First-Order Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/ baumgart/

Data61/CSIRO and ANU

August 2019

1/79

First-Order Logic (FOL)

Recall: propositional logic: variables are statements ranging over
{true/false}

SocrateslsHuman
SocrateslsHuman — SocrateslsMortal
SocrateslsMortal

FOL: variables range over individual objects

Human(socrates)
Vx. (Human(x) — Mortal(x))
Mortal(socrates)

In these lectures:
» (Syntax and) semantics of FOL
» Normal forms

» Reasoning: tableau calculus, resolution calculus

2/79

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables Xy Yy Zyo e
constants a,b,c,---
functions f,g,h,---
terms variables, constants or

n-ary function applied to n terms as arguments
a, x, f(a), g(x, b), f(g(x,g(b)))
predicates p,q,r, .-
atom T, L, or an n-ary predicate applied to n terms
literal atom or its negation

p(f(x), g(x, f(x))), —p(f(x),&(x, f(x)))

Note: 0-ary functions: constant
0-ary predicates: P, Q,R,...

3/79

quantifiers
existential quantifier ~ 3x.F[x]
“there exists an x such that F[x]"

universal quantifier Vx.F[x]
“for all x, F[x]"

FOL formula literal, application of logical connectives
(-, V, A, =, <) to formulae,
or application of a quantifier to a formula

4/79

Example
FOL formula

Vx. p(f(x),x) — (Jy. p(fle(x,y)).&(x,¥))) A a(x,f(x))
G

)
The scope of Vx is F.
The scope of dy is G.
The formula reads:
“for all x,

if p(f(x), x)
then there exists a y such that

p(f(g(x,y)) &(x,y)) and q(x, f(x))"

An occurrence of x within the scope of Vx or dx is bound, otherwise it is

free.

5/79

Translations of English Sentences into FOL

» The length of one side of a triangle is less than the sum of the lengths
of the other two sides

Vx,y,z. triangle(x, y,z) — length(x) < length(y) + length(z)

» Fermat's Last Theorem.

Vn. integer(n) A n>?2
— Vx,y,z.
integer(x) A integer(y) A integer(z)
Ax>0Ay>0A2z>0
RN Xn + yn ;é Zn

6/79

FOL Semantics

An interpretation / : (Dy, o) consists of:
» Domain D
non-empty set of values or objects
for example D; = playing cards (finite),
integers (countably), or
reals (uncountably infinite)
> Assignment «;
» each variable x assigned value o[x] € D,
» each n-ary function f assigned

Oé/[f] : D," — D/

In particular, each constant a (0-ary function) assigned value «o;[a] € D,
» each n-ary predicate p assigned

ar[p] : D' — {true, false}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (true, false)

7/79

Example
F: p(f(x,y),z) = ply,g(z,x))

Interpretation l: (D/,a/)

=7Z=A- -1,0,1,2,---} integers
a/[f] : D2 — D/ a,[g] : Dlz — D/
(xy) = x+y ()= x—y
aylp] : D? + {true, false}

(x,y) true ifx<y
’ false otherwise

Also ay[x] =13, oy[y] =42, ayfz] =1
Compute the truth value of F under /

1. I ¥~ p(f(x,y),z) since 134+42>1
2. 1 ¥~ ply,g(z,x)) since 42 >1—13
3. 1 E F by 1, 2, and —

F is true under /

8/79

Semantics: Quantifiers

Let x be a variable.
An x-variant of interpretation / is an interpretation J : (D,, ay) such that
> D, =D,

> oyly] = ayly] for all symbols y, except possibly x
That is, / and J agree on everything except possibly the value of x

Denote
J: ITa{x—v}

the x-variant of / in which ay[x] = v for some v € D;. Then
> | E Vx. F iffforallve D, I<a{x—v} = F
» | = Ix. F iff thereexistsve Dyst. [<{x—v} E F

9/79

Example

Consider F : Vx. animal(x) — Jy. (fruit(y) A loves(x, y)) and | = (Dy, a):
D = {B&RW }

aslanimal] = {(&) — true, (M) — true,...} (false everywhere else)
afruit] = {(8) — true, (") — true,...}
afloves] = {(B,)~ true, (4, @) — true,...}

Compute the value of F under [:
| = ¥x. animal(x) — 3y. (fruit(y) A loves(x, y))
iff for all v € {&, 2, @, },
I <{x + v} = animal(x) — 3y. (fruit(y) A loves(x, y))

Check all four cases, e.g.:

I <{x— @} | animal(x) — Jy. (fruit(y) A loves(x, y))
iff 1< {x— @} Jy. (fruit(y) A loves(x, y))
iff there exists v; € {&, 2, @, },
I<{x— @} <{y—v1} | loves(x, y)
iff 1T<{x—@}<a{y— "} loves(x,y) (true)

10/79

Example

Consider
F:Vx.dy.2-y=x

Here 2 - y is the infix notation of the term -(2,y),
and 2 - y = x is the infix notation of the atom =(+(2, y), x)

» 2 is a O-ary function symbol (a constant).
» . is a 2-ary function symbol.
> = is a 2-ary predicate symbol.
P x,y are variables.
What is the truth-value of F?

11/79

Example (Z)

F:Vx.dy.2-y=x

Let / be the standard interpretation for integers, D; = Z.
Compute the value of F under /:

I E Vx.dy.2-y=x

iff
forallve Dy, Ia{x— v} E Jdy.2-y=x
iff
for all v e Dy,
there exists vi € Dy, I <{x — v} a{y —vi} 2-y=x

The latter is false since for 1 € D; there is no number v; with 2 - vy = 1.

12/79

Example (Q)

F:Vx.dy.2-y=x

Let / be the standard interpretation for rational numbers, D; = Q.
Compute the value of F under /:

| = Vx.3y.2-y=x

iff
forallve Dy, Ia{x— v} E Jdy.2-y=x
iff
for all v e Dy,
there exists vi € Dy, I <{x — v} a{y —vi} 2-y=x

v

The latter is true since for arbitrary v € D; we can chose vi with vi = 3.

13/79

Satisfiability and Validity

F is satisfiable iff there exists an interpretation / such that /| = F.
F is valid iff for all interpretations /, | = F.

Note: F is valid iff =F is unsatisfiable.

14/79

Example

F: (¥x. p(x,x)) — (3x. Vy. p(x,y)) isinvalid.

How to show this?
Find interpretation / such that

= (¥ p(x,x)) = (3x. Vy. p(x,¥)))
I'= (Y% p(x;x)) A =(3x. Vy. p(x,y))

Choose D; ={0,1}
pr ={(0,0), (1,1)} i.e. ps(0,0) and p;(1,1) are true
pi(0,1) and py(1,0) are false

| falsifying interpretation = F is invalid.

15/79

Example

F: (¥x. p(x)) < (—=3x. =p(x)) is valid.

How to show this?
1. By expanding definitions. This is easy for this example.

2. By constructing a proof with, e.g., a “semantic argument method”
adapted to FOL.

Below we will develop such a semantic argument method adapted to FOL.
To define it, we first need the concept of “substitutions”.

16/79

Substitution
Suppose we want to replace terms with other terms in formulas, e.g.,
F:Vy. (p(x,y) — ply,x))

should be transformed to
G:Vy. (p(a;y) — ply.a))

We call the mapping from x to a a substitution, denoted as o : {x — a}.
We write Fo for the Formula G.

Another convenient notation is F[x] for a formula containing the variable x
and F[a] for Fo.

17/79

Substitution

A substitution ¢ is a mapping from variables to terms, written as
o {x1 = t1,...,Xp > tn}

such that n > 0 and x; # x; for all i,j = 1..n with | # j.
The set dom(o) = {x1,...,xn} is called the domain of o.

The set cod(o) = {t1,..., ty} is called the codomain of o. The set of all
variables occurring in cod(o) is called the variable codomain of o, denoted
by varcod(o).

By Fo we denote the application of o to the formula F, i.e., the formula F
where all free occurrences of x; are replaced by t;.

For a formula named F[x] we write F[t] as a shorthand for F[x]{x — t}.

18/79

Safe Substitution

Care has to be taken in presence of quantifiers:
F[x] : dy. y = Succ(x)
What is F[y]? We cannot just rename x to y with {x — y}:

Flyl: dy. y = Succ(y) ~ Wrong!

We need to first rename bound variables occuring in the codomain of the
substitution:

Fly] : 3y". y' = Succ(y) Right!
Renaming does not change the models of a formula:

(Jy. y = Succ(x)) & (Fy'. y' = Succ(x))

19/79

Recursive Definition of Substitution

o(x) if t = x and x € dom(o)
to =< x if t = x and x ¢ dom(o)
f(tio,..., tho) if t =f(t1,...,t,)

p(t, ..., tn) = p(tio, ..., tho)
(=F)o = —=(Fo)
(F N G)o=(Fo N Go)

(vx. F) Vx'. (F{x— x'})o if x € dom(c) Uvarcod(c), x" is fres
x. F)o =
Vx. Fo otherwise
(3x. F) Ix'. (F{x — x"})o if x € dom(c) Uvarcod(c), x’ is fres
x. F)o =
Ix. Fo otherwise

20/79

Example: Safe Substitution Fo

scope of vx

—
F:(vx. p(x,y)) = a(f(y), x)
bound by ¥x 7 ™\ free free ~° ™\ free

o {x—g(xy), y = f(x)}
Fo?
1. Rename x to x’ in (Vx. p(x,y)), as x € varcod(c) = {x,y}:

F': (vx. p(x,y)) — a(f(y),x)

where x’ is a fresh variable.
2. Apply o to F’:

Fo: (VX' p(x', f(x))) — q(f(f(x)),g(x,y))

21/79

Semantic Argument (“Tableau Calculus™)
Recall rules from propositional logic:

| E ~F | ¥ —F
I F I'E F
I E FAG I = FAG
I'E F / F / G
I):G<—and 2 Lorb&
I = FVG I = FVG
TEF | TEG T~ F
I B~ G
Il = F=>G I - F=>G
T'EF T TEG I F
I ¥ G
| E F&G / F& G
I'E FAG | T} FVG I'E FA=-G | T E -FAG

22/79

Example 1: Prove (Recap from “Propositional Logic”)
F: PANQ — PV =Q isvalid.

Let's assume that F is not valid and that / is a falsifying interpretation.

1. I E PANQ — PV -Q assumption

2.1 = PARQ land —

3. 1 ¥ PV -Q land —

4. | E P 2and A

5. I ¥~ P 3and V

6. I E 1 4 and 5 are contradictory
Thus F is valid.

23/79

Example 2: Prove (Recap from “Propositional Logic”)
F: (P - Q AN(Q - R) - (P — R) isvalid.

Let's assume that F is not valid.

1. | ¥ F assumption
2.1 E (P - Q) AN(Q — R) land —
3. 1 ¥ P —> R land —
4. | E P 3and —
5. 1 ¥ R 3and —
6. | E P — Q@ 2 and of A
7.1 E Q - R 2 and of A

24/79

Two cases from 6 (Recap from “Propositional Logic”)

8a. | ¥ P 6 and —
9a. | E L 4 and 8a are contradictory

and
8. I E Q@ 6 and —

Two cases from 7

9ba. | [Q 7and —
10ba. | E L 8b and 9ba are contradictory

and

9bb. | E R 7and —
106b. | E L 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

25/79

Example 3: Is (Recap from “Propositional Logic”)

F: PV Q — P AN Q valid?
Let's assume that F is not valid.

1. | ¥ PVQ—=PAQ

assumption
2.1 E PV Q land —
3.1 F PAR land —

Two options

4a. | = P 2 or 4b. I E Q 2
5a. | B~ Q@ 3 5b. | = P

We cannot derive a contradiction. F is not valid.

Falsifying interpretation:

h: {P +— true, Q@ — false} h: {Q +— true, P — false}
We have to derive a contradiction in both cases for F to be valid.

26/79

Semantic Argument for FOL
The following additional rules are used for quantifiers.

(The formula F[t] is obtained from F|[x] by application of the substitution

{x > t})

I & Vx. F[x] I Vx. F[x]

I = Flt] for any term t I ¥ Fla] for a fresh constant a

I & 3x. FX] I ¥ 3x. Flx]

| = Fla] for a fresh constant a I ¥ Ft] for any term t

(We assume there are infinitely many constant symbols.)

27/79

Example

Show that (3x. Yy. p(x,y)) = (Vx. Jy. p(y, x)) is valid.

Assume otherwise.
That is, assume [is a falsifying interpretation for this formula.

1. | B (3x. Vy. p(x,y)) = (Vx. 3y. p(y,x)) assumption

2. | E 3x.Vy. p(x,y) 1and —

3. | = Vx. 3y. p(y,x) 1and —

4. | E Vy.p(a,y) 2 and 3 (x > a fresh)
5. | = 3y. p(y,b) 3 and V (x — b fresh)
6. | = p(a,b) 4andV (y — b)

7. | ¥~ p(a,b) 5and 3 (y — a)

8. I E L 6and 7

Thus, the formula is valid.

28/79

Example
Is F: (¥x. p(x,x)) = (Ix. Vy. p(x,y)) is valid?

Assume [is a falsifying interpretation for F.

1. | B (Vx. p(x,x)) = (Ix. Vy. p(x,y)) assumption

2. | E ¥x p(x,x) land —

3. | = Ix. Vy. p(x,y) 1and —

4. | E p(a,a) 2and V (x — a1)

5 | & Vy. p(a1,y) 3and 3 (x+— a1)

6. | [~ p(a1,a) 5and ¥V (y — ay fresh)
7. | E p(az, a) 2and ¥V (x — a2)

8. | £ Vy. p(az,y) 3and 3 (x — ap)

9. | [~ p(ag,as) 8 and V (y — a3 fresh)

No contradiction. Falsifying interpretation / can be “read” from derivation:
true ify =x
D; =N, pi(x,y) = < false ify=x+1

arbitrary otherwise
29 /79

Semantic Argument Proof

To show that FOL formula F is valid, assume | = F and derive a
contradiction / = L in all branches.

It holds:

» Soundness
If every branch of a semantic argument proof reaches /| = L then F
is valid.

» Completeness
Every valid formula F has a semantic argument proof in which every
branch reaches | = L.

» Non-termination
For an invalid formula F the method is not guaranteed to terminate.

In other words, the semantic argument method is not a decision
procedure for validity.

30/79

Soundness (Proof Sketch)

Instead of

If every branch of a semantic argument proof reaches | = L
then F is valid

we show, equivalently, the contrapositive statement:

If F is invalid then for every semantic argument proof
there is a branch in that proof that does not reach | = L

Let F be any invalid formula and assume a (any) semantic argument proof
for F. We have to show there is some branch that does not reach | = L.

Because F is invalid there is an interpretation / such that | [~ F.

By construction, the semantic argument proof starts with “/ |~ F".

This is not a coincidince.

31/79

Soundness (Proof Sketch Cont'd)

This is not a coincidince:
One can show that there is a branch that preserves the property P:

P if the branch contains “l [~ F" (or “I |= F") then there is an
interpretation | such that | = F (or | |= F, respectively)

Informally, follow the proof line by line and prove that P holds as you go
down.

Formally, to prove P use induction on the number of statements along the
branch, with case analysis according to the inference rule applied. (If the
“or"-rule is applied, one child branch must be chosen.)

It follows the branch cannot contain “/ |= ", because otherwise with P
it follows | |= L, which is impossible. QED

32/79

Completeness (Proof Sketch)

Without loss of generality assume that F has no free variables.
(If so, replace these by fresh constants.)

A ground term is a term without variables.

Consider (finite or infinite) proof trees starting with | [~ F.
We assume fairness:

» All possible proof rules were applied in all non-closed branches.

» The V and d rules were applied for all ground terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (Konig's Lemma) and we have a

(finite) proof for F.

33/79

Completeness (Proof Sketch)

Otherwise the tree has at least one open (possibly infinite) branch P.
We show that F is not valid by extracting from P an interpretation / such
that / & F, the statement in the root of the proof .

1. The statements on that branch P form a Hintikka set:

» |[EFAGEPimplies/ EFePand] EGeP.

> | £EFAGePimplies!/ £#FePorl=GeP.

» | = Vx.F[x] € P implies for all ground terms t, | |= F[t] € P.

> | = Vx.F[x] € P implies for some fresh constant a, / [~ F[a] € P.
Similarly for =, =, < and 3.

2. Choose Dy := {t | t is a ground term}
3. Choose «a;[f](t1,...,tn) = f(t1,...,tn),

true if / t1,...,th) €P
a/[p](tl,...,t,,):{ = Pt)

false otherwise
4. | is such that all statements on the branch P hold true.
In particular / }= F in the root, thus F is not valid.

v

34/79

Proof of Item (4)

Item (4) on the previous slide stated more precsisely:
(41) if | =F € Pthen | = F, and
(4.2) if I = F € P then | = F, where | = (D;, ;) as constructed.

Define an ordering > on formulas as follows:
» FoG = Fand FoG > G foroe€ {AV,—, <}
> -F >~ F.
> Vx.F[x] > F[t] and 3x.F[x] > F][t] for any term t.
Clearly, > is a well-founded strict ordering
(> is irreflexive, transitive and there are no infinite chains).
Prove (4) by induction: let | = F € Por |l = F € P.
Base case: F is an atom. Directely prove | = F or | [~ F, respectively.

Induction case: F is of the form F1 o Fp, =F1, Vx.F1[x] or 3x.F1[x].
Induction hypotheses: (4) holds for all G with F > G.
Prove it follows / |= F or I [= F, respectively.

35/79

Proof of Item (4) — Base Case
Case | = F € P: We show it follows / = F. (*)

Case 1: F = Q, for some (ground) atom Q.
Thatis, I = Q € P.
By construction of / it follows | = Q.

Case 2: F=TT.
Thatis, | =T € P.

Trivial (every interpretation satisfies T by definition).

Case 3: F = 1.
Thatis, | =L € P.
This case is impossible as P is open (I = L ¢ P).

36/79

Proof of Item (4) — Induction Case
Case | = F € P: We show it follows / = F. (*)

Case 1: F = F; A\ F», for some F; and F>.
Thatis, EFRANF, €P

By Hintikka set, / = F, € P and | |= F» € P.
By induction hypothesis, | = F; and | = F;.
By semantics of A, | = F1 A F.

Case 2: F = —F1, for some F;.
Thatis, | E-FL €P

By Hintikka set, | - F, € P.

By induction hypothesis, | [~ F;.
By semantics of -, | &= —F;.

Other cases for propositional operators: similar

37/79

Proof of Item (4) — Induction Case
Case | = F € P: We show it follows / = F. (*)

Case 3: F = Vx.F1[x], for some F;.
That is, | =Vx.F1[x] € P.
For every ground term t € Dy it holds:
By Hintikka set | = Fi[t] € P.
By induction hypothesis | = Fy[t].
Because t evaluates to t under | we have | < {x — t} = F1[x].
By semantics of V it follows / = Vx.F1[x].

38/79

Proof of Item (4) — Induction Case
Case | = F € P: We show it follows / = F. (*)

Case 4: F = 3x.F1[x], for some F;.

That is, | = 3x.F[x] € P.

By Hintikka set / |= Fi[a] € P for some (fresh) constant a.

By induction hypothesis | = Fi[a].

Because a evaluates to a under [it follows | < {x — a} &= Fi[x].
By semantics of 3 it follows / = 3x.F1[x].

Case | £ F € P:
The proof of | = F is analogous to the case | = F € P.

QED

39/79

The Resolution Calculus

DPLL and its improvements are the practically best methods for PL

The resolution calculus (Robinson 1969) has been introduced as a basis for
automated theorem proving in first-order logic. Refined versions are still
the practically best methods for first-order logic. (Tableau methods are
better suited for modal logics than classical first-order logic.)
In the following;:

» Normal forms

(Resolution requires formulas in “conjunctive normal form™)
» The Propositional Resolution Calculus
» Resolution for FOL

40/79

Negation Normal Form (NNF)

NNF: Negations appear only in literals, and use only =, A, V ,V, 3.
To transform F to equivalent F” in NNF use recursively

the following template equivalences (left-to-right).

From propositional logic:

-—-Ff & F -T & L -1l & T

—|(F1 AN Fg) < —f VvV Ak

De Morgan's Law
ﬁ(Fl V Fz) & -fF AR

Fi - Fh & -FV FR
Fi & F < (A — k) AN (R - FR)
Additionally for first-order logic:
—Vx. F[x] & 3x. ~F[x]
—3x. F[x] & Vx. =F[x]

41/79

Example: Conversion to NNF

G: Yx. (Jy. p(x,y) N p(x,z)) — Fw.p(x,w) .

1. Vx. (3y. p(x,y) A p(x,2)) — Fw. p(x,w)

2. ¥x. =(3y. p(x,¥) A p(x,2)) V Iw. p(x, w)
FR— F <& -V F

3. Vx. (Vy. =(p(x,y) A p(x,2))) V Iw. p(x,w)
-3x. F[x] & ¥x. =F[x]

4. ¥x. (Yy. =p(x,y) V =p(x,z)) V Iw. p(x,w)

42/79

Prenex Normal Form (PNF)
PNF: All quantifiers appear at the beginning of the formula
Q1x1 -+ - QnXn. F[Xla Tt 7Xn]
where Q; € {V, 3} and F is quantifier-free.
Every FOL formula F can be transformed to formula F’ in PNF such that
F' < F.
1. Transform F to NNF

2. Rename quantified variables to fresh names
3. Move all quantifiers to the front

(Vx F) V. G < VYx (F vV G) (3xF) v G & 3x(F v G)
(Vx F) N G & VYx (F N G) 3xF) NG < Ix(F NG

These rules apply modulo symmetry of A and V

43/79

Example: PNF 1
Find equivalent PNF of

F: vx. (@y. p(x,y) A p(x,2)) = Ty. p(x,y))
1. Transform F to NNF

Fi: Vx. (Vy. =p(x,y) V =p(x,2)) Vv Ty. p(x,y)
2. Rename quantified variables to fresh names

Fo: Vx. (Vy. =p(x,y) V =p(x,2)) V Iw. p(x,w)
T in the scope of Vx

44/79

Example: PNF 2
3. Add the quantifiers before Fp
F3: ¥x. VYy. 3w. =p(x,y) V —p(x,z) V p(x,w)
Alternately,
Fj: ¥x. 3w. Vy. =p(x,y) V =p(x,2) V p(x,w)

Note: In F3, Vy is in the scope of Vx, therefore the order of
quantifiers must be - --Vx---Vy---
F3 & Fand F; & F

Note: However G < F

G: Vy. dw. Vx. =p(x,y) V =p(x,z) V p(x,w)

45/79

Skolem Normal Form (SNF)
SNF: PNF and additionally all quantifiers are V

Vxqy -+ Vxp. Flx1, -+ ,xa] where F is quantifier-free.

Every FOL formula F can be transformed to equi-satisfiable formula F’ in
SNF.

1. Transform F to NNF
2. Transform to PNF

3. Starting from the left, stepwisely remove all 3-quantifiers by
Skolemization

46/79

Skolemization

Replace
Vxp o xeor s 3xee QrprXkst s QuXn - Flxt, - Xk, o+ 5 Xn)
T Qi e{v,3}
by
Vxy - VX1 QreprXkgr - Qnxne Flxe, oot xp]
where
t =f(x1,...,xxk_1) where f is a fresh function symbol

The term t is called a Skolem term for x; and f is called a
Skolem function symbol.

47/79

Example: SNF

Convert

F3: Vx.Yy. dw. =p(x,y) V —p(x,z) V p(x,w)
to SNF.
Let f(x,y) be a Skolem term for w:

Fa: Vx.Vy. =p(x,y) V =p(x,2) V p(x, f(x,y))
We have F3 < F4 however it holds

‘A formula F is satisfiable iff the SNF of F is satisfiable.

48/79

Conjunctive Normal Form

CNF: Conjunction of disjunctions of literals

/\\/E,-J for literals /;
i

Every FOL formula can be transformed into equi-satisfiable CNF.

1.

Transform F to NNF

2. Transform to PNF
3. Transform to SNF
4,
5

. Use the following template equivalences (left-to-right):

Leave away V-quantifiers (This is just a convention)

(Fl A F2) vV 3 & (Fl vV F3) A (F2 vV F3)
F1 V (F2 A\ F3) = (Fl V Fg) A (Fl V F3)

49 /79

Example: CNF
Convert
Fa: Vx.Vy. _'p(X7y) v _'p(X7Z) v ,D(X, f(Xa}/))
to CNF.
Leave away V-quantifiers
Fs: =p(x,y) V =p(x,z) V p(x,f(x,y))
Fs is already in CNF.

Conversion from SNF to CNF is again an equivalence transformation.

50/79

First-order Clause Logic Terminology

Convention: a set of clauses (or “clause set”)
N:{C,"C,':\/g,',j, fZ]...I'I}
J
represents the CNF

/\ \/Ei,j for literals ¢;
i

Clause

Example

N ={P(a), =P(x) v P(f(x)), Q(y,z), ~P(f(f(x)))}
represents the formula

Vx. Vy. Vz. (P(a) A (=P(x) V P(f(x))) A Q(y, z) A =P(f(f(x))))
Equivalently

P(a)A(Vx. (=P(x)VP(f(x))A(Yy.Vz. Q(y,z))A(Vx. =P(f(f(x))))

51/79

Refutational Theorem Proving

The full picture in the context of clause logic:
Suppose we want to show that

(3x. Yy. p(x,y)) = (Vx. Jy. p(y,x)) is valid.

The following all are equivalent:

=((3x. Vy. p(x,y)) = (Vx. Jy. p(y,x))) is unsatisfiable
(3x. Yy. p(x,¥)) A =(¥x. Jy. p(y,x)) is unsatisfiable
(3x. Yy. p(x,y)) A (3x. Vy. =p(y,x)) is unsatisfiable
(Yy. p(c,y)) A (Vy. =p(y,d)) is unsatisfiable

N = {p(c,y),-p(y,d} is unsatisfiable

The resolution calculus is a “refutational theorem proving” method:
instead of proving a given formual F valid it (tries to) prove the clausal
form of its negation unsatisfiable.

Can’t we use the semantic argument method for refutational theorem
proving?

52/79

Semantic Argument Method applied to Clause Logic

Let N={G][x],..., C,[X]} be a set of clauses.

Either N is unsatisfiable or else semantic argument gives open branch:
/ I;é —|(C1/\--'/\Cn)
I = GAN---NG,
I = G

I = G
I = Gt for all i = 1..n and all ground terms t

Conclusion (a bit sloppy): checking satisfiability of N can be done
“syntactically”, by fixing the domain Dy, interpretation «y[f] and treating
V-quantification by exhaustive replacement by ground terms.

That “works”, but requires enumerating all (!) ground terms.
Resolution does better by means of “unification” instead of “enumeration”.

53/79

(The Propositional Resolution Calculus

Propositional resolution inference rule

CVA AV D
cvD

Terminology: C V D: resolvent; A: resolved atom

Propositional (positive) factoring inference rule

CVAVA
CVA
Terminology: C V A: factor

These are schematic inference rules:

C and D — propositional clauses

A — propositional atom

“V" is considered associative and commutative

Recap)

54 /79

(Derivations Recap)

Let N={C,..., Ck} be a set of input clauses

A derivation (from N) is a sequence of the form

Ciy..., C, Chttse vy G ..

~~

Input Derived
clauses clauses

such that for every n > k41
» C, is a resolvent of C; and Cj, for some 1 <i,j < n, or
» C, is a factor of C;, for some 1 </ < n.

The empty disjunction, or empty clause, is written as [

A refutation (of N) is a derivation from N that contains [J

55 /79

(Sample Refutation

[ay
©

© 0 N o bk w =

-AV-AVB
AV B
-CVv-B

C
-AVBVB
-AV B
BV B

B

-C

O

(Res

(Res

(Res
(Res

(given)
(given)
(given)
(given)

. 2. into 1.
(Fact. 5.

. 2. into 6.
(Fact. 7.

. 8. into 3.
. 4. into 9.

)
)
)
)
)
)

Recap)

56 /79

Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses Ground instances
P(f(x),y) {P(f(a),a),..., P(f(f(a)).f(f(a))),...}
-P(z,2) {=P(a),...,~P(f(f(a)),f(f(a))),...}

Only common instances of P(f(x),y) and P(z, z) give rise to inference:

P(f(f(a)). f(f(a) —P(f(f(a)), f(f(a)))
L

Unification

All common instances of P(f(x),y) and P(z, z) are instances of P(f(x), f(x))
P(f(x),f(x)) is computed deterministically by unification
First-order resolution

Justified by existence of P(f(x), f(x))
Can represent infinitely many propositional resolution inferences

57 /79

Unification

A substitution + is a unifier of terms s and t iff sy = t.

A unifier o is most general iff for every unifier vy of the same terms there is
a substitution d such that v = § o o (we write).

Notation: o = mgu(s, t)
Example

s = car(red,y, z)
t = car(u, v, ferrari)
Then
v={uw> red, y — fast, v — fast, z — ferrari}

is a unifier, and
o={uw red, y > v, z— ferrari}

is a mgu for s and t.
With 6 = {v ~ fast} obtain ¢ = 7.

58/79

Unification of Many Terms

Let E = {s; = t1,...,5, = tp} be a multiset of equations, where s; and t;
are terms or atoms. The set E is called a unification problem.

A substitution o is called a unifier of E if sjc = tjo forall 1 <i < n.
If a unifier of E exists, then E is called unifiable.

The rule system on the next slide computes a most general unifer of a
unification problems or “fail” (L) if none exists.

59/79

Rule Based Naive Standard Unification

Starting with a given unification problem E, apply the following template
equivalences as long as possible, where: “s =t, E" means “{s =t} UE".

t=t,E<E (Trivial)
f(s1,...,sn) =f(t1,....tn),E & s1=1t1,...,5, = tp, E
(Decompose)
f(..)=g(...),Ee L (Clash)
x=tEsx=t E{x—t} (Apply)
if x € var(E), x & var(t)
x=t,Es L (Occur Check)

if x £ t, x € var(t)
t=x,Eex=tE (Orient)
if t is not a variable

60 /79

Example 1

Let E; = {f(x,g(x),z) = f(x,y,y)} the unification problem to be solved.
In each step, the selected equation is underlined.

Ei: f(x,8(x),z) =f(x,y,y) (given)

Ey: x=x, g(x)=y, z=y (by Decompose)

Es: gx)=y, z=y (by Trivial)
Es: y=g(x), z=y (by Orient)
Es: y=g(x), z=g(x) (by Apply {y — g(x)})

Result is mgu o = {y — g(x), z+— g(x)}.

61/79

Example 2

Let E; = {f(x,g(x)) = f(x,x)} the unification problem to be solved.
In each step, the selected equation is underlined.

E; -
E :
Es:
E, -
Es :

f(x, &(x)) = f(x,x)

g(x) =x
x = g(x)
1

There is no unifier of Ey.

(given)

(by Decompose)
(by Trivial)

(by Orient)

(by Occur Check)

62/79

Main Properties

The above unification algorithm is sound and complete:

Given E = {s; = t1,...,S, = tn}, exhaustive application of the above rules
always terminates, and one of the following holds:

» The result is a set equations in solved form, that is, is of the form
X1 = Uly ..., X = Uy

with x; pairwise distinct variables, and x; & var(u;).

In this case, the solved form represents the substitution

o ={x1— u1,...,xx — ux} and it is a mgu for E.
» The result is L. In this case no unifier for E exists.

63/79

First-Order Resolution Inference Rules

CVA Dv-B

(VD) if 0 = mgu(A, B) [resolution]
o

CVAVB

(CV Ao
For the resolution inference rule, the premise clauses have to be renamed
apart (made variable disjoint) so that they don't share variables.

if o = mgu(A, B) [factoring]

Example

Q(z) vV P(z,2) —P(x,y)
Q(x)

where 0 = [z +— x,y — x] [resolution]

Q(z) vV P(z,a) vV P(a,y)
Q(a) V P(a,a)

where o0 = [z+— a,y + a] [factoring]

64/79

Example

1) Vx.allergies(x) — sneeze(x)
2) Vx.Vy.cat(y) A livesWith(x, y) A allergicToCats(x) — allergies(x)

(1)

(2)

(3) Vx.cat(catOf(x))

(4) livesWith(jerry, catOf(jerry))
Next

> Resolution applied to the CNF of (1) A --- A (4).
» Proof that (1) A --- A (4) entails allergicToCats(jerry) — sneeze(jerry)

65/79

Sample Derivation From (1) - (4)

(1) —allergies(x) V sneeze(x) (Given)
(2) —cat(y) Vv —livesWith(x, y) V —allergicToCats(x) V allergies(x) (Given)
(3) cat(catOf(x)) (Given)
(4) livesWith(jerry, catOf(jerry)) (Given)
(5) —livesWith(x, catOf(x)) V —allergicToCats(x) V allergies(x)

(Res 2+3, o = [y + catOf(x)])

(6) —livesWith(x, catOf(x)) V —allergicToCats(x) V sneeze(x)
(Res 145, o =])

(7) —allergicToCats(jerry) V sneeze(jerry) (Res 4+6, o = [x > jerry])

Some more (few) clauses are derivable, but not infinitely many.
Not derivable are, e.g.,:

cat(catOf(jerry)), cat(catOf(catOf(jerry))), ...
But the tableau method would derive then all!

66 /79

Refutation Example

We want to show

(1) A--- A (4) = allergicToCats(jerry) — sneeze(jerry)

Equivalently, the CNF of

=((L)A--- A (4) — (allergicToCats(jerry) — sneeze(jerry)))

is unsatisfiable. Equivalently

(1) - (4) (Given)
(A) allergicToCats(jerry) (Conclusion)
(B) —sneeze(jerry) (Conclusion)

is unsatisfiable.

But with the derivable clause
(7) —allergicToCats(jerry) V sneeze(jerry)

the empty clause [is derivable in two more steps.
67,/79

Sample Refutation — The Barber Problem

set(binary_res). %/ This is an "otter" input file
formula_list(sos).

%% Every barber shaves all persons who do not shave themselves:
all x (B(x) -> (all y (-S(y,y) —-> S(x,y)))).

%% No barber shaves a person who shaves himself:

all x (B(x) -> (all y (S(y,y) -> -S(x,y)))).

%% Negation of "there are no barbers"

exists x B(x).

end_of_list.

otter finds the following refutation (clauses 1 — 3 are the CNF):

1 [1 -B&x)IS(y,y) IS(x,y).

[0 -B&x)I| -S(y,y) | -Sx,y).

[0 B($c1).

[binary,1.1,3.1] S(x,x)|S($cl,x).
[factor,4.1.2] S($c1,$cl).

6 [binary,2.1,3.1] -S(x,x)| -S($cl,x).
10 [factor,6.1.2] -S($c1,$cl).

11 [binary,10.1,5.1] $F.

o W N

68 /79

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete.

» That is, if a clause set is unsatisfiable, then resolution will derive the
empty clause [J eventually.

» More precisely: If a clause set is unsatisfiable and closed under the
application of the resolution and factoring inference rules, then it
contains the empty clause [].

» Proof: Herbrand theorem (see below) + completeness of propositional
resolution + Lifting Lemma

Moreover, in order to implement a resolution-based theorem prover, we
need an effective procedure to close a clause set under the application of
the resolution and factoring inference rules. See the “given clause loop”
below.

69 /79

First-order Clause Logic: Herbrand Semantics

Let F be a formula. An input term (wrt. F) is a term that contains
function symbols occurring in F only.

Proposition (“Herband models existence”.) Let N be a clause set.
If N is satisfiable then there is a model | = N such that

» Dy :={t] tis a input ground term over }
> off](tr,... tn) = f(t1,..., tn).
Proof. Assume N is satisfiable. By soundness, the semantic argument

method gives us an (at least one) open branch. The completeness proof
allows us to extract from this branch the model [such that

» D;:={t]| tisa ground term}
> a[f](t1,..., tn) = f(t1,..., tn)
» «a[p](ts,...,ty) = “extracted from open branch”

Because N is a clause set, no inference rule that introdcues a fresh constant
is ever applicable. Thus, D; consists of input (ground) terms only. O

70/79

First-order Clause Logic: Herbrand Semantics

Reformulate the previous in commonly used terminology

Herbrand interpretation

» HU; := D, from above is the Herbrand universe, however use ground
terms only (terms without variables).
» HB; = {p(t1,...,tn) | t1,...,tn € HU,} is the Herbrand base.

» Any subset of HBy is a Herbrand interpretation (misnomer!), exactly
those atoms that are true.

» For a clause C[x] and t € HU, the clause C[t] is a ground instance.
» For a clause set N the set {C[t] | C[x] € N} is its Herbrand expansion.

71/79

Example: Herbrand Interpretation

Function symbols: 0, s (for the “+1" function), +
Predicate symbols: <, <

HU; = {0,5s(0),s(s(0)),...,04+ 0,0+ s(0),s(0) +0,...}
N as a Herbrand interpretation, a subset of HB;:

I={ 0<0, 0<s(0), 0<s(s(0)), ..
0+40<0,0+0<s(0

) -
» (s(0) +0) +5(0) < (0)+((0) +5(0))

*

5(0) 40 < 5(0) + 0+ 0+ 5(0)
)

72/79

Herbrand Theorem

The soundness and completeness proof of the semantic argument method
applied to clause logic provides the following results.

» If a clause set N is unsatisfiable then it has no Herbrand model
(trivial).

» If a clause set N is satisfiable then it has a Herbrand model.
This is the “Herbrand models existence” proposition above.

» Herbrand theorem: if a clause set N is unsatisfiable then some finite
subset of its Herbrand expansion is unsatisfiable.

Proof: Suppose N is unsatisfiable. By completeness, there is a proof
by semantic argument using the Herbrand expansion of N. Tye proof
is a finite tree and hence can use only finitely many elements of the
Herbrand expansion.

73/79

Herbrand Theorem lllustration

Clause set

N ={P(a), ~P(x) v P(f(x)), Qly,z), ~P(f(f(a)))}
Herbrand universe

HU, ={a, f(a), f(f(a)),f(f(f(a))),...
Herbrand expansion

N = {P(a)}
U{=P(a) vV P(f(2)), -P(f(a)) VP
~P(f(f(a))) ,
U{Q(s,2), Q(a,1(a), Q(f(a),a), Q(f(a),(a)),...}
U {=P(f(f(a)))}

74/79

Herbrand Theorem lllustration

HB; = {P(2), P(7(2)), P(), P()}
A e
Ao Ay Ao A3
U{Q(5,2), Q(a,7(2)), Q(1(a),2), Q(F(a),F(a)), ...}
——
Bo B B> B3

By construction, every atom in N8 occurs in HB,

Replace in V& every (ground) atom by its propositional counterpart:

Ng:op = {AO}
U{—|A0\/A1, —|A1\/A2,—|A2\/A3,...}
U{BOa Bl) B27 B3a°"}

U {—\Az}
The subset {Ag, —AoV A1, 2A1 V Az, —Ay} is unsatisfiable, hence so is N.

75/79

Lifting Lemma

Let C and D be variable-disjoint clauses. If

D C
IESY
Do Cp

c [propositional resolution]

then there exists a substitution 7 such that
D C
C//

|-

C'=C'r

[first-order resolution]

An analogous lifting lemma holds for factoring.

76 /79

The “Given Clause Loop”

As used in the Otter theorem prover:
Lists of clauses maintained by the algorithm: usable and sos.
Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)
1. Let given_clause be the ‘lightest’ clause in sos;
2. Move given_clause from sos to usable;
3. Infer and process new clauses using the inference rules in
effect; each new clause must have the given_clause as
one of its parents and members of usable as its other
parents; new clauses that pass the retention tests
are appended to sos;
End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.

77/79

The “Given Clause Loop” - Graphically

given

clause

C

consequences

—

usable list

)

set of
support

ers

78/79

Decidability of FOL

» FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says "yes” if F is valid or say “no” if F is
invalid.

» FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid, but
may not halt if F is invalid.

On the other hand,

> PL is decidable
There does exist an algorithm for deciding if a PL formula F is valid,

e.g. the truth-table procedure.

79/79

