Classical Propositional Logic

Peter Baumgartner
http://users.cecs.anu.edu.au/~baumgart/

NICTA and ANU
July 2015

Classical Logic

First-Order Logic

Can express (mathematical) structures, e.g. groups

$$
\begin{align*}
\forall x 1 \cdot x=x & \forall x x \cdot 1 & =x \\
\forall x x^{-1} \cdot x=1 & \forall x x \cdot x^{-1} & =1 \tag{N}\\
& \forall x, y, z(x \cdot y) \cdot z & =x \cdot(y \cdot z) \tag{I}
\end{align*}
$$

Reasoning

- Object level: It follows $\forall x(x \cdot x)=1 \rightarrow \forall x, y x \cdot y=y \cdot x$
- Meta-level: the word problem for groups is decidable

Automated Reasoning

Computer program to provide the above conclusions automatically

Application: Compiler Validation

Problem: prove equivalence of source and target program
1: y := 1

$$
\text { 2: if } z=x * x * x
$$

$$
\text { 3: then } \mathrm{y}:=\mathrm{x} * \mathrm{x}+\mathrm{y}
$$

$$
\begin{aligned}
& 1: \mathrm{y}:=1 \\
& 2: \mathrm{R} 1:=\mathrm{x} * \mathrm{x} \\
& 3: \mathrm{R} 2:=\mathrm{R} 1 * \mathrm{x} \\
& 4: \mathrm{jmpNE}(\mathrm{z}, \mathrm{R} 2,6) \\
& 5: \mathrm{y}:=\mathrm{R} 1+1
\end{aligned}
$$

4: endif

To prove: (indexes refer to values at line numbers; index $0=$ initial values)
From

$$
y_{1}=1 \wedge z_{0}=x_{0} * x_{0} * x_{0} \wedge y_{3}=x_{0} * x_{0}+y_{1}
$$

$$
\text { and } \quad y_{1}^{\prime}=1 \wedge R 1_{2}=x_{0}^{\prime} * x_{0}^{\prime} \wedge R 2_{3}=R 1_{2} * x_{0}^{\prime} \wedge z_{0}^{\prime}=R 2_{3}
$$

$$
\wedge y_{5}^{\prime}=R 1_{2}+1 \wedge x_{0}=x_{0}^{\prime} \wedge y_{0}=y_{0}^{\prime} \wedge z_{0}=z_{0}^{\prime}
$$

it follows $\quad y_{3}=y_{5}^{\prime}$

Issues

- Previous slides gave motivation: logical analysis of systems

System can be "anything that makes sense" and can be described using logic (group theory, computer programs, ...)

- Propositional logic is not very expressive; but it admits complete and terminating (and sound, and "fast") reasoning procedures
- First-order logic is expressive but not too expressive; it admits complete (and sound, and "reasonably fast") reasoning procedures
- So, reasoning with it can be automated on computer. BUT
- How to do it in the first place: suitable calculi?
- How to do it efficiently: search space control?
- How to do it optimally: reasoning support for specific theories like equality and arithmetic?
- The lecture will touch on some of these issues and explain basic approaches to their solution

More on "Reasoning"

A_{1} : Socrates is a human
A_{2} : All humans are mortal
Translation into first-order logic:
A_{1} : human(socrates)
$A_{2}: \quad \forall X($ human $(X) \rightarrow \operatorname{mortal}(X))$
Which of the following statements hold true? $(\models$ means "entails")

1. $\left\{A_{1}, A_{2}\right\} \models$ mortal(socrates)
2. $\left\{A_{1}, A_{2}\right\} \models$ mortal(apollo)
3. $\left\{A_{1}, A_{2}\right\} \not \vDash$ mortal(socrates)
4. $\left\{A_{1}, A_{2}\right\} \not \vDash$ mortal(apollo)
5. $\left\{A_{1}, A_{2}\right\} \models \neg$ mortal(socrates)
6. $\left\{A_{1}, A_{2}\right\} \models \neg$ mortal(apollo)

What do these statements exactly mean?
How to design an algorithm for answering such questions?

Contents

Weeks 1 and 2: Propositional logic: syntax, semantics, reasoning algorithms, important properties (Slides in part thanks to Aaron Bradley)
Weeks 6 and 7: First-order logic: syntax, semantics, reasoning procedures, important properties

Propositional Logic(PL)

PL Syntax

Atom truth symbols T ("true") and \perp ("false") propositional variables $P, Q, R, P_{1}, Q_{1}, R_{1}, \cdots$
Literal atom α or its negation $\neg \alpha$
Formula literal or application of a
logical connective to formulae F, F_{1}, F_{2}

$\neg F$	"not"	(negation)
$F_{1} \wedge F_{2}$	"and"	(conjunction)
$F_{1} \vee F_{2}$	"or"	(disjunction)
$F_{1} \rightarrow F_{2}$	"implies"	(implication)
$F_{1} \leftrightarrow F_{2}$	"if and only if"	(iff)

Example:

formula $F:(P \wedge Q) \rightarrow(T \vee \neg Q)$
atoms: P, Q, \top
literal: $\neg Q$
subformulas: $P \wedge Q, \quad \top \vee \neg Q$
abbreviation (leave parenthesis away)

$$
F: P \wedge Q \rightarrow \top \vee \neg Q
$$

PL Semantics (meaning)

Formula $F+$ Interpretation $I=$ Truth value (true, false)
Interpretation

$$
I:\{P \mapsto \text { true }, Q \mapsto \text { false }, \cdots\}
$$

Evaluation of F under I :

F	$\neg F$	where 0
0	1	1
1	0	

F_{1}	F_{2}	$F_{1} \wedge F_{2}$	$F_{1} \vee F_{2}$	$F_{1} \rightarrow F_{2}$	$F_{1} \leftrightarrow F_{2}$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

Example:

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto \text { true }, Q \mapsto \text { false }\}
\end{aligned}
$$

P	Q	$\neg Q$	$P \wedge Q$	$P \vee \neg Q$	F
1	0	1	0	1	1
$1=$ true					
$0=$ false					

F evaluates to true under I

Inductive Definition of PL's Semantics

$$
\begin{array}{lll}
I \not \models F & \text { if } F \text { evaluates to } & \text { true } \\
\text { under } I(\text { " } I \text { satisfies } F \text { ") } \\
I \not \models F & \text { false } & \text { under } I(\text { " } I \text { falsifies } F \text { " })
\end{array}
$$

Base Case:

$$
\begin{array}{llll}
I & \vDash \top & \\
I & \not \models \perp & & \\
I & \vDash P & \text { iff } & I[P]=\text { true } \\
I \not \vDash P & \text { iff } & I[P]=\text { false }
\end{array}
$$

Inductive Case:

$$
\begin{array}{ll}
I & \models \neg F \\
I \neq F_{1} \wedge F_{2} & \text { iff } I \not \models F \\
I \not \models F_{1} \text { and } I \models F_{2} \\
I \models F_{1} \vee F_{2} & \text { iff } I \models F_{1} \text { or } I \models F_{2} \\
I \models F_{1} \rightarrow F_{2} & \text { iff, if } I \models F_{1} \text { then } I \models F_{2} \\
I \models F_{1} \leftrightarrow F_{2} & \text { iff, } I \models F_{1} \text { and } I \models F_{2}, \\
& \\
& \\
& \text { or } I \not \models F_{1} \text { and } I \not \models F_{2}
\end{array}
$$

Note:

$$
I \not \vDash F_{1} \rightarrow F_{2} \quad \text { iff } \quad I \neq F_{1} \text { and } I \not \vDash F_{2}
$$

Example:

$$
\begin{aligned}
& F: P \wedge Q \rightarrow P \vee \neg Q \\
& I:\{P \mapsto \text { true, } Q \mapsto \text { false }\} \\
& \text { 1. } I \vDash P \\
& \text { 2. I } \neq Q \\
& \text { 3. } I \vDash \neg Q \\
& \text { by } 2 \text { and } \neg \\
& \text { 4. I } \neq P \wedge Q \\
& \text { by } 2 \text { and } \wedge \\
& \text { 5. I } \vDash P \vee \neg Q \\
& \text { by } 1 \text { and } \vee \\
& \text { 6. } I=F \\
& \text { by } 4 \text { and } \rightarrow \quad \text { Why? }
\end{aligned}
$$

Thus, F is true under I.

Inductive Proofs

Induction on the structure of formulas
To prove that a property \mathcal{P} holds for every formula F it suffices to show the following:
Induction start: show that \mathcal{P} holds for every base case formula A
Induction step: Assume that \mathcal{P} holds for arbitrary formulas F_{1} and F_{2} (induction hypothesis).
Show that \mathcal{P} follows for every inductive case formula built with F_{1} and F_{2}

Example

Lemma 1

Let F be a formula, and I and I^{\prime} be interpretations such that $I[P]=I^{\prime}[P]$ for every propositional variable P
Then, $I \models F$ if and only if $I^{\prime} \models F$

Satisfiability and Validity

F satisfiable iff there exists an interpretation $/$ such that $I \models F$.
F valid iff for all interpretations $I, I \models F$.

```
F is valid iff }\negF\mathrm{ is unsatisfiable
```

Method 1: Truth Tables
Example $\quad F: P \wedge Q \rightarrow P \vee \neg Q$

P	Q	$P \wedge Q$	$\neg Q$	$P \vee \neg Q$	F
0	0	0	1	1	1
0	1	0	0	0	1
1	0	0	1	1	1
1	1	1	0	1	1

Thus F is valid.

Example $\quad F: P \vee Q \rightarrow P \wedge Q$

P	Q	$P \vee Q$	$P \wedge Q$	F
0	0	0	0	1
0	1	1	0	0
1	0	1	0	0
1	1	1	1	1

Thus F is satisfiable, but invalid.

Examples

Which of the following formulas is satisfiable, which is valid?

1. $F_{1}: P \wedge Q$
satisfiable, not valid
2. $F_{2}: \neg(P \wedge Q)$
satisfiable, not valid
3. $F_{3}: P \vee \neg P$
satisfiable, valid
4. $F_{4}: \neg(P \vee \neg P)$
unsatisfiable, not valid
5. $F_{5}:(P \rightarrow Q) \wedge(P \vee Q) \wedge \neg Q$
unsatisfiable, not valid

Method 2: Semantic Argument ("Tableau Calculus")
Proof rules

$$
\begin{aligned}
& \frac{l \models \neg F}{I \not \models F} \\
& \frac{l \not \models \neg F}{I \models F} \\
& \begin{array}{l}
I \models F \wedge G \\
I \models F \\
I \models G
\end{array} \leftarrow \text { and } \\
& \begin{array}{c}
l \models F \vee G \\
\hline I \models F \\
\hline \models G
\end{array} \\
& \frac{I \not \models F \wedge G}{\qquad|\not \vDash F|_{\text {or }} I \not \vDash G} \\
& \begin{array}{c}
l \models F \rightarrow G \\
\hline|\not \models F| I \models G
\end{array} \\
& \frac{l \not \models F \vee G}{I \not \models F} \\
& I \not \vDash G \\
& \begin{array}{l}
I \not \models F \rightarrow G \\
I \models F \\
I \not \models G
\end{array} \\
& \frac{l \models F \leftrightarrow G}{I \models F \wedge G \mid l \vDash F \vee G} \quad \frac{l \not \models F \leftrightarrow G}{l \models F \wedge \neg G \mid l \models \neg F \wedge G} \\
& \begin{array}{l}
l \models F \\
l \nLeftarrow F \\
l \models \perp
\end{array}
\end{aligned}
$$

Example 1: Prove

$$
F: P \wedge Q \rightarrow P \vee \neg Q \quad \text { is valid. }
$$

Let's assume that F is not valid and that I is a falsifying interpretation.

Thus F is valid.

Example 2: Prove

$$
F:(P \rightarrow Q) \wedge(Q \rightarrow R) \rightarrow(P \rightarrow R) \quad \text { is valid. }
$$

Let's assume that F is not valid.

Two cases from 6

$$
\begin{array}{lll}
\text { 8a. } & I \not \models P & 6 \text { and } \rightarrow \\
9 a . & I & \models \perp
\end{array} 4 \text { and 8a are contradictory } \quad l
$$

and

$$
8 b . \quad I \quad=Q \quad 6 \text { and } \rightarrow
$$

Two cases from 7

$$
\begin{array}{llll}
\text { 9ba. } & I & \not \models Q & 7 \text { and } \rightarrow \\
\text { 10ba. } & I & \models \perp & 8 \text { b and } 9 \text { ba are contradictory }
\end{array}
$$

and

$9 b b$.	I	\models	R
	7 and \rightarrow		
$10 b b$.	I	\models	\perp
5 and 9 bb are contradictory			

Our assumption is incorrect in all cases - F is valid.

Example 3: Is

$$
F: P \vee Q \rightarrow P \wedge Q \quad \text { valid? }
$$

Let's assume that F is not valid.

$$
\begin{array}{lll}
\text { 1. } & I \not \vDash P \vee Q \rightarrow P \wedge Q & \text { assumption } \\
\text { 2. } & I \not \models P \vee Q & 1 \text { and } \rightarrow \\
3 . & I \not \vDash P \wedge Q & 1 \text { and } \rightarrow
\end{array}
$$

Two options

4a.	I	\models	2 and \vee	$4 b$.	I	\models	Q	2 and \vee	
5a.	I	\neq	Q	3 and \wedge	$5 b$.	I	$\not \models$	P	3 and \wedge

We cannot derive a contradiction. F is not valid.
Falsifying interpretation:

We have to derive a contradiction in both cases for F to be valid.

Equivalence

F_{1} and F_{2} are equivalent $\left(F_{1} \Leftrightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \leftrightarrow F_{2}$
To prove $F_{1} \Leftrightarrow F_{2}$ show $F_{1} \leftrightarrow F_{2}$ is valid.
F_{1} implies $F_{2}\left(F_{1} \Rightarrow F_{2}\right)$
iff for all interpretations $I, I \models F_{1} \rightarrow F_{2}$
$F_{1} \Leftrightarrow F_{2}$ and $F_{1} \Rightarrow F_{2}$ are not formulae!

Proposition 2 (Substitution Theorem)

Assume $F_{1} \Leftrightarrow F_{2}$. If F is a formula with at least one occurrence of F_{1} as a subformula then $F \Leftrightarrow F^{\prime}$, where F^{\prime} is obtained from F by replacing some occurrence of F_{1} in F by F_{2}.

Proof.

(Sketch) By induction on the formula structure. For the induction start, if $F=F_{1}$ then $F^{\prime}=F_{2}$, and $F \Leftrightarrow F^{\prime}$ follows from $F_{1} \Leftrightarrow F_{2}$.
The proof of the induction step is similar to the proof of Lemma 1.

Proposition 2 is relevant for conversion of formulas into normal form, which requires replacing subformulas by equivalent ones

Normal Forms

1. Negation Normal Form (NNF)

Negations appear only in literals. (only \neg, \wedge, \vee)
To transform F to equivalent F^{\prime} in NNF use recursively the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\neg \neg F_{1} \Leftrightarrow F_{1} \quad \neg \top \Leftrightarrow \perp \quad \neg \perp \Leftrightarrow \top \\
\neg\left(F_{1} \wedge F_{2}\right) \Leftrightarrow \neg F_{1} \vee \neg F_{2} \\
\neg\left(F_{1} \vee F_{2}\right) \Leftrightarrow \neg F_{1} \wedge \neg F_{2}
\end{array}\right\} \text { De Morgan's Law } \begin{aligned}
& F_{1} \rightarrow F_{2} \Leftrightarrow \neg F_{1} \vee F_{2} \\
& F_{1} \leftrightarrow F_{2} \Leftrightarrow\left(F_{1} \rightarrow F_{2}\right) \wedge\left(F_{2} \rightarrow F_{1}\right)
\end{aligned}
$$

Example: Convert $\quad F: \neg(P \rightarrow \neg(P \wedge Q))$ to NNF

$$
\begin{array}{rlrl}
F^{\prime}: & \neg(\neg P \vee \neg(P \wedge Q)) & & \rightarrow \text { to } \vee \\
F^{\prime \prime} & : \neg \neg P \wedge \neg \neg(P \wedge Q) & & \text { De Morgan's Law } \\
F^{\prime \prime \prime}: P \wedge P \wedge Q & & \neg \neg
\end{array}
$$

$F^{\prime \prime \prime}$ is equivalent to $F\left(F^{\prime \prime \prime} \Leftrightarrow F\right)$ and is in NNF
2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals

$$
\bigvee_{i} \bigwedge_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in DNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\left.\begin{array}{l}
\left(F_{1} \vee F_{2}\right) \wedge F_{3} \Leftrightarrow\left(F_{1} \wedge F_{3}\right) \vee\left(F_{2} \wedge F_{3}\right) \\
F_{1} \wedge\left(F_{2} \vee F_{3}\right) \Leftrightarrow\left(F_{1} \wedge F_{2}\right) \vee\left(F_{1} \wedge F_{3}\right)
\end{array}\right\} \text { dist }
$$

Example: Convert
$F:\left(Q_{1} \vee \neg \neg Q_{2}\right) \wedge\left(\neg R_{1} \rightarrow R_{2}\right)$ into DNF

$$
\begin{array}{ll}
F^{\prime}:\left(Q_{1} \vee Q_{2}\right) \wedge\left(R_{1} \vee R_{2}\right) & \text { in } N \\
F^{\prime \prime}:\left(Q_{1} \wedge\left(R_{1} \vee R_{2}\right)\right) \vee\left(Q_{2} \wedge\left(R_{1} \vee R_{2}\right)\right) & \text { dist } \\
F^{\prime \prime \prime}:\left(Q_{1} \wedge R_{1}\right) \vee\left(Q_{1} \wedge R_{2}\right) \vee\left(Q_{2} \wedge R_{1}\right) \vee\left(Q_{2} \wedge R_{2}\right) & \text { dist }
\end{array}
$$

$F^{\prime \prime \prime}$ is equivalent to $F\left(F^{\prime \prime \prime} \Leftrightarrow F\right)$ and is in DNF
3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals

$$
\bigwedge_{i} \bigvee_{j} \ell_{i, j} \text { for literals } \ell_{i, j}
$$

To convert F into equivalent F^{\prime} in CNF, transform F into NNF and then use the following template equivalences (left-to-right):

$$
\begin{aligned}
& \left(F_{1} \wedge F_{2}\right) \vee F_{3} \Leftrightarrow\left(F_{1} \vee F_{3}\right) \wedge\left(F_{2} \vee F_{3}\right) \\
& F_{1} \vee\left(F_{2} \wedge F_{3}\right) \Leftrightarrow\left(F_{1} \vee F_{2}\right) \wedge\left(F_{1} \vee F_{3}\right)
\end{aligned}
$$

Relevance: DPLL and Resolution both work with CNF

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets
Clause
A (propositional) clause is a disjunction of literals
Convention
A formula in CNF is taken as a set of clauses. Example:

$$
\begin{array}{ccccccl}
(A \vee B) & \wedge & (C \vee \neg A) & \wedge & (D \vee \neg C \vee \neg A) & \wedge & (\neg D \vee \neg B)
\end{array} \text { CNF }
$$

Typical Application: Proof by Refutation
To prove the validity of

$$
\text { Axiom }_{1} \wedge \cdots \wedge \text { Axiom }_{n} \Rightarrow \text { Conjecture }
$$

it suffices to prove that the CNF of

$$
\text { Axiom }_{1} \wedge \cdots \wedge \text { Axiom }_{n} \wedge \neg \text { Conjecture }
$$

is unsatisfiable

DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals
Consistency
No branch contains the labels A and $\neg A$, for no A
Every branch in a tree is taken as a (consistent) set of its literals
A consistent set of literals S is taken as an interpretation:

- if $A \in S$ then $(A \mapsto$ true $) \in I$
- if $\neg A \in S$ then $(A \mapsto$ false $) \in I$
- if $A \notin S$ and $\neg A \notin S$ then $(A \mapsto$ false $) \in I$

Example

$\{A, \neg B, D\}$ stands for
$I:\{A \mapsto$ true, $B \mapsto$ false, $C \mapsto$ false, $D \mapsto$ true $\}$
Model
A model for a clause set N is an interpretation I such that $I \models N$

DPLL as a Semantic Tree Method

(1) $A \vee B$
(2) $C \vee \neg A$
(3) $D \vee \neg C \vee \neg A$
(4) $\neg D \vee \neg B$
〈empty tree〉

$$
\begin{aligned}
& \} \not \models A \vee B \\
& \} \not \models C \vee \neg A \\
& \} \not \models D \vee \neg C \vee \neg A \\
& \} \not \models \neg D \vee \neg B
\end{aligned}
$$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

DPLL as a Semantic Tree Method

(1) $A \vee B$
(2) $C \vee \neg A$
(3) $D \vee \neg C \vee \neg A$
(4) $\neg D \vee \neg B$

$$
\begin{aligned}
& \{A\} \not \models A \vee B \\
& \{A\} \not \vDash C \vee \neg A \\
& \{A\} \not \models D \vee \neg C \vee \neg A \\
& \{A\} \not \models \neg D \vee \neg B
\end{aligned}
$$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

DPLL as a Semantic Tree Method

(1) $A \vee B$
(2) $C \vee \neg A$
(3) $D \vee \neg C \vee \neg A$
(4) $\neg D \vee \neg B$

$$
\begin{aligned}
& \{A, C\} \not \equiv A \vee B \\
& \{A, C\} \not \equiv C \vee \neg A \\
& \{A, C\} \not \vDash D \vee \neg C \vee \neg A \\
& \{A, C\} \not \equiv \neg D \vee \neg B
\end{aligned}
$$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

DPLL as a Semantic Tree Method

(3) $D \vee \neg C \vee \neg A$
(4) $\neg D \vee \neg B$

$$
\begin{aligned}
& \{A, C, D\} \mid=A \vee B \\
& \{A, C, D\} \mid=C \vee \neg A \\
& \{A, C, D\} \neq D \vee \neg C \vee \neg A \\
& \{A, C, D\} \neq \neg D \vee \neg B
\end{aligned}
$$

Model $\{A, C, D\}$ found.

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

DPLL as a Semantic Tree Method

(1) $A \vee B$
(2) $C \vee \neg A$
(3) $D \vee \neg C \vee \neg A$
(4) $\neg D \vee \neg B$

- A Branch stands for an interpretation
- Purpose of splitting: satisfy a clause that is currently falsified
- Close branch if some clause is plainly falsified by it (\star)

DPLL Pseudocode

```
function \(\operatorname{DPLL}(N)\)
    \(\% \% N\) is a set of clauses
    \(\% \%\) returns true if \(N\) satisfiable, false otherwise
    while \(N\) contains a unit clause \(\{L\}\)
        \(N:=\operatorname{simplify}(N, L)\)
    if \(N=\{ \}\) then return true
    if \(\perp \in N\) then return false
    L := choose-literal \((N)\) \%\% any literal that occurs in N
    if DPLL(simplify \((N, L)\) )
        then return true
        else return \(\operatorname{DPLL}(\) simplify \((N, \neg L)\) );
```

 function simplify \((N, L)\) \%\% also called unit propagation
 remove all clauses from \(N\) that contain \(L\)
 delete \(\neg L\) from all remaining clauses \%\% possibly get empty clause \(\perp\)
 return the resulting clause set

Making DPLL Fast - Overview

Conflict Driven Clause Learning (CDCL) solvers extend DPLL
Lemma learning: add new clauses to the clause set as branches get closed ("conflict driven")
Goal: reuse information that is obtained in one branch for subsequent derivation steps.
Backtracking: replace chronological backtracking by "dependency-directed backtracking", aka "backjumping" : on backtracking, skip splits that are not necessary to close a branch
Randomized restarts: every now and then start over, with learned clauses
Variable selection heuristics: what literal to split on. E.g., use literals that occur often
Make unit-propagation fast: 2-watched literal technique

Lemma Learning

"Avoid making the same mistake twice"

$$
\begin{gather*}
\cdots \tag{1}\\
B \vee \neg A \\
D \vee \neg C \\
\neg D \vee \neg B \vee \neg C
\end{gather*}
$$

w/o Lemma

(1)
B

Lemma Learning

"Avoid making the same mistake twice"

w/o Lemma

(3)

Lemma Learning

"Avoid making the same mistake twice"

w/o Lemma

(3)

Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:
$\neg \underline{D} \vee \neg B \vee \neg C$
w/o Lemma

(3)

Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:
$\underline{\neg D \vee \neg B \vee \neg C \quad \underline{D} \vee \neg C}$

$$
\neg B \vee \neg C
$$

w/o Lemma

(3)

Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:
$\frac{\neg \underline{D} \vee \neg B \vee \neg C \quad \underline{D} \vee \neg C}{\frac{\neg B \vee \neg C \quad \underline{B} \vee \neg A}{\neg C \vee \neg A}}$

w/o Lemma

Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates
by Resolution:
$\frac{\neg D \vee \neg B \vee \neg C \quad \underline{D} \vee \neg C}{\frac{\neg \underline{B} \vee \neg C \quad \underline{B} \vee \neg A}{\neg C \vee \neg A}}$
w/o Lemma
With Lemma

Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates
by Resolution:
$\frac{\neg \underline{D} \vee \neg B \vee \neg C \quad \underline{D} \vee \neg C}{\frac{\neg \underline{B} \vee \neg C \quad \underline{B} \vee \neg A}{\neg C \vee \neg A}}$
w/o Lemma

With Lemma

Lemma Learning

"Avoid making the same mistake twice"

Lemma Candidates by Resolution:
$\underline{\neg D \vee \neg B \vee \neg C \quad \underline{D} \vee \neg C}$
$\frac{\neg \underline{\neg-\neg C} \quad \underline{B} \vee \neg A}{\neg C \vee \neg A}$
w/o Lemma
(2)

Making DPLL Fast

2-watched literal technique
A technique to implement unit propagation efficiently

- In each clause, select two (currently undefined) "watched" literals.
- For each variable A, keep a list of all clauses in which A is watched and a list of all clauses in which $\neg A$ is watched.
- If an undefined variable is set to 0 (or to 1), check all clauses in which $A($ or $\neg A)$ is watched and watch another literal (that is true or undefined) in this clause if possible.
- As long as there are two watched literals in a n-literal clause, this clause cannot be used for unit propagation, because $n-1$ of its literals have to be false to provide a unit conclusion.
- Important: Watched literal information need not be restored upon backtracking.

Further Information

The ideas described so far heve been implemented in the SAT checker zChaff:
Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean Satisfiability Solvers, Proc. CADE-18, LNAI 2392, pp. 295-312, Springer, 2002.

Other Overviews
Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solvin SAT and SAT Modulo Theories: From an abstract
Davis-Putnam-Logemann-Loveland precedure to $\operatorname{DPLL}(T)$, pp 937-977, Journal of the ACM, 53(6), 2006.

Armin Biere and Marijn Heule and Hans van Maaren and Toby Walsh. Handbook of Satisability, IOS Press, 2009.

The Resolution Calculus

DPLL and the refined CDCL algorithm are the practically best methods for PL

The resolution calculus (Robinson 1969) has been introduced as a basis for automated theorem proving in first-order logic. We will see it in detail in the first-order logic part of this lecture Refined versions are still the practically best methods for first-order logic

The resolution calculus is best introduced first for propositional logic

The Propositional Resolution Calculus

Propositional resolution inference rule

$$
\frac{C \vee A \quad \neg A \vee D}{C \vee D}
$$

Terminology: $C \vee D$: resolvent; A : $\underline{\text { resolved atom }}$

Propositional (positive) factoring inference rule

$$
\frac{C \vee A \vee A}{C \vee A}
$$

Terminology: $C \vee A$: factor
These are schematic inference rules:
C and D - propositional clauses
A - propositional atom
" V " is considered associative and commutative

Derivations

Let $N=\left\{C_{1}, \ldots, C_{k}\right\}$ be a set of input clauses
A derivation (from N) is a sequence of the form

$$
\underbrace{C_{1}, \ldots, C_{k}}_{\begin{array}{l}
\text { Input } \\
\text { clauses }
\end{array}}, \underbrace{C_{k+1}, \ldots, C_{n}, \ldots}_{\begin{array}{c}
\text { Derived } \\
\text { clauses }
\end{array}}
$$

such that for every $n \geq k+1$

- C_{n} is a resolvent of C_{i} and C_{j}, for some $1 \leq i, j<n$, or
- C_{n} is a factor of C_{i}, for some $1 \leq i<n$.

The empty disjunction, or empty clause, is written as \square
A refutation (of N) is a derivation from N that contains \square

Sample Refutation

1.	$\neg A \vee \neg A \vee B$	(given)
2.	$A \vee B$	(given)
3.	$\neg C \vee \neg B$	(given)
4.	C	(given)
5.	$\neg A \vee B \vee B$	(Res. 2. into 1.)
6.	$\neg A \vee B$	(Fact. 5.)
7.	$B \vee B$	(Res. 2. into 6.)
8.	B	(Fact. 7.)
9.	$\neg C$	(Res. 8. into 3.)
10.	\square	(Res. 4. into 9.)

Soundness and Completeness

Important properties a calculus may or may not have:
Soundness: if there is a refutation of N then N is unsatisfiable
Deduction completeness:
if N is valid then there is a derivation of N
Refutational completeness:
if N is unsatisfiable then there is a refutation of N

The resolution calculus is sound and refutationally complete, but not deduction complete

Soundness of Propositional Resolution

Theorem 3
Propositional resolution is sound

Proof.

Let I be an interpretation. To be shown:

1. for resolution: $I \models C \vee A$, $I \models D \vee \neg A \Rightarrow I \models C \vee D$
2. for factoring: $I \vDash C \vee A \vee A \Rightarrow I \vDash C \vee A$

Ad (1): Assume premises are valid in I. Two cases need to be considered:
(a) A is valid in I, or (b) $\neg A$ is valid in I.
a) $I \models A \Rightarrow I \models D \Rightarrow I \models C \vee D$
b) $I \models \neg A \Rightarrow I \models C \Rightarrow I \vDash C \vee D$

Ad (2): even simpler

Completeness of Propositional Resolution

Theorem 4
Propositional Resolution is refutationally complete

- That is, if a propositional clause set is unsatisfiable, then Resolution will derive the empty clause \square eventually
- More precisely: If a clause set is unsatisfiable and closed under the application of the Resolution and Factoring inference rules, then it contains the empty clause \square
- Perhaps easiest proof: semantic tree proof technique (see whiteboard)
- This result can be considerably strengthened, some strengthenings come for free from the proof

Semantic Trees

(Robinson 1968, Kowalski and Hayes 1969)
Semantic trees are a convenient device to represent interpretations for possibly infinitely many atoms

Applications

- To prove the completeness of the propositional resolution calculus
- Characterizes a specific, refined resolution calculus
- To prove the compactness theorem of propositional logic. Application: completeness proof of first-order logic Resolution.

Trees

A tree

- is an acyclic, connected, directed graph, where
- every node has at most one incoming edge

A rooted tree has a dedicated node, called root that has no incoming edge

A tree is finite iff it has finitely many vertices (and edges) only
In a finitely branching tree every node has only finitely many edges
A binary tree every node has at most two outgoing edges. It is complete iff every node has either no or two outgoing edges

A path \mathcal{P} in a rooted tree is a possibly infinite sequence of nodes $\mathcal{P}=\left(\mathcal{N}_{0}, \mathcal{N}_{1}, \ldots\right)$, where \mathcal{N}_{0} is the root, and \mathcal{N}_{i} is a direct successor of \mathcal{N}_{i-1}, for all $i=1, \ldots, n$

A path to a node \mathcal{N} is a finite path of the form $\left(\mathcal{N}_{0}, \mathcal{N}_{1}, \ldots, \mathcal{N}_{n}\right)$ such that $\mathcal{N}=\mathcal{N}_{n}$; the value n is the length of the path The node \mathcal{N}_{n-1} is called the immediate predecessor of \mathcal{N} Every node $\mathcal{N}_{0}, \mathcal{N}_{1}, \ldots, \mathcal{N}_{n-1}$ is called a predecessor of \mathcal{N}
A (node-)labelled tree is a tree together with a labelling function λ that maps each of its nodes to an element in a given set

Let L be a literal. The complement of L is the literal

$$
\bar{L}:=\left\{\begin{aligned}
\neg A & \text { if } L \text { is the atom } A \\
A & \text { if } L \text { is the negated atom } \neg A .
\end{aligned}\right.
$$

Semantic Trees

A semantic tree \mathcal{B} (for a set of atoms \mathcal{D}) is a labelled, complete, rooted, binary tree such that

1. the root is labelled by the symbol \top
2. for every inner node \mathcal{N}, one successor of \mathcal{N} is labeled with the literal A, and the other successor is labeled with the literal $\neg A$, for some $A \in \mathcal{D}$
3. for every node \mathcal{N}, there is no literal L such that $L \in \mathcal{I}(\mathcal{N})$ and $L \in \mathcal{I}(\mathcal{N})$, where

$$
\begin{aligned}
\mathcal{I}(\mathcal{N})=\left\{\lambda\left(\mathcal{N}_{i}\right) \mid \mathcal{N}_{0}, \mathcal{N}_{1}, \ldots,\left(\mathcal{N}_{n}=\mathcal{N}\right)\right. & \text { is a path to } \mathcal{N} \\
& \text { and } 1 \leq i \leq n\}
\end{aligned}
$$

Semantic Trees

Atom Set
For a clause set N let the atom set (of N) be the set of atoms occurring in clauses in N
A semantic tree for N is a semantic tree for the atom set of N

Path Semantics
For a path $\mathcal{P}=\left(\mathcal{N}_{0}, \mathcal{N}_{1}, \ldots\right)$ let

$$
\mathcal{I}(\mathcal{P})=\left\{\lambda\left(\mathcal{N}_{i}\right) \mid i \geq 0\right\}
$$

be the set of all literals along \mathcal{P}
Complete Semantic Tree
A semantic tree for \mathcal{D} is complete iff for every $A \in \mathcal{D}$ and every branch \mathcal{P} it holds that

$$
A \in \mathcal{I}(\mathcal{P}) \text { or } \neg A \in \mathcal{I}(\mathcal{P})
$$

Interpretation Induced by a Semantic Tree

Every path \mathcal{P} in a complete semantic tree for \mathcal{D} induces an interpretation $\mathcal{I}_{\mathcal{P}}$ as follows:

$$
\mathcal{I}_{\mathcal{P}}[A]=\left\{\begin{aligned}
\text { true } & \text { if } A \in \mathcal{I}_{\mathcal{P}} \\
\text { false } & \text { if } \neg A \in \mathcal{I}_{\mathcal{P}}
\end{aligned}\right.
$$

A complete semantic tree can be seen as an enumeration of all possible interpretations for N (it holds $\mathcal{I}_{\mathcal{P}} \neq \mathcal{I}_{\mathcal{P}^{\prime}}$ whenever $\mathcal{P} \neq \mathcal{P}^{\prime}$)

Failure Node

If a clause set N is unsatisfiable (not satisfiable) then, by definition, every interpretation \mathcal{I} falsifies some clause in N, i.e., $\mathcal{I} \not \vDash C$ for some $C \in N$
This motivates the following definition:
Failure Node
A node \mathcal{N} in a semantic tree for N is a failure node, if

1. there is a clause $C \in N$ such that $\mathcal{I}_{N} \not \vDash C$, and
2. for every predecessor \mathcal{N}^{\prime} of \mathcal{N} it holds: there is no clause $C \in N$ such that $\mathcal{I}_{\mathcal{N}^{\prime}} \not \vDash C$

Open, Closed

A path \mathcal{P} in a semantic tree for N is closed iff \mathcal{P} contains a failure node, otherwise it is open

A semantic tree \mathcal{B} for M is closed iff every path is closed, otherwise \mathcal{B} is open

Every closed semantic tree can be turned into a finite closed one by removing all subtrees below all failure nodes

Remark

The construction of a (closed or open) finite semantic tree is the core of the propositional DPLL procedure above. Our main application now, however, is to prove compactness of propositional clause logic

Compactness

Theorem 5
A (possibly infinite) clause set N is unsatisfiable iff there is a closed semantic tree for N

Proof.
See whiteboard

Corollary 6 (Compactness)

A (possibly infinite) clause set N is unsatisfiable iff some finite subset of N is unsatisfiable

Proof.
The if-direction is trivial. For the only-if direction, Theorem 5 gives us a finite unsatisfiable subset of N as identified by the finitely many failure nodes in the semantic tree.

