Classical Propositional Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/ baumgart/
NICTA and ANU

July 2015

62

Classical Logic

First-Order Logic
Can express (mathematical) structures, e.g. groups
Vx1-x=x Vx x-1=x (N)
Vx xt.x=1 Vx x-x1=1 0]

VX7y7Z(X'y)'Z:X'(y'Z) (A)

Reasoning

» Object level: It follows Vx (x - x) =1 —=Vx,y x-y =y -x

» Meta-level: the word problem for groups is decidable

Automated Reasoning

Computer program to provide the above conclusions automatically

2

62

Application: Compiler Validation

Problem: prove equivalence of source and target program

1. y:=1 1:y :=1

2: if z = xxx*x 2: R1 := x*x

3: then y := x¥x + y 3: R2 := Ri*x

4: endif 4: jmpNE(z,R2,6)
5: y := Ri+1

To prove: (indexes refer to values at line numbers; index 0 =
initial values)
From yi=1 AN zg=xpxxo*xx0 N ¥Y3=Xx0*X0+ y1
and vi=1 AN Rl =xp*x} AN R23=Rlyxxj N z5=R23
ANye=RLy+1 AN xo=x) N Yo=Yy N 20 = 2
it follows y3 = yi

62

Issues

Previous slides gave motivation: logical analysis of systems

System can be “anything that makes sense” and can be described
using logic (group theory, computer programs, ...)

Propositional logic is not very expressive; but it admits complete
and terminating (and sound, and “fast”) reasoning procedures
First-order logic is expressive but not too expressive; it admits
complete (and sound, and “reasonably fast”) reasoning procedures

So, reasoning with it can be automated on computer. BUT
» How to do it in the first place: suitable calculi?
» How to do it efficiently: search space control?
» How to do it optimally: reasoning support for specific theories like
equality and arithmetic?

The lecture will touch on some of these issues and explain basic
approaches to their solution

More on “Reasoning”

Ai1: Socrates is a human

As: All humans are mortal
Translation into first-order logic:

A1 human(socrates)

Az VX (human(X) — mortal(X))
Which of the following statements hold true? (= means “entails”)
. {A1, A2} | mortal(socrates)

. {A1, A2} = mortal(apollo)

. {A1, Az} [~ mortal(socrates)
. {A1, Az} £ mortal(apollo)

5. {A1, A2} | —mortal(socrates)
6. {A1, A2} = —mortal(apollo)

What do these statements exactly mean?
How to design an algorithm for answering such questions?

A WD =

Contents

Weeks 1 and 2: Propositional logic: syntax, semantics, reasoning
algorithms, important properties
(Slides in part thanks to Aaron Bradley)

Weeks 6 and 7: First-order logic: syntax, semantics, reasoning
procedures, important properties

6

62

Propositional Logic(PL)

PL Syntax
Atom truth symbols T(“true”) and L("false”)
propositional variables P, Q, R, P1, Q1, Ry, - - -
Literal atom « or its negation -«
Formula literal or application of a

logical connective to formulae F, Fi, F

-F “not” (negation)

Fi A F> "and” (conjunction)
Fi v F2 for” (disjunction)
Fi — F2 “implies” (implication)

Fi < F, “if and only if" (iff)

Example:

formula F: (P A Q) — (T V =Q)

atoms: P,Q, T

literal: =@

subformulas: P A Q, T V =Q

abbreviation (leave parenthesis away)
F:PANQ — TV Q

PL Semantics (meaning)

Formula F + Interpretation /| = Truth value

(true, false)
Interpretation

I: {P > true, Q — false,---}

Evaluation of F under [:

F || =F

5 where 0 corresponds to value false
1 true

1 0

F]_‘F2HF]_/\F2‘F1\/F2 FRh—- k| F[< R

00 0 0 1 1

0|1 0 1 1 0
110 0 1 0 0
1|1 1 1 1 1

Example:

F:PANQ — PV =Q
I : {P + true, Q — false}

Plef|-Q@[Pr@[Pv -Q|F]
(1foffr [o [1 1

1 = true 0 = false

F evaluates to true under /

Inductive Definition of PL's Semantics

I = F if F evaluates to true under / (“/ satisfies F")

I ¥~ F false under | ("I falsifies F")
Base Case:

I =T

I L

I = P iff [I[P]=true

I ¥ P iff I[P] = false

Inductive Case:

| = —F iff 1 F
I |: AR AR iff / ': Fiand /): F>
' E RV F iffl E Rol E R
/ ': R — F iffif] ': F1 then / ': F
/ ': F1 < F2 IfF, /): F1 and / ': FQ,
orl = Frand ! ¥~ F
Note:

I%F1—>F2 iff I):Flandlb&Fz

11/62

Example:

F: PANQ — PV -=Q
I: {P — true, Q — false}

P

Q

-Q

£ P AQ
= PV -Q
= F

Thus, F is true under /.

ok wh =
—_~ e~~~ ~ ~
T

since I[P] = true

since /[Q] = false

by 2 and —

by 2 and A

by 1 and V

by 4 and — Why?

Inductive Proofs

Induction on the structure of formulas
To prove that a property P holds for every formula F it suffices to
show the following:

Induction start: show that P holds for every base case formula A

Induction step: Assume that P holds for arbitrary formulas F; and
F> (induction hypothesis).

Show that P follows for every inductive case formula
built with F; and F>

Example

Lemma 1
Let F be a formula, and | and I’ be interpretations such that
I[P] = I'|P] for every propositional variable P

Then, | = F if and only if I' = F

13 /62

Satisfiability and Validity

F satisfiable iff there exists an interpretation / such that / = F.
F valid iff for all interpretations /, | = F.

\F is valid iff =F is unsatisfiable\

Method 1: Truth Tables

Example F:PANQ — PV -Q
(PQIPAQ[-Q|PV-Q]|F
00 0 1 1 1
01 0 0 0 1
10 0 1 1 1
11 1 0 1 1

Thus F is valid.

14 /62

Example F:PVvV Q — P AQ
PRIPV Q|PANQIF
00 0 0 1
01 1 0 0
10 1 0 0
11 1 1 1

Thus F is satisfiable, but invalid.

< satisfying /
+ falsifying /

15 /62

Examples

Which of the following formulas is satisfiable, which is valid?

1. R:PAQ
satisfiable, not valid
2. I~ (PAQ)
satisfiable, not valid
3. 3: PV =P
satisfiable, valid
4. Fy:=(PV-=P)
unsatisfiable, not valid
5. Fs: (P—= Q)N (PVQ)A-Q
unsatisfiable, not valid

16 /62

Method 2: Semantic Argument (“Tableau Calculus™)

Proof rules
I & ~F I ¥ ~F
I £ F I = F
I = FAG I = FAG
I = F I F | | ¥ G
I):Geand or
I = FVG I = FVG
IEF | I EG I~ F
I ¥ G
| = F>G I F>G
I F | I EG I F
I~ G
| = FoG | = Fo G
I = FAG | I £ FVG | = FA-G | | = ~-FAG
I = F
I ¥~ F

T
—

17 /62

Example 1: Prove

F: PANQ — PV -Q isvalid.

Let's assume that F is not valid and that / is a falsifying
interpretation.

A T .

PANQR — PV -Q
P A Q@

P Vv =Q

P

P

1

T W™ TR

Thus F is valid.

assumption

land —

land —

2and A

3and V

4 and 5 are contradictory

18 /62

Example 2: Prove

Let's assume that F is not valid.

N

F:(P—=QAN(QR — R) = (P —=R)

~ Y~~~ ~ ~ ~—

B L N

D T WO

F

(P — Q) N (Q — R)

P — R

—
—

Q
R

assumption
land —
land —
3and —
3and —
2 and of A
2 and of A

is valid.

19/62

Two cases from 6

8a. | [P 6 and —
9a. | E L 4 and 8a are contradictory

and
8. I E @ 6 and —

Two cases from 7

9ba. | [Q 7 and —
10ba. | E L 8b and 9ba are contradictory

and

9pb. | E R 7 and —
10b6b. | [L 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

62

Example 3: Is
F: PVv Q — P A Q@ valid?
Let's assume that F is not valid.

1. I = PV Q —PARQ assumption
2.1 E PV AQ 1land —
3. I ¥ PARQ 1and —

Two options

4a. | = P 2and V 4b. | E Q 2and V
5a. | [~ Q@ 3and A 5b. | £ P 3and A

We cannot derive a contradiction. F is not valid.

Falsifying interpretation:
h: {P ~ true, Q@ — false} L: {Q ~— true, P — false}

We have to derive a contradiction in both cases for F to be valid.

62

Equivalence

F1 and F; are equivalent (F; < F)
iff for all interpretations I, | &= F, < Fp

To prove F1 & F> show F; < F; is valid.

F1 implies F» (Fl = F2)
iff for all interpretations I, | = F — F

Fi < F> and F; = F> are not formulae!

N
N

o

(]

Proposition 2 (Substitution Theorem)

Assume F1 & F». If F is a formula with at least one occurrence of
F1 as a subformula then F < F', where F’ is obtained from F by
replacing some occurrence of F1 in F by F;.

Proof.

(Sketch) By induction on the formula structure. For the induction
start, if F = F; then F' = F», and F & F’ follows from F; < F».
The proof of the induction step is similar to the proof of

Lemma 1. []
Proposition 2 is relevant for conversion of formulas into normal
form, which requires replacing subformulas by equivalent ones

Normal Forms

1. Negation Normal Form (NNF)

Negations appear only in literals. (only =, A, V)
To transform F to equivalent F’ in NNF use recursively

the following template equivalences (left-to-right):

-—f & F -T & 1 L & T

-(FL N R) & -F V —F

(F1 2) ! § De Morgan's Law
j(,:1 V Fz) & aF AN aF

FR— F < RV EFHE

Fr < L <& (Fl — F2) A (F2 — Fl)

Example: Convert F: =(P — =(P A Q)) to NNF
F': (=P VvV =(P A Q))
F":==P A ==(P A Q)
F":P AP AQ

— to V
De Morgan’s Law

-

F"" is equivalent to F (F"” < F) and is in NNF

2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

\/ /\&,j for literals ¢ ;
i

To convert F into equivalent F’ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 V Fz) A F3 = (Fl A F3) V (F2 A F3) di
t
A A (F2 \Y F3) = (F1 A F2) \Y (F1 A F3) s
Example: Convert
F: (@ V ==@) A (wRi — Rz) into DNF
F'i(Quv @) A (RLV Ry) in NNF
F" : (@A (R1V R))V(QA (R VRY)) dist

F . (Ql A Rl) V (Ql A RQ) \Y (QQ N Rl) \ (Q2 A RQ) dist

F"" is equivalent to F (F"” < F) and is in DNF

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals
AV iy for literals £;
iJ

To convert F into equivalent F in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(Fl A\ Fz) V F3 & (Fl V F3) A (F2 V F3)
F Vv (F2 A\ F3) = (Fl V F2) A\ (Fl V F3)

Relevance: DPLL and Resolution both work with CNF

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets

Clause
A (propositional) clause is a disjunction of literals

Convention

A formula in CNF is taken as a set of clauses. Example:

(AvB) A (Cv-A) A (Dv-CVv-A) A (-DVv-B) CNF
{AvB , Cv-A , Dv-Cv-A , —=Dv-B} Clause Set

Typical Application: Proof by Refutation
To prove the validity of

Axiomy A - - - A Axiom, = Conjecture
it suffices to prove that the CNF of
Axiomy A - - - A Axiom, A —~Conjecture

is unsatisfiable

DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals

Consistency
No branch contains the labels A and —A, for no A

Every branch in a tree is taken as a (consistent) set of its literals
A consistent set of literals S is taken as an interpretation:
» if A€ S then (A true) €/

» if "A € S then (A false) € /
» if A¢ S and A ¢ S then (A false) € /

Example

{A, =B, D} stands for
I : {Aw true, B+ false, C+ false, D true}

Model
A model for a clause set N is an interpretation / such that / = N

DPLL as a Semantic Tree Method

1)AVB (@ Cv-A @)DV-CV-A (4 -DV-B

{} FAVB

HECv-A
{(} EDV-CV-A

(empty tree) 0 E DV -5

» A Branch stands for an interpretation
» Purpose of splitting: satisfy a clause that is currently falsified
» Close branch if some clause is plainly falsified by it (x)

29 /62

DPLL as a Semantic Tree Method

WMHAVB @ CVv-A @)DV-CV-A (4-DV-B

(A} =AVB
{A}[#C\/ﬁA

o {A} = DV ~CV A
{A} = -DV B

» A Branch stands for an interpretation
» Purpose of splitting: satisfy a clause that is currently falsified
» Close branch if some clause is plainly falsified by it (x)

30 /62

DPLL as a Semantic Tree Method

MHAVB @ CVv-A @)DV-CV-A (4-DV-B

(A,C}=AVB
(A, C}ECV-A

/\ {A,C}%D\/_‘C\/ﬂA
A C}E-DV-B
y A ACHE

N

¢ -C
*

» A Branch stands for an interpretation
» Purpose of splitting: satisfy a clause that is currently falsified
» Close branch if some clause is plainly falsified by it (x)

31/62

DPLL as a Semantic Tree Method

WAVB @2 CV-A @)DV-CV-A (4 -DV-B

{A.C,D}=AVB
{A,C,D} = CV-A

T {A,C,D} =DV —-CV-A
{A,C.D} =-DV -B

A -A

D -D Model {A, C, D} found.
» A Branch stands for an interpretation
» Purpose of splitting: satisfy a clause that is currently falsified
» Close branch if some clause is plainly falsified by it (*)

32/62

DPLL as a Semantic Tree Method

WAVB @2 CV-A @)DV-CV-A (4 -DV-B

(B} EAVB
[BY - CV-A
/\ {B}‘:DV‘\C\/ﬁA
/A\ }A\ (B} = -DV-B
c -C B -B
/\ * *
D D Model {B} found.
*

» A Branch stands for an interpretation

» Purpose of splitting: satisfy a clause that is currently falsified
» Close branch if some clause is plainly falsified by it (%)

33/62

DPLL Pseudocode

i

function DPLL(N)
%% N is a set of clauses
%% returns true if N satisfiable, false otherwise
while N contains a unit clause {L}
N := simplify(N, L)
if N = {} then return true
if L € N then return false
L := choose-literal(N) %% any literal that occurs in N
if DPLL(simplify(N, L))
then return true
else return DPLL(simplify(N, —L));

function simplify(N, L) %% also called unit propagation
remove all clauses from N that contain L
delete —L from all remaining clauses %% possibly get empty clause L
return the resulting clause set

34 /62

Making DPLL Fast — Overview
Conflict Driven Clause Learning (CDCL) solvers extend DPLL

Lemma learning: add new clauses to the clause set as branches get
closed (“conflict driven™)

Goal: reuse information that is obtained in one
branch for subsequent derivation steps.

Backtracking: replace chronological backtracking by
“dependency-directed backtracking”, aka
“backjumping”: on backtracking, skip splits that are
not necessary to close a branch

Randomized restarts: every now and then start over, with learned
clauses

Variable selection heuristics: what literal to split on. E.g., use
literals that occur often

Make unit-propagation fast: 2-watched literal technique

35/62

Lemma Learning

"Avoid making the

. . w/o Lemma
same mistake twice

/N

—A

BV _\14. i (1) A
~DV-BV~C (3) B

36 /62

Lemma Learning

"Avoid making the

. W w/o Lemma
same mistake twice

Bv-A L) A -4
DV -C) ﬂw
-DV-BV-C (3) B

—
w x
=

37/62

Lemma Learning

"Avoid making the

. e w/o Lemma
same mistake twice

BV —\A. h (]_) A A
oDV oBV-C (3)

38 /62

Lemma Learning

"Avoid making the

R . w/o Lemma
same mistake twice

DV -C) 1

BV —-A 1) A -A
DV=BV=C (3) |

(Lemma Candidates} C -C
by Resolution:)

DV -BV-C *

39 /62

Lemma Learning

"Avoid making the
same mistake twice"

BV -A)
DV -C 2
sDVoBV-C (3)

(Lemma Candidates}
by Resolution:

-DV-BVv-C DV-C

w/o Lemma

40 /62

Lemma Learning

"Avoid making the

R . W w/o Lemma
same mistake twice

Bv-4) A -A
2DV BV oC (3)

[Lemma Candidates} C -C
by Resolution:) ‘
D
-DV-BvV-C DvV-C ”

B O
-C'V-A

41 /62

Lemma Learning

"Avoid making the

X X w/o Lemma With Lemma
same mistake twice"
BV -A (1) A ~4
Dv-C) ﬂw
-Dv-BvVC (3) B
[Lemma Candidates} C -C
by Resolution: (2)—r
D
-DV-BV-C Dv-C -

pva O
-C'V A

Lemma Learning

"Avoid making the

X X w/o Lemma With Lemma
same mistake twice”
BvV-A 1) —A A —A
Dv-C)

=DVoBV=C (3)

A
o]
B
[Lemma Candidates] L/\—'C

by Resolution: (2)—r
D
=DV -BV-C DV-C -

v O

43 /62

Lemma Learning

"Avoid making the

X X w/o Lemma With Lemma
same mistake twice"
BV-A (1) A A 4
DV -C) ‘

-DVoBV-C () o

A
1) ‘
A ~C
(~C' Vv —A)
[Lemma Candidates} L/\—'C

by Resolution: (2)—F
-DVv-BVv-C DvV-C I*)
By O

44 /62

Making DPLL Fast

2-watched literal technique

A technique to implement unit propagation efficiently

>

In each clause, select two (currently undefined) “watched”
literals.

For each variable A, keep a list of all clauses in which A is
watched and a list of all clauses in which —A is watched.

If an undefined variable is set to 0 (or to 1), check all clauses
in which A (or =A) is watched and watch another literal (that
is true or undefined) in this clause if possible.

As long as there are two watched literals in a n-literal clause,
this clause cannot be used for unit propagation, because n — 1
of its literals have to be false to provide a unit conclusion.
Important: Watched literal information need not be restored
upon backtracking.

45 /62

Further Information

The ideas described so far heve been implemented in the SAT
checker zChaff:

Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean
Satisfiability Solvers, Proc. CADE-18, LNAI 2392, pp. 295-312,
Springer, 2002.

Other Overviews

Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solvin SAT
and SAT Modulo Theories: From an abstract
Davis-Putnam-Logemann-Loveland precedure to DPLL(T), pp
937-977, Journal of the ACM, 53(6), 2006.

Armin Biere and Marijn Heule and Hans van Maaren and Toby
Walsh. Handbook of Satisability, 10S Press, 2009.

46 /62

The Resolution Calculus

DPLL and the refined CDCL algorithm are the practically best
methods for PL

The resolution calculus (Robinson 1969) has been introduced as a
basis for automated theorem proving in first-order logic. We will
see it in detail in the first-order logic part of this lecture

Refined versions are still the practically best methods for first-order
logic

The resolution calculus is best introduced first for propositional
logic

47 /62

The Propositional Resolution Calculus

Propositional resolution inference rule

CVA AV D
cvD

Terminology: C V D: resolvent; A: resolved atom

Propositional (positive) factoring inference rule

CVAVA
CVA
Terminology: C V A: factor

These are schematic inference rules:
C and D — propositional clauses
A — propositional atom

“V" is considered associative and commutative
48 / 62

Derivations

Let N={C,..., Ck} be a set of input clauses

A derivation (from N) is a sequence of the form

G,y Gy Cg1y oo, Gy e
Input Derived
clauses clauses

such that for every n > k+1
» C, is a resolvent of C; and C;, for some 1 <i,j < n, or

» C, is a factor of C;, forsome 1 </ < n.

The empty disjunction, or empty clause, is written as [

A refutation (of N) is a derivation from N that contains [

49 /62

Sample Refutation

1. ~AV-AVB (given)
2. AVvB (given)
3. -Cv-B (given)
4. C (given)
5. “AVBVB (Res. 2. intol.)
6. "AVB (Fact. 5.)
7. BvB (Res. 2. into 6.)
8. B (Fact. 7.)
9. -C (Res. 8. into 3.)
10. O (Res. 4. into 9.)

50 /62

Soundness and Completeness
Important properties a calculus may or may not have:

Soundness: if there is a refutation of N then N is unsatisfiable

Deduction completeness:
if N is valid then there is a derivation of N

Refutational completeness:
if N is unsatisfiable then there is a refutation of N

The resolution calculus is sound and refutationally complete, but
not deduction complete

51/62

Soundness of Propositional Resolution

Theorem 3
Propositional resolution is sound

Proof.

Let / be an interpretation. To be shown:
1. for resolution: | =CVA, | = DV-A = [=CVD
2. for factoring: |ECVAVA = | =CVA

Ad (1): Assume premises are valid in /. Two cases need to be
considered:

(a) Ais valid in /, or (b) =A is valid in /.
a) |[EA=IED=I1E=CVD
b) | E-A=IEC=I1=CVD

Ad (2): even simpler O

52 /62

Completeness of Propositional Resolution

Theorem 4
Propositional Resolution is refutationally complete

» That is, if a propositional clause set is unsatisfiable, then
Resolution will derive the empty clause [J eventually

» More precisely: If a clause set is unsatisfiable and closed under
the application of the Resolution and Factoring inference
rules, then it contains the empty clause [J

» Perhaps easiest proof: semantic tree proof technique (see
whiteboard)

» This result can be considerably strengthened, some
strengthenings come for free from the proof

Semantic Trees
(Robinson 1968, Kowalski and Hayes 1969)

Semantic trees are a convenient device to represent interpretations
for possibly infinitely many atoms

Applications

» To prove the completeness of the propositional resolution
calculus

» Characterizes a specific, refined resolution calculus

» To prove the compactness theorem of propositional logic.

Application: completeness proof of first-order logic Resolution.

Trees

A tree
> is an acyclic, connected, directed graph, where
» every node has at most one incoming edge
A rooted tree has a dedicated node, called root that has no

incoming edge

A tree is finite iff it has finitely many vertices (and edges) only

In a finitely branching tree every node has only finitely many edges

A binary tree every node has at most two outgoing edges. It is
complete iff every node has either no or two outgoing edges

62

A path P in a rooted tree is a possibly infinite sequence of nodes
P = (No, N1, ...), where Aj is the root, and N; is a direct
successor of NVj_1, forall i=1,....n

A path to a node N is a finite path of the form (N, N1, ..., N})
such that N' = N,; the value n is the length of the path

The node N,_1 is called the immediate predecessor of A/

Every node Ny, N1,...,N,_1 is called a predecessor of N/

A (node-)labelled tree is a tree together with a labelling function A
that maps each of its nodes to an element in a given set

Let L be a literal. The complement of L is the literal

7. —=A if Lis the atom A
A if L is the negated atom —A.

56

62

Semantic Trees

A semantic tree B (for a set of atoms D) is a labelled, complete,
rooted, binary tree such that

1. the root is labelled by the symbol T

2. for every inner node N, one successor of A is labeled with the
literal A, and the other successor is labeled with the literal
—A, for some A€ D

3. for every node V, there is no literal L such that L € Z(N)
and L € Z(N), where

I(N) = {\WN:) | No, N1y .., (N = N) is a path to N/
and 1 <j<n}

57 /62

Semantic Trees

Atom Set
For a clause set N let the atom set (of N) be the set of atoms
occurring in clauses in N

A semantic tree for N is a semantic tree for the atom set of N

Path Semantics

For a path P = (Np, N1,...) let
Z(P) ={A(WN) | i = 0}

be the set of all literals along P

Complete Semantic Tree
A semantic tree for D is complete iff for every A € D and every
branch P it holds that

A €Z(P)or ~AcI(P)

58 /62

Interpretation Induced by a Semantic Tree

Every path P in a complete semantic tree for D
induces an interpretation Zp as follows:

true ifAeZp

Ip[A] =
Pl {false if ~AeIp

A complete semantic tree can be seen as an enumeration of all
possible interpretations for N (it holds Zp # Zp: whenever P # P’)

59 /62

Failure Node

If a clause set N is unsatisfiable (not satisfiable) then, by
definition, every interpretation Z falsifies some clause in N, i.e.,
T [~ C for some C € N

This motivates the following definition:

Failure Node
A node N in a semantic tree for N is a failure node, if
1. there is a clause C € N such that Zy [~ C, and
2. for every predecessor N’ of N it holds:
there is no clause C € N such that Zy» = C

60 /62

Open, Closed

A path P in a semantic tree for N is closed iff P contains a failure
node, otherwise it is open

A semantic tree B for M is closed iff every path is closed,
otherwise B is open

Every closed semantic tree can be turned into a finite closed one
by removing all subtrees below all failure nodes

Remark

The construction of a (closed or open) finite semantic tree is the
core of the propositional DPLL procedure above. Our main
application now, however, is to prove compactness of propositional
clause logic

61 /62

Compactness

Theorem 5
A (possibly infinite) clause set N is unsatisfiable iff there is a
closed semantic tree for N

Proof.
See whiteboard O

Corollary 6 (Compactness)

A (possibly infinite) clause set N is unsatisfiable iff some finite
subset of N is unsatisfiable

Proof.
The if-direction is trivial. For the only-if direction, Theorem 5 gives
us a finite unsatisfiable subset of N as identified by the finitely
many failure nodes in the semantic tree.

OJ

