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First-Order Logic (FOL)

Recall: propositional logic: variables are statements ranging over
{true/false}

SocratesIsHuman

SocratesIsHuman→ SocratesIsMortal

SocratesIsMortal

FOL: variables range over individual objects

Human(socrates)

∀x . (Human(x)→ Mortal(x))

Mortal(socrates)

In these lectures:

I (Syntax and) semantics of FOL

I Normal forms

I Reasoning: tableau calculus, resolution calculus
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First-Order Logic (FOL)

Also called Predicate Logic or Predicate Calculus

FOL Syntax
variables x , y , z , · · ·
constants a, b, c , · · ·
functions f , g , h, · · ·
terms variables, constants or

n-ary function applied to n terms as arguments

a, x , f (a), g(x , b), f (g(x , g(b)))

predicates p, q, r , · · ·
atom >, ⊥, or an n-ary predicate applied to n terms

literal atom or its negation

p(f (x), g(x , f (x))), ¬p(f (x), g(x , f (x)))

Note: 0-ary functions: constant

0-ary predicates: P,Q,R, . . .
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quantifiers

existential quantifier ∃x .F [x ]
“there exists an x such that F [x ]”

universal quantifier ∀x .F [x ]
“for all x , F [x ]”

FOL formula literal, application of logical connectives
(¬, ∨ , ∧ , → , ↔ ) to formulae,
or application of a quantifier to a formula
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Example

FOL formula

∀x . p(f (x), x) → (∃y . p(f (g(x , y)), g(x , y))︸ ︷︷ ︸
G

) ∧ q(x , f (x))

︸ ︷︷ ︸
F

The scope of ∀x is F .
The scope of ∃y is G .
The formula reads:

“for all x,
if p(f (x), x)
then there exists a y such that
p(f (g(x , y)), g(x , y)) and q(x , f (x))”

An occurrence of x within the scope of ∀x or ∃x is bound, otherwise it is
free.
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Translations of English Sentences into FOL

I The length of one side of a triangle is less than the sum of the lengths
of the other two sides

∀x , y , z . triangle(x , y , z) → length(x) < length(y) + length(z)

I Fermat’s Last Theorem.

∀n. integer(n) ∧ n > 2

→ ∀x , y , z .
integer(x) ∧ integer(y) ∧ integer(z)

∧ x > 0 ∧ y > 0 ∧ z > 0

→ xn + yn 6= zn
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FOL Semantics

An interpretation I : (DI , αI ) consists of:

I Domain DI

non-empty set of values or objects
for example DI = playing cards (finite),

integers (countably), or

reals (uncountably infinite)
I Assignment αI

I each variable x assigned value αI [x ] ∈ DI

I each n-ary function f assigned

αI [f ] : Dn
I → DI

In particular, each constant a (0-ary function) assigned value αI [a] ∈ DI

I each n-ary predicate p assigned

αI [p] : Dn
I → {true, false}

In particular, each propositional variable P (0-ary predicate) assigned
truth value (true, false)
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Example

F : p(f (x , y), z) → p(y , g(z , x))

Interpretation I : (DI , αI )
DI = Z = {· · · ,−2,−1, 0, 1, 2, · · · } integers

αI [f ] : D2
I 7→ DI αI [g ] : D2

I 7→ DI

(x , y) 7→ x + y (x , y) 7→ x − y

αI [p] : D2
I 7→ {true, false}

(x , y) 7→

{
true if x < y

false otherwise

Also αI [x ] = 13, αI [y ] = 42, αI [z ] = 1
Compute the truth value of F under I

1. I 6|= p(f (x , y), z) since 13 + 42 ≥ 1

2. I 6|= p(y , g(z , x)) since 42 ≥ 1− 13

3. I |= F by 1, 2, and →

F is true under I
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Semantics: Quantifiers

Let x be a variable.
An x-variant of interpretation I is an interpretation J : (DJ , αJ) such that

I DI = DJ

I αI [y ] = αJ [y ] for all symbols y , except possibly x

That is, I and J agree on everything except possibly the value of x

Denote
J : I / {x 7→ v}

the x-variant of I in which αJ [x ] = v for some v ∈ DI . Then

I I |= ∀x . F iff for all v ∈ DI , I / {x 7→ v} |= F

I I |= ∃x . F iff there exists v ∈ DI s.t. I / {x 7→ v} |= F
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Example

Consider
F : ∀x . ∃y . 2 · y = x

Here 2 · y is the infix notation of the term ·(2, y),
and 2 · y = x is the infix notation of the atom =(·(2, y), x)

I 2 is a 0-ary function symbol (a constant).

I · is a 2-ary function symbol.

I = is a 2-ary predicate symbol.

I x , y are variables.

What is the truth-value of F?
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Example (Z)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpretation for integers, DI = Z.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff

for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI ,

there exists v1 ∈ DI , I / {x 7→ v} / {y 7→ v1} |= 2 · y = x

The latter is false since for 1 ∈ DI there is no number v1 with 2 · v1 = 1.
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Example (Q)

F : ∀x . ∃y . 2 · y = x

Let I be the standard interpretation for rational numbers, DI = Q.
Compute the value of F under I :

I |= ∀x . ∃y . 2 · y = x

iff

for all v ∈ DI , I / {x 7→ v} |= ∃y . 2 · y = x

iff

for all v ∈ DI ,

there exists v1 ∈ DI , I / {x 7→ v} / {y 7→ v1} |= 2 · y = x

The latter is true since for arbitrary v ∈ DI we can chose v1 with v1 = v
2 .
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Satisfiability and Validity

F is satisfiable iff there exists an interpretation I such that I |= F .

F is valid iff for all interpretations I , I |= F .

Note: F is valid iff ¬F is unsatisfiable.
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Example

F : (∀x . p(x , x)) → (∃x . ∀y . p(x , y)) is invalid.

How to show this?
Find interpretation I such that

I |= ¬((∀x . p(x , x)) → (∃x . ∀y . p(x , y)))

i.e.
I |= (∀x . p(x , x)) ∧ ¬(∃x . ∀y . p(x , y))

Choose DI = {0, 1}
pI = {(0, 0), (1, 1)} i.e. pI (0, 0) and pI (1, 1) are true

pI (0, 1) and pI (1, 0) are false

I falsifying interpretation ⇒ F is invalid.
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Example

F : (∀x . p(x)) ↔ (¬∃x . ¬p(x)) is valid.

How to show this?

1. By expanding definitions. This is easy for this example.

2. By constructing a proof with, e.g., a “semantic argument method”
adapted to FOL.

Below we will develop such a semantic argument method adapted to FOL.
To define it, we first need the concept of “substitutions”.
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Substitution

Suppose we want to replace terms with other terms in formulas, e.g.,

F : ∀y . (p(x , y) → p(y , x))

should be transformed to

G : ∀y . (p(a, y) → p(y , a))

We call the mapping from x to a a substitution, denoted as σ : {x 7→ a}.
We write Fσ for the Formula G .

Another convenient notation is F [x ] for a formula containing the variable x
and F [a] for Fσ.
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Substitution

A substitution σ is a mapping from variables to terms, written as

σ : {x1 7→ t1, . . . , xn 7→ tn}

such that n ≥ 0 and xi 6= xj for all i , j = 1..n with i 6= j .

The set dom(σ) = {x1, . . . , xn} is called the domain of σ.

The set cod(σ) = {t1, . . . , tn} is called the codomain of σ. The set of all
variables occurring in cod(σ) is called the variable codomain of σ, denoted
by varcod(σ).

By Fσ we denote the application of σ to the formula F , i.e., the formula F
where all free occurrences of xi are replaced by ti .

For a formula named F [x ] we write F [t] as a shorthand for F [x ]{x 7→ t}.
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Safe Substitution

Care has to be taken in presence of quantifiers:

F [x ] : ∃y . y = Succ(x)

What is F [y ]? We cannot just rename x to y with {x 7→ y}:

F [y ] : ∃y . y = Succ(y) Wrong!

We need to first rename bound variables occuring in the codomain of the
substitution:

F [y ] : ∃y ′. y ′ = Succ(y) Right!

Renaming does not change the models of a formula:

(∃y . y = Succ(x)) ⇔ (∃y ′. y ′ = Succ(x))
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Recursive Definition of Substitution

tσ =


σ(x) if t = x and x ∈ dom(σ)

x if t = x and x /∈ dom(σ)

f (t1σ, . . . , tnσ) if t = f (t1, . . . , tn)

p(t1, . . . , tn) = p(t1σ, . . . , tnσ)

(¬F )σ = ¬(Fσ)

(F ∧ G )σ = (Fσ ∧ Gσ)

· · ·

(∀x . F )σ =

{
∀x ′. (F{x 7→ x ′})σ if x ∈ dom(σ) ∪ varcod(σ), x ′ is fresh

∀x . Fσ otherwise

(∃x . F )σ =

{
∃x ′. (F{x 7→ x ′})σ if x ∈ dom(σ) ∪ varcod(σ), x ′ is fresh

∃x . Fσ otherwise

19 / 67



Example: Safe Substitution Fσ

F : (∀x .
scope of ∀x︷ ︸︸ ︷
p(x , y) ) → q(f (y), x)

bound by ∀x ↗ ↖ free free ↗ ↖ free

σ : {x 7→ g(x , y), y 7→ f (x)}

Fσ?

1. Rename x to x ′ in (∀x . p(x , y)), as x ∈ varcod(σ) = {x , y}:

F ′ : (∀x ′. p(x ′, y)) → q(f (y), x)

where x ′ is a fresh variable.

2. Apply σ to F ′:

Fσ : (∀x ′. p(x ′, f (x))) → q(f (f (x)), g(x , y))
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Semantic Argument (“Tableau Calculus”)
Recall rules from propositional logic:

I |= ¬F
I 6|= F

I 6|= ¬F
I |= F

I |= F ∧ G
I |= F
I |= G ←and

I 6|= F ∧ G
I 6|= F | I 6|= G

↖or

I |= F ∨ G
I |= F | I |= G

I 6|= F ∨ G
I 6|= F
I 6|= G

I |= F → G
I 6|= F | I |= G

I 6|= F → G
I |= F
I 6|= G

I |= F ↔ G
I |= F ∧ G | I 6|= F ∨ G

I 6|= F ↔ G
I |= F ∧ ¬G | I |= ¬F ∧ G

I |= F
I 6|= F
I |= ⊥
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Semantic Argument for FOL

The following additional rules are used for quantifiers.

(The formula F [t] is obtained from F [x ] by application of the substitution
{x 7→ t}.)

I |= ∀x . F [x ]

I |= F [t] for any term t

I 6|= ∀x . F [x ]

I 6|= F [a] for a fresh constant a

I |= ∃x . F [x ]

I |= F [a] for a fresh constant a

I 6|= ∃x . F [x ]

I 6|= F [t] for any term t

(We assume there are infinitely many constant symbols.)
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Example

Show that (∃x . ∀y . p(x , y))→ (∀x . ∃y . p(y , x)) is valid.

Assume otherwise.
That is, assume I is a falsifying interpretation for this formula.

1. I 6|= (∃x . ∀y . p(x , y))→ (∀x . ∃y . p(y , x)) assumption

2. I |= ∃x . ∀y . p(x , y) 1 and →
3. I 6|= ∀x . ∃y . p(y , x) 1 and →
4. I |= ∀y . p(a, y) 2 and ∃ (x 7→ a fresh)

5. I 6|= ∃y . p(y , b) 3 and ∀ (x 7→ b fresh)

6. I |= p(a, b) 4 and ∀ (y 7→ b)

7. I 6|= p(a, b) 5 and ∃ (y 7→ a)

8. I |= ⊥ 6 and 7

Thus, the formula is valid.
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Example

Is F : (∀x . p(x , x))→ (∃x . ∀y . p(x , y)) is valid?

Assume I is a falsifying interpretation for F .

1. I 6|= (∀x . p(x , x))→ (∃x . ∀y . p(x , y)) assumption

2. I |= ∀x . p(x , x) 1 and →
3. I 6|= ∃x . ∀y . p(x , y) 1 and →
4. I |= p(a1, a1) 2 and ∀ (x 7→ a1)

5. I 6|= ∀y . p(a1, y) 3 and ∃ (x 7→ a1)

6. I 6|= p(a1, a2) 5 and ∀ (y 7→ a2 fresh)

7. I |= p(a2, a2) 2 and ∀ (x 7→ a2)

8. I 6|= ∀y . p(a2, y) 3 and ∃ (x 7→ a2)

9. I 6|= p(a2, a3) 8 and ∀ (y 7→ a3 fresh)

. . .

No contradiction. Falsifying interpretation I can be “read” from derivation:

DI = N, pI (x , y) =


true if y = x

false if y = x + 1

arbitrary otherwise
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Semantic Argument Proof

To show that FOL formula F is valid, assume I 6|= F and derive a
contradiction I |= ⊥ in all branches.

It holds:

I Soundness
If every branch of a semantic argument proof reaches I |= ⊥ then F
is valid.

I Completeness
Every valid formula F has a semantic argument proof in which every
branch reaches I |= ⊥.

I Non-termination
For an invalid formula F the method is not guaranteed to terminate.
In other words, the semantic argument method is not a decision
procedure for validity.
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Soundness (Proof Sketch)

Given a formula F , the semantic argument method begins with

I 6|= F assumption

Suppose that F is not valid, i.e., there is an interpretation I such that the
above assumption holds.

By following the semantic argument steps, one can show that each step
preserves satisfiability. (For or-nodes, one new branch will be satisfiable.)

This may require updating the current interpretation I . The interpretation
I ′ obtained in the next step may differ in the values αI [ai ] for fresh
constants ai .

Because the new branch (or one of the new branches, for or-nodes) is
satisfiable, it is impossible to reach ⊥ in every branch. This proves the
soundness claim (in its contrapositive form).
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Completeness (Proof Sketch)

Without loss of generality assume that F has no free variables.
(If so, replace these by fresh constants.)

A ground term is a term without variables.

Consider (finite or infinite) proof trees starting with I 6|= F .
We assume fairness:

I All possible proof rules were applied in all non-closed branches.

I The ∀ and ∃ rules were applied for all ground terms.
This is possible since the terms are countable.

If every branch is closed, the tree is finite (König’s Lemma) and we have a
(finite) proof for F .

27 / 67



Completeness (Proof Sketch)

Otherwise the proof tree has at least one open branch P.
We show that F is not valid by extracting from P a model I for F .

1. The statements on that branch P form a Hintikka set:
I I |= F ∧ G ∈ P implies I |= F ∈ P and I |= G ∈ P.
I I 6|= F ∧ G ∈ P implies I 6|= F ∈ P or I 6|= G ∈ P.
I I |= ∀x .F [x ] ∈ P implies for all ground terms t, I |= F [t] ∈ P.
I I 6|= ∀x .F [x ] ∈ P implies for some ground term a, I 6|= F [a] ∈ P.
I Similarly for ∀, →, ↔ and ∃.

2. Choose DI := {t | t is a ground term}
3. Choose αI [f ](t1, . . . , tn) = f (t1, . . . , tn),

αI [p](t1, . . . , tn) =

{
true if I |= p(t1, . . . , tn) ∈ P

false otherwise

4. I satisfies all statements on the branch P.
In particular, I is a falsifying interpretation for F , thus F is not valid.
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Normal Forms

Also in first-order logic normal forms can be used:

I Devise an algorithm to convert a formula to a normal form.

Example: CNF (conjunctive normal form)

I Then devise a procedure for satisfiability/validity that only works on
the normal form

Example: both DPLL and the resolution calculus require CNF
formulas as input
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Negation Normal Form (NNF)

NNF: Negations appear only in literals, and use only ¬, ∧ , ∨ ,∀ , ∃.

To transform F to equivalent F ′ in NNF use recursively
the following template equivalences (left-to-right).

From propositional logic:

¬¬F1 ⇔ F1 ¬> ⇔ ⊥ ¬⊥ ⇔ >
¬(F1 ∧ F2) ⇔ ¬F1 ∨ ¬F2

¬(F1 ∨ F2) ⇔ ¬F1 ∧ ¬F2

}
De Morgan’s Law

F1 → F2 ⇔ ¬F1 ∨ F2

F1 ↔ F2 ⇔ (F1 → F2) ∧ (F2 → F1)

Additionally for first-order logic:

¬∀x . F [x ] ⇔ ∃x . ¬F [x ]

¬∃x . F [x ] ⇔ ∀x . ¬F [x ]
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Example: Conversion to NNF

G : ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w .p(x ,w) .

1. ∀x . (∃y . p(x , y) ∧ p(x , z)) → ∃w . p(x ,w)

2. ∀x . ¬(∃y . p(x , y) ∧ p(x , z)) ∨ ∃w . p(x ,w)
F1 → F2 ⇔ ¬F1 ∨ F2

3. ∀x . (∀y . ¬(p(x , y) ∧ p(x , z))) ∨ ∃w . p(x ,w)
¬∃x . F [x ] ⇔ ∀x . ¬F [x ]

4. ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
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Prenex Normal Form (PNF)

PNF: All quantifiers appear at the beginning of the formula

Q1x1 · · ·Qnxn. F [x1, · · · , xn]

where Qi ∈ {∀, ∃} and F is quantifier-free.

Every FOL formula F can be transformed to formula F ′ in PNF such that
F ′ ⇔ F .

1. Transform F to NNF

2. Rename quantified variables to fresh names

3. Move all quantifiers to the front

(∀x F ) ∨ G ⇔ ∀x (F ∨ G ) (∃x F ) ∨ G ⇔ ∃x (F ∨ G )

(∀x F ) ∧ G ⇔ ∀x (F ∧ G ) (∃x F ) ∧ G ⇔ ∃x (F ∧ G )

These rules apply modulo symmetry of ∧ and ∨
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Example: PNF 1

Find equivalent PNF of

F : ∀x . ((∃y . p(x , y) ∧ p(x , z)) → ∃y . p(x , y))

1. Transform F to NNF

F1 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃y . p(x , y)

2. Rename quantified variables to fresh names

F2 : ∀x . (∀y . ¬p(x , y) ∨ ¬p(x , z)) ∨ ∃w . p(x ,w)
↑ in the scope of ∀x
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Example: PNF 2

3. Add the quantifiers before F2

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Alternately,

F ′3 : ∀x . ∃w . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

Note: In F3, ∀y is in the scope of ∀x , therefore the order of
quantifiers must be · · · ∀x · · · ∀y · · ·

F3 ⇔ F and F ′3 ⇔ F

Note: However G < F

G : ∀y . ∃w . ∀x . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)
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Skolem Normal Form (SNF)

SNF: PNF and additionally all quantifiers are ∀

∀x1 · · · ∀xn. F [x1, · · · , xn] where F is quantifier-free.

Every FOL formula F can be transformed to equi-satisfiable formula F ′ in
SNF.

1. Transform F to NNF

2. Transform to PNF

3. Starting from the left, stepwisely remove all ∃-quantifiers by
Skolemization
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Skolemization

Replace

∀x1 · · · ∀xk−1︸ ︷︷ ︸
no ∃

. ∃xk . Qk+1xk+1 · · ·Qnxn︸ ︷︷ ︸
Qi ∈{∀, ∃}

. F [x1, · · · , xk , · · · , xn]

by
∀x1 · · · ∀xk−1. Qk+1xk+1 · · ·Qnxn. F [x1, · · · , t, · · · , xn]

where

t = f (x1, . . . , xk−1) where f is a fresh function symbol

The term t is called a Skolem term for xk and f is called a
Skolem function symbol.
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Example: SNF

Convert

F3 : ∀x . ∀y . ∃w . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x ,w)

to SNF.

Let f (x , y) be a Skolem term for w :

F4 : ∀x . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , f (x , y))

We have F3 6⇔ F4 however it holds

A formula F is satisfiable iff the SNF of F is satisfiable.
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Conjunctive Normal Form

CNF: Conjunction of disjunctions of literals∧
i

∨
j

`i ,j for literals `i ,j

Every FOL formula can be transformed into equi-satisfiable CNF.

1. Transform F to NNF

2. Transform to PNF

3. Transform to SNF

4. Leave away ∀-quantifiers (This is just a convention)

5. Use the following template equivalences (left-to-right):

(F1 ∧ F2) ∨ F3 ⇔ (F1 ∨ F3) ∧ (F2 ∨ F3)

F1 ∨ (F2 ∧ F3) ⇔ (F1 ∨ F2) ∧ (F1 ∨ F3)
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Example: CNF

Convert

F4 : ∀x . ∀y . ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , f (x , y))

to CNF.

Leave away ∀-quantifiers

F5 : ¬p(x , y) ∨ ¬p(x , z) ∨ p(x , f (x , y))

F5 is already in CNF.

Conversion from SNF to CNF is again an equivalence transformation.
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Resolution for FOL

We have seen the resolution calculus for propositional logic.

(Refinements of) the resolution calculus for FOL are the best methods for
automated proof search in FOL.

Plan for generalization of propositional resolution to FOL:

1. First-order clause logic

2. Unification

3. FOL resolution inference rules
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First-order Clause Logic: Syntax

CNF as clause sets ∧
i

∨
j

`i ,j for literals `i ,j︸ ︷︷ ︸
Clause︸ ︷︷ ︸

Taken as a clause set N

Example

N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (x)))}

By convention, ∀-quantifiers are not written. An explicitly quantified
formula can be restored by first connecting the clauses by ∧ and then
∀-quantifying over all variables, or the other way round.

∀x . ∀y . ∀z . (P(a) ∧ (¬P(x) ∨ P(f (x))) ∧ Q(y , z) ∧ ¬P(f (f (x))))

⇔P(a) ∧ (∀x . (¬P(x) ∨ P(f (x)))) ∧ (∀y . ∀z . Q(y , z)) ∧ (∀x . ¬P(f (f (x))))
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Semantic Argument Method applied to Clause Logic

Let N = {C1[~x ], . . . ,Cn[~x ]} be a set of clauses.
Either N is unsatisfiable or else semantic argument gives open branch:

I 6|= ¬(C1 ∧ · · · ∧ Cn)

I |= C1 ∧ · · · ∧ Cn

I |= C1

· · ·
I |= Cn

· · ·
I |= Ci [~t] for all i = 1..n and all ground terms ~t

· · ·
Conclusion (a bit sloppy): checking satisfiability of N can be done
“syntactically”, by fixing the domain DI , interpretation αI [f ] and treating
∀-quantification by exhaustive replacement by ground terms.
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First-order Clause Logic: Herbrand Semantics

Let F be a formula. An input term (wrt. F ) is a term that contains
function symbols occurring in F only.

Proposition (“Herband models existence”.) Let N be a clause set.
If N is satisfiable then there is a model I |= N such that

I DI := {t | t is a input ground term over }
I αI [f ](t1, . . . , tn) = f (t1, . . . , tn).

Proof. Assume N is satisfiable. By soundness, the semantic argument
method gives us an (at least one) open branch. The completeness proof
allows us to extract from this branch the model I such that

I DI := {t | t is a ground term}
I αI [f ](t1, . . . , tn) = f (t1, . . . , tn)

I αI [p](t1, . . . , tn) = “extracted from open branch”

Because N is a clause set, no inference rule that introdcues a fresh constant
is ever applicable. Thus, DI consists of input (ground) terms only.

43 / 67



First-order Clause Logic: Herbrand Semantics

Reformulate the previous in commonly used terminology

Herbrand interpretation

I HUI := DI from above is the Herbrand universe, however use ground
terms only (terms without variables).

I HBI = {p(t1, . . . , tn) | t1, . . . , tn ∈ HUI} is the Herbrand base.

I Any subset of HBI is a Herbrand interpretation (misnomer!), exactly
those atoms that are true.

I For a clause C [x ] and t ∈ HUI the clause C [t] is a ground instance.

I For a clause set N the set {C [t] | C [x ] ∈ N} is its Herbrand expansion.
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Example: Herbrand Interpretation

Function symbols: 0, s (for the “+1” function), +

Predicate symbols: <, ≤

HUI = {0, s(0), s(s(0)), . . . , 0 + 0, 0 + s(0), s(0) + 0, . . .}

N as a Herbrand interpretation, a subset of HBI :

I = { 0 ≤ 0, 0 ≤ s(0), 0 ≤ s(s(0)), . . . ,

0 + 0 ≤ 0, 0 + 0 ≤ s(0), . . . ,

. . . , (s(0) + 0) + s(0) ≤ s(0) + (s(0) + s(0))

. . .

s(0) + 0 < s(0) + 0 + 0 + s(0)

. . .}
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Herbrand Theorem

The soundness and completeness proof of the semantic argument method
applied to clause logic provides the following results.

I If a clause set N is unsatisfiable then it has no Herbrand model
(trivial).

I If a clause set N is satisfiable then it has a Herbrand model.

This is the “Herbrand models existence” proposition above.

I Herbrand theorem: if a clause set N is unsatisfiable then some finite
subset of its Herbrand expansion is unsatisfiable.

Proof: Suppose N is unsatisfiable. By completeness, there is a proof
by semantic argument using the Herbrand expansion of N. Tye proof
is a finite tree and hence can use only finitely many elements of the
Herbrand expansion.
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Herbrand Theorem Illustration

Clause set

N = {P(a), ¬P(x) ∨ P(f (x)), Q(y , z), ¬P(f (f (a)))}

Herbrand universe

HUI = {a, f (a), f (f (a)), f (f (f (a))), . . .

Herbrand expansion

Ngr = {P(a)}
∪ {¬P(a) ∨ P(f (a)), ¬P(f (a)) ∨ P(f (f (a))),

¬P(f (f (a))) ∨ P(f (f (f (a)))), . . .}
∪ {Q(a, a), Q(a, f (a)), Q(f (a), a), Q(f (a), f (a)), . . .}
∪ {¬P(f (f (a)))}
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Herbrand Theorem Illustration

HBI = {P(a)︸︷︷︸
A0

, P(f (a))︸ ︷︷ ︸
A1

, P(f (f (a)))︸ ︷︷ ︸
A2

, P(f (f (f (a))))︸ ︷︷ ︸
A3

, . . .}

∪ {Q(a, a)︸ ︷︷ ︸
B0

, Q(a, f (a))︸ ︷︷ ︸
B1

, Q(f (a), a)︸ ︷︷ ︸
B2

, Q(f (a), f (a))︸ ︷︷ ︸
B3

, . . .}

By construction, every atom in Ngr occurs in HBI

Replace in Ngr every (ground) atom by its propositional counterpart:

Ngr
prop = {A0}
∪ {¬A0 ∨ A1, ¬A1 ∨ A2,¬A2 ∨ A3, . . .}
∪ {B0, B1, B2, B3, . . .}
∪ {¬A2}

The subset {A0, ¬A0 ∨A1, ¬A1 ∨A2, ¬A2} is unsatisfiable, hence so is N.
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Resolution for FOL

Where we are at:

1. Introduced CNF for first-order logic (“Clause logic”).

2. Need to define inference rules for first-order logic resolution.

3. “Derivation” has been introduced for propositional logic resolution.
No change required.

Alternatives for 2:

I Instantiation (bad!).

I Using unification.
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First-Order Resolution through Instantiation

Idea: instantiate clauses appropriately:
General Resolution through Instantiation
Idea: instantiate clauses appropriately:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(f (a, b)) ¬P(a, a) ¬P(a, b) P(a, b) ∨ Q(f (a, b))

¬Q(f (a, b)) Q(f (a, b))

⊥

[a/z ′, f (a, b)/z] [a/y ] [b/y ] [a/x ′, b/x ]

121Notation: [t1/x1, . . . , tn/xn] is the substitution {x1 7→ t1, . . . , xn 7→ tn}.
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First-Order Resolution through Instantiation

Problems:

I More than one instance of a clause can participate in a proof.

I Even worse: There are infinitely many possible instances.

Observation:

I Instantiation must produce complementary literals (so that inferences
become possible).

Idea:

I Do not instantiate more than necessary to get complementary literals.
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First-Order Resolution through Instantiation

Idea: do not instantiate more than necessary:

First-Order Resolution through Instantiation
Idea: do not instantiate more than necessary:

P(z ′, z ′) ∨ ¬Q(z) ¬P(a, y) P(x ′, b) ∨ Q(f (x ′, x))

P(a, a) ∨ ¬Q(z) ¬P(a, a) ¬P(a, b) P(a, b) ∨Q(f (a, x))

¬Q(z) Q(f (a, x))

¬Q(f (a, x)) Q(f (a, x))

⊥

[a/z ′] [a/y ] [b/y ] [a/x ′]

[f (a, x)/z ]

67
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Lifting Principle

Problem: Make resolution derivations of infinite sets of clauses as they
arise from taking the (ground) instances of finitely many
first-order clauses (with variables) effective and efficient.

Idea (Robinson 1965):

I Resolution for first-order clauses:
I Equality of ground atoms is generalized to unifiability of

first-order atoms;
I Only compute most general (minimal) unifiers.
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Lifting Propositional Resolution to First-Order Resolution

Propositional resolution

Clauses Ground instances

P(f (x), y) {P(f (a), a), . . . ,P(f (f (a)), f (f (a))), . . .}
¬P(z , z) {¬P(a), . . . ,¬P(f (f (a)), f (f (a))), . . .}

Only common instances of P(f (x), y) and P(z , z) give rise to inference:

P(f (f (a)), f (f (a))) ¬P(f (f (a)), f (f (a)))

⊥
Unification

All common instances of P(f (x), y) and P(z , z) are instances of P(f (x), f (x))
P(f (x), f (x)) is computed deterministically by unification

First-order resolution

P(f (x), y) ¬P(z , z)

⊥
Justified by existence of P(f (x), f (x))

Can represent infinitely many propositional resolution inferences
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Unification

A substitution γ is a unifier of terms s and t iff sγ = tγ.

A unifier σ is most general iff for every unifier γ of the same terms there is
a substitution δ such that γ = δ ◦ σ (we write σδ).

Notation: σ = mgu(s, t)

Example

s = car(red , y , z)
t = car(u, v , ferrari)
Then

γ = {u 7→ red , y 7→ fast, v 7→ fast, z 7→ ferrari}

is a unifier, and

σ = {u 7→ red , y 7→ v , z 7→ ferrari}

is a mgu for s and t.
With δ = {v 7→ fast} obtain σδ = γ.
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Unification of Many Terms

Let E = {s1
.

= t1, . . . , sn
.

= tn} be a multiset of equations, where si and ti
are terms or atoms. The set E is called a unification problem.

A substitution σ is called a unifier of E if siσ = tiσ for all 1 ≤ i ≤ n.

If a unifier of E exists, then E is called unifiable.

The rule system on the next slide computes a most general unifer of a
unification problems or “fail” (⊥) if none exists.
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Rule Based Naive Standard Unification

Starting with a given unification problem E , apply the following rules as
long as possible. The notation “s

.
= t, E” means “{s .

= t} ∪ E”.

t
.

= t,E ⇒ E (Trivial)

f (s1, . . . , sn)
.

= f (t1, . . . , tn),E ⇒ s1
.

= t1, . . . , sn
.

= tn,E (Decompose)

f (. . .)
.

= g(. . .),E ⇒ ⊥ (Clash)

x
.

= t,E ⇒ x
.

= t,E{x 7→ t} (Apply)

if x ∈ var(E ), x 6∈ var(t)

x
.

= t,E ⇒ ⊥ (Occur Check)

if x 6= t, x ∈ var(t)

t
.

= x ,E ⇒ x
.

= t,E (Orient)

if t is not a variable
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Example 1

Let E1 = {f (x , g(x), z)
.

= f (x , y , y)} the unification problem to be solved.
In each step, the selected equation is underlined.

E1 : f (x , g(x), z)
.

= f (x , y , y) (given)

E2 : x
.

= x , g(x)
.

= y , z
.

= y (by Decompose)

E3 : g(x)
.

= y , z
.

= y (by Trivial)

E4 : y
.

= g(x), z
.

= y (by Orient)

E5 : y
.

= g(x), z
.

= g(x) (by Apply {y 7→ g(x)})

Result is mgu σ = {y 7→ g(x), z 7→ g(x)}.
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Example 2

Let E1 = {f (x , g(x))
.

= f (x , x)} the unification problem to be solved.
In each step, the selected equation is underlined.

E1 : f (x , g(x))
.

= f (x , x) (given)

E2 : x
.

= x , g(x)
.

= x (by Decompose)

E3 : g(x)
.

= x (by Trivial)

E4 : x
.

= g(x) (by Orient)

E5 : ⊥ (by Occur Check)

There is no unifier of E1.
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Main Properties

The above unification algorithm is sound and complete:
Given E = {s1

.
= t1, . . . , sn

.
= tn}, exhaustive application of the above rules

always terminates, and one of the following holds:

I The result is a set equations in solved form, that is, is of the form

x1
.

= u1, . . . , xk
.

= uk

with xi pairwise distinct variables, and xi 6∈ var(uj).
In this case, the solved form represents the substitution
σE = {x1 7→ u1, . . . , xk 7→ uk} and it is a mgu for E .

I The result is ⊥. In this case no unifier for E exists.
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First-Order Resolution Inference Rules

C ∨ A D ∨ ¬B
(C ∨ D)σ

if σ = mgu(A,B) [resolution]

C ∨ A ∨ B

(C ∨ A)σ
if σ = mgu(A,B) [factoring]

For the resolution inference rule, the premise clauses have to be renamed
apart (made variable disjoint) so that they don’t share variables.

Example

Q(z) ∨ P(z , z) ¬P(x , y)

Q(x)
where σ = [z 7→ x , y 7→ x ] [resolution]

Q(z) ∨ P(z , a) ∨ P(a, y)

Q(a) ∨ P(a, a)
where σ = [z 7→ a, y 7→ a] [factoring]
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Sample Refutation – The Barber Problem

set(binary_res). %% This is an "otter" input file

formula_list(sos).

%% Every barber shaves all persons who do not shave themselves:

all x (B(x) -> (all y (-S(y,y) -> S(x,y)))).

%% No barber shaves a person who shaves himself:

all x (B(x) -> (all y (S(y,y) -> -S(x,y)))).

%% Negation of "there are no barbers"

exists x B(x).

end_of_list.

otter finds the following refutation (clauses 1 – 3 are the CNF):

1 [] -B(x)|S(y,y)|S(x,y).

2 [] -B(x)| -S(y,y)| -S(x,y).

3 [] B($c1).

4 [binary,1.1,3.1] S(x,x)|S($c1,x).

5 [factor,4.1.2] S($c1,$c1).

6 [binary,2.1,3.1] -S(x,x)| -S($c1,x).

10 [factor,6.1.2] -S($c1,$c1).

11 [binary,10.1,5.1] $F.
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Completeness of First-Order Resolution

Theorem: Resolution is refutationally complete.

I That is, if a clause set is unsatisfiable, then resolution will derive the
empty clause eventually.

I More precisely: If a clause set is unsatisfiable and closed under the
application of the resolution and factoring inference rules, then it
contains the empty clause .

I Proof: Herbrand theorem + completeness of propositional resolution
+ Lifting Lemma

Moreover, in order to implement a resolution-based theorem prover, we
need an effective procedure to close a clause set under the application of
the resolution and factoring inference rules. See the “given clause loop”
below.
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Lifting Lemma

Let C and D be variable-disjoint clauses. If

Dy σ

Dσ

Cy ρ

Cρ
C ′

[propositional resolution]

then there exists a substitution τ such that

D C

C ′′y τ

C ′ = C ′′τ

[first-order resolution]

An analogous lifting lemma holds for factoring.
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The “Given Clause Loop”

As used in the Otter theorem prover:
Lists of clauses maintained by the algorithm: usable and sos.
Initialize sos with the input clauses, usable empty.

Algorithm (straight from the Otter manual):

While (sos is not empty and no refutation has been found)

1. Let given_clause be the ‘lightest’ clause in sos;

2. Move given_clause from sos to usable;

3. Infer and process new clauses using the inference rules in

effect; each new clause must have the given_clause as

one of its parents and members of usable as its other

parents; new clauses that pass the retention tests

are appended to sos;

End of while loop.

Fairness: define clause weight e.g. as “depth + length” of clause.
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The “Given Clause Loop” - Graphically

set of
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Decidability of FOL

I FOL is undecidable (Turing & Church)
There does not exist an algorithm for deciding if a FOL formula F is
valid, i.e. always halt and says “yes” if F is valid or say “no” if F is
invalid.

I FOL is semi-decidable
There is a procedure that always halts and says “yes” if F is valid, but
may not halt if F is invalid.

On the other hand,

I PL is decidable
There does exist an algorithm for deciding if a PL formula F is valid,
e.g. the truth-table procedure.
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