)) ∧ (0 < ε ∧ |x− a| < d(ε, a)→ |f(x)− f(a)| < ε))

Theorem 44. A formula F is satisfiable iff the Skolem normal form FSk is satisfiable.

Notice that Theorem 44 is about equisatisfiability, not logical equivalence.

Summary: Transformation Steps
Input: a predicate logic formula F , possibly containing free variables.
Output: an equisatisfiable formula in Skolem normal form and matrix in CNF.

1. Let y1, . . . , yn be all variables that occur free in F . Let F1 = ∃y1 · · · ∃yn F (F1

is equisatisfiable with F).

2. Let F2 be the prenex normal form of F1 (see Proposition 42).

3. Let F3 be the Skolem normal form of F2 (F3 is equisatisfiable with F2, see Theo-
rem 44).

4. Let F4 be obtained from F3 by replacing the matrix of F3 by an equivalent CNF
(see Theorem 15).

Then, F4 is the desired output formula.

23

Herbrand Theory

“Problem”
In a structure A = (UA, IA) the universe UA can be an arbitrary set, and the interpre-
tation function IA can be arbitrary, too.

How could a calculus deal with that? “Search” all possible UA and IA?

“Solution”
Work with Herbrand structures.

A Herbrand structure has the following properties:

• It fixes a priori a single domain UA, the Herbrand universe.

• The interpretation function IA for function symbols is fixed, too.

• Only the interpretation function IA for predicate symbols can vary in Herbrand
structures.

Herbrand Universe

Definition 45 (Herbrand Universe). Let F be a sentence in Skolem normal form. The
Herbrand universe for F , D(F), is defined inductively as follows:

1. Every constant symbol occurring in F is in D(F).

If no constant occurs in F then a fresh constant c is in D(F).

2. For every n-ary function symbol occurring in F and terms t1, . . . , tn in D(F) the
term f(t1, . . . , tn) is in D(F).

Example
Assume a constant 0, a unary function symbol +1 written postfix and a binary predicate
symbol >. Let A the structure over the natural numbers UA = {0,1,2, . . .} with the
usual interpretation functions.

Let F = ∀x x +1 > 0.

Then, D(F) = {0, 0 +1, 0 +1 +1, . . .}

Herbrand Structure

Definition 46 (Herbrand Structure). Let F be a sentence in Skolem normal form. A
suitable structure A = (UA, IA) is called a Herbrand structure (for F) if all of the
following holds:

1. UA = D(F)

2. for every n-ary function symbol f occurring in F and t1, . . . , tn ∈ D(F) it holds
fA(t1, . . . , tn) = f(t1, . . . , tn)

24

Remarks

• Variable-free terms are mapped to “themselves”: syntax and semantics coincide.

Example: A(0 +1) = 0 +1.

• Notation: the interpretation function IA for predicate symbols can be specified
indirectly, by a set of variable-free atoms, those that are true in IA, and A is
identified with that set, e.g.,

A = {0 +1 > 0, 0 +1 +1 > 0, . . .}

stands for >A = {(0 +1, 0), (0 +1 +1, 0), . . .}

Herbrand Expansion
Because syntax and semantics of variable-free terms coincide, universal quantification

of x is equivalent to expanding x with all variable-free terms. More precisely:

Definition 47 (Herbrand Expansion). Let

F = ∀y1 · · · ∀yn G

be a sentence in Skolem normal form. Define E(F), the Herbrand expansion of F as

E(F) = {G[y1/t1] · · · [yn/tn] | t1, . . . , tn ∈ D(F)}

It follows immediately:

Lemma 48. Let F be a sentence in Skolem normal form and A a Herbrand structure
for F . Then A |= F iff A |= E(F).

The relevance of Herbrand structures is given by the following theorem:

Theorem 49. Let F be a sentence in Skolem normal form. Then F is satisfiable iff F
has a Herbrand model.

The relevance of Theorem 49 is given by the following chain, which provides a (naive)
semi-decision procedure for first-order logic by reduction to propositional logic (“Gilmore
procedure”).

M |= F , for a finite set M of sentences and a sentence F

iff M ∪ {¬F} is unsatisfiable (Proposition 38.2.a)

iff G =
∧

H∈M H ∧ ¬F is unsatisfiable

iff the Skolem normal form GSk of G is unsatisfiable (Theorem 44)

iff GSk has no Herbrand model (Theorem 49)

iff the Herbrand expansion E(GSk) is unsatisfiable (Lemma 48)

iff some finite subset N ⊆ E(GSk) is unsatisfiable (Compactness, Theorem 25)

25

iff N is unsatisfiable (N can be identified with a set of propositional logic clauses)

Corollary: every satisfiable formula has a model with denumerable domain. As a consequence,

real number arithmetic cannot be axiomatized in FOL.

For the proof of Theorem 49 we need the following lemma (recall Definition 40
“Substitution”), which can be proven by structural induction.

Lemma 50 (Substitution Lemma). Let A be a suitable structure for a formula G and
t a variable-free term. Then

A[x/A(t)](G) = A(G[x/t])

Example for the base case
It holds

A[x/A(0 +1)](x > 0) = ((A[x/A(0 +1)](x), A[x/A(0 +1)](0)) ∈ >A) = ((1, 0) ∈ >A)

and

A(x > 0 [x/0 +1]) = A(0 +1 > 0) = ((A(0 +1), A(0)) ∈ >A) = ((1, 0) ∈ >A)

(We could continue ((1,0) ∈ >A) = (1>0) = T)

Proof of Theorem 49
(Sketch)
The “if”-direction is trivial.
For the “only-if” direction assume B |= F , for some suitable structure B. Let A be

the Herbrand structure with each predicate symbol P defined as follows:

P (t1, . . . , tn) ∈ A iff (B(t1), . . . ,B(tn)) ∈ PB

(In the example, A = {0 +1 > 0, 0 +1 +1 > 0, . . . , 0 +1 +1 > 0 +1, 0 +1 +1 +1 >
0 +1, . . .})

It suffices to show A |= F .

The claim is proven by induction over the number k of universal quantifiers in F .

Induction start (k = 0)
In this case F is variable-free. Use structural induction, where the base case (atom case)
follows immediately from the definition of A.

Induction step (k > 0)
As the induction hypothesis assume A |= F ′ whenever B |= F ′ and F ′ has strictly less
universal quantifiers than F , for every sentence F ′.

With k > 0 it follows F is of the form ∀x G. We have

B |= F (1)

26

iff B |= ∀x G (2)

iff for all d ∈ UA: B[x/d](G) = T (3)

then for all d ∈ UB s. th. d = B(t) for some t ∈ D(G): B[x/d](G) = T (4)

iff for all t ∈ D(G): B[x/B(t)](G) = T (5)

iff for all t ∈ D(G): B(G[x/t]) = T (by Lemma 50) (6)

then for all t ∈ D(G): A(G[x/t]) = T (by Ind. Hyp.) (7)

iff A |= ∀x G (8)

iff A |= F

Gilmore’s Algorithm

(1) Input: a sentence F in Skolem normal form.

(2) Let F1, F2, . . . , Fn, . . . an enumeration of E(F).

(3) n := 0;

(4) Repeat

(5) n := n+ 1

(6) until (F1 ∧ F2 ∧ · · · ∧ Fn) is unsatisfiable

(7)

(8) Output: “unsatisfiable”

Gilmore’s algorithm is partially correct, i.e., if it terminates then F is unsatisfiable.

Gilmore’s algorithm is very inefficient, and algorithms based on the same of reduction
to propositional logic were the state of the art until the invention of the Resolution
calculus for first-order logic (in 1965), introduced next.

The First-Order Resolution Calculus

Motivation
The satisfiability test in Gilmore’s algorithm can be done – in principle – by propositional
Resolution, say. However, that would not be optimal.

Example: Let F = ∀x (P (x) ∧ ¬P (f(x))) be in Skolem normal form. Then:

D(F) = {a, f(a), f(f(a)), . . .}
E(F) = {P (a) ∧ ¬P (f(a)), P (f(a)) ∧ ¬P (f(f(a))), . . .}

The clause representation of the first two elements of E(F) is

{{P (a)}, {¬P (f(a))}, {P (f(a))}, {¬P (f(f(a)))}}

Of those clauses, only two are needed to derive the empty clause , but there is no
guarantee that such “relevant” clauses are enumerated early.

The restriction to those elements of E(D) that were needed to derive the empty
clause can be expressed as follows:

27

Substitutions

Resolution inference

Variable-free clauses

{¬P (f(x))}

{¬P (f(a))}

[x/a]

{P (f(a))}

[x/f(a)]

{P (x)} First-order clauses

In the following: a first-order logic Resolution calculus that works directly on the
first-order logic clauses, without having to “guess” the substitutions.

Clause Form
Let F = ∀x1 · · · ∀xn C1∧· · ·∧Cn in Skolem normal form, where each Ci is a disjunction

of literals.

The clause form of F is the clause set {C′1, . . . , C′n} where C′i is the set representation
of Ci.

Because ∀ distributes over ∧, the universal quantifiers can be left away, and each
clause is implicitly universally quantified over all its variables. Obviously, the clause
form of F is equivalent to F .

Substitutions
A substitution σ is a finite set of pairs x/t, called bindings, with x a variable and t

a term, such that all bindings are pairwise different wrt. their variables.
Notation:

σ = [x1/t1, . . . , xn/tn] .

Because xi 6= xj for i 6= j, σ can be seen as a function on terms and formulas that
replaces free variables by terms, as specified by the bindings.

We write Fσ for the formula that is obtained by simultaneously replacing every free
occurrence of xi by ti. (This generalizes Definition 40.) The formula Fσ is called an
instance of F (via σ).

Similarly for tσ where t is a term, and also for sets of terms, formulas, and sets of
formulas (in particular clauses).

Ground Substitution
Let X be a term, an atom, a literal or a set of these. A substitution σ is called a ground
substitution for X if Xσ is variable-free.

Every such Xσ is called a ground instance (of X).

With the notions above the results so far can be reformulated as follows:

28

Proposition 51 (Propositional Resolution Correctness). A clause set M is unsatisfiable
iff there is a refutation of MGr by propositional resolution, where MGr is some finite set
of ground instances of clauses from M .

Proposition 51 will be instrumental for proving the completeness of first-order Res-
olution.

Unification
Question: given two terms s and t, possible containing variables. What are the terms

that match both s and t, i.e., the common instances? Unification will find the answer.

Definition 52 (Unifier). Given two terms s and t. A substitution σ is a unifier (for s
and t) iff sσ = tσ.

A unifier σ is called a most general unifier (mgu) iff for every unifier σ′ (of the same
terms) there is a substitution δ such that σδ = σ′

Definition 52 also applies to atoms. The expression σδ denotes functional composition
of σ and δ (first apply σ, then δ).

Example
s = car(red, y, z) t = car(u, v, ferrari)

Then σ′ = [u/red, y/fast, v/fast, z/ferrari] is a unifier for s and t,
and σ = [u/red, y/v, z/ferrari] is a mgu for s and t.
With δ = [v/fast] obtain σδ = σ′.

A Unification Algorithm
A unification problem U is a finite set of pairs of terms, written as

U = {s1 = t1, . . . , sn = tn} .

Input: Two terms s and t. Let U = {s = t} initially, and apply the following
transformation rules as long as possible.

{x = x} ∪N −→ N (Trivial)

{x = t} ∪N −→ {x = t} ∪N [x/t] (Binding)

if x occurs in N and x does not occur in t

{x = t} ∪N −→ FAIL (Occur check)

if t is not a variable and x occurs in t

{f(s1, . . . , sm) = f(t1, . . . , tm)} ∪N −→
{s1 = t1, . . . , sm = tm} ∪N (Decomposition)

{f(s1, . . . , sm) = g(t1, . . . , tm)} ∪N −→ FAIL if f 6= g (Conflict)

{t = x} ∪N −→ {x = t} ∪N (Orientation)

if t is not a variable

Output: See Proposition 53

29

Proposition 53 (Correctness and Completeness of the Unification Algorithm). The
unification algorithm above terminates for any input terms s and t, and one of the
following cases applies.

1. Success:

(a) U is of the form U = {x1 = t1, . . . , xn = tn},
(b) xi 6= xj, for all 1 ≤ i < j ≤ n, and

(c) xi does not occur in tj, for all 1 ≤ i ≤ j ≤ n

Furthermore,
σ = [x1/t1, . . . , xn/tn]

is a mgu of s and t

2. Failure: U = FAIL.

In this case there is no unifier of s and t

We need one more preliminary definition for defining the Resolution inference rules.

Definition 54 (Variant, variable disjoint). Two clauses C1 and C2 are called variants if
there are substitutions ρ1 and ρ2 such that

C1ρ1 = C2 and C1 = C2ρ2 .

The substitutions ρ1 and ρ2 are called renaming substitutions.
Two clauses C1 and C2 are called variable disjoint iff there is no variable that occurs

both in C1 and in C2.

Intuitively, a variant of a clause is obtained by systematically replacing all variables
by other variables in a one-to-one way.

Examples

• {p(x), q(x)} and {p(y), q(y)} are variants

• {p(x, y), q(x, y)} and {p(y, x), q(y, x)} are variants

• {p(x), q(x)} and {p(y), q(z)} are no variants

• {p(x), q(x)} and {p(y), q(a)} are no variants

30

First-Order Logic Resolution
We need two inference rules: (FO-)Resolution and Factoring

Definition 55 ((First-Order) Resolution Inference Rule). Let C1 and C2 be clauses.
W.l.o.g. assume C1 and C2 are variable disjoint (otherwise take a variant of C1 that is
variable disjoint with C2).

A clause C is called a (binary) resolvent of C1 and C2 if

1. there are literals P (s1, . . . , sn) ∈ C1 and ¬P (t1, . . . , tn) ∈ C2, and

2. there es a mgu σ of P (s1, . . . , sn) and P (t1, . . . , tn), and

3. C = (C1σ \ {P (s1, . . . , sn)σ}) ∪ (C2σ \ {¬P (t1, . . . , tn)σ})

Schematic Notation

C1 C2

(C1σ \ {P (s1, . . . , sn)σ}) ∪ (C2σ \ {¬P (t1, . . . , tn)σ})
σ

Example

{P (x, y), P (y, x), P (x, a)} {¬P (f(z), f(z)), Q(z)}

{P (y(z), a), Q(z)}
σ

where σ = [x/f(z), y/f(z)].

Notice the two literals P (x, y) and P (y, x) in the left premise collapse to the same
literal after applying σ to the left premise.

Definition 56 (Factoring Inference Rule). Let C1 be a clause. A clause C is called a
factor of C1 if

1. there are two literals P (s1, . . . , sn), P (t1, . . . , tn) ∈ C1, and

2. there is a mgu σ of P (s1, . . . , sn) and P (t1, . . . , tn), and

3. C = C1σ

Remark: this rule is not needed in the propositional resolution calculus; it is sub-
sumed by the set notation of clauses

Schematic Notation

C1
C1σ

σ

Example

{P (x, y), P (y, x), P (x, a)}

{P (x, a), P (a, x)}
σ

where σ = [y/a].

31

Resolution Closure
As for propositional logic (Def. 29):

Definition 57 (Resolution Closure). Let M be a clause set. Define

1. Res(M) = M ∪ {C | C is a binary resolvent of two clauses in M}
∪ {C | C is a factor of a clause in M}

2. Res0(M) = M

Resn+1(M) = Res(Resn(M)) , for all n ≥ 0.

3. Res?(M) =
⋃

n≥0 Resn(M)

Main Result

Theorem 58 (Soundness and Completeness of Resolution). A clause set M is unsatis-
fiable iff ∈ Res?(M).

Proof Sketch: Soundness: similarly as for propositional Resolution calculus.

Completeness: assume M is unsatisfiable. By Proposition 51 there is a finite set
MGr of ground instances of clauses in M and a propositional Resolution refutation RGr

of MGr.
The refutation RGr can be simulated step by step by a first-order refutation R.

Illustration:

MGr:

M : C12 , . . . , C
m2

2 ,

Factoring

CGr
1 , CGr

2 ,

(= R)

(= RGr)

C11 , . . . , C
m1

1 ,

Factoring

More precisely:

• Every clause in MGr is an instance of a clause in M (this is easy to see), and

• If CGr in RGr is a binary resolvent of two clauses CGr
1 and CGr

2 in RGr then put
into R a binary resolvent C obtained from factors of clauses C1 and of factors C2 in
R such that CGr is an instance of C. Such a clause C exists by Lemma 59.

Hence, for every clause in the refutation RGr there is a corresponding more general
clause in R. Because RGr ends with the empty clause so does R.

32

Lifting Lemma

Lemma 59 (Lifting). Let C1 and C2 be variable disjoint clauses. If

C1y γ1

C1γ1

C2y γ2

C2γ2
C′

(propositional resolvent)

then there exists clauses Cf1 and Cf2 obtained from C1 and C2, respectively, by repeated
factoring, and there exists a substitution δ such that

Cf1 Cf2
C′′y δ

C′ = C ′′δ

(first-order resolvent)

33

