
Classical Propositional Logic

Peter Baumgartner

http://users.cecs.anu.edu.au/~baumgart/

NICTA and ANU

July 2015

1 / 62

Classical Logic

First-Order Logic

Can express (mathematical) structures, e.g. groups

∀x 1 · x = x ∀x x · 1 = x (N)

∀x x−1 · x = 1 ∀x x · x−1 = 1 (I)

∀x , y , z (x · y) · z = x · (y · z) (A)

Reasoning

I Object level: It follows ∀x (x · x) = 1→ ∀x , y x · y = y · x
I Meta-level: the word problem for groups is decidable

Automated Reasoning

Computer program to provide the above conclusions automatically

2 / 62

Application: Compiler Validation

Problem: prove equivalence of source and target program

1: y := 1

2: if z = x*x*x

3: then y := x*x + y

4: endif

1: y := 1

2: R1 := x*x

3: R2 := R1*x

4: jmpNE(z,R2,6)

5: y := R1+1

To prove: (indexes refer to values at line numbers; index 0 =
initial values)

From y1 = 1 ∧ z0 = x0 ∗ x0 ∗ x0 ∧ y3 = x0 ∗ x0 + y1

and y ′1 = 1 ∧ R12 = x ′0 ∗ x ′0 ∧ R23 = R12 ∗ x ′0 ∧ z ′0 = R23

∧ y ′5 = R12 + 1 ∧ x0 = x ′0 ∧ y0 = y ′0 ∧ z0 = z ′0

it follows y3 = y ′5

3 / 62

Issues

I Previous slides gave motivation: logical analysis of systems

System can be “anything that makes sense” and can be described
using logic (group theory, computer programs, . . .)

I Propositional logic is not very expressive; but it admits complete
and terminating (and sound, and “fast”) reasoning procedures

I First-order logic is expressive but not too expressive; it admits
complete (and sound, and “reasonably fast”) reasoning procedures

I So, reasoning with it can be automated on computer. BUT
I How to do it in the first place: suitable calculi?
I How to do it efficiently: search space control?
I How to do it optimally: reasoning support for specific theories like

equality and arithmetic?

I The lecture will touch on some of these issues and explain basic
approaches to their solution

4 / 62

More on “Reasoning”

A1: Socrates is a human

A2: All humans are mortal
Translation into first-order logic:
A1: human(socrates)

A2: ∀X (human(X)→ mortal(X))

Which of the following statements hold true? (|= means “entails”)

1. {A1, A2} |= mortal(socrates)

2. {A1, A2} |= mortal(apollo)

3. {A1, A2} 6|= mortal(socrates)

4. {A1, A2} 6|= mortal(apollo)

5. {A1, A2} |= ¬mortal(socrates)

6. {A1, A2} |= ¬mortal(apollo)

What do these statements exactly mean?
How to design an algorithm for answering such questions?

5 / 62

Contents

Weeks 1 and 2: Propositional logic: syntax, semantics, reasoning
algorithms, important properties
(Slides in part thanks to Aaron Bradley)

Weeks 6 and 7: First-order logic: syntax, semantics, reasoning
procedures, important properties

6 / 62

Propositional Logic(PL)

PL Syntax

Atom truth symbols >(“true”) and ⊥(“false”)

propositional variables P,Q,R,P1,Q1,R1, · · ·
Literal atom α or its negation ¬α
Formula literal or application of a

logical connective to formulae F ,F1,F2
¬F “not” (negation)

F1 ∧ F2 “and” (conjunction)

F1 ∨ F2 “or” (disjunction)

F1 → F2 “implies” (implication)

F1 ↔ F2 “if and only if” (iff)

7 / 62

Example:

formula F : (P ∧ Q) → (> ∨ ¬Q)

atoms: P,Q,>
literal: ¬Q
subformulas: P ∧ Q, > ∨ ¬Q
abbreviation (leave parenthesis away)

F : P ∧ Q → > ∨ ¬Q

8 / 62

PL Semantics (meaning)

Formula F + Interpretation I = Truth value

(true, false)
Interpretation

I : {P 7→ true,Q 7→ false, · · · }

Evaluation of F under I :

F ¬F
0 1

1 0

where 0 corresponds to value false

1 true

F1 F2 F1 ∧ F2 F1 ∨ F2 F1 → F2 F1 ↔ F2

0 0 0 0 1 1

0 1 0 1 1 0

1 0 0 1 0 0

1 1 1 1 1 1

9 / 62

Example:

F : P ∧ Q → P ∨ ¬Q
I : {P 7→ true,Q 7→ false}

P Q ¬Q P ∧ Q P ∨ ¬Q F

1 0 1 0 1 1

1 = true 0 = false

F evaluates to true under I

10 / 62

Inductive Definition of PL’s Semantics
I |= F if F evaluates to true under I (“I satisfies F”)

I 6|= F false under I (“I falsifies F”)

Base Case:
I |= >
I 6|= ⊥
I |= P iff I [P] = true

I 6|= P iff I [P] = false

Inductive Case:
I |= ¬F iff I 6|= F

I |= F1 ∧ F2 iff I |= F1 and I |= F2
I |= F1 ∨ F2 iff I |= F1 or I |= F2
I |= F1 → F2 iff, if I |= F1 then I |= F2
I |= F1 ↔ F2 iff, I |= F1 and I |= F2,

or I 6|= F1 and I 6|= F2

Note:
I 6|= F1 → F2 iff I |= F1 and I 6|= F2

11 / 62

Example:
F : P ∧ Q → P ∨ ¬Q

I : {P 7→ true, Q 7→ false}
1. I |= P since I [P] = true

2. I 6|= Q since I [Q] = false

3. I |= ¬Q by 2 and ¬
4. I 6|= P ∧ Q by 2 and ∧
5. I |= P ∨ ¬Q by 1 and ∨
6. I |= F by 4 and → Why?

Thus, F is true under I .

12 / 62

Inductive Proofs

Induction on the structure of formulas
To prove that a property P holds for every formula F it suffices to
show the following:

Induction start: show that P holds for every base case formula A

Induction step: Assume that P holds for arbitrary formulas F1 and
F2 (induction hypothesis).

Show that P follows for every inductive case formula
built with F1 and F2

Example

Lemma 1
Let F be a formula, and I and I ′ be interpretations such that
I [P] = I ′[P] for every propositional variable P

Then, I |= F if and only if I ′ |= F

13 / 62

Satisfiability and Validity

F satisfiable iff there exists an interpretation I such that I |= F .
F valid iff for all interpretations I , I |= F .

F is valid iff ¬F is unsatisfiable

Method 1: Truth Tables

Example F : P ∧ Q → P ∨ ¬Q
P Q P ∧ Q ¬Q P ∨ ¬Q F

0 0 0 1 1 1

0 1 0 0 0 1

1 0 0 1 1 1

1 1 1 0 1 1

Thus F is valid.

14 / 62

Example F : P ∨ Q → P ∧ Q

P Q P ∨ Q P ∧ Q F

0 0 0 0 1 ← satisfying I

0 1 1 0 0 ← falsifying I

1 0 1 0 0

1 1 1 1 1

Thus F is satisfiable, but invalid.

15 / 62

Examples

Which of the following formulas is satisfiable, which is valid?

1. F1 : P ∧ Q

satisfiable, not valid

2. F2 : ¬(P ∧ Q)

satisfiable, not valid

3. F3 : P ∨ ¬P
satisfiable, valid

4. F4 : ¬(P ∨ ¬P)

unsatisfiable, not valid

5. F5 : (P → Q) ∧ (P ∨ Q) ∧ ¬Q
unsatisfiable, not valid

16 / 62

Method 2: Semantic Argument (“Tableau Calculus”)
Proof rules

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G

I |= F

I |= G
←and

I 6|= F ∧ G

I 6|= F | I 6|= G
↖or

I |= F ∨ G

I |= F | I |= G

I 6|= F ∨ G

I 6|= F

I 6|= G

I |= F → G

I 6|= F | I |= G

I 6|= F → G

I |= F

I 6|= G

I |= F ↔ G

I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G

I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F

I 6|= F

I |= ⊥

17 / 62

Example 1: Prove

F : P ∧ Q → P ∨ ¬Q is valid.

Let’s assume that F is not valid and that I is a falsifying
interpretation.

1. I 6|= P ∧ Q → P ∨ ¬Q assumption

2. I |= P ∧ Q 1 and →
3. I 6|= P ∨ ¬Q 1 and →
4. I |= P 2 and ∧
5. I 6|= P 3 and ∨
6. I |= ⊥ 4 and 5 are contradictory

Thus F is valid.

18 / 62

Example 2: Prove

F : (P → Q) ∧ (Q → R) → (P → R) is valid.

Let’s assume that F is not valid.

1. I 6|= F assumption

2. I |= (P → Q) ∧ (Q → R) 1 and →
3. I 6|= P → R 1 and →
4. I |= P 3 and →
5. I 6|= R 3 and →
6. I |= P → Q 2 and of ∧
7. I |= Q → R 2 and of ∧

19 / 62

Two cases from 6

8a. I 6|= P 6 and →
9a. I |= ⊥ 4 and 8a are contradictory

and

8b. I |= Q 6 and →
Two cases from 7

9ba. I 6|= Q 7 and →
10ba. I |= ⊥ 8b and 9ba are contradictory

and

9bb. I |= R 7 and →
10bb. I |= ⊥ 5 and 9bb are contradictory

Our assumption is incorrect in all cases — F is valid.

20 / 62

Example 3: Is

F : P ∨ Q → P ∧ Q valid?

Let’s assume that F is not valid.

1. I 6|= P ∨ Q → P ∧ Q assumption

2. I |= P ∨ Q 1 and →
3. I 6|= P ∧ Q 1 and →

Two options

4a. I |= P 2 and ∨
5a. I 6|= Q 3 and ∧

4b. I |= Q 2 and ∨
5b. I 6|= P 3 and ∧

We cannot derive a contradiction. F is not valid.

Falsifying interpretation:
I1 : {P 7→ true, Q 7→ false} I2 : {Q 7→ true, P 7→ false}
We have to derive a contradiction in both cases for F to be valid.

21 / 62

Equivalence

F1 and F2 are equivalent (F1 ⇔ F2)

iff for all interpretations I , I |= F1 ↔ F2

To prove F1 ⇔ F2 show F1 ↔ F2 is valid.

F1 implies F2 (F1 ⇒ F2)

iff for all interpretations I , I |= F1 → F2

F1 ⇔ F2 and F1 ⇒ F2 are not formulae!

22 / 62

Proposition 2 (Substitution Theorem)

Assume F1 ⇔ F2. If F is a formula with at least one occurrence of
F1 as a subformula then F ⇔ F ′, where F ′ is obtained from F by
replacing some occurrence of F1 in F by F2.

Proof.
(Sketch) By induction on the formula structure. For the induction
start, if F = F1 then F ′ = F2, and F ⇔ F ′ follows from F1 ⇔ F2.
The proof of the induction step is similar to the proof of
Lemma 1.

Proposition 2 is relevant for conversion of formulas into normal
form, which requires replacing subformulas by equivalent ones

23 / 62

Normal Forms

1. Negation Normal Form (NNF)

Negations appear only in literals. (only ¬, ∧ , ∨)

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right):

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2
¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

Example: Convert F : ¬(P → ¬(P ∧ Q)) to NNF

F ′ : ¬(¬P ∨ ¬(P ∧ Q)) → to ∨
F ′′ : ¬¬P ∧ ¬¬(P ∧ Q) De Morgan’s Law

F ′′′ : P ∧ P ∧ Q ¬¬

F ′′′ is equivalent to F (F ′′′ ⇔ F) and is in NNF
24 / 62

2. Disjunctive Normal Form (DNF)

Disjunction of conjunctions of literals∨
i

∧
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in DNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∨ F2) ∧ F3 ⇔ (F1 ∧ F3) ∨ (F2 ∧ F3)

F1 ∧ (F2 ∨ F3) ⇔ (F1 ∧ F2) ∨ (F1 ∧ F3)

}
dist

Example: Convert
F : (Q1 ∨ ¬¬Q2) ∧ (¬R1 → R2) into DNF

F ′ : (Q1 ∨ Q2) ∧ (R1 ∨ R2) in NNF

F ′′ : (Q1 ∧ (R1 ∨ R2)) ∨ (Q2 ∧ (R1 ∨ R2)) dist

F ′′′ : (Q1 ∧ R1) ∨ (Q1 ∧ R2) ∨ (Q2 ∧ R1) ∨ (Q2 ∧ R2) dist

F ′′′ is equivalent to F (F ′′′ ⇔ F) and is in DNF
25 / 62

3. Conjunctive Normal Form (CNF)

Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

To convert F into equivalent F ′ in CNF,
transform F into NNF and then
use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)

Relevance: DPLL and Resolution both work with CNF

26 / 62

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

Decides the satisfiability of PL formulae in CNF, or clause sets

Clause
A (propositional) clause is a disjunction of literals

Convention
A formula in CNF is taken as a set of clauses. Example:

(A ∨ B) ∧ (C ∨ ¬A) ∧ (D ∨ ¬C ∨ ¬A) ∧ (¬D ∨ ¬B) CNF

{A ∨ B , C ∨ ¬A , D ∨ ¬C ∨ ¬A , ¬D ∨ ¬B} Clause Set

Typical Application: Proof by Refutation
To prove the validity of

Axiom1 ∧ · · · ∧ Axiomn ⇒ Conjecture

it suffices to prove that the CNF of

Axiom1 ∧ · · · ∧ Axiomn ∧ ¬Conjecture

is unsatisfiable
27 / 62

DPLL Interpretations

DPLL works with trees whose nodes are labelled with literals

Consistency
No branch contains the labels A and ¬A, for no A

Every branch in a tree is taken as a (consistent) set of its literals

A consistent set of literals S is taken as an interpretation:

I if A ∈ S then (A 7→ true) ∈ I

I if ¬A ∈ S then (A 7→ false) ∈ I

I if A /∈ S and ¬A /∈ S then (A 7→ false) ∈ I

Example

{A,¬B,D} stands for

I : {A 7→ true, B 7→ false, C 7→ false, D 7→ true}
Model
A model for a clause set N is an interpretation I such that I |= N

28 / 62

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{} 6|= A ∨ B

{} |= C ∨ ¬A
{} |= D ∨ ¬C ∨ ¬A
{} |= ¬D ∨ ¬B

〈empty tree〉

I A Branch stands for an interpretation

I Purpose of splitting: satisfy a clause that is currently falsified

I Close branch if some clause is plainly falsified by it (?)

29 / 62

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A} |= A ∨ B

{A} 6|= C ∨ ¬A
{A} |= D ∨ ¬C ∨ ¬A
{A} |= ¬D ∨ ¬B

A ¬A

I A Branch stands for an interpretation

I Purpose of splitting: satisfy a clause that is currently falsified

I Close branch if some clause is plainly falsified by it (?)

30 / 62

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C} |= A ∨ B

{A,C} |= C ∨ ¬A
{A,C} 6|= D ∨ ¬C ∨ ¬A
{A,C} |= ¬D ∨ ¬B

?

A

C ¬C

¬A

I A Branch stands for an interpretation

I Purpose of splitting: satisfy a clause that is currently falsified

I Close branch if some clause is plainly falsified by it (?)

31 / 62

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{A,C ,D} |= A ∨ B

{A,C ,D} |= C ∨ ¬A
{A,C ,D} |= D ∨ ¬C ∨ ¬A
{A,C ,D} |= ¬D ∨ ¬B

Model {A,C ,D} found.

A

C ¬C

D ¬D

¬A

?

?

I A Branch stands for an interpretation

I Purpose of splitting: satisfy a clause that is currently falsified

I Close branch if some clause is plainly falsified by it (?)

32 / 62

DPLL as a Semantic Tree Method

(1) A ∨ B (2) C ∨ ¬A (3) D ∨ ¬C ∨ ¬A (4) ¬D ∨ ¬B

{B} |= A ∨ B

{B} |= C ∨ ¬A
{B} |= D ∨ ¬C ∨ ¬A
{B} |= ¬D ∨ ¬B

Model {B} found.

A

C ¬C

D ¬D

¬A

¬B

?

? ?
B

I A Branch stands for an interpretation

I Purpose of splitting: satisfy a clause that is currently falsified

I Close branch if some clause is plainly falsified by it (?)

33 / 62

DPLL Pseudocode

1 function DPLL(N)
2 %% N is a set of clauses
3 %% returns true if N satisfiable, false otherwise
4 while N contains a unit clause {L}
5 N := simplify(N, L)
6 if N = {} then return true
7 if ⊥ ∈ N then return false
8 L := choose-literal(N) %% any literal that occurs in N
9 if DPLL(simplify(N, L))

10 then return true
11 else return DPLL(simplify(N, ¬L));

1 function simplify(N, L) %% also called unit propagation
2 remove all clauses from N that contain L

3 delete ¬L from all remaining clauses %% possibly get empty clause ⊥
4 return the resulting clause set

34 / 62

Making DPLL Fast – Overview

Conflict Driven Clause Learning (CDCL) solvers extend DPLL

Lemma learning: add new clauses to the clause set as branches get
closed (“conflict driven”)

Goal: reuse information that is obtained in one
branch for subsequent derivation steps.

Backtracking: replace chronological backtracking by
“dependency-directed backtracking”, aka
“backjumping”: on backtracking, skip splits that are
not necessary to close a branch

Randomized restarts: every now and then start over, with learned
clauses

Variable selection heuristics: what literal to split on. E.g., use
literals that occur often

Make unit-propagation fast: 2-watched literal technique

35 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

B

 (1)

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

36 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

37 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

38 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

39 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

D ∨ ¬C

¬B ∨ ¬C

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

40 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

41 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

42 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma

A ¬A

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

43 / 62

Lemma Learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma

A ¬A

¬C
(¬C ∨ ¬A)

"Avoid making the
same mistake twice"

w/o Lemma

. . .

B ∨ ¬A (1)
D ∨ ¬C (2)

¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

44 / 62

Making DPLL Fast

2-watched literal technique
A technique to implement unit propagation efficiently

I In each clause, select two (currently undefined) “watched”
literals.

I For each variable A, keep a list of all clauses in which A is
watched and a list of all clauses in which ¬A is watched.

I If an undefined variable is set to 0 (or to 1), check all clauses
in which A (or ¬A) is watched and watch another literal (that
is true or undefined) in this clause if possible.

I As long as there are two watched literals in a n-literal clause,
this clause cannot be used for unit propagation, because n− 1
of its literals have to be false to provide a unit conclusion.

I Important: Watched literal information need not be restored
upon backtracking.

45 / 62

Further Information

The ideas described so far heve been implemented in the SAT
checker zChaff:

Lintao Zhang and Sharad Malik. The Quest for Efficient Boolean
Satisfiability Solvers, Proc. CADE-18, LNAI 2392, pp. 295–312,
Springer, 2002.

Other Overviews
Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli. Solvin SAT
and SAT Modulo Theories: From an abstract
Davis-Putnam-Logemann-Loveland precedure to DPLL(T), pp
937–977, Journal of the ACM, 53(6), 2006.

Armin Biere and Marijn Heule and Hans van Maaren and Toby
Walsh. Handbook of Satisability, IOS Press, 2009.

46 / 62

The Resolution Calculus

DPLL and the refined CDCL algorithm are the practically best
methods for PL

The resolution calculus (Robinson 1969) has been introduced as a
basis for automated theorem proving in first-order logic. We will
see it in detail in the first-order logic part of this lecture

Refined versions are still the practically best methods for first-order
logic

The resolution calculus is best introduced first for propositional
logic

47 / 62

The Propositional Resolution Calculus

Propositional resolution inference rule

C ∨ A ¬A ∨ D

C ∨ D

Terminology: C ∨ D: resolvent; A: resolved atom

Propositional (positive) factoring inference rule

C ∨ A ∨ A

C ∨ A

Terminology: C ∨ A: factor

These are schematic inference rules:
C and D – propositional clauses
A – propositional atom
“∨” is considered associative and commutative

48 / 62

Derivations

Let N = {C1, . . . ,Ck} be a set of input clauses

A derivation (from N) is a sequence of the form

C1, . . . ,Ck︸ ︷︷ ︸
Input
clauses

,Ck+1, . . . ,Cn, . . .︸ ︷︷ ︸
Derived
clauses

such that for every n ≥ k + 1

I Cn is a resolvent of Ci and Cj , for some 1 ≤ i , j < n, or

I Cn is a factor of Ci , for some 1 ≤ i < n.

The empty disjunction, or empty clause, is written as

A refutation (of N) is a derivation from N that contains

49 / 62

Sample Refutation

1. ¬A ∨ ¬A ∨ B (given)

2. A ∨ B (given)

3. ¬C ∨ ¬B (given)

4. C (given)

5. ¬A ∨ B ∨ B (Res. 2. into 1.)

6. ¬A ∨ B (Fact. 5.)

7. B ∨ B (Res. 2. into 6.)

8. B (Fact. 7.)

9. ¬C (Res. 8. into 3.)

10. (Res. 4. into 9.)

50 / 62

Soundness and Completeness

Important properties a calculus may or may not have:

Soundness: if there is a refutation of N then N is unsatisfiable

Deduction completeness:
if N is valid then there is a derivation of N

Refutational completeness:
if N is unsatisfiable then there is a refutation of N

The resolution calculus is sound and refutationally complete, but
not deduction complete

51 / 62

Soundness of Propositional Resolution

Theorem 3
Propositional resolution is sound

Proof.
Let I be an interpretation. To be shown:

1. for resolution: I |= C ∨ A, I |= D ∨ ¬A ⇒ I |= C ∨ D

2. for factoring: I |= C ∨ A ∨ A ⇒ I |= C ∨ A

Ad (1): Assume premises are valid in I . Two cases need to be
considered:
(a) A is valid in I , or (b) ¬A is valid in I .

a) I |= A⇒ I |= D ⇒ I |= C ∨ D

b) I |= ¬A⇒ I |= C ⇒ I |= C ∨ D

Ad (2): even simpler

52 / 62

Completeness of Propositional Resolution

Theorem 4
Propositional Resolution is refutationally complete

I That is, if a propositional clause set is unsatisfiable, then
Resolution will derive the empty clause eventually

I More precisely: If a clause set is unsatisfiable and closed under
the application of the Resolution and Factoring inference
rules, then it contains the empty clause

I Perhaps easiest proof: semantic tree proof technique (see
whiteboard)

I This result can be considerably strengthened, some
strengthenings come for free from the proof

53 / 62

Semantic Trees
(Robinson 1968, Kowalski and Hayes 1969)

Semantic trees are a convenient device to represent interpretations
for possibly infinitely many atoms

Applications

I To prove the completeness of the propositional resolution
calculus

I Characterizes a specific, refined resolution calculus

I To prove the compactness theorem of propositional logic.
Application: completeness proof of first-order logic Resolution.

54 / 62

Trees

A tree

I is an acyclic, connected, directed graph, where

I every node has at most one incoming edge

A rooted tree has a dedicated node, called root that has no
incoming edge

A tree is finite iff it has finitely many vertices (and edges) only

In a finitely branching tree every node has only finitely many edges

A binary tree every node has at most two outgoing edges. It is
complete iff every node has either no or two outgoing edges

55 / 62

A path P in a rooted tree is a possibly infinite sequence of nodes
P = (N0,N1, . . .), where N0 is the root, and Ni is a direct
successor of Ni−1, for all i = 1, . . . , n

A path to a node N is a finite path of the form (N0,N1, . . . ,Nn)
such that N = Nn; the value n is the length of the path

The node Nn−1 is called the immediate predecessor of N
Every node N0,N1, . . . ,Nn−1 is called a predecessor of N
A (node-)labelled tree is a tree together with a labelling function λ
that maps each of its nodes to an element in a given set

Let L be a literal. The complement of L is the literal

L :=

{
¬A if L is the atom A

A if L is the negated atom ¬A.

56 / 62

Semantic Trees

A semantic tree B (for a set of atoms D) is a labelled, complete,
rooted, binary tree such that

1. the root is labelled by the symbol >
2. for every inner node N , one successor of N is labeled with the

literal A, and the other successor is labeled with the literal
¬A, for some A ∈ D

3. for every node N , there is no literal L such that L ∈ I(N)
and L ∈ I(N), where

I(N) = {λ(Ni) | N0,N1, . . . , (Nn = N) is a path to N
and 1 ≤ i ≤ n}

57 / 62

Semantic Trees

Atom Set
For a clause set N let the atom set (of N) be the set of atoms
occurring in clauses in N

A semantic tree for N is a semantic tree for the atom set of N

Path Semantics
For a path P = (N0,N1, . . .) let

I(P) = {λ(Ni) | i ≥ 0}

be the set of all literals along P
Complete Semantic Tree
A semantic tree for D is complete iff for every A ∈ D and every
branch P it holds that

A ∈ I(P) or ¬A ∈ I(P)

58 / 62

Interpretation Induced by a Semantic Tree

Every path P in a complete semantic tree for D
induces an interpretation IP as follows:

IP [A] =

{
true if A ∈ IP
false if ¬A ∈ IP

A complete semantic tree can be seen as an enumeration of all
possible interpretations for N (it holds IP 6= IP ′ whenever P 6= P ′)

59 / 62

Failure Node

If a clause set N is unsatisfiable (not satisfiable) then, by
definition, every interpretation I falsifies some clause in N, i.e.,
I 6|= C for some C ∈ N
This motivates the following definition:

Failure Node
A node N in a semantic tree for N is a failure node, if

1. there is a clause C ∈ N such that IN 6|= C , and

2. for every predecessor N ′ of N it holds:

there is no clause C ∈ N such that IN ′ 6|= C

60 / 62

Open, Closed

A path P in a semantic tree for N is closed iff P contains a failure
node, otherwise it is open

A semantic tree B for M is closed iff every path is closed,
otherwise B is open

Every closed semantic tree can be turned into a finite closed one
by removing all subtrees below all failure nodes

Remark
The construction of a (closed or open) finite semantic tree is the
core of the propositional DPLL procedure above. Our main
application now, however, is to prove compactness of propositional
clause logic

61 / 62

Compactness

Theorem 5
A (possibly infinite) clause set N is unsatisfiable iff there is a
closed semantic tree for N

Proof.
See whiteboard

Corollary 6 (Compactness)

A (possibly infinite) clause set N is unsatisfiable iff some finite
subset of N is unsatisfiable

Proof.
The if-direction is trivial. For the only-if direction, Theorem 5 gives
us a finite unsatisfiable subset of N as identified by the finitely
many failure nodes in the semantic tree.

62 / 62

