
First-Order Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/~baumgart/

Data61/CSIRO and ANU

August 2019

1 / 79

First-Order Logic (FOL)

Recall: propositional logic: variables are statements ranging over
{true/false}

SocratesIsHuman

SocratesIsHuman→ SocratesIsMortal

SocratesIsMortal

FOL: variables range over individual objects

Human(socrates)

∀x . (Human(x)→ Mortal(x))

Mortal(socrates)

In these lectures:

I (Syntax and) semantics of FOL

I Normal forms

I Reasoning: tableau calculus, resolution calculus
2 / 79

First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · ·
terms variables, constants or

n-ary function applied to n terms as arguments

a, x , f (a), g(x , b), f (g(x , g(b)))

predicates p, q, r , · · ·
atom >, ⊥, or an n-ary predicate applied to n terms

literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant

0-ary predicates: P,Q,R, . . .
3 / 79

quantifiers

existential quantifier ∃x .F [x]
“there exists an x such that F [x]”

universal quantifier ∀x .F [x]
“for all x , F [x]”

FOL formula literal, application of logical connectives
(¬, ∨ , ∧ , → , ↔) to formulae,
or application of a quantifier to a formula

4 / 79

Example

FOL formula

∀x . p(f (x), x) → (∃y . p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

) ∧ q(x , f (x))

︸ ︷︷ ︸
F

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”

An occurrence of x within the scope of ∀x or ∃x is bound, otherwise it is
free.

5 / 79

Translations of English Sentences into FOL

I The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

I Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2

→ ∀x , y , z .
integer(x) ∧ integer(y) ∧ integer(z)

∧ x > 0 ∧ y > 0 ∧ z > 0

→ xn + yn 6= zn

6 / 79

FOL Semantics

An interpretation I : (DI , αI) consists of:

I Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countably), or

reals (uncountably infinite)
I Assignment αI

I each variable x assigned value αI [x] ∈ DI

I each n-ary function f assigned

αI [f] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value αI [a] ∈ DI

I each n-ary predicate p assigned

αI [p] : Dn
I → {true, false}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (true, false)

7 / 79

Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI)
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers

αI [f] : D2
I 7→ DI αI [g] : D2

I 7→ DI

(x , y) 7→ x + y (x , y) 7→ x − y

αI [p] : D2
I 7→ {true, false}

(x , y) 7→

{
true if x < y

false otherwise

Also αI [x] = 13, αI [y] = 42, αI [z] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1

2. I 6|= p(y , g(z , x)) since 42 ≥ 1− 13

3. I |= F by 1, 2, and →

F is true under I
8 / 79

Semantics: Quantifiers

Let x be a variable.
An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

I DI = DJ

I αI [y] = αJ [y] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote

J : I / {x 7→ v}

the x-variant of I in which αJ [x] = v for some v ∈ DI . Then

I I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F

9 / 79

Example

Consider F : ∀x . animal(x)→ ∃y . (fruit(y) ∧ loves(x , y)) and I = (DI , αI):

DI = { , , , }
αI [animal] = {() 7→ true, () 7→ true, . . .} (false everywhere else)

αI [fruit] = {() 7→ true, () 7→ true, . . .}
αI [loves] = {(,) 7→ true, (,) 7→ true, . . .}

Compute the value of F under I :

I |= ∀x . animal(x)→ ∃y . (fruit(y) ∧ loves(x , y))

iff for all v ∈ { , , , },
I / {x 7→ v} |= animal(x)→ ∃y . (fruit(y) ∧ loves(x , y))

Check all four cases, e.g.:

I / {x 7→ } |= animal(x)→ ∃y . (fruit(y) ∧ loves(x , y))

I / {x 7→ } |= ∃y . (fruit(y) ∧ loves(x , y))iff

there exists v1 ∈ { , , , },iff

I / {x 7→ } / {y 7→ v1} |= loves(x , y)

I / {x 7→ } / {y 7→ } |= loves(x , y) (true)iff
10 / 79

Example

Consider

F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notation of the term ·(2, y),
and 2 · y = x is the infix notation of the atom =(·(2, y), x)

I 2 is a 0-ary function symbol (a constant).

I · is a 2-ary function symbol.

I = is a 2-ary predicate symbol.

I x , y are variables.

What is the truth-value of F?

11 / 79

Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpretation for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff

for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI ,

there exists v1 ∈ DI , I / {x 7→ v} / {y 7→ v1} |= 2 · y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.

12 / 79

Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpretation for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff

for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI ,

there exists v1 ∈ DI , I / {x 7→ v} / {y 7→ v1} |= 2 · y = x

The latter is true since for arbitrary v ∈ DI we can chose v1 with v1 = v
2 .

13 / 79

Satisfiability and Validity

F is satisfiable iff there exists an interpretation I such that I |= F .

F is valid iff for all interpretations I , I |= F .

Note: F is valid iff ¬F is unsatisfiable.

14 / 79

Example

F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) is invalid.

How to show this?
Find interpretation I such that

I |= ¬((∀x . p(x , x)) → (∃x . ∀y . p(x , y)))

i.e.

I |= (∀x . p(x , x)) ∧ ¬(∃x . ∀y . p(x , y))

Choose DI = {0, 1}
pI = {(0, 0), (1, 1)} i.e. pI (0, 0) and pI (1, 1) are true

pI (0, 1) and pI (1, 0) are false

I falsifying interpretation ⇒ F is invalid.
15 / 79

Example

F : (∀x . p(x)) ↔ (¬∃x . ¬p(x)) is valid.

How to show this?

1. By expanding definitions. This is easy for this example.

2. By constructing a proof with, e.g., a “semantic argument method”
adapted to FOL.

Below we will develop such a semantic argument method adapted to FOL.
To define it, we first need the concept of “substitutions”.

16 / 79

Substitution

Suppose we want to replace terms with other terms in formulas, e.g.,

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substitution, denoted as σ : {x 7→ a}.
We write Fσ for the Formula G .

Another convenient notation is F [x] for a formula containing the variable x
and F [a] for Fσ.

17 / 79

Substitution

A substitution σ is a mapping from variables to terms, written as

σ : {x1 7→ t1, . . . , xn 7→ tn}

such that n ≥ 0 and xi 6= xj for all i , j = 1..n with i 6= j .

The set dom(σ) = {x1, . . . , xn} is called the domain of σ.

The set cod(σ) = {t1, . . . , tn} is called the codomain of σ. The set of all
variables occurring in cod(σ) is called the variable codomain of σ, denoted
by varcod(σ).

By Fσ we denote the application of σ to the formula F , i.e., the formula F
where all free occurrences of xi are replaced by ti .

For a formula named F [x] we write F [t] as a shorthand for F [x]{x 7→ t}.

18 / 79

Safe Substitution

Care has to be taken in presence of quantifiers:

F [x] : ∃y . y = Succ(x)

What is F [y]? We cannot just rename x to y with {x 7→ y}:

F [y] : ∃y . y = Succ(y) Wrong!

We need to first rename bound variables occuring in the codomain of the
substitution:

F [y] : ∃y ′. y ′ = Succ(y) Right!

Renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))

19 / 79

Recursive Definition of Substitution

tσ =


σ(x) if t = x and x ∈ dom(σ)

x if t = x and x /∈ dom(σ)

f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn)

p(t1, . . . , tn) = p(t1σ, . . . , tnσ)

(¬F)σ = ¬(Fσ)

(F ∧ G)σ = (Fσ ∧ Gσ)

· · ·

(∀x . F)σ =

{
∀x ′. (F{x 7→ x ′})σ if x ∈ dom(σ) ∪ varcod(σ), x ′ is fresh

∀x . Fσ otherwise

(∃x . F)σ =

{
∃x ′. (F{x 7→ x ′})σ if x ∈ dom(σ) ∪ varcod(σ), x ′ is fresh

∃x . Fσ otherwise

20 / 79

Example: Safe Substitution Fσ

F : (∀x .
scope of ∀x︷ ︸︸ ︷
p(x , y)) → q(f (y), x)

bound by ∀x ↗ ↖ free free ↗ ↖ free

σ : {x 7→ g(x , y), y 7→ f (x)}

Fσ?

1. Rename x to x ′ in (∀x . p(x , y)), as x ∈ varcod(σ) = {x , y}:

F ′ : (∀x ′. p(x ′, y)) → q(f (y), x)

where x ′ is a fresh variable.

2. Apply σ to F ′:

Fσ : (∀x ′. p(x ′, f (x))) → q(f (f (x)), g(x , y))

21 / 79

Semantic Argument (“Tableau Calculus”)
Recall rules from propositional logic:

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G
I |= F
I |= G ←and

I 6|= F ∧ G
I 6|= F | I 6|= G

↖or

I |= F ∨ G
I |= F | I |= G

I 6|= F ∨ G
I 6|= F
I 6|= G

I |= F → G
I 6|= F | I |= G

I 6|= F → G
I |= F
I 6|= G

I |= F ↔ G
I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G
I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F
I |= ⊥

22 / 79

Example 1: Prove (Recap from “Propositional Logic”)

F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption

2. I |= P ∧ Q 1 and →
3. I 6|= P ∨ ¬Q 1 and →
4. I |= P 2 and ∧
5. I 6|= P 3 and ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.

23 / 79

Example 2: Prove (Recap from “Propositional Logic”)

F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption

2. I |= (P → Q) ∧ (Q → R) 1 and →
3. I 6|= P → R 1 and →
4. I |= P 3 and →
5. I 6|= R 3 and →
6. I |= P → Q 2 and of ∧
7. I |= Q → R 2 and of ∧

24 / 79

Two cases from 6 (Recap from “Propositional Logic”)

8a. I 6|= P 6 and →
9a. I |= ⊥ 4 and 8a are contradictory

and

8b. I |= Q 6 and →

Two cases from 7

9ba. I 6|= Q 7 and →
10ba. I |= ⊥ 8b and 9ba are contradictory

and

9bb. I |= R 7 and →
10bb. I |= ⊥ 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

25 / 79

Example 3: Is (Recap from “Propositional Logic”)

F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption

2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

Two options

4a. I |= P 2 or

5a. I 6|= Q 3

4b. I |= Q 2

5b. I 6|= P 3

We cannot derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in both cases for F to be valid.

26 / 79

Semantic Argument for FOL

The following additional rules are used for quantifiers.

(The formula F [t] is obtained from F [x] by application of the substitution
{x 7→ t}.)

I |= ∀x . F [x]

I |= F [t] for any term t

I 6|= ∀x . F [x]

I 6|= F [a] for a fresh constant a

I |= ∃x . F [x]

I |= F [a] for a fresh constant a

I 6|= ∃x . F [x]

I 6|= F [t] for any term t

(We assume there are infinitely many constant symbols.)

27 / 79

Example

Show that (∃x . ∀y . p(x , y))→ (∀x . ∃y . p(y , x)) is valid.

Assume otherwise.
That is, assume I is a falsifying interpretation for this formula.

1. I 6|= (∃x . ∀y . p(x , y))→ (∀x . ∃y . p(y , x)) assumption

2. I |= ∃x . ∀y . p(x , y) 1 and →
3. I 6|= ∀x . ∃y . p(y , x) 1 and →
4. I |= ∀y . p(a, y) 2 and ∃ (x 7→ a fresh)

5. I 6|= ∃y . p(y , b) 3 and ∀ (x 7→ b fresh)

6. I |= p(a, b) 4 and ∀ (y 7→ b)

7. I 6|= p(a, b) 5 and ∃ (y 7→ a)

8. I |= ⊥ 6 and 7

Thus, the formula is valid.

28 / 79

Example

Is F : (∀x . p(x , x))→ (∃x . ∀y . p(x , y)) is valid?

Assume I is a falsifying interpretation for F .

1. I 6|= (∀x . p(x , x))→ (∃x . ∀y . p(x , y)) assumption

2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2 and ∀ (x 7→ a1)

5. I 6|= ∀y . p(a1, y) 3 and ∃ (x 7→ a1)

6. I 6|= p(a1, a2) 5 and ∀ (y 7→ a2 fresh)

7. I |= p(a2, a2) 2 and ∀ (x 7→ a2)

8. I 6|= ∀y . p(a2, y) 3 and ∃ (x 7→ a2)

9. I 6|= p(a2, a3) 8 and ∀ (y 7→ a3 fresh)

. . .

No contradiction. Falsifying interpretation I can be “read” from derivation:

DI = N, pI (x , y) =


true if y = x

false if y = x + 1

arbitrary otherwise
29 / 79

Semantic Argument Proof

To show that FOL formula F is valid, assume I 6|= F and derive a
contradiction I |= ⊥ in all branches.

It holds:

I Soundness
If every branch of a semantic argument proof reaches I |= ⊥ then F
is valid.

I Completeness
Every valid formula F has a semantic argument proof in which every
branch reaches I |= ⊥.

I Non-termination
For an invalid formula F the method is not guaranteed to terminate.
In other words, the semantic argument method is not a decision
procedure for validity.

30 / 79

Soundness (Proof Sketch)

Instead of

If every branch of a semantic argument proof reaches I |= ⊥
then F is valid

we show, equivalently, the contrapositive statement:

If F is invalid then for every semantic argument proof
there is a branch in that proof that does not reach I |= ⊥

Let F be any invalid formula and assume a (any) semantic argument proof
for F . We have to show there is some branch that does not reach I |= ⊥.

Because F is invalid there is an interpretation I such that I 6|= F .

By construction, the semantic argument proof starts with “I 6|= F”.

This is not a coincidince.

31 / 79

Soundness (Proof Sketch Cont’d)

This is not a coincidince:
One can show that there is a branch that preserves the property P:

P if the branch contains “I 6|= F” (or “I |= F”) then there is an
interpretation I such that I 6|= F (or I |= F , respectively)

Informally, follow the proof line by line and prove that P holds as you go
down.

Formally, to prove P use induction on the number of statements along the
branch, with case analysis according to the inference rule applied. (If the
“or”-rule is applied, one child branch must be chosen.)

It follows the branch cannot contain “I |= ⊥”, because otherwise with P
it follows I |= ⊥, which is impossible. QED

32 / 79

Completeness (Proof Sketch)

Without loss of generality assume that F has no free variables.
(If so, replace these by fresh constants.)

A ground term is a term without variables.

Consider (finite or infinite) proof trees starting with I 6|= F .
We assume fairness:

I All possible proof rules were applied in all non-closed branches.

I The ∀ and ∃ rules were applied for all ground terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (König’s Lemma) and we have a
(finite) proof for F .

33 / 79

Completeness (Proof Sketch)

Otherwise the tree has at least one open (possibly infinite) branch P.
We show that F is not valid by extracting from P an interpretation I such
that I 6|= F , the statement in the root of the proof .

1. The statements on that branch P form a Hintikka set:
I I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I I |= ∀x .F [x] ∈ P implies for all ground terms t, I |= F [t] ∈ P.
I I 6|= ∀x .F [x] ∈ P implies for some fresh constant a, I 6|= F [a] ∈ P.
I Similarly for ¬, →, ↔ and ∃.

2. Choose DI := {t | t is a ground term}
3. Choose αI [f](t1, . . . , tn) = f (t1, . . . , tn),

αI [p](t1, . . . , tn) =

{
true if I |= p(t1, . . . , tn) ∈ P

false otherwise

4. I is such that all statements on the branch P hold true.
In particular I 6|= F in the root, thus F is not valid.

34 / 79

Proof of Item (4)

Item (4) on the previous slide stated more precsisely:

(4.1) if I |= F ∈ P then I |= F , and

(4.2) if I 6|= F ∈ P then I 6|= F , where I = (Di , αi) as constructed.

Define an ordering � on formulas as follows:

I F ◦ G � F and F ◦ G � G for ◦ ∈ {∧,∨,→,↔}.
I ¬F � F .

I ∀x .F [x] � F [t] and ∃x .F [x] � F [t] for any term t.

Clearly, � is a well-founded strict ordering
(� is irreflexive, transitive and there are no infinite chains).

Prove (4) by induction: let I |= F ∈ P or I 6|= F ∈ P.

Base case: F is an atom. Directely prove I |= F or I 6|= F , respectively.

Induction case: F is of the form F1 ◦ F2, ¬F1, ∀x .F1[x] or ∃x .F1[x].
Induction hypotheses: (4) holds for all G with F � G .
Prove it follows I |= F or I 6|= F , respectively.

35 / 79

Proof of Item (4) – Base Case

Case I |= F ∈ P: We show it follows I |= F . (*)

Case 1: F = Q, for some (ground) atom Q.

That is, I |= Q ∈ P.

By construction of I it follows I |= Q.

Case 2: F = >.

That is, I |= > ∈ P.

Trivial (every interpretation satisfies > by definition).

Case 3: F = ⊥.

That is, I |= ⊥ ∈ P.

This case is impossible as P is open (I |= ⊥ /∈ P).

36 / 79

Proof of Item (4) – Induction Case

Case I |= F ∈ P: We show it follows I |= F . (*)

Case 1: F = F1 ∧ F2, for some F1 and F2.

That is, I |= F1 ∧ F2 ∈ P

By Hintikka set, I |= F1 ∈ P and I |= F2 ∈ P.

By induction hypothesis, I |= F1 and I |= F2.

By semantics of ∧, I |= F1 ∧ F2.

Case 2: F = ¬F1, for some F1.

That is, I |= ¬F1 ∈ P

By Hintikka set, I 6|= F1 ∈ P.

By induction hypothesis, I 6|= F1.

By semantics of ¬, I |= ¬F1.

Other cases for propositional operators: similar

37 / 79

Proof of Item (4) – Induction Case

Case I |= F ∈ P: We show it follows I |= F . (*)

Case 3: F = ∀x .F1[x], for some F1.

That is, I |= ∀x .F1[x] ∈ P.

For every ground term t ∈ DI it holds:

By Hintikka set I |= F1[t] ∈ P.

By induction hypothesis I |= F1[t].

Because t evaluates to t under I we have I C {x 7→ t} |= F1[x].

By semantics of ∀ it follows I |= ∀x .F1[x].

38 / 79

Proof of Item (4) – Induction Case

Case I |= F ∈ P: We show it follows I |= F . (*)

Case 4: F = ∃x .F1[x], for some F1.

That is, I |= ∃x .F1[x] ∈ P.

By Hintikka set I |= F1[a] ∈ P for some (fresh) constant a.

By induction hypothesis I |= F1[a].

Because a evaluates to a under I it follows I C {x 7→ a} |= F1[x].

By semantics of ∃ it follows I |= ∃x .F1[x].

Case I 6|= F ∈ P:

The proof of I 6|= F is analogous to the case I |= F ∈ P.

QED

39 / 79

The Resolution Calculus

DPLL and its improvements are the practically best methods for PL

The resolution calculus (Robinson 1969) has been introduced as a basis for
automated theorem proving in first-order logic. Refined versions are still
the practically best methods for first-order logic. (Tableau methods are
better suited for modal logics than classical first-order logic.)

In the following:

I Normal forms
(Resolution requires formulas in “conjunctive normal form”)

I The Propositional Resolution Calculus

I Resolution for FOL

40 / 79

Negation Normal Form (NNF)

NNF: Negations appear only in literals, and use only ¬, ∧ , ∨ ,∀ , ∃.

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right).

From propositional logic:

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

Additionally for first-order logic:

¬∀x . F [x] ⇔ ∃x . ¬F [x]

¬∃x . F [x] ⇔ ∀x . ¬F [x]

41 / 79

Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1. ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2. ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3. ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x] ⇔ ∀x . ¬F [x]

4. ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)

42 / 79

Prenex Normal Form (PNF)

PNF: All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF such that
F ′ ⇔ F .

1. Transform F to NNF

2. Rename quantified variables to fresh names

3. Move all quantifiers to the front

(∀x F) ∨ G ⇔ ∀x (F ∨ G) (∃x F) ∨ G ⇔ ∃x (F ∨ G)

(∀x F) ∧ G ⇔ ∀x (F ∧ G) (∃x F) ∧ G ⇔ ∃x (F ∧ G)

These rules apply modulo symmetry of ∧ and ∨

43 / 79

Example: PNF 1

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

1. Transform F to NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

2. Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x

44 / 79

Example: PNF 2

3. Add the quantifiers before F2

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Alternately,

F ′3 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Note: In F3, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · ·

F3 ⇔ F and F ′3 ⇔ F

Note: However G < F

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

45 / 79

Skolem Normal Form (SNF)

SNF: PNF and additionally all quantifiers are ∀

∀x1 · · · ∀xn. F [x1, · · · , xn] where F is quantifier-free.

Every FOL formula F can be transformed to equi-satisfiable formula F ′ in
SNF.

1. Transform F to NNF

2. Transform to PNF

3. Starting from the left, stepwisely remove all ∃-quantifiers by
Skolemization

46 / 79

Skolemization

Replace

∀x1 · · · ∀xk−1︸ ︷︷ ︸
no ∃

. ∃xk . Qk+1xk+1 · · ·Qnxn︸ ︷︷ ︸
Qi ∈{∀,∃}

. F [x1, · · · , xk , · · · , xn]

by

∀x1 · · · ∀xk−1. Qk+1xk+1 · · ·Qnxn. F [x1, · · · , t, · · · , xn]

where

t = f (x1, . . . , xk−1) where f is a fresh function symbol

The term t is called a Skolem term for xk and f is called a
Skolem function symbol.

47 / 79

Example: SNF

Convert

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

to SNF.

Let f (x , y) be a Skolem term for w :

F4 : ∀x . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , f (x , y))

We have F3 6⇔ F4 however it holds

A formula F is satisfiable iff the SNF of F is satisfiable.

48 / 79

Conjunctive Normal Form

CNF: Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

Every FOL formula can be transformed into equi-satisfiable CNF.

1. Transform F to NNF

2. Transform to PNF

3. Transform to SNF

4. Leave away ∀-quantifiers (This is just a convention)

5. Use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

49 / 79

Example: CNF

Convert

F4 : ∀x . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , f (x , y))

to CNF.

Leave away ∀-quantifiers

F5 : ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , f (x , y))

F5 is already in CNF.

Conversion from SNF to CNF is again an equivalence transformation.

50 / 79

First-order Clause Logic Terminology

Convention: a set of clauses (or “clause set”)

N = {Ci | Ci =
∨
j

`i ,j , i = 1..n}

represents the CNF∧
i

∨
j

`i ,j for literals `i ,j︸ ︷︷ ︸
Clause

Example

N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (x)))}

represents the formula

∀x . ∀y . ∀z . (P(a) ∧ (¬P(x) ∨ P(f (x))) ∧ Q(y , z) ∧ ¬P(f (f (x))))

Equivalently

P(a)∧(∀x . (¬P(x)∨P(f (x))))∧(∀y . ∀z . Q(y , z))∧(∀x . ¬P(f (f (x))))

51 / 79

Refutational Theorem Proving

The full picture in the context of clause logic:
Suppose we want to show that

(∃x . ∀y . p(x , y))→ (∀x . ∃y . p(y , x)) is valid.

The following all are equivalent:

¬((∃x . ∀y . p(x , y))→ (∀x . ∃y . p(y , x))) is unsatisfiable

(∃x . ∀y . p(x , y)) ∧ ¬(∀x . ∃y . p(y , x)) is unsatisfiable

(∃x . ∀y . p(x , y)) ∧ (∃x . ∀y . ¬p(y , x)) is unsatisfiable

(∀y . p(c , y)) ∧ (∀y . ¬p(y , d)) is unsatisfiable

N = {p(c , y),¬p(y , d} is unsatisfiable

The resolution calculus is a “refutational theorem proving” method:
instead of proving a given formual F valid it (tries to) prove the clausal
form of its negation unsatisfiable.
Can’t we use the semantic argument method for refutational theorem
proving?

52 / 79

Semantic Argument Method applied to Clause Logic

Let N = {C1[~x], . . . ,Cn[~x]} be a set of clauses.
Either N is unsatisfiable or else semantic argument gives open branch:

I 6|= ¬(C1 ∧ · · · ∧ Cn)

I |= C1 ∧ · · · ∧ Cn

I |= C1

· · ·
I |= Cn

· · ·
I |= Ci [~t] for all i = 1..n and all ground terms ~t

· · ·
Conclusion (a bit sloppy): checking satisfiability of N can be done
“syntactically”, by fixing the domain DI , interpretation αI [f] and treating
∀-quantification by exhaustive replacement by ground terms.

That “works”, but requires enumerating all (!) ground terms.
Resolution does better by means of “unification” instead of “enumeration”.

53 / 79

(The Propositional Resolution Calculus Recap)

Propositional resolution inference rule

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

Propositional (positive) factoring inference rule

C ∨ A ∨ A

C ∨ A

Terminology: C ∨ A: factor

These are schematic inference rules:
C and D – propositional clauses
A – propositional atom
“∨” is considered associative and commutative

54 / 79

(Derivations Recap)

Let N = {C1, . . . ,Ck} be a set of input clauses

A derivation (from N) is a sequence of the form

C1, . . . ,Ck︸ ︷︷ ︸
Input
clauses

,Ck+1, . . . ,Cn, . . .︸ ︷︷ ︸
Derived
clauses

such that for every n ≥ k + 1

I Cn is a resolvent of Ci and Cj , for some 1 ≤ i , j < n, or

I Cn is a factor of Ci , for some 1 ≤ i < n.

The empty disjunction, or empty clause, is written as

A refutation (of N) is a derivation from N that contains

55 / 79

(Sample Refutation Recap)

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

10. (Res. 4. into 9.)

56 / 79

Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses Ground instances

P(f (x), y) {P(f (a), a), . . . ,P(f (f (a)), f (f (a))), . . .}
¬P(z , z) {¬P(a), . . . ,¬P(f (f (a)), f (f (a))), . . .}

Only common instances of P(f (x), y) and P(z , z) give rise to inference:

P(f (f (a)), f (f (a))) ¬P(f (f (a)), f (f (a)))

⊥
Unification

All common instances of P(f (x), y) and P(z , z) are instances of P(f (x), f (x))
P(f (x), f (x)) is computed deterministically by unification

First-order resolution

P(f (x), y) ¬P(z , z)

⊥
Justified by existence of P(f (x), f (x))

Can represent infinitely many propositional resolution inferences

57 / 79

Unification

A substitution γ is a unifier of terms s and t iff sγ = tγ.

A unifier σ is most general iff for every unifier γ of the same terms there is
a substitution δ such that γ = δ ◦ σ (we write σδ).

Notation: σ = mgu(s, t)

Example

s = car(red , y , z)
t = car(u, v , ferrari)
Then

γ = {u 7→ red , y 7→ fast, v 7→ fast, z 7→ ferrari}

is a unifier, and

σ = {u 7→ red , y 7→ v , z 7→ ferrari}

is a mgu for s and t.
With δ = {v 7→ fast} obtain σδ = γ.

58 / 79

Unification of Many Terms

Let E = {s1
.

= t1, . . . , sn
.

= tn} be a multiset of equations, where si and ti
are terms or atoms. The set E is called a unification problem.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

The rule system on the next slide computes a most general unifer of a
unification problems or “fail” (⊥) if none exists.

59 / 79

Rule Based Naive Standard Unification

Starting with a given unification problem E , apply the following template
equivalences as long as possible, where: “s

.
= t, E” means “{s .

= t} ∪ E”.

t
.

= t,E ⇔ E (Trivial)

f (s1, . . . , sn)
.

= f (t1, . . . , tn),E ⇔ s1
.

= t1, . . . , sn
.

= tn,E
(Decompose)

f (. . .)
.

= g(. . .),E ⇔ ⊥ (Clash)

x
.

= t,E ⇔ x
.

= t,E{x 7→ t} (Apply)

if x ∈ var(E), x 6∈ var(t)

x
.

= t,E ⇔ ⊥ (Occur Check)

if x 6= t, x ∈ var(t)

t
.

= x ,E ⇔ x
.

= t,E (Orient)

if t is not a variable

60 / 79

Example 1

Let E1 = {f (x , g(x), z)
.

= f (x , y , y)} the unification problem to be solved.
In each step, the selected equation is underlined.

E1 : f (x , g(x), z)
.

= f (x , y , y) (given)

E2 : x
.

= x , g(x)
.

= y , z
.

= y (by Decompose)

E3 : g(x)
.

= y , z
.

= y (by Trivial)

E4 : y
.

= g(x), z
.

= y (by Orient)

E5 : y
.

= g(x), z
.

= g(x) (by Apply {y 7→ g(x)})

Result is mgu σ = {y 7→ g(x), z 7→ g(x)}.

61 / 79

Example 2

Let E1 = {f (x , g(x))
.

= f (x , x)} the unification problem to be solved.
In each step, the selected equation is underlined.

E1 : f (x , g(x))
.

= f (x , x) (given)

E2 : x
.

= x , g(x)
.

= x (by Decompose)

E3 : g(x)
.

= x (by Trivial)

E4 : x
.

= g(x) (by Orient)

E5 : ⊥ (by Occur Check)

There is no unifier of E1.

62 / 79

Main Properties

The above unification algorithm is sound and complete:
Given E = {s1

.
= t1, . . . , sn

.
= tn}, exhaustive application of the above rules

always terminates, and one of the following holds:

I The result is a set equations in solved form, that is, is of the form

x1
.

= u1, . . . , xk
.

= uk

with xi pairwise distinct variables, and xi 6∈ var(uj).
In this case, the solved form represents the substitution
σE = {x1 7→ u1, . . . , xk 7→ uk} and it is a mgu for E .

I The result is ⊥. In this case no unifier for E exists.

63 / 79

First-Order Resolution Inference Rules

C ∨ A D ∨ ¬B
(C ∨ D)σ

if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factoring]

For the resolution inference rule, the premise clauses have to be renamed
apart (made variable disjoint) so that they don’t share variables.

Example

Q(z) ∨ P(z , z) ¬P(x , y)

Q(x)
where σ = [z 7→ x , y 7→ x] [resolution]

Q(z) ∨ P(z , a) ∨ P(a, y)

Q(a) ∨ P(a, a)
where σ = [z 7→ a, y 7→ a] [factoring]

64 / 79

Example

(1) ∀x . allergies(x)→ sneeze(x)

(2) ∀x . ∀y . cat(y) ∧ livesWith(x , y) ∧ allergicToCats(x)→ allergies(x)

(3) ∀x . cat(catOf(x))

(4) livesWith(jerry, catOf(jerry))

Next

I Resolution applied to the CNF of (1) ∧ · · · ∧ (4).

I Proof that (1) ∧ · · · ∧ (4) entails allergicToCats(jerry)→ sneeze(jerry)

65 / 79

Sample Derivation From (1) - (4)

(1) ¬allergies(x) ∨ sneeze(x) (Given)

(2) ¬cat(y) ∨ ¬livesWith(x , y) ∨ ¬allergicToCats(x) ∨ allergies(x) (Given)

(3) cat(catOf(x)) (Given)

(4) livesWith(jerry, catOf(jerry)) (Given)

(5) ¬livesWith(x , catOf(x)) ∨ ¬allergicToCats(x) ∨ allergies(x)
(Res 2+3, σ = [y 7→ catOf(x)])

(6) ¬livesWith(x , catOf(x)) ∨ ¬allergicToCats(x) ∨ sneeze(x)
(Res 1+5, σ = [])

(7) ¬allergicToCats(jerry) ∨ sneeze(jerry) (Res 4+6, σ = [x 7→ jerry])

Some more (few) clauses are derivable, but not infinitely many.
Not derivable are, e.g.,:

cat(catOf(jerry)), cat(catOf(catOf(jerry))), . . .
But the tableau method would derive then all!

66 / 79

Refutation Example

We want to show

(1) ∧ · · · ∧ (4)⇒ allergicToCats(jerry)→ sneeze(jerry)

Equivalently, the CNF of

¬((1) ∧ · · · ∧ (4)→ (allergicToCats(jerry)→ sneeze(jerry)))

is unsatisfiable. Equivalently

(1) – (4) (Given)

(A) allergicToCats(jerry) (Conclusion)

(B) ¬sneeze(jerry) (Conclusion)

is unsatisfiable.

But with the derivable clause

(7) ¬allergicToCats(jerry) ∨ sneeze(jerry)

the empty clause is derivable in two more steps.
67 / 79

Sample Refutation – The Barber Problem

set(binary_res). %% This is an "otter" input file

formula_list(sos).

%% Every barber shaves all persons who do not shave themselves:

all x (B(x) -> (all y (-S(y,y) -> S(x,y)))).

%% No barber shaves a person who shaves himself:

all x (B(x) -> (all y (S(y,y) -> -S(x,y)))).

%% Negation of "there are no barbers"

exists x B(x).

end_of_list.

otter finds the following refutation (clauses 1 – 3 are the CNF):

1 [] -B(x)|S(y,y)|S(x,y).

2 [] -B(x)| -S(y,y)| -S(x,y).

3 [] B($c1).

4 [binary,1.1,3.1] S(x,x)|S($c1,x).

5 [factor,4.1.2] S($c1,$c1).

6 [binary,2.1,3.1] -S(x,x)| -S($c1,x).

10 [factor,6.1.2] -S($c1,$c1).

11 [binary,10.1,5.1] $F.

68 / 79

Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete.

I That is, if a clause set is unsatisfiable, then resolution will derive the
empty clause eventually.

I More precisely: If a clause set is unsatisfiable and closed under the
application of the resolution and factoring inference rules, then it
contains the empty clause .

I Proof: Herbrand theorem (see below) + completeness of propositional
resolution + Lifting Lemma

Moreover, in order to implement a resolution-based theorem prover, we
need an effective procedure to close a clause set under the application of
the resolution and factoring inference rules. See the “given clause loop”
below.

69 / 79

First-order Clause Logic: Herbrand Semantics

Let F be a formula. An input term (wrt. F) is a term that contains
function symbols occurring in F only.

Proposition (“Herband models existence”.) Let N be a clause set.
If N is satisfiable then there is a model I |= N such that

I DI := {t | t is a input ground term over }
I αI [f](t1, . . . , tn) = f (t1, . . . , tn).

Proof. Assume N is satisfiable. By soundness, the semantic argument
method gives us an (at least one) open branch. The completeness proof
allows us to extract from this branch the model I such that

I DI := {t | t is a ground term}
I αI [f](t1, . . . , tn) = f (t1, . . . , tn)

I αI [p](t1, . . . , tn) = “extracted from open branch”

Because N is a clause set, no inference rule that introdcues a fresh constant
is ever applicable. Thus, DI consists of input (ground) terms only.

70 / 79

First-order Clause Logic: Herbrand Semantics

Reformulate the previous in commonly used terminology

Herbrand interpretation

I HUI := DI from above is the Herbrand universe, however use ground
terms only (terms without variables).

I HBI = {p(t1, . . . , tn) | t1, . . . , tn ∈ HUI} is the Herbrand base.

I Any subset of HBI is a Herbrand interpretation (misnomer!), exactly
those atoms that are true.

I For a clause C [x] and t ∈ HUI the clause C [t] is a ground instance.

I For a clause set N the set {C [t] | C [x] ∈ N} is its Herbrand expansion.

71 / 79

Example: Herbrand Interpretation

Function symbols: 0, s (for the “+1” function), +

Predicate symbols: <, ≤

HUI = {0, s(0), s(s(0)), . . . , 0 + 0, 0 + s(0), s(0) + 0, . . .}

N as a Herbrand interpretation, a subset of HBI :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}

72 / 79

Herbrand Theorem

The soundness and completeness proof of the semantic argument method
applied to clause logic provides the following results.

I If a clause set N is unsatisfiable then it has no Herbrand model
(trivial).

I If a clause set N is satisfiable then it has a Herbrand model.

This is the “Herbrand models existence” proposition above.

I Herbrand theorem: if a clause set N is unsatisfiable then some finite
subset of its Herbrand expansion is unsatisfiable.

Proof: Suppose N is unsatisfiable. By completeness, there is a proof
by semantic argument using the Herbrand expansion of N. Tye proof
is a finite tree and hence can use only finitely many elements of the
Herbrand expansion.

73 / 79

Herbrand Theorem Illustration

Clause set

N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

Herbrand universe

HUI = {a, f (a), f (f (a)), f (f (f (a))), . . .

Herbrand expansion

Ngr = {P(a)}
∪ {¬P(a) ∨ P(f (a)), ¬P(f (a)) ∨ P(f (f (a))),

¬P(f (f (a))) ∨ P(f (f (f (a)))), . . .}
∪ {Q(a, a), Q(a, f (a)), Q(f (a), a), Q(f (a), f (a)), . . .}
∪ {¬P(f (f (a)))}

74 / 79

Herbrand Theorem Illustration

HBI = {P(a)︸︷︷︸
A0

, P(f (a))︸ ︷︷ ︸
A1

, P(f (f (a)))︸ ︷︷ ︸
A2

, P(f (f (f (a))))︸ ︷︷ ︸
A3

, . . .}

∪ {Q(a, a)︸ ︷︷ ︸
B0

, Q(a, f (a))︸ ︷︷ ︸
B1

, Q(f (a), a)︸ ︷︷ ︸
B2

, Q(f (a), f (a))︸ ︷︷ ︸
B3

, . . .}

By construction, every atom in Ngr occurs in HBI

Replace in Ngr every (ground) atom by its propositional counterpart:

Ngr
prop = {A0}
∪ {¬A0 ∨ A1, ¬A1 ∨ A2,¬A2 ∨ A3, . . .}
∪ {B0, B1, B2, B3, . . .}
∪ {¬A2}

The subset {A0, ¬A0 ∨A1, ¬A1 ∨A2, ¬A2} is unsatisfiable, hence so is N.

75 / 79

Lifting Lemma

Let C and D be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional resolution]

then there exists a substitution τ such that

D C

C ′′y τ

C ′ = C ′′τ

[first-order resolution]

An analogous lifting lemma holds for factoring.

76 / 79

The “Given Clause Loop”

As used in the Otter theorem prover:
Lists of clauses maintained by the algorithm: usable and sos.
Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.

77 / 79

The “Given Clause Loop” - Graphically

set of
support

usable list

�

�
��given

clause

� -
��

XXX

�
���
���
��
consequences

�$
$

? ? ?
filters

��

78 / 79

Decidability of FOL

I FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

I FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid, but
may not halt if F is invalid.

On the other hand,

I PL is decidable
There does exist an algorithm for deciding if a PL formula F is valid,
e.g. the truth-table procedure.

79 / 79

