Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU
Australia

Markov Decision Processes (MDPs)

Actions: move left, move right, enter, get Eve, exit

Markov Decision Processes (MDPs)

Nondeterministic action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, location of Eve uncertain (10\% - 90\%)

Markov Decision Processes (MDPs)

Nondeterministic action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, location of Eve uncertain (10\% - 90\%)

Markov Decision Processes (MDPs)

Nondeterministic action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, location of Eve uncertain (10\% - 90\%)

Markov Decision Processes (MDPs)

Nondeterministic action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, location of Eve uncertain (10\% - 90\%)
Decision making:
What action to take in what state to achieve objective?
Objective: $\mathbf{P}_{>0.9} \mathbf{F}\left(\right.$ Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done $)$

Markov Decision Processes (MDPs)

Nondeterministic action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, location of Eve uncertain (10\% - 90\%)
Decision making:
What action to take in what state to achieve objective?
Objective: $\mathbf{P}_{>0.9} \mathbf{F}\left(\right.$ Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done $) \quad \rightarrow$ MDP formalism

MDPs, Execution Paths and Probabilities

Nondeterministic action \Longrightarrow stochastic environment response

Paths (actions have been resolved)

$$
\mathbf{s}_{0} \xrightarrow[1.0]{\text { right }} \mathbf{d}_{1} \underbrace{0.1}_{0.9} \mathbf{e n t e r}_{\mathbf{r}_{1}}^{\mathbf{d}_{1}} \underbrace{0.1}_{0.9} \mathbf{r}_{\mathbf{1}}
$$

MDPs, Execution Paths and Probabilities

Nondeterministic action \Longrightarrow stochastic environment response

Paths (actions have been resolved)

"The probability of reaching \mathbf{r}_{1} after at most two enter steps is 0.99 "

MDPs, Execution Paths and Probabilities

Nondeterministic action \Longrightarrow stochastic environment response

Paths (actions have been resolved)

"The probability of reaching \mathbf{r}_{1} after at most two enter steps is 0.99 "

Policy Synthesis Problem

- Static: MDP

- Dynamics: paths and probabilities of paths
- Induced by actions chosen
- Logic: specification of target property (see below)
- Constraints on probabilities of these paths

Policy synthesis problem
Policy σ : what actions to chose in what state
Synthesis problem: determine σ such that target property is satisfied

Policy Synthesis Problem

- Static: MDP

- Dynamics: paths and probabilities of paths
- Induced by actions chosen
- Logic: specification of target property (see below)
- Constraints on probabilities of these paths

Policy synthesis problem
Policy O: what actions to chose in what state \rightarrow Different kinds of policies
Synthesis problem: determine σ such that target property is satisfied

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt 1

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt 1
so: right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt 1
$\mathbf{s}_{\mathbf{0}}$: right \mathbf{d}_{1} : enter

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt 1

```
so: right d}\mp@subsup{\mathbf{d}}{\mathbf{1}}{\mathrm{ : enter ( }}\mathbf{\mp@subsup{\mathbf{r}}{\mathbf{1}}{}}\mathrm{ : get
```


Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt 1
$\mathbf{s}_{\mathbf{0}}$: right \mathbf{d}_{1} : enter $\mathbf{r}_{\mathbf{1}}$: get $\mathbf{e}_{\mathbf{1}}$: exit

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy

Attempt 2

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy

Attempt 2
$\mathbf{s}_{\mathbf{0}}$: right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt $1 \quad \checkmark$ eventually Eve
$\mathbf{s}_{\mathbf{0}}$: right \mathbf{d}_{1} : enter $\mathbf{r}_{\mathbf{1}}$: get $\quad \mathbf{e}_{1}$: exit $\quad \boldsymbol{X}$ never Done

Attempt 2
\mathbf{s}_{0} : right \mathbf{d}_{1} : right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt $1 \quad \checkmark$ eventually Eve
$\mathbf{s}_{\mathbf{0}}$: right $\mathbf{d}_{\mathbf{1}}$: enter $\mathbf{r}_{\mathbf{1}}$: get $\quad \mathbf{e}_{\mathbf{1}}$: exit $\quad \boldsymbol{x}$ never Done

Attempt 2
\mathbf{s}_{0} : right \mathbf{d}_{1} : right \mathbf{d}_{2} : right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt $1 \quad \checkmark$ eventually Eve
$\mathbf{s}_{\mathbf{0}}$: right \mathbf{d}_{1} : enter \mathbf{r}_{1} : get \mathbf{e}_{1} : exit $\quad \boldsymbol{X}$ never Done

Attempt $2 \quad \checkmark$ eventually Done
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{d}_{1}:$ right $\quad \mathbf{d}_{2}$: right $\quad X$ never Eve

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case M: History-independent policy
Attempt $1 \quad \checkmark$ eventually Eve
$\mathbf{s}_{\mathbf{0}}$: right \mathbf{d}_{1} : enter \mathbf{r}_{1} : get \mathbf{e}_{1} : exit $\quad \boldsymbol{X}$ never Done

Attempt 2

$$
\mathbf{s}_{0}: \text { right } \quad \mathbf{d}_{1}: \text { right } \quad \mathbf{d}_{2}: \text { right }
$$

\checkmark eventually Done
x never Eve

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
\mathbf{s}_{0} : right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
\mathbf{s}_{0} : right $\quad \mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{d}_{1} \ldots \mathbf{d}_{1}$: enter

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\mathbf{s}_{\mathbf{0}} \mathbf{d}_{\mathbf{1}} \ldots \mathbf{d}_{\mathbf{1}} \ldots \mathbf{d}_{\mathbf{1}}$: enter $\mathbf{s}_{\mathbf{0}} \ldots \mathbf{r}_{\mathbf{1}}$: get

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
\mathbf{s}_{0} : right $\quad \mathbf{s}_{0} \mathbf{d}_{\mathbf{1}} \ldots \mathbf{d}_{\mathbf{1}} \ldots \mathbf{d}_{1}$: enter $\quad \mathbf{s}_{0} \ldots \mathbf{r}_{\mathbf{1}}$: get $\mathbf{s}_{\mathbf{0}} \ldots \mathbf{e}_{\mathbf{1}}$: exit

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy

$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{\mathbf{0}} \mathbf{d}_{\mathbf{1}} \ldots \mathbf{d}_{\mathbf{1}} \ldots \mathbf{d}_{\mathbf{1}}$: enter $\mathbf{s}_{0} \ldots \mathbf{r}_{\mathbf{1}}$: get $\mathbf{s}_{\mathbf{0}} \ldots$... $\mathbf{e}_{\mathbf{1}}$: exit $\mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{e}_{1} \ldots \mathbf{d}_{1}$: right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{d}_{1} \ldots \mathbf{d}_{1}$: enter $\mathbf{s}_{0} \ldots \mathbf{r}_{1}$: get $\mathbf{s}_{0} \ldots \mathbf{e}_{1}$: exit \checkmark eventually Eve

$$
\mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{e}_{1} \ldots \mathbf{d}_{1}: \text { right } \quad \mathbf{s}_{0} \ldots \mathbf{d}_{2}: \text { right } \quad \checkmark \text { eventually Done }
$$

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{d}_{1} \ldots \mathbf{d}_{1}$: enter $\quad \mathbf{s}_{\mathbf{0}} \ldots \mathbf{r}_{1}$: get $\mathbf{s}_{\mathbf{0}} \ldots \mathbf{e}_{1}$: exit \checkmark eventually Eve

$$
\mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{e}_{1} \ldots \mathbf{d}_{1}: \text { right } \quad \mathbf{s}_{0} \ldots \mathbf{d}_{2}: \text { right } \quad \checkmark \text { eventually Done }
$$

X unbounded history length - highly undecidable

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case H: History-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{d}_{1} \ldots \mathbf{d}_{1}$: enter $\mathbf{s}_{0} \ldots \mathbf{r}_{\mathbf{1}}$: get $\mathbf{s}_{\mathbf{0}} \ldots \mathbf{e}_{1}$: exit \checkmark eventually Eve

$$
\mathbf{s}_{0} \mathbf{d}_{1} \ldots \mathbf{e}_{1} \ldots \mathbf{d}_{1}: \text { right } \quad \mathbf{s}_{0} \ldots \mathbf{d}_{2}: \text { right } \quad \checkmark \text { eventually Done }
$$

X unbounded history length - highly undecidable

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
\mathbf{s}_{0} : right

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{0} \mathbf{d}_{\mathbf{1}}$: enter

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{0} \mathbf{d}_{\mathbf{1}}$: enter

$$
\mathbf{d}_{1} \mathbf{d}_{1} \text { : enter }
$$

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{\mathbf{0}} \mathbf{d}_{\mathbf{1}}$: enter $\quad \mathbf{d}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}$: get
$\mathbf{d}_{1} \mathbf{d}_{1}$: enter

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{s}_{\mathbf{0}} \mathbf{d}_{\mathbf{1}}$: enter $\quad \mathbf{d}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}$: get
$\mathbf{d}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}}$: enter $\quad \mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}$: get

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
$\begin{array}{lll}\mathbf{s}_{\mathbf{0}}: \text { right } & \mathbf{S}_{\mathbf{0}} \mathbf{d}_{\mathbf{1}}: \text { enter } & \mathbf{d}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}: \text { get } \\ & \mathbf{d}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}}: \text { enter } & \mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}} \text { : get }\end{array}$

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy

\mathbf{s}_{0} : right $\mathbf{s}_{0} \mathbf{d}_{1}$: enter $\mathbf{d}_{1} \mathbf{r}_{\mathbf{1}}$: get $\quad \mathbf{r}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}}$: exit $\mathbf{e}_{1} \mathbf{d}_{1}$: right
$$
\mathbf{d}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}} \text { : enter } \quad \mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}} \text { : get }
$$

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy

\mathbf{s}_{0} : right $\quad \mathbf{s}_{0} \mathbf{d}_{1}$: enter $\quad \mathbf{d}_{1} \mathbf{r}_{\mathbf{1}}$: get $\quad \mathbf{r}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}}$: exit $\mathbf{d}_{\mathbf{1}} \mathbf{d}_{\mathbf{1}}$: enter $\quad \mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}$: get

$\mathbf{e}_{1} \mathbf{d}_{1}$: right \checkmark eventually Eve
\checkmark eventually Done

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy

s_{0} :	$\mathbf{S o}_{0} \mathbf{d}_{1}$: enter	$\mathbf{d}_{1} \mathbf{r}_{1}$: get	$\mathbf{r}_{1} \mathbf{e}_{1}$: exit	$\mathbf{e}_{1} \mathbf{d}_{1}$: right	\checkmark	
	$\mathbf{d}_{1} \mathbf{d}_{1}$: enter	$\mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}$: get				

Our approach
A priori finitely bounded history length - decidable (our main result)

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ (Eve $\wedge \mathbf{F}$ Done)
Case F: Finite history-dependent policy
s_{0} : righ

$\mathbf{s}_{0} \mathbf{d}_{1}:$ enter	$\mathbf{d}_{1} \mathbf{r}_{\mathbf{1}}:$ get	$\mathbf{r}_{\mathbf{1}} \mathbf{e}_{\mathbf{1}}$: exit
$\mathbf{d}_{1} \mathbf{d}_{\mathbf{1}}:$ enter	$\mathbf{r}_{\mathbf{1}} \mathbf{r}_{\mathbf{1}}$: get	

$\mathbf{e}_{1} \mathbf{d}_{1}$: right $\quad \checkmark$ eventually Eve \checkmark eventually Done

Our approach
A priori finitely bounded history length - decidable (our main result)

Policies - History Dependance and Randomization

Target property: $\mathbf{P}_{>0} \mathbf{F}$ Left $\wedge \mathbf{P}_{>0} \mathbf{F}$ Right

Case D: Deterministic policy

Policies - History Dependance and Randomization

Target property: $\mathbf{P}_{>0} \mathbf{F}$ Left $\wedge \mathbf{P}_{>0} \mathbf{F}$ Right

Case D: Deterministic policy
Attempt 1

$$
\begin{array}{ll}
\mathbf{s}_{0} \text { : left } & \checkmark \mathbf{P}_{>0} \mathbf{F} \text { Left } \\
& \mathbf{x} \mathbf{P}_{>0} \mathbf{F} \text { Right }
\end{array}
$$

Policies - History Dependance and Randomization

Target property: $\mathbf{P}_{>0} \mathbf{F}$ Left $\wedge \mathbf{P}_{>0} \mathbf{F}$ Right

Case D: Deterministic policy
Attempt 1

$$
\begin{array}{lll}
\mathbf{s}_{0} \text { : left } & \checkmark \mathbf{P}_{>0} \mathbf{F} \text { Left } \\
& \boldsymbol{x} & \mathbf{P}_{>0} \mathbf{F} \text { Right }
\end{array}
$$

Attempt 2
$\mathbf{s}_{\mathbf{0}}$: right $\quad \mathbf{X} \mathbf{P}_{>0} \mathbf{F}$ Left
$\checkmark \mathbf{P}_{>0} \mathbf{F}$ Right

Policies - History Dependance and Randomization

Target property: $\mathbf{P}_{>0} \mathbf{F}$ Left $\wedge \mathbf{P}_{>0} \mathbf{F}$ Right

Case D: Deterministic policy
Attempt 1

$$
\begin{array}{ll}
\mathbf{s} 0_{0} \text { : left } & \checkmark \mathbf{P}_{>0} \mathbf{F} \text { Left } \\
& \boldsymbol{x} \mathbf{P}_{>0} \mathbf{F} \text { Right }
\end{array}
$$

Attempt 2

$$
\begin{array}{ll}
\text { so }_{0} \text { : right } & \boldsymbol{X} \mathbf{P}_{>0} \mathbf{F} \text { Left } \\
& \checkmark \mathbf{P}_{>0} \mathbf{F} \text { Right }
\end{array}
$$

\rightarrow Fix: randomized policies

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \models \mathbf{P}_{>0} \mathbf{F}$ Left $\wedge \mathbf{P}_{>0} \mathbf{F}$ Right

Case R: Randomized policy
σ is a probability distribution over actions for each state (history/state)

"In 6 out of 10 experiments chose left"

$$
\begin{array}{ll}
\mathbf{s}_{0}:[\text { left } \rightarrow 0.6, \text { right } \rightarrow 0.4] & \checkmark \mathbf{P}_{>0} \mathbf{F} \text { Left } \\
& \checkmark \mathbf{P}_{>0} \mathbf{F} \text { Right }
\end{array}
$$

Policies - History Dependance and Randomization

Target property: $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0} \mathbf{F}$ Left $\wedge \mathbf{P}_{>0} \mathbf{F}$ Right
Case R: Randomized policy
σ is a probability distribution over actions for each state (history/state)

"In 6 out of 10 experiments chose left"
$\begin{array}{ll}\mathbf{s}_{0}:[\text { left } \rightarrow 0.6, \text { right } \rightarrow 0.4] & \checkmark \mathbf{P}_{>0} \text { F Left } \\ & \checkmark \mathbf{P}_{>0} \text { F Right }\end{array}$
\rightarrow Identified target policies: FR
Look at policy synthesis in more detail

Probabilities of Paths Again: Randomized case

Policy σ
$\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$

Evaluation
$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6

Probabilities of Paths Again: Randomized case

Policy σ
$\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$

Evaluation

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathrm{F} \mathrm{A}\right\}>0.6$

Probabilities of Paths Again: Randomized case

Probabilities of Paths Again: Randomized case

Policy σ
$\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$

Evaluation

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
Non-probabilistic CTL/LTL/CTL*
σ-path: non-0 probability actions

Probabilities of Paths Again: Randomized case

Policy σ
$\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$

Evaluation

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from \mathbf{s}_{0} and $\left.\mathrm{p} \vDash \mathbf{F A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
iff
Non-probabilistic CTL/LTL/CTL*
σ-path: non-0 probability actions
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$

Probabilities of Paths Again: Randomized case

Policy σ
$\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$

Evaluation

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from $\mathbf{s}_{\mathbf{0}}$ satisfying $\mathbf{F} \mathrm{A}$ is >0.6
iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from \mathbf{s}_{0} and $\left.\mathrm{p} \vDash \mathbf{F A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
iff

Non-probabilistic CTL/LTL/CTL*
σ-path: non-0 probability actions
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$
\rightarrow Synthesis: quantify over action probabilities

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \models \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying $\mathbf{F} \mathrm{A}$ is >0.6

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathrm{F} \mathrm{A}\right\}>0.6$

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$ iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F}$ A \quad The probability of all paths from $\mathbf{s}_{\mathbf{0}}$ satisfying $\mathbf{F} \mathrm{A}$ is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathrm{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
iff
$x\left(s_{0}, \alpha\right) \cdot 0.6+x\left(s_{0}, \beta\right) \cdot 0.7>0.6$ and

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathrm{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
iff
$x\left(s_{0}, \alpha\right) \cdot 0.6+x\left(s_{0}, \beta\right) \cdot 0.7>0.6$ and
$x\left(s_{0}, \alpha\right)+x\left(s_{0}, \beta\right)=1$ and $x\left(s_{0}, \alpha\right)>0$ and $x\left(s_{0}, \beta\right)>0$

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
iff
$x\left(s_{0}, \alpha\right) \cdot 0.6+x\left(s_{0}, \beta\right) \cdot 0.7>0.6$ and
$x\left(s_{0}, \alpha\right)+x\left(s_{0}, \beta\right)=1$ and $x\left(s_{0}, \alpha\right)>0$ and $x\left(s_{0}, \beta\right)>0$

Policy Synthesis

Policy σ ?

Synthesis

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F}$ A \quad The probability of all paths from $\mathbf{s}_{\mathbf{0}}$ satisfying $\mathbf{F} \mathrm{A}$ is >0.6 iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a σ-path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
\rightarrow Tableau calculus deriving a set of (in)equations whose solutions, if any, provide a policy
iff
Prescribed actions, define σ-paths
$x\left(s_{0}, \alpha\right) \cdot 0.6+x\left(s_{0}, \beta\right) \cdot 0.7>0.6$ and
$x\left(s_{0}, \alpha\right)+x\left(s_{0}, \beta\right)=1$ and $x\left(s_{0}, \alpha\right)>0$ and $x\left(s_{0}, \beta\right)>0$

Tableau Calculus

Previous slides: basic notions, intuition, trivial examples
Now: the general case, tableau calculus

Issues

\& Fix a class of target policies: FR-policies (done)
\& Fix a logic for target specifications: PCTL*
\% Tableau calculus: complications

- "Loop check" to prune infinite paths (aka "runs")
- Special treatment of bottom strongly connected component (BSCCs)
\& Soundness and completeness proof (see paper)

Tableau Calculus

Previous slides: basic notions, intuition, trivial examples
Now: the general case, tableau calculus

Issues

\& Fix a class of target policies: FR-policies (done)
\& Fix a logic for target specifications: PCTL*
\% Tableau calculus: complications

- "Loop check" to prune infinite paths (aka "runs")
- Special treatment of bottom strongly connected component (BSCCs)
\& Soundness and completeness proof (see paper)
\rightarrow PCTL*, Tableau calculus

PCTL* is like CTL*, but E path quantifier replaced by P

$$
\begin{array}{l|l|l|ll}
\phi:=\mathrm{A}|\phi \wedge \phi| \neg \phi \mid & \mathbf{P}_{\sim z} \Psi & \text { State formula } \\
\Psi:=\phi|\Psi \wedge \Psi| \neg \Psi|\mathbf{X} \Psi| \Psi \mathbf{U} \Psi & \text { Path formula }
\end{array}
$$

where $\sim \in\{<, \leq,>, \geq\}$ and $z \in[0 . .1]$
Sub-languages "probabilistic LTL" and "PCTL" obtained analogously
$\mathbf{P} \geq 0.8 \mathbf{G}\left(\left(\mathbf{T}>30^{\circ}\right) \rightarrow \mathbf{P} \geq 0.5 \mathbf{F G}\left(\mathrm{~T}<24^{\circ}\right)\right)$
With probability at least 0.8 , whenever the temperature exceeds 30°
it will eventually stay below 24° with probability at least 0.5

Semantics

Parametric in policy σ
Like CTL* but patched for \mathbf{P} path quantifier

$$
\mathbf{s} \vDash \mathbf{P}_{\sim z} \Psi \text { iff } \operatorname{Pr}\{r \mid r \text { is a } \sigma \text {-run from } \mathbf{s} \text { and } r \vDash \Psi\} \sim z
$$

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

$$
\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \Psi
$$

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

$$
\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \Psi
$$

$\langle\mathbf{m}, \mathbf{s}\rangle$
Current policy state〈history, current state〉, e.g. $\left\langle\boldsymbol{\in}, \mathbf{s}_{0}\right\rangle$

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

$$
\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \Psi
$$

$\langle\mathbf{m}, \mathbf{s}\rangle$
Current policy state 〈history, current state〉, e.g. $\left\langle\boldsymbol{\epsilon}, \mathbf{s}_{0}\right\rangle$
$\psi=\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\}$
A set of formulas, e.g. $\left\{\mathbf{P}_{>0.9} \mathbf{F}\right.$ (Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done) $\}$

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

$$
\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \Psi
$$

$\langle\mathbf{m}, \mathbf{s}\rangle$
Current policy state 〈history, current state〉, e.g. $\left\langle\boldsymbol{\epsilon}, \mathbf{s}_{0}\right\rangle$
$\psi=\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\}$
A set of formulas, e.g. $\left\{\mathbf{P}_{>0.9} \mathbf{F}\right.$ (Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done) $\}$
$\langle\mathbf{m}, \mathbf{s}\rangle: \Psi$
Stands for $\{r \mid r$ is a run from $\langle\mathbf{m}, \mathbf{s}\rangle$ and $r \vDash \Lambda \Psi$

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

$$
\ulcorner\vdash\langle\mathbf{m}, \mathbf{s}\rangle: \psi
$$

$\langle\mathbf{m}, \mathbf{s}\rangle$
Current policy state〈history, current state〉, e.g. $\left\langle\boldsymbol{\epsilon}, \mathbf{s}_{\mathbf{0}}\right\rangle$
$\psi=\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\}$
A set of formulas, e.g. $\left\{\mathbf{P}_{>0.9} \mathbf{F}\right.$ (Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done) $\}$
$\langle\mathbf{m}, \mathbf{s}\rangle: \Psi$
Stands for $\{r \mid r$ is a run from $\langle\mathbf{m}, \mathbf{s}\rangle$ and $r \vDash \wedge \Psi$
Γ
"Program": set of (non-linear) constraints on $\langle\mathbf{m}, \mathbf{s}\rangle$: Ψ, e.g.
$\mathbf{x}_{\langle\mathbf{m}, \mathbf{s}\rangle}{ }^{\psi}>0.5 \quad$ The probability of $\langle\mathbf{m}, \mathbf{s}\rangle: \Psi$ is >0.5

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

$$
\ulcorner\vdash\langle\mathbf{m}, \mathbf{s}\rangle: \psi
$$

$\langle\mathbf{m}, \mathbf{s}\rangle$
Current policy state〈history，current state〉，e．g．$\left\langle\boldsymbol{\epsilon}, \mathbf{s}_{\mathbf{0}}\right\rangle$
$\Psi=\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\}$
A set of formulas，e．g．$\left\{\mathbf{P}_{>0.9} \mathbf{F}\right.$（Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done）$\}$
$\langle\mathbf{m}, \mathbf{s}\rangle: \Psi$
Stands for $\{r \mid r$ is a run from $\langle\mathbf{m}, \mathbf{s}\rangle$ and $r \vDash \wedge \Psi$
「
\rightarrow Tableau：derive definitions $\mathbf{x}_{\langle\mathrm{m}, \mathrm{s}\rangle}{ }^{\psi} \doteq$ ．．．？
＂Program＂：set of（non－linear）constraints on $\langle\mathbf{m}, \mathbf{s}\rangle$ ：Ψ ，e．g．
$\mathbf{X}_{\langle\mathbf{m}, \mathbf{s}\rangle}{ }^{\psi}>0.5 \quad$ The probability of $\langle\mathbf{m}, \mathbf{s}\rangle: \psi$ is >0.5

Tableau Derivations

Initialization

Given state formula ϕ, e.g. $\mathbf{P}_{>0.9} \mathbf{F}\left(\right.$ Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done $)$
Initial tableau with root node $\mathbf{x}_{\langle\boldsymbol{\epsilon}, \mathbf{s} \mathbf{0}\rangle}\{\boldsymbol{\phi}\} \doteq 1 \vdash\left\langle\boldsymbol{\epsilon}, \mathbf{s}_{\mathbf{0}}\right\rangle:\{\phi\}$
Obligation to derive a satisfiable Γ that specifies σ and value for $\mathbf{x}_{\langle\epsilon, ~ s 0\rangle}\{\phi\}$

Inference rules invariant
$\frac{\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \Psi}{\Gamma, \mathrm{x}_{\langle\mathrm{m}, \mathrm{s},}{ }^{\psi} \doteq \ldots \vdash \Psi^{\prime}}$
$\langle\mathbf{m}, \mathbf{s}\rangle$: Ψ is eliminated by
adding to Γ an equation $\mathbf{x}_{\langle\mathrm{m}, \mathrm{s}\rangle}{ }^{\Psi} \xlongequal{\doteq} \ldots$ for the probability of $\langle\mathbf{m}, \mathbf{s}\rangle$: Ψ

Derivation structure

Sub-derivations by nested \mathbf{P}-formulas
Final 「 accumulated from sub-derivations Solution of final Γ provides policy σ

Some Inference Rules

Rules for classical formulas

$$
\boldsymbol{\checkmark} \frac{\Gamma \vdash\langle m, s\rangle: \emptyset}{\Gamma, x_{\langle m, s\rangle}^{\emptyset} \doteq 1 \vdash \boldsymbol{J}}
$$

$$
\boldsymbol{x} \frac{\Gamma \vdash\langle m, s\rangle:\{\psi\} \uplus \Psi}{\Gamma, x_{\langle m, s\rangle}^{\{\psi\} \uplus \Psi} \doteq 0 \vdash \boldsymbol{X}}\left\{\begin{array}{l}
\text { if } \psi \text { is clas- } \\
\text { sical and } \\
L(s) \not \vDash \psi
\end{array}\right.
$$

$$
\top \frac{\Gamma \vdash\langle m, s\rangle:\{\psi\} \uplus \Psi}{\Gamma, \gamma_{\mathrm{one}} \vdash\langle m, s\rangle: \Psi}\left\{\begin{array}{l}
\text { if } \psi \text { is clas- } \\
\text { sical and } \\
L(s) \models \psi
\end{array}\right.
$$

Some Inference Rules

Rules for conjunctions (1)

$$
\wedge \frac{\Gamma \vdash\langle m, s\rangle:\left\{\psi_{1} \wedge \psi_{2}\right\} \uplus \Psi}{\Gamma, \gamma_{\mathrm{one}} \vdash\langle m, s\rangle:\left\{\psi_{1}, \psi_{2}\right\} \cup \Psi}
$$

$\langle\mathbf{m}, \mathbf{s}\rangle: \Psi_{1} \wedge \Psi_{2}$ is intersection of $\langle\mathbf{m}, \mathbf{s}\rangle: \Psi_{1}$ and $\langle\mathbf{m}, \mathbf{s}\rangle: \Psi_{1}$

Some Inference Rules

Rules for conjunctions (2) (disjunctions, really)

$$
\begin{aligned}
& \neg \wedge \frac{\Gamma \vdash\langle m, s\rangle:\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\neg \psi_{1}\right\} \cup \Psi \cup \Gamma, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\neg \psi_{1}\right\} \cup \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1}, \neg \psi_{2}\right\} \cup \Psi}
\end{aligned}
$$

Branching on disjoint union $\neg\left(\Psi_{1} \wedge \Psi_{2}\right) \equiv \neg \Psi_{1} \vee \neg \Psi_{2} \equiv \neg \Psi_{1} \vee\left(\Psi_{1} \wedge \neg \Psi_{2}\right)$

Some Inference Rules

Rules for conjunctions (2) (disjunctions, really)

$$
\begin{aligned}
& \neg \wedge \frac{\Gamma \vdash\langle m, s\rangle:\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\neg \psi_{1}\right\} \cup \Psi \cup \Gamma, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\neg \psi_{1}\right\} \cup \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1}, \neg \psi_{2}\right\} \cup \Psi}
\end{aligned}
$$

Branching on disjoint union $\neg\left(\Psi_{1} \wedge \Psi_{2}\right) \equiv \neg \Psi_{1} \vee \neg \Psi_{2} \equiv \neg \Psi_{1} \vee\left(\Psi_{1} \wedge \neg \Psi_{2}\right)$

Some Inference Rules

Rules for conjunctions (2) (disjunctions, really)

$$
\begin{aligned}
& \neg \wedge \frac{\Gamma \vdash\langle m, s\rangle:\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\neg \psi_{1}\right\} \cup \Psi \cup \Gamma, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\neg \psi_{1}\right\} \cup \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1}, \neg \psi_{2}\right\} \cup \Psi}
\end{aligned}
$$

Branching on disjoint union $\neg\left(\Psi_{1} \wedge \Psi_{2}\right) \equiv \neg \Psi_{1} \vee \neg \Psi_{2} \equiv \neg \Psi_{1} \vee\left(\Psi_{1} \wedge \neg \Psi_{2}\right)$

Some Inference Rules

Rules for P-formulas

Similar to classical state formula, but ...

$$
\mathbf{P} \frac{\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle:\left\{\mathbf{P}_{\sim z} \Psi\right\} \uplus \Psi}{"\langle\mathbf{m}, \mathbf{s}\rangle \vDash \mathbf{P}_{\sim z} \Psi " \quad \text { OR } \quad "\langle\mathbf{m}, \mathbf{s}\rangle \not \equiv \mathbf{P}_{\sim z} \Psi "}
$$

Cannot know at this stage if $\langle\mathbf{m}, \mathbf{s}\rangle \vDash \mathbf{P}_{\sim z} \Psi$ holds or not - may depend on final Γ
Hence guess by branching out and invoke tableau with respective constraint

$$
\mathbf{x}_{\langle\mathbf{m}, \mathbf{s}\rangle} \sim \mathbf{z} \text { or } \mathbf{x}_{\langle\mathbf{m}, \mathbf{s}\rangle} \nsim \mathbf{z}
$$

In any case simplify premise with decision made to make progress

Some Inference Rules

Rules for U-formulas

Basically: unfold using equivalences

$$
\begin{aligned}
& \psi_{1} \mathbf{U} \psi_{2} \equiv \psi_{2} \vee\left(\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right) \\
& \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right) \equiv \neg \psi_{2} \wedge\left(\neg \psi_{1} \vee \mathbf{X} \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right) \\
& \mathbf{U} \frac{\Gamma \vdash\langle m, s\rangle:\left\{\psi_{1} \mathbf{U} \psi_{2}\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\psi_{2}\right\} \cup \Psi \quad \cup, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\psi_{1} \mathbf{U} \psi_{2}\right\} \uplus \Psi \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\psi_{2}\right\} \cup \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1}, \rightarrow \psi_{2}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \cup \Psi} \\
& \neg \mathbf{U} \frac{\Gamma \vdash\langle m, s\rangle:\left\{\neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\neg \psi_{1}, \neg \psi_{2}\right\} \cup \Psi \quad \cup \quad \Gamma, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \uplus \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\neg \psi_{1}, \neg \psi_{2}\right\} \cup \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \cup \Psi}
\end{aligned}
$$

Some Inference Rules

Rules for U-formulas

Basically: unfold using equivalences

$$
\begin{aligned}
& \psi_{1} \mathbf{U} \psi_{2} \equiv \psi_{2} \vee\left(\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right) \\
& \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right) \equiv \neg \psi_{2} \wedge\left(\neg \psi_{1} \vee \mathbf{X} \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right) \\
& \mathbf{U} \frac{\Gamma \vdash\langle m, s\rangle:\left\{\psi_{1} \mathbf{U} \psi_{2}\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\psi_{2}\right\} \cup \Psi \quad \cup, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\psi_{1} \mathbf{U} \psi_{2}\right\} \uplus \Psi \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\psi_{2}\right\} \cup \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1},, \psi_{2}, \mathbf{X}\left(\psi_{1} \cup \psi_{2}\right)\right\} \cup \Psi} \\
& \neg \mathbf{U} \frac{\Gamma \vdash\langle m, s\rangle:\left\{\neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \uplus \Psi}{\Gamma \vdash\langle m, s\rangle:\left\{\neg \psi_{1}, \neg \psi_{2}\right\} \cup \Psi \quad \Gamma \quad \Gamma, \gamma \vdash\langle m, s\rangle:\left\{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \cup \Psi} \\
& \text { where } \gamma=x_{\langle m, s\rangle}^{\left\{\neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \uplus \Psi} \doteq x_{\langle m, s\rangle}^{\left\{\neg \psi_{1}, \neg \psi_{2}\right\} \cup \Psi \Psi}+x_{\langle m, s\rangle}^{\left\{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg\left(\psi_{1} \cup \cup \psi_{2}\right)\right\} \cup \Psi} \\
& \rightarrow \text { At this stage premise } \Psi \text { is }\left\{X \Psi_{1}, \ldots, X \Psi_{n}\right\}
\end{aligned}
$$

Some Inference Rules

$$
\mathbf{X}\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\} \text { shorthand for poised }\left\{\mathbf{X} \Psi_{1}, \ldots, \mathbf{X} \Psi_{\mathrm{n}}\right\}
$$

Rules for X-formulas
Advance to the next state by expansion

$$
\mathbf{X} \frac{\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \mathbf{X} \Psi}{"\left\langle\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_{\mathbf{1}}\right\rangle \vDash \Psi " \quad \cup \quad "\left\langle\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_{\mathbf{n}}\right\rangle \vDash \Psi^{\prime \prime}}
$$

where
$\mathbf{s}_{1} \ldots \mathbf{s}_{\mathrm{n}}$ are all "prescribed" successor states of \mathbf{s}, i.e, successor states reachable with non-0 probability

Some Inference Rules

$\mathbf{X}\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\}$ shorthand for poised $\left\{\mathbf{X} \Psi_{1}, \ldots, \mathbf{X} \Psi_{\mathrm{n}}\right\}$
Rules for X-formulas
Advance to the next state by expansion

$$
\mathbf{X} \frac{\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \mathbf{X} \Psi}{"\left\langle\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_{\mathbf{1}}\right\rangle \vDash \Psi " \quad \cup \quad "\left\langle\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_{\mathbf{n}}\right\rangle \vDash \Psi "}
$$

where
$\mathbf{s}_{1} \ldots \mathbf{s}_{\mathrm{n}}$ are all "prescribed" successor states of \mathbf{s}, i.e, successor states reachable with non-0 probability

Requires guessing rule for action probabilities

$$
" x_{\langle m, s\rangle}{ }^{\alpha}>0 " \text { OR " } x_{\langle m, s\rangle}{ }^{\alpha} \doteq 0 "
$$

Some Inference Rules

$\mathbf{X}\left\{\Psi_{1}, \ldots, \Psi_{\mathrm{n}}\right\}$ shorthand for poised $\left\{\mathbf{X} \Psi_{1}, \ldots, \mathbf{X} \Psi_{\mathrm{n}}\right\}$
Rules for X-formulas
Advance to the next state by expansion

$$
\mathbf{X} \frac{\Gamma \vdash\langle\mathbf{m}, \mathbf{s}\rangle: \mathbf{X} \Psi}{"\left\langle\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_{\mathbf{1}}\right\rangle \vDash \Psi " \quad \cup \quad "\left\langle\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_{\mathbf{n}}\right\rangle \vDash \Psi "}
$$

where
$\mathbf{s}_{1} \ldots \mathbf{s}_{\mathrm{n}}$ are all "prescribed" successor states of \mathbf{s}, i.e, successor states reachable with non-0 probability

Requires guessing rule for action probabilities

$$
" x_{\langle m, s\rangle}{ }^{\alpha}>0 " \text { OR " } x_{\langle m, s\rangle}{ }^{\alpha} \doteq 0 "
$$

\rightarrow The X-rule is not applied in case of a "loop"

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$
$\langle m, \mathbf{s}\rangle$: X F A, X F B, X F C, ...

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$
$\langle m, s\rangle: X F A, X F B, X F C, \ldots$
No progress made $\langle\mathbf{m}, \mathbf{s}\rangle: \mathbf{X} \Psi$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

$\langle m, \mathbf{s}\rangle$: X F A, X F B, X F C, ...

No-Loop

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$
$\langle m, s\rangle$: X F A, X F B, X F C, ...

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds
Recurring eventualities $G(F A \wedge F B \wedge F C)$

All eventualities satisfied
Probabilities of all $\langle\mathbf{m}, \mathbf{s}\rangle: \mathbf{X} \Psi$ are the same
\rightarrow Maintain invariant,
but a problem remains

Bottom Strongly Connected Components (BSCCs)

BSCC

a reachable sub-graph that is impossible to leave

Problem: if tableau contains BSCC for problematic Ψ then 「 underspecifies probability: " $\mathrm{X}_{\mathbf{s} 3}{ }^{\Psi} \doteq \mathrm{X}_{\mathbf{s} 3}{ }^{\psi}$ "

Solution: if have Yes-Loop then add $\mathbf{x}_{\mathbf{s} 3}{ }^{\Psi} \doteq 1$ to Γ else add $\mathbf{x}_{\mathbf{s} 3}{ }^{\psi} \doteq 0$ to 「

Conclusion

- Presented a tableau calculus for policy synthesis

Many details left out

- Very expressive target specification language: PCTL*
- Had to restrict to policies with finite-memory fixed a priori to get decidability
- Novelty: no other algorithm for policy synthesis under stated conditions
- Novelty: explores reachable states "only"

Traditional synthesis algorithms are based on automata

