First-Order Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/~baumgart/

Data61/CSIRO and ANU

August 2019

First-Order Logic (FOL)

Recall: propositional logic: variables are statements ranging over \{true/false\}

SocratesIsHuman
SocratesIsHuman \rightarrow SocratesIsMortal
SocratesIsMortal
FOL: variables range over individual objects
Human(socrates)
$\forall x .($ Human $(x) \rightarrow$ Mortal $(x))$
Mortal(socrates)
In these lectures:

- (Syntax and) semantics of FOL
- Normal forms
- Reasoning: tableau calculus, resolution calculus

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus
FOL Syntax

variables	x, y, z, \cdots
constants	a, b, c, \cdots
functions	f, g, h, \cdots

terms variables, constants or
n -ary function applied to n terms as arguments
$a, x, f(a), g(x, b), f(g(x, g(b)))$
predicates $\quad p, q, r, \cdots$
atom
literal
T, \perp, or an n-ary predicate applied to n terms
atom or its negation
$p(f(x), g(x, f(x))), \quad \neg p(f(x), g(x, f(x)))$
Note: 0-ary functions: constant
0 -ary predicates: P, Q, R, \ldots

quantifiers

existential quantifier $\exists x . F[x]$
"there exists an x such that $F[x]$ "
universal quantifier $\forall x . F[x]$
"for all $x, F[x]$ "
FOL formula literal, application of logical connectives $(\neg, \vee, \wedge, \rightarrow, \leftrightarrow)$ to formulae, or application of a quantifier to a formula

Example

FOL formula

The scope of $\forall x$ is F.
The scope of $\exists y$ is G.
The formula reads:

$$
\begin{aligned}
& \text { "for all } x \text {, } \\
& \text { if } p(f(x), x)
\end{aligned}
$$

then there exists a y such that

$$
p(f(g(x, y)), g(x, y)) \text { and } q(x, f(x))^{\prime \prime}
$$

An occurrence of x within the scope of $\forall x$ or $\exists x$ is bound, otherwise it is free.

Translations of English Sentences into FOL

- The length of one side of a triangle is less than the sum of the lengths of the other two sides

$$
\forall x, y, z . \operatorname{triangle}(x, y, z) \rightarrow \text { length }(x)<\text { length }(y)+\text { length }(z)
$$

- Fermat's Last Theorem.
$\forall n . \operatorname{integer}(n) \wedge n>2$
$\rightarrow \forall x, y, z$. integer $(x) \wedge$ integer $(y) \wedge$ integer (z)

$$
\begin{aligned}
& \wedge x>0 \wedge y>0 \wedge z>0 \\
& \quad \rightarrow x^{n}+y^{n} \neq z^{n}
\end{aligned}
$$

FOL Semantics

An interpretation l: $\left(D_{l}, \alpha_{l}\right)$ consists of:

- Domain D_{l} non-empty set of values or objects for example $D_{l}=$ playing cards (finite), integers (countably), or reals (uncountably infinite)
- Assignment α_{l}
- each variable x assigned value $\alpha_{l}[x] \in D_{l}$
- each n -ary function f assigned

$$
\alpha_{l}[f]: D_{l}^{n} \rightarrow D_{l}
$$

In particular, each constant a (0-ary function) assigned value $\alpha_{l}[a] \in D_{l}$

- each n-ary predicate p assigned

$$
\alpha_{l}[p]: D_{I}^{n} \rightarrow\{\text { true, false }\}
$$

In particular, each propositional variable P (0 -ary predicate) assigned truth value (true, false)

Example

$$
F: p(f(x, y), z) \rightarrow p(y, g(z, x))
$$

Interpretation I: $\left(D_{I}, \alpha_{I}\right)$

$$
D_{I}=\mathbb{Z}=\{\cdots,-2,-1,0,1,2, \cdots\} \quad \text { integers }
$$

$$
\alpha_{l}[f]: \quad D_{I}^{2} \mapsto D_{l} \quad \alpha_{l}[g]: \quad D_{I}^{2} \mapsto D_{l}
$$

$$
(x, y) \mapsto x+y \quad(x, y) \mapsto x-y
$$

$\alpha_{l}[p]: \quad D_{l}^{2} \mapsto\{$ true, false $\}$

$$
(x, y) \mapsto \begin{cases}\text { true } & \text { if } x<y \\ \text { false } & \text { otherwise }\end{cases}
$$

Also $\alpha_{I}[x]=13, \alpha_{l}[y]=42, \alpha_{I}[z]=1$
Compute the truth value of F under I

$$
\begin{array}{lll}
\text { 1. } & I \not \vDash p(f(x, y), z) & \text { since } 13+42 \geq 1 \\
2 . & I \not \vDash p(y, g(z, x)) & \text { since } 42 \geq 1-13 \\
3 . & I & =F
\end{array}
$$

F is true under I

Semantics: Quantifiers

Let x be a variable.
An \underline{x}-variant of interpretation $/$ is an interpretation $J:\left(D_{J}, \alpha_{J}\right)$ such that

- $D_{I}=D_{J}$
- $\alpha_{l}[y]=\alpha_{J}[y]$ for all symbols y, except possibly x

That is, I and J agree on everything except possibly the value of x
Denote

$$
J: I \triangleleft\{x \mapsto v\}
$$

the x-variant of I in which $\alpha_{J}[x]=v$ for some $v \in D_{l}$. Then

- $I \vDash \forall x . F \quad$ iff for all $v \in D_{I}, I \triangleleft\{x \mapsto v\} \vDash F$
- $I \models \exists x . F \quad$ iff there exists $v \in D_{l}$ s.t. $I \triangleleft\{x \mapsto v\} \models F$

Example

Consider $F: \forall x$ ．animal $(x) \rightarrow \exists y$ ．$($ fruit $(y) \wedge$ loves $(x, y))$ and $I=\left(D_{I}, \alpha_{l}\right)$ ：

$$
\begin{aligned}
& D_{1}=\{\text { 邻, 棬, }\} \\
& \alpha_{l} \text { [animal] }=\{(\text { (2) }) \mapsto \text { true },(\text { de }) \mapsto \text { true }, \ldots\} \quad \text { (false everywhere else) } \\
& \alpha_{l}[\text { fruit }]=\{(0) \mapsto \text { true, }(\geqslant) \mapsto \text { true }, \ldots\} \\
& \alpha_{\text {I }} \text { [loves] }=\{(\text { (2), }) \mapsto \text { true, }(\%, 4) \mapsto \text { true }, \ldots\}
\end{aligned}
$$

Compute the value of F under I：

$$
I \models \forall x . \operatorname{animal}(x) \rightarrow \exists y .(\text { fruit }(y) \wedge \operatorname{loves}(x, y))
$$

$$
I \triangleleft\{x \mapsto \mathrm{v}\} \models \operatorname{animal}(x) \rightarrow \exists y .(\text { fruit }(y) \wedge \operatorname{loves}(x, y))
$$

Check all four cases，e．g．：

$$
I \triangleleft\{x \mapsto \mathscr{C}\} \models \operatorname{animal}(x) \rightarrow \exists y .(\text { fruit }(y) \wedge \operatorname{loves}(x, y))
$$

iff $\quad I \triangleleft\{x \mapsto\}\} \vDash \exists y$ ．$($ fruit $(y) \wedge$ loves $(x, y))$
iff there exists $v_{1} \in\{$ 豢，结，$\}$,

$$
I \triangleleft\{x \mapsto(2)\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models \operatorname{loves}(x, y)
$$

$$
I \triangleleft\{x \mapsto 9\} \triangleleft\{y \mapsto\} \in \text { loves }(x, y) \quad \text { (true) }
$$

Example

Consider

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Here $2 \cdot y$ is the infix notation of the term $\cdot(2, y)$, and $2 \cdot y=x$ is the infix notation of the atom $=(\cdot(2, y), x)$

- 2 is a 0 -ary function symbol (a constant).
- . is a 2 -ary function symbol.
- = is a 2-ary predicate symbol.
- x, y are variables.

What is the truth-value of F ?

Example (\mathbb{Z})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let I be the standard interpretation for integers, $D_{I}=\mathbb{Z}$.
Compute the value of F under I :

$$
I \models \forall x . \exists y \cdot 2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, I \triangleleft\{x \mapsto v\} \models \quad \exists y \cdot 2 \cdot y=x
$$

iff
for all $v \in D_{l}$,
there exists $\mathrm{v}_{1} \in D_{l}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models \quad 2 \cdot y=x$
The latter is false since for $1 \in D_{l}$ there is no number v_{1} with $2 \cdot \mathrm{v}_{1}=1$.

Example (\mathbb{Q})

$$
F: \forall x . \exists y .2 \cdot y=x
$$

Let I be the standard interpretation for rational numbers, $D_{l}=\mathbb{Q}$. Compute the value of F under I:

$$
I \vDash \forall x . \exists y \cdot 2 \cdot y=x
$$

iff

$$
\text { for all } v \in D_{l}, I \triangleleft\{x \mapsto v\} \models \quad \exists y \cdot 2 \cdot y=x
$$

iff
for all $v \in D_{l}$,
there exists $\mathrm{v}_{1} \in D_{l}, I \triangleleft\{x \mapsto \mathrm{v}\} \triangleleft\left\{y \mapsto \mathrm{v}_{1}\right\} \models \quad 2 \cdot y=x$
The latter is true since for arbitrary $v \in D_{\text {l }}$ we can chose v_{1} with $\mathrm{v}_{1}=\frac{\mathrm{v}}{2}$.

Satisfiability and Validity

F is satisfiable iff there exists an interpretation I such that $I \| F$.
F is valid iff for all interpretations $I, I \models F$.
Note: F is valid iff $\neg F$ is unsatisfiable.

Example

$F:(\forall x \cdot p(x, x)) \rightarrow(\exists x . \forall y \cdot p(x, y))$ is invalid.
How to show this?
Find interpretation I such that

$$
\begin{aligned}
& I \models \neg((\forall x \cdot p(x, x)) \rightarrow(\exists x \cdot \forall y \cdot p(x, y))) \\
& \text { i.e. } \\
& I \models(\forall x \cdot p(x, x)) \wedge \neg(\exists x \cdot \forall y \cdot p(x, y))
\end{aligned}
$$

Choose $\quad D_{I}=\{0,1\}$

$$
\left.\begin{array}{rl}
p_{I}=\{(0,0),(1,1)\} \quad \text { i.e. } \alpha_{I}[p]=\{(0,0) & \mapsto \text { true },(1,1)
\end{array} \mapsto \text { true }, ~ 子 ~(0,1) \mapsto \text { true },(1,0) \mapsto \text { false }\right\}
$$

I falsifying interpretation $\Rightarrow F$ is invalid.

Example

$F:(\forall x . p(x)) \leftrightarrow(\neg \exists x . \neg p(x)) \quad$ is valid.
How to show this?

1. By expanding definitions. This is easy for this example.
2. By constructing a proof with, e.g., a "semantic argument method" adapted to FOL.
Below we will develop such a semantic argument method adapted to FOL. To define it, we first need the concept of "substitutions".

Substitution

Suppose we want to replace terms with other terms in formulas, e.g.,

$$
F: \forall y \cdot(p(x, y) \rightarrow p(y, x))
$$

should be transformed to

$$
G: \forall y \cdot(p(a, y) \rightarrow p(y, a))
$$

We call the mapping from x to a a substitution, denoted as $\sigma:\{x \mapsto a\}$. We write $F \sigma$ for the Formula G.

Another convenient notation is $F[x]$ for a formula containing the variable x and $F[a]$ for $F \sigma$.

Substitution

A substitution σ is a mapping from variables to terms, written as

$$
\sigma:\left\{x_{1} \mapsto t_{1}, \ldots, x_{n} \mapsto t_{n}\right\}
$$

such that $n \geq 0$ and $x_{i} \neq x_{j}$ for all $i, j=1 . . n$ with $i \neq j$.
The set $\operatorname{dom}(\sigma)=\left\{x_{1}, \ldots, x_{n}\right\}$ is called the domain of σ.
The set $\operatorname{cod}(\sigma)=\left\{t_{1}, \ldots, t_{n}\right\}$ is called the codomain of σ. The set of all variables occurring in $\operatorname{cod}(\sigma)$ is called the variable codomain of σ, denoted by $\operatorname{varcod}(\sigma)$.

By $F \sigma$ we denote the application of σ to the formula F, i.e., the formula F where all free occurrences of x_{i} are replaced by t_{i}.

For a formula named $F[x]$ we write $F[t]$ as a shorthand for $F[x]\{x \mapsto t\}$.

Safe Substitution

Care has to be taken in presence of quantifiers:

$$
F[x]: \exists y \cdot y=\operatorname{Succ}(x)
$$

What is $F[y]$? We cannot just rename x to y with $\{x \mapsto y\}$:

$$
F[y]: \exists y \cdot y=\operatorname{Succ}(y) \quad \text { Wrong! }
$$

We need to first rename bound variables occuring in the codomain of the substitution:

$$
F[y]: \exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(y) \quad \text { Right! }
$$

Renaming does not change the models of a formula:

$$
(\exists y \cdot y=\operatorname{Succ}(x)) \Leftrightarrow\left(\exists y^{\prime} \cdot y^{\prime}=\operatorname{Succ}(x)\right)
$$

Recursive Definition of Substitution

$$
\begin{aligned}
t \sigma & = \begin{cases}\sigma(x) & \text { if } t=x \text { and } x \in \operatorname{dom}(\sigma) \\
x & \text { if } t=x \text { and } x \notin \operatorname{dom}(\sigma) \\
f\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) & \text { if } t=f\left(t_{1}, \ldots, t_{n}\right)\end{cases} \\
p\left(t_{1}, \ldots, t_{n}\right) \sigma & =p\left(t_{1} \sigma, \ldots, t_{n} \sigma\right) \\
(\neg F) \sigma & =\neg(F \sigma) \\
(F \wedge G) \sigma & =(F \sigma \wedge G \sigma) \\
& \ldots \\
(\forall x . F) \sigma & = \begin{cases}\forall x^{\prime} .\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma & \text { if } x \in \operatorname{dom}(\sigma) \cup \operatorname{varcod}(\sigma), x^{\prime} \text { is fre } \\
\forall x . F \sigma & \text { otherwise }\end{cases} \\
(\exists x . F) \sigma & = \begin{cases}\exists x^{\prime} .\left(F\left\{x \mapsto x^{\prime}\right\}\right) \sigma & \text { if } x \in \operatorname{dom}(\sigma) \cup \operatorname{varcod}(\sigma), x^{\prime} \text { is fre } \\
\exists x . F \sigma & \text { otherwise }\end{cases}
\end{aligned}
$$

Example: Safe Substitution F σ

$$
\begin{aligned}
& F:(\forall x . \overbrace{p(x, y)}^{\text {scope of } \forall x}) \rightarrow \underset{\text { free }}{q(f(y), x)} \\
& \text { bound by } \forall x \nearrow \nwarrow \nmid \text { free } \\
& \sigma:\{x \mapsto g(x, y), y \mapsto f(x)\}
\end{aligned}
$$

$F \sigma$?

1. Rename x to x^{\prime} in $(\forall x . p(x, y))$, as $x \in \operatorname{varcod}(\sigma)=\{x, y\}$:

$$
F^{\prime}:\left(\forall x^{\prime} \cdot p\left(x^{\prime}, y\right)\right) \rightarrow q(f(y), x)
$$

where x^{\prime} is a fresh variable.
2. Apply σ to F^{\prime} :

$$
F \sigma:\left(\forall x^{\prime} \cdot p\left(x^{\prime}, f(x)\right)\right) \rightarrow q(f(f(x)), g(x, y))
$$

Semantic Argument ("Tableau Calculus")

Recall rules from propositional logic:

$$
\begin{aligned}
& \begin{array}{l}
l \neq \neg F \\
l \neq F
\end{array} \\
& \begin{array}{l}
l \neq \neg F \\
l=F
\end{array} \\
& \begin{array}{l}
l=F \wedge G \\
I=F \\
I=G
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c|c|c}
l \neq F \rightarrow G \\
\hline l \neq F & l \vDash G
\end{array} \\
& \begin{array}{l}
I \neq F \rightarrow G \\
I \neq F \\
I \neq G
\end{array} \\
& \begin{array}{c}
I \models F \leftrightarrow G \\
I \equiv F \wedge G \\
I \neq F \vee G
\end{array} \\
& \begin{array}{c}
l \not \vDash F \leftrightarrow G \\
I \vDash F \wedge \neg G \\
l=\neg F \wedge G
\end{array} \\
& \begin{array}{l|l}
l \neq F \\
l \neq F \\
l \neq \perp
\end{array}
\end{aligned}
$$

$$
F: P \wedge Q \rightarrow P \vee \neg Q \quad \text { is valid. }
$$

Let's assume that F is not valid and that I is a falsifying interpretation.

1. I	$\nLeftarrow P \wedge Q \rightarrow P \vee \neg Q$	assumption
2. I	$\vDash P \wedge Q$	1 and \rightarrow
3. I	$\nLeftarrow P \vee \neg Q$	1 and \rightarrow
4. I	$\vDash P$	2 and \wedge
5. I	$\nmid=P$	3 and \vee
6. I	$\vDash \perp$	4 and 5 are contradictory

Thus F is valid.

Example 2: Prove

(Recap from "Propositional Logic")

$$
F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad \text { is valid. }
$$

Let's assume that F is not valid.

1. I	$\nmid=$	F		assumption	
2. I	$1=$	$(P \rightarrow$	Q	1 and	
3. I	$\nmid=$	$P \rightarrow$	R	1 and	
4. I	$1=$	P		3 and	
5. I	\nmid	R		3 and	
6. I	$=$	$P \rightarrow$		2 and	of
7. I	$1=$	$Q \rightarrow$		2 and	of

$\begin{array}{llll}\text { 8a. } & l & \not \models & P \\ \text { 9a. } & l & \models & \text { and } \rightarrow \\ 4\end{array}$
and

8b. I $\vDash Q \quad 6$ and \rightarrow
Two cases from 7
9ba. I $\neq Q \quad 7$ and \rightarrow
10ba. I $\vDash \perp \quad 8 \mathrm{~b}$ and 9ba are contradictory
and
9bb. I $\vDash R \quad 7$ and \rightarrow
10bb. I $\models \perp 5$ and 9bb are contradictory
Our assumption is incorrect in all cases - F is valid.

Example 3: Is

$$
F: P \vee Q \rightarrow P \wedge Q \quad \text { valid? }
$$

Let's assume that F is not valid.

$$
\begin{array}{lll}
\text { 1. } & I \not \vDash P \vee Q \rightarrow P \wedge Q & \text { assumption } \\
\text { 2. } & I \not \models P \vee Q & 1 \text { and } \rightarrow \\
3 . & I \not \vDash P \wedge Q & 1 \text { and } \rightarrow
\end{array}
$$

Two options

We cannot derive a contradiction. F is not valid.
Falsifying interpretation:
$I_{1}:\{P \mapsto$ true, $Q \mapsto$ false $\} \quad I_{2}:\{Q \mapsto$ true, $P \mapsto$ false $\}$
We have to derive a contradiction in both cases for F to be valid.

Semantic Argument for FOL

The following additional rules are used for quantifiers.
(The formula $F[t]$ is obtained from $F[x]$ by application of the substitution $\{x \mapsto t\}$.)

$$
\begin{aligned}
& \frac{l \models \forall x . F[x]}{I \models F[t]} \text { for any term } t
\end{aligned} \frac{l \not \models \forall x . F[x]}{I \not \models F[a]} \text { for a fresh constant a }
$$

(We assume there are infinitely many constant symbols.)

Example

Show that $(\exists x . \forall y . p(x, y)) \rightarrow(\forall x . \exists y . p(y, x))$ is valid.
Assume otherwise.
That is, assume I is a falsifying interpretation for this formula.

1. I $\notin(\exists x . \forall y . p(x, y)) \rightarrow(\forall x . \exists y . p(y, x)) \quad$ assumption
2. $\quad I \models \exists x . \forall y . p(x, y)$
3. I $\notin \forall x$. $\exists y . p(y, x)$
4. $\quad l \models \forall y . p(a, y)$
5. $\quad l \notin \exists y . p(y, b)$
6. $\quad I \vDash p(a, b)$
7. I $\notin p(a, b)$
8. $I \models \perp$

1 and \rightarrow
1 and \rightarrow
2 and \exists ($x \mapsto a$ fresh $)$
3 and $\forall(x \mapsto b$ fresh $)$
4 and $\forall(y \mapsto b)$
5 and $\exists(y \mapsto a)$
6 and 7

Thus, the formula is valid.

Example

Is $F:(\forall x \cdot p(x, x)) \rightarrow(\exists x . \forall y . p(x, y))$ is valid?
Assume I is a falsifying interpretation for F.

1.	$I \not \models(\forall x \cdot p(x, x)) \rightarrow(\exists x . \forall y . p(x, y))$	
2.	$I \not \models \forall x \cdot p(x, x)$	1 and \rightarrow
3.	$I \not \models \exists x . \forall y . p(x, y)$	1 and \rightarrow
4.	$I \not \models p\left(a_{1}, a_{1}\right)$	2 and $\forall\left(x \mapsto a_{1}\right)$
5.	$I \not \models \forall y \cdot p\left(a_{1}, y\right)$	3 and $\exists\left(x \mapsto a_{1}\right)$
6.	$I \not \models p\left(a_{1}, a_{2}\right)$	5 and $\forall\left(y \mapsto a_{2}\right.$ fresh $)$
7.	$I \models p\left(a_{2}, a_{2}\right)$	2 and $\forall\left(x \mapsto a_{2}\right)$
8.	$I \not \models \forall y . p\left(a_{2}, y\right)$	3 and $\exists\left(x \mapsto a_{2}\right)$
9.	$I \not \models p\left(a_{2}, a_{3}\right)$	8 and $\forall\left(y \mapsto a_{3}\right.$ fresh $)$

" $I \vDash \perp$ " not derivable. Interpretations $I=\left(D_{i}, \alpha_{i}\right)$ such that $I \not \vDash F$:

$$
\begin{array}{lll}
D_{l}=\{1,2, \ldots\} & \alpha_{l}\left[a_{i}\right]=i & p_{l}=\{(1,1),(2,2), \ldots\} \\
D_{l}=\left\{a_{1}, a_{2}, \ldots\right\} & \alpha_{l}\left[a_{i}\right]=a_{i} & p_{l}=\left\{\left(a_{1}, a_{1}\right),\left(a_{2}, a_{2}\right), \ldots\right\}
\end{array}
$$

Semantic Argument Proof

To show that FOL formula F is valid, assume $I \not \vDash F$ and derive a contradiction $/ \vDash \perp$ in all branches.

It holds:

- Soundness

If every branch of a semantic argument proof reaches $/ \vDash \perp$ then F is valid.

- Completeness

Every valid formula F has a semantic argument proof in which every branch reaches $/ \vDash \perp$.

- Non-termination

For an invalid formula F the method is not guaranteed to terminate. In other words, the semantic argument method is not a decision procedure for validity.

Soundness (Proof Sketch)

Instead of
If every branch of a semantic argument proof reaches I $\vDash \perp$ then F is valid
we show, equivalently, the contrapositive statement:
If F is invalid then for every semantic argument proof there is a branch in that proof that does not reach I $\vDash \perp$

Let F be any invalid formula and assume a (any) semantic argument proof for F. We have to show there is some branch that does not reach $/ \models \perp$.

Because F is invalid there is an interpretation I such that $I \not \vDash F$.
By construction, the semantic argument proof starts with " $\mid \neq F$ ".
This is not a coincidince.

Soundness (Proof Sketch Cont'd)

This is not a coincidince:
One can show that there is a branch that preserves the property \mathcal{P} :
\mathcal{P} if the branch contains " $\mid \notin F$ " (or " $\mid \models F$ ") then there is an interpretation I such that I $\neq F$ (or I $\models F$, respectively)

Informally, follow the proof line by line and prove that \mathcal{P} holds as you go down.

Formally, to prove \mathcal{P} use induction on the number of statements along the branch, with case analysis according to the inference rule applied. (If the "or"-rule is applied, one child branch must be chosen.)

It follows the branch cannot contain "/ $\vDash \perp$ ", because otherwise with \mathcal{P} it follows $I \models \perp$, which is impossible.

Completeness (Proof Sketch)

Without loss of generality assume that F has no free variables. (Otherwise, replace $F[x]$ with x free by $\forall x . F[x]$, until no more free variables.)

A ground term is a term without variables.
Consider (finite or infinite) proof trees starting with $I \not \vDash F$. We assume fairness:

- All possible proof rules were applied in all non-closed branches.
- The \forall and \exists rules were applied for all ground terms. This is possible since the terms are countable.
If every branch is closed, the tree is finite and we have a (finite) proof for F.

Completeness (Proof Sketch)

Otherwise the tree has at least one open (possibly infinite) branch P. We show that F is not valid by extracting from P an interpretation I such that $l \not \models F$, the statement in the root of the proof.

1. The statements on that branch P form a Hintikka set:

- $I \vDash F \wedge G \in P$ implies $I \vDash F \in P$ and $I \vDash G \in P$.
- $I \not \vDash F \wedge G \in P$ implies $I \not \vDash F \in P$ or $I \not \vDash G \in P$.
- $I \vDash \forall x . F[x] \in P$ implies for all ground terms $t, I \models F[t] \in P$.
- $I \not \vDash \forall x . F[x] \in P$ implies for some fresh constant $a, I \not \vDash F[a] \in P$.
- Similarly for \neg, \rightarrow, \leftrightarrow and \exists.

2. Choose $D_{l}:=\{t \mid t$ is a ground term $\}$
3. Choose $\alpha_{l}[f]\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$,

$$
\alpha_{I}[p]\left(t_{1}, \ldots, t_{n}\right)= \begin{cases}\text { true } & \text { if } I \models p\left(t_{1}, \ldots, t_{n}\right) \in P \\ \text { false } & \text { otherwise }\end{cases}
$$

4. I is such that all statements on the branch P hold true.

In particular $I \not \vDash F$ in the root, thus F is not valid.

Proof of Item (4)

Item (4) on the previous slide stated more precsisely:
(4.1) if $I \models F \in P$ then $I \models F$, and
(4.2) if $I \not \vDash F \in P$ then $I \not \vDash F$, where $I=\left(D_{i}, \alpha_{i}\right)$ as constructed.

Define an ordering \succ on formulas as follows:

- $F \circ G \succ F$ and $F \circ G \succ G$ for $\circ \in\{\wedge, \vee, \rightarrow, \leftrightarrow\}$.
- $\neg F \succ F$.
- $\forall x . F[x] \succ F[t]$ and $\exists x . F[x] \succ F[t]$ for any term t.

Clearly, \succ is a well-founded strict ordering (\succ is irreflexive, transitive and there are no infinite chains).
Prove (4) by induction: let $I \models F \in P$ or $I \not \vDash F \in P$.
Base case: F is an atom. Directely prove $I \models F$ or $I \not \vDash F$, respectively.
Induction case: F is of the form $F_{1} \circ F_{2}, \neg F_{1}, \forall x . F_{1}[x]$ or $\exists x . F_{1}[x]$. Induction hypotheses: (4) holds for all G with $F \succ G$. Prove it follows $I \vDash F$ or $I \not \vDash F$, respectively.

Proof of Item (4) - Base Case

Case $I \models F \in P$: We show it follows $I \models F .\left(^{*}\right)$
Case 1: $F=Q$, for some (ground) atom Q.
That is, $I \models Q \in P$.
By construction of I it follows $I \models Q$.
Case 2: $F=\mathrm{T}$.
That is, $l \models T \in P$.
Trivial (every interpretation satisfies T by definition).

Case 3: $F=\perp$.
That is, $I \models \perp \in P$.
This case is impossible as P is open $(I \models \perp \notin P)$.

Proof of Item (4) - Induction Case

Case $I \models F \in P$: We show it follows $I \models F$. $\left(^{*}\right)$
Case 1: $F=F_{1} \wedge F_{2}$, for some F_{1} and F_{2}.
That is, $I \models F_{1} \wedge F_{2} \in P$
By Hintikka set, $I \models F_{1} \in P$ and $I \models F_{2} \in P$.
By induction hypothesis, $I \models F_{1}$ and $I \models F_{2}$.
By semantics of $\wedge, I \models F_{1} \wedge F_{2}$.
Case 2: $F=\neg F_{1}$, for some F_{1}.
That is, $I \models \neg F_{1} \in P$
By Hintikka set, $I \not \vDash F_{1} \in P$.
By induction hypothesis, $I \notin F_{1}$.
By semantics of $\neg, l \models \neg F_{1}$.
Other cases for propositional operators: similar

Proof of Item (4) - Induction Case

Case $I \models F \in P$: We show it follows $I \models F .\left(^{*}\right)$
Case 3: $F=\forall x . F_{1}[x]$, for some F_{1}.
That is, $I \models \forall x . F_{1}[x] \in P$.
For every ground term $t \in D_{l}$ it holds:
By Hintikka set $I \models F_{1}[t] \in P$.
By induction hypothesis $I \models F_{1}[t]$.
Because t evaluates to t under I we have $I \triangleleft\{x \mapsto t\} \models F_{1}[x]$.
By semantics of \forall it follows $I \models \forall x . F_{1}[x]$.

Proof of Item (4) - Induction Case

Case $I \models F \in P$: We show it follows $I \models F$. $\left(^{*}\right)$
Case 4: $F=\exists x . F_{1}[x]$, for some F_{1}.
That is, $I \vDash \exists x . F_{1}[x] \in P$.
By Hintikka set $I \models F_{1}[a] \in P$ for some (fresh) constant a.
By induction hypothesis $I \models F_{1}[a]$.
Because a evaluates to a under I it follows $I \triangleleft\{x \mapsto a\} \models F_{1}[x]$. By semantics of \exists it follows $I \models \exists x . F_{1}[x]$.

Case $I \not \vDash F \in P$:
The proof of $I \not \models F$ is analogous to the case $I \models F \in P$.

The Resolution Calculus

DPLL and its improvements are the practically best methods for PL
The resolution calculus (Robinson 1969) has been introduced as a basis for automated theorem proving in first-order logic. Refined versions are still the practically best methods for first-order logic. (Tableau methods are better suited for modal logics than classical first-order logic.)

In the following:

- Normal forms
(Resolution requires formulas in "conjunctive normal form")
- The Propositional Resolution Calculus
- Resolution for FOL

Negation Normal Form (NNF)

NNF: Negations appear only in literals, and use only $\neg, \wedge, \vee, \forall, \exists$.
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right).
From propositional logic:

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \quad \neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \quad \begin{aligned}
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{aligned}
$$

Additionally for first-order logic:

$$
\begin{aligned}
\neg \forall x . F[x] & \Leftrightarrow \exists x . \neg F[x] \\
\neg \exists x . F[x] & \Leftrightarrow \forall x . \neg F[x]
\end{aligned}
$$

Example: Conversion to NNF

$$
G: \forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)
$$

1. $\forall x \cdot(\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists w \cdot p(x, w)$
2. $\forall x . \neg(\exists y \cdot p(x, y) \wedge p(x, z)) \vee \exists w \cdot p(x, w)$

$$
F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2}
$$

3. $\forall x \cdot(\forall y \cdot \neg(p(x, y) \wedge p(x, z))) \vee \exists w \cdot p(x, w)$

$$
\neg \exists x . F[x] \Leftrightarrow \forall x . \neg F[x]
$$

4. $\forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w . p(x, w)$

Prenex Normal Form (PNF)

PNF: All quantifiers appear at the beginning of the formula

$$
Q_{1} x_{1} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, x_{n}\right]
$$

where $Q_{i} \in\{\forall, \exists\}$ and F is quantifier-free.
Every FOL formula F can be transformed to formula F^{\prime} in PNF such that $F^{\prime} \Leftrightarrow F$.

1. Transform F to NNF
2. Rename quantified variables to fresh names
3. Move all quantifiers to the front

$$
\begin{array}{ll}
(\forall x F) \vee G \Leftrightarrow \forall x(F \vee G) & (\exists x F) \vee G \Leftrightarrow \exists x(F \vee G) \\
(\forall x F) \wedge G \Leftrightarrow \forall x(F \wedge G) & (\exists x F) \wedge G \Leftrightarrow \exists x(F \wedge G)
\end{array}
$$

These rules apply modulo symmetry of \wedge and \vee

Example: PNF 1

Find equivalent PNF of

$$
F: \forall x \cdot((\exists y \cdot p(x, y) \wedge p(x, z)) \rightarrow \exists y \cdot p(x, y))
$$

1. Transform F to NNF

$$
F_{1}: \forall x .(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists y \cdot p(x, y)
$$

2. Rename quantified variables to fresh names

$$
\begin{aligned}
& F_{2}: \forall x \cdot(\forall y . \neg p(x, y) \vee \neg p(x, z)) \vee \exists w \cdot p(x, w) \\
& \uparrow \text { in the scope of } \forall x
\end{aligned}
$$

Example: PNF 2

3. Add the quantifiers before F_{2}

$$
F_{3}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Alternately,

$$
F_{3}^{\prime}: \forall x . \exists w . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Note: In $F_{3}, \forall y$ is in the scope of $\forall x$, therefore the order of quantifiers must be $\cdots \forall x \cdots \forall y \cdots$

$$
F_{3} \Leftrightarrow F \text { and } F_{3}^{\prime} \Leftrightarrow F
$$

Note: However $G \nLeftarrow F$

$$
G: \forall y . \exists w . \forall x . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

Skolem Normal Form (SNF)

SNF: PNF and additionally all quantifiers are \forall
$\forall x_{1} \cdots \forall x_{n} . F\left[x_{1}, \cdots, x_{n}\right] \quad$ where F is quantifier-free.
Every FOL formula F can be transformed to equi-satisfiable formula F^{\prime} in SNF.

1. Transform F to NNF
2. Transform to PNF
3. Starting from the left, stepwisely remove all \exists-quantifiers by Skolemization

Skolemization

Replace

$$
\underbrace{\forall x_{1} \cdots \forall x_{k-1}}_{\text {no } \exists} \cdot \exists x_{k} \cdot \underbrace{Q_{k+1} x_{k+1} \cdots Q_{n} x_{n}}_{Q_{i} \in\{\forall, \exists\}} . F\left[x_{1}, \cdots, x_{k}, \cdots, x_{n}\right]
$$

by

$$
\forall x_{1} \cdots \forall x_{k-1} \cdot Q_{k+1} x_{k+1} \cdots Q_{n} x_{n} . F\left[x_{1}, \cdots, t, \cdots, x_{n}\right]
$$

where

$$
t=f\left(x_{1}, \ldots, x_{k-1}\right) \text { where } f \text { is a fresh function symbol }
$$

The term t is called a Skolem term for x_{k} and f is called a Skolem function symbol.

Example: SNF

Convert

$$
F_{3}: \forall x . \forall y . \exists w . \neg p(x, y) \vee \neg p(x, z) \vee p(x, w)
$$

to SNF.
Let $f(x, y)$ be a Skolem term for w :

$$
F_{4}: \forall x . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, f(x, y))
$$

We have $F_{3} \nLeftarrow F_{4}$ however it holds
A formula F is satisfiable iff the SNF of F is satisfiable.

Conjunctive Normal Form

CNF: Conjunction of disjunctions of literals
$\bigwedge_{i} \bigvee_{j} \ell_{i, j}$ for literals $\ell_{i, j}$
Every FOL formula can be transformed into equi-satisfiable CNF.

1. Transform F to NNF
2. Transform to PNF
3. Transform to SNF
4. Leave away \forall-quantifiers (This is just a convention)
5. Use the following template equivalences (left-to-right):

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

Example: CNF

Convert

$$
F_{4}: \forall x . \forall y . \neg p(x, y) \vee \neg p(x, z) \vee p(x, f(x, y))
$$

to CNF.
Leave away \forall-quantifiers

$$
F_{5}: \neg p(x, y) \vee \neg p(x, z) \vee p(x, f(x, y))
$$

F_{5} is already in CNF.
Conversion from SNF to CNF is again an equivalence transformation.

First-order Clause Logic Terminology

Convention: a set of clauses (or "clause set")

$$
N=\left\{C_{i} \mid C_{i}=\bigvee_{j} \ell_{i, j}, \quad i=1 . . n\right\}
$$

represents the CNF

Example

$$
N=\{P(a), \neg P(x) \vee P(f(x)), Q(y, z), \neg P(f(f(x)))\}
$$

represents the formula

$$
\forall x . \forall y . \forall z .(P(a) \wedge(\neg P(x) \vee P(f(x))) \wedge Q(y, z) \wedge \neg P(f(f(x))))
$$

Equivalently

$$
P(a) \wedge(\forall x .(\neg P(x) \vee P(f(x)))) \wedge(\forall y . \forall z . Q(y, z)) \wedge(\forall x . \neg P(f(f(x))))
$$

Refutational Theorem Proving

The full picture in the context of clause logic:
Suppose we want to show that

$$
(\exists x \cdot \forall y \cdot p(x, y)) \rightarrow(\forall x . \exists y \cdot p(y, x)) \quad \text { is valid. }
$$

The following all are equivalent:

$$
\begin{aligned}
& \neg((\exists x \cdot \forall y \cdot p(x, y)) \rightarrow(\forall x \cdot \exists y \cdot p(y, x))) \quad \text { is unsatisfiable } \\
& (\exists x \cdot \forall y \cdot p(x, y)) \wedge \neg(\forall x \cdot \exists y \cdot p(y, x)) \quad \text { is unsatisfiable } \\
& (\exists x \cdot \forall y \cdot p(x, y)) \wedge(\exists x \cdot \forall y \cdot \neg p(y, x)) \quad \text { is unsatisfiable } \\
& (\forall y \cdot p(c, y)) \wedge(\forall y \cdot \neg p(y, d)) \quad \text { is unsatisfiable } \\
& N=\{p(c, y), \neg p(y, d\} \quad \text { is unsatisfiable }
\end{aligned}
$$

The resolution calculus is a "refutational theorem proving" method: instead of proving a given formual F valid it (tries to) prove the clausal form of its negation unsatisfiable.
Can't we use the semantic argument method for refutational theorem proving?

Semantic Argument Method applied to Clause Logic

Let $N=\left\{C_{1}[\vec{x}], \ldots, C_{n}[\vec{x}]\right\}$ be a set of clauses.
Either N is unsatisfiable or else semantic argument gives open branch:

$$
\begin{aligned}
& I \not \vDash \neg\left(C_{1} \wedge \cdots \wedge C_{n}\right) \\
& I \neq C_{1} \wedge \cdots \wedge C_{n} \\
& I \not \models C_{1} \\
& \cdots \\
& I \neq C_{n}
\end{aligned}
$$

$$
I \vDash C_{i}[\vec{t}]
$$

for all $i=1 . . n$ and all ground terms \vec{t}
Conclusion (a bit sloppy): checking satisfiability of N can be done "syntactically", by fixing the domain D_{l}, interpretation $\alpha_{l}[f]$ and treating \forall-quantification by exhaustive replacement by ground terms.

That "works", but requires enumerating all (!) ground terms.
Resolution does better by means of "unification" instead of "enumeration".

(The Propositional Resolution Calculus

Propositional resolution inference rule

$$
\frac{C \vee A \quad \neg A \vee D}{C \vee D}
$$

Terminology: $C \vee D$: resolvent; A : $\underline{\text { resolved atom }}$

Propositional (positive) factoring inference rule

$$
\frac{C \vee A \vee A}{C \vee A}
$$

Terminology: $C \vee A$: factor
These are schematic inference rules:
C and D - propositional clauses
A - propositional atom
" \vee " is considered associative and commutative

(Derivations

Let $N=\left\{C_{1}, \ldots, C_{k}\right\}$ be a set of input clauses
A derivation (from N) is a sequence of the form

such that for every $n \geq k+1$

- C_{n} is a resolvent of C_{i} and C_{j}, for some $1 \leq i, j<n$, or
- C_{n} is a factor of C_{i}, for some $1 \leq i<n$.

The empty disjunction, or empty clause, is written as \square
A refutation (of N) is a derivation from N that contains \square

(Sample Refutation

1.	$\neg A \vee \neg A \vee B$	(given)
2.	$A \vee B$	(given)
3.	$\neg C \vee \neg B$	(given)
4.	C	(given)
5.	$\neg A \vee B \vee B$	(Res. 2. into 1.)
6.	$\neg A \vee B$	(Fact. 5.)
7.	$B \vee B$	(Res. 2. into 6.)
8.	B	(Fact. 7.)
9.	$\neg C$	(Res. 8. into 3.)
10.	\square	(Res. 4. into 9.)

Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses	Ground instances
$P(f(x), y)$	$\{P(f(a), a), \ldots, P(f(f(a)), f(f(a))), \ldots\}$
$\neg P(z, z)$	$\{\neg P(a), \ldots, \neg P(f(f(a)), f(f(a))), \ldots\}$

Only common instances of $P(f(x), y)$ and $P(z, z)$ give rise to inference:

$$
\frac{P(f(f(a)), f(f(a))) \quad \neg P(f(f(a)), f(f(a)))}{\perp}
$$

Unification
All common instances of $P(f(x), y)$ and $P(z, z)$ are instances of $P(f(x), f(x))$ $P(f(x), f(x))$ is computed deterministically by unification
First-order resolution

$$
\frac{P(f(x), y) \quad \neg P(z, z)}{\perp}
$$

Justified by existence of $P(f(x), f(x))$
Can represent infinitely many propositional resolution inferences

Unification

A substitution γ is a unifier of terms s and t iff $s \gamma=t \gamma$.
A unifier σ is most general iff for every unifier γ of the same terms there is a substitution $\overline{\delta \text { such that }} \gamma=\delta \circ \sigma$ (we write $\sigma \delta$).
Notation: $\sigma=\mathrm{mgu}(s, t)$
Example
$s=\operatorname{car}(r e d, y, z)$
$t=\operatorname{car}(u, v$, ferrari $)$
Then

$$
\gamma=\{u \mapsto \text { red, } y \mapsto \text { fast, } v \mapsto \text { fast, } z \mapsto \text { ferrari }\}
$$

is a unifier, and

$$
\sigma=\{u \mapsto \text { red, } y \mapsto v, z \mapsto \text { ferrari }\}
$$

is a mgu for s and t.
With $\delta=\{v \mapsto$ fast $\}$ obtain $\sigma \delta=\gamma$.

Unification of Many Terms

Let $E=\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}$ be a multiset of equations, where s_{i} and t_{i} are terms or atoms. The set E is called a unification problem.

A substitution σ is called a unifier of E if $s_{i} \sigma=t_{i} \sigma$ for all $1 \leq i \leq n$.
If a unifier of E exists, then E is called unifiable.
The rule system on the next slide computes a most general unifer of a unification problems or "fail" (\perp) if none exists.

Rule Based Naive Standard Unification

Starting with a given unification problem E, apply the following template equivalences as long as possible, where: " $s \doteq t, E$ " means " $\{s \doteq t\} \cup E$ ".

$$
\begin{gather*}
t \doteq t, E \Leftrightarrow E \\
f\left(s_{1}, \ldots, s_{n}\right) \doteq f\left(t_{1}, \ldots, t_{n}\right), E \Leftrightarrow s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}, E \\
f(\ldots) \doteq g(\ldots), E \Leftrightarrow \perp \tag{Clash}\\
x \doteq t, E \Leftrightarrow x \doteq t, E\{x \mapsto t\} \tag{Apply}\\
\text { if } x \in \operatorname{var}(E), x \notin \operatorname{var}(t) \\
x \doteq t, E \Leftrightarrow \perp \\
\text { if } x \neq t, x \in \operatorname{var}(t) \\
t \doteq x, E \Leftrightarrow x \doteq t, E \tag{Orient}\\
\text { if } t \text { is not a variable }
\end{gather*}
$$

(Decompose)

Example 1

Let $E_{1}=\{f(x, g(x), z) \doteq f(x, y, y)\}$ the unification problem to be solved. In each step, the selected equation is underlined.

$$
\begin{array}{lll}
E_{1}: & \underline{f(x, g(x), z) \doteq f(x, y, y)} & \text { (given) } \\
E_{2}: & \underline{x \doteq x, g(x) \doteq y, z \doteq y} & \\
E_{3}: & \underline{g(x) \doteq y, z \doteq y} & \text { (by Decompose) } \\
E_{4}: & \underline{y \doteq g(x), z \doteq y} & \\
E_{5}: & y \doteq g(x), z \doteq g(x) & \\
\text { (by Orient) } \\
\text { (by Apply }\{y \mapsto g(x)\})
\end{array}
$$

Result is mgu $\sigma=\{y \mapsto g(x), z \mapsto g(x)\}$.

Example 2

Let $E_{1}=\{f(x, g(x)) \doteq f(x, x)\}$ the unification problem to be solved. In each step, the selected equation is underlined.

$$
\begin{array}{lll}
E_{1}: & \underline{f(x, g(x)) \doteq f(x, x)} & \\
E_{2}: & \underline{x} \doteq x, g(x) \doteq x & \\
E_{3}: & \underline{g(x) \doteq x}) & \\
E_{4}: & \underline{x \doteq g(x)} & \text { (by Decompose) } \\
E_{5}: & \perp & \\
\text { (by Orivial) } \\
\text { (by Occur Check) }
\end{array}
$$

There is no unifier of E_{1}.

Main Properties

The above unification algorithm is sound and complete:
Given $E=\left\{s_{1} \doteq t_{1}, \ldots, s_{n} \doteq t_{n}\right\}$, exhaustive application of the above rules always terminates, and one of the following holds:

- The result is a set equations in solved form, that is, is of the form

$$
x_{1} \doteq u_{1}, \ldots, x_{k} \doteq u_{k}
$$

with x_{i} pairwise distinct variables, and $x_{i} \notin \operatorname{var}\left(u_{j}\right)$.
In this case, the solved form represents the substitution
$\sigma_{E}=\left\{x_{1} \mapsto u_{1}, \ldots, x_{k} \mapsto u_{k}\right\}$ and it is a mgu for E.

- The result is \perp. In this case no unifier for E exists.

First-Order Resolution Inference Rules

$$
\begin{array}{cll}
\frac{C \vee A \quad D \vee \neg B}{(C \vee D) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) & \text { [resolution] } \\
\frac{C \vee A \vee B}{(C \vee A) \sigma} & \text { if } \sigma=\operatorname{mgu}(A, B) & {[\text { factoring }]}
\end{array}
$$

For the resolution inference rule, the premise clauses have to be renamed apart (made variable disjoint) so that they don't share variables.

Example

$$
\begin{array}{ll}
\frac{Q(z) \vee P(z, z) \neg P(x, y)}{Q(x)} \text { where } \sigma=[z \mapsto x, y \mapsto x] & \text { [resolution] } \\
\frac{Q(z) \vee P(z, a) \vee P(a, y)}{Q(a) \vee P(a, a)} \text { where } \sigma=[z \mapsto a, y \mapsto a] \quad \text { [factoring] }
\end{array}
$$

Example

(1) $\forall x$. $\operatorname{allergies}(x) \rightarrow$ sneeze (x)
(2) $\forall x \cdot \forall y \cdot \operatorname{cat}(y) \wedge$ livesWith $(x, y) \wedge \operatorname{allergicToCats}(x) \rightarrow \operatorname{allergies}(x)$
(3) $\forall x \cdot \operatorname{cat}(\operatorname{catOf}(x))$
(4) livesWith(jerry, catOf(jerry))

Next

- Resolution applied to the CNF of $(1) \wedge \cdots \wedge$ (4).
- Proof that $(1) \wedge \cdots \wedge$ (4) entails allergicToCats(jerry) \rightarrow sneeze(jerry)

Sample Derivation From (1) - (4)

(1) \neg allergies $(x) \vee$ sneeze (x)
(Given)
(2) $\neg \operatorname{cat}(y) \vee \neg$ livesWith $(x, y) \vee \neg$ allergicToCats $(x) \vee$ allergies (x) (Given)
(3) $\operatorname{cat}(\operatorname{catOf}(x))$
(Given)
(4) livesWith(jerry, catOf(jerry))
(5) \neg livesWith $(x, \operatorname{catOf}(x)) \vee \neg$ allergicToCats $(x) \vee$ allergies (x)

$$
(\operatorname{Res} 2+3, \sigma=[y \mapsto \operatorname{catOf}(x)])
$$

(6) \neg livesWith $(x, \operatorname{catOf}(x)) \vee \neg$ allergicToCats $(x) \vee$ sneeze (x)

$$
(\operatorname{Res} 1+5, \sigma=[])
$$

(7) ᄀallergicToCats(jerry) \vee sneeze(jerry)
(Res $4+6, \sigma=[x \mapsto$ jerry $]$)
Some more (few) clauses are derivable, but not infinitely many.
Not derivable are, e.g.,:
cat(catOf(jerry)), cat(catOf(catOf(jerry))), ...
But the tableau method would derive then all!

Refutation Example

We want to show

$$
(1) \wedge \cdots \wedge(4) \Rightarrow \text { allergicToCats(jerry) } \rightarrow \text { sneeze(jerry) }
$$

Equivalently, the CNF of

$$
\neg((1) \wedge \cdots \wedge(4) \rightarrow(\text { allergicToCats(jerry }) \rightarrow \text { sneeze(jerry) }))
$$

is unsatisfiable. Equivalently
(1) - (4)
(Given)
(A) allergicToCats(jerry)
(B) \neg sneeze(jerry)
(Conclusion)
(Conclusion)
is unsatisfiable.
But with the derivable clause
(7) \neg allergicToCats(jerry) \vee sneeze(jerry)
the empty clause \square is derivable in two more steps.

Sample Refutation - The Barber Problem

```
set(binary_res). %% This is an "otter" input file
```

formula_list(sos).
\%\% Every barber shaves all persons who do not shave themselves:
all $x(B(x)->(a l l y(-S(y, y)->S(x, y)))$).
\%\% No barber shaves a person who shaves himself:
all x (B(x) -> (all y (S (y, y)-> $-\mathrm{S}(\mathrm{x}, \mathrm{y}))$)).
$\% \%$ Negation of "there are no barbers"
exists x B(x).
end_of_list.
otter finds the following refutation (clauses $1-3$ are the CNF):
1 [] $-B(x)|S(y, y)| S(x, y)$.
2 [] $-B(x)|-S(y, y)|-S(x, y)$.
3 [] B(\$c1).
4 [binary,1.1,3.1] $S(x, x) \mid S(\$ c 1, x)$.
5 [factor,4.1.2] $\mathrm{S}(\$ \mathrm{c} 1, \$ \mathrm{c} 1)$.
6 [binary, 2.1,3.1] -S $(x, x) \mid-S(\$ c 1, x)$.
10 [factor,6.1.2] -S(\$c1,\$c1).
11 [binary,10.1,5.1] \$F.

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete.

- That is, if a clause set is unsatisfiable, then resolution will derive the empty clause \square eventually.
- More precisely: If a clause set is unsatisfiable and closed under the application of the resolution and factoring inference rules, then it contains the empty clause \square.
- Proof: Herbrand theorem (see below) + completeness of propositional resolution + Lifting Lemma

Moreover, in order to implement a resolution-based theorem prover, we need an effective procedure to close a clause set under the application of the resolution and factoring inference rules. See the "given clause loop" below.

First-order Clause Logic: Herbrand Semantics

Let F be a formula. An input term (wrt. F) is a term that contains function symbols occurring in F only.

Proposition ("Herband models existence".) Let N be a clause set. If N is satisfiable then there is a model $I \models N$ such that

- $D_{I}:=\{t \mid t$ is a input ground term over $\}$
- $\alpha_{l}[f]\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$.

Proof. Assume N is satisfiable. By soundness, the semantic argument method gives us an (at least one) open branch. The completeness proof allows us to extract from this branch the model I such that

- $D_{1}:=\{t \mid t$ is a ground term $\}$
- $\alpha_{l}[f]\left(t_{1}, \ldots, t_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)$
- $\alpha_{l}[p]\left(t_{1}, \ldots, t_{n}\right)=$ "extracted from open branch"

Because N is a clause set, no inference rule that introdcues a fresh constant is ever applicable. Thus, D_{I} consists of input (ground) terms only.

First-order Clause Logic: Herbrand Semantics

Reformulate the previous in commonly used terminology
Herbrand interpretation

- $H U_{I}:=D_{l}$ from above is the Herbrand universe, however use ground terms only (terms without variables).
- $H B_{I}=\left\{p\left(t_{1}, \ldots, t_{n}\right) \mid t_{1}, \ldots, t_{n} \in H U_{I}\right\}$ is the Herbrand base.
- Any subset of $H B_{I}$ is a Herbrand interpretation (misnomer!), exactly those atoms that are true.
- For a clause $C[x]$ and $t \in H U_{\text {, }}$ the clause $C[t]$ is a ground instance.
- For a clause set N the set $\{C[t] \mid C[x] \in N\}$ is its Herbrand expansion.

Example: Herbrand Interpretation

Function symbols: $0, s$ (for the " +1 " function), +
Predicate symbols: $<, \leq$
$H U_{I}=\{0, s(0), s(s(0)), \ldots, 0+0,0+s(0), s(0)+0, \ldots\}$
\mathbb{N} as a Herbrand interpretation, a subset of $H B_{l}$:

$$
\begin{aligned}
I=\{ & 0 \leq 0,0 \leq s(0), 0 \leq s(s(0)), \ldots \\
& 0+0 \leq 0,0+0 \leq s(0), \ldots \\
& \ldots,(s(0)+0)+s(0) \leq s(0)+(s(0)+s(0))
\end{aligned}
$$

$$
s(0)+0<s(0)+0+0+s(0)
$$

$$
\ldots\}
$$

Herbrand Theorem

The soundness and completeness proof of the semantic argument method applied to clause logic provides the following results.

- If a clause set N is unsatisfiable then it has no Herbrand model (trivial).
- If a clause set N is satisfiable then it has a Herbrand model.

This is the "Herbrand models existence" proposition above.

- Herbrand theorem: if a clause set N is unsatisfiable then some finite subset of its Herbrand expansion is unsatisfiable.

Proof: Suppose N is unsatisfiable. By completeness, there is a proof by semantic argument using the Herbrand expansion of N. Tye proof is a finite tree and hence can use only finitely many elements of the Herbrand expansion.

Herbrand Theorem Illustration

Clause set

$$
N=\{P(a), \neg P(x) \vee P(f(x)), Q(y, z), \neg P(f(f(a)))\}
$$

Herbrand universe

$$
H \boldsymbol{U}_{\boldsymbol{I}}=\{a, f(a), f(f(a)), f(f(f(a))), \ldots
$$

Herbrand expansion

$$
\begin{aligned}
N^{\mathrm{gr}} & =\{P(a)\} \\
& \cup\{\neg P(a) \vee P(f(a)), \neg P(f(a)) \vee P(f(f(a))), \\
& \neg P(f(f(a))) \vee P(f(f(f(a)))), \ldots\} \\
& \cup\{Q(a, a), Q(a, f(a)), Q(f(a), a), Q(f(a), f(a)), \ldots\} \\
& \cup\{\neg P(f(f(a)))\}
\end{aligned}
$$

Herbrand Theorem Illustration

$$
\begin{aligned}
H B_{I} & =\{\underbrace{P(a)}_{A_{0}}, \underbrace{P(f(a))}_{A_{1}}, \underbrace{P(f(f(a)))}_{A_{2}}, \underbrace{P(f(f(f(a))))}_{A_{3}}, \ldots\} \\
& \cup\{\underbrace{Q(a, a)}_{B_{0}}, \underbrace{Q(a, f(a))}_{B_{1}}, \underbrace{Q(f(a), a)}_{B_{2}}, \underbrace{Q(f(a), f(a))}_{B_{3}}, \ldots\}
\end{aligned}
$$

By construction, every atom in $N^{g r}$ occurs in $H B_{I}$
Replace in $N^{g r}$ every (ground) atom by its propositional counterpart:

$$
\begin{aligned}
N_{\text {prop }}^{\mathrm{gr}} & =\left\{A_{0}\right\} \\
& \cup\left\{\neg A_{0} \vee A_{1}, \neg A_{1} \vee A_{2}, \neg A_{2} \vee A_{3}, \ldots\right\} \\
& \cup\left\{B_{0}, B_{1}, B_{2}, B_{3}, \ldots\right\} \\
& \cup\left\{\neg A_{2}\right\}
\end{aligned}
$$

The subset $\left\{A_{0}, \neg A_{0} \vee A_{1}, \neg A_{1} \vee A_{2}, \neg A_{2}\right\}$ is unsatisfiable, hence so is N.

Lifting Lemma

Let C and D be variable-disjoint clauses. If

then there exists a substitution τ such that

[first-order resolution]

An analogous lifting lemma holds for factoring.

The "Given Clause Loop"

As used in the Otter theorem prover:
Lists of clauses maintained by the algorithm: usable and sos.
Initialize sos with the input clauses, usable empty.
Algorithm (straight from the Otter manual):
While (sos is not empty and no refutation has been found)

1. Let given_clause be the 'lightest' clause in sos;
2. Move given_clause from sos to usable;
3. Infer and process new clauses using the inference rules in effect; each new clause must have the given_clause as one of its parents and members of usable as its other parents; new clauses that pass the retention tests are appended to sos;
End of while loop.
Fairness: define clause weight e.g. as "depth + length" of clause.

The "Given Clause Loop" - Graphically

Decidability of FOL

- FOL is undecidable (Turing \& Church)

There does not exist an algorithm for deciding if a FOL formula F is valid, i.e. always halt and says "yes" if F is valid or say "no" if F is invalid.

- FOL is semi-decidable

There is a procedure that always halts and says "yes" if F is valid, but may not halt if F is invalid.
On the other hand,

- PL is decidable

There does exist an algorithm for deciding if a PL formula F is valid, e.g. the truth-table procedure.

