Tableaux for Policy Synthesis for MDPs with
PCTL* Constraints

Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU

Australia

Markov Decision Processes (MDPs)

Actions: move left, move right, enter, get Eve, exit

Markov Decision Processes (MDPs)

Nondeterministic action = stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Markov Decision Processes (MDPs)

Nondeterministic action = stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Markov Decision Processes (MDPs)

{ 0.1 { 0.9

Nondeterministic action = stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Markov Decision Processes (MDPs)

{ 0.1 f 0.9

<

>

>

Nondeterministic action = stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Decision making:
What action to take in what state to achieve objective?

Objective: P.oo F (Eve AXP-osF Done)

Markov Decision Processes (MDPs)

{ 0.1 f 0.9

<

>

>

Nondeterministic action = stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Decision making:
What action to take in what state to achieve objective?

Objective: P~gg F (Eve A X P-og F Done) ~ MDP formalism

MDPs, Execution Paths and Probabilities

Nondeterministic action = stochastic environment response

right right > right
left g

{Done}

exit

02

get {Eve}

0.8

Paths (actions have been resolved)

0.1
0.1 QE‘V
right
SO g Qgr 0.9
0.9

MDPs, Execution Paths and Probabilities

Nondeterministic action = stochastic environment response

right right > right
left g

{Done}

exit

02

get {Eve}

0.8

Probabilities of paths
Paths (actions have been resolved)

01 0.01
0.1 QE‘V
5o rlght @Er 0.9 0.09
0.9 0.9 (X =1.0)

“The probability of reaching r1 after at most two enter steps is 0.99"

MDPs, Execution Paths and Probabilities

Nondeterministic action = stochastic environment response

right right > right
left g

{Done}

exit

0. 2 ~ Policy synthesis problem

get {Eve}

0.8

Probabilities of paths
0.01

0.1 di
0.1 QE‘V
right
0 — & @Er 09 0.09
0.9

Paths (actions have been resolved)

“The probability of reaching r1 after at most two enter steps is 0.99"

Policy Synthesis Problem

right right ‘ right

left .
0.1 /\ {Done}

Q 0.2
{E e}

0.01

0.1
) 0.1 @Ef
right
: @Er 0.9 0.09
0.9

S0 —o—> di
0.9 B

so = P-og F (Eve AXPoogF Done)

Policy synthesis problem

Static: MDP

Dynamics: paths and probabilities of paths

Induced by actions chosen

Logic: specification of target property (see below)

Constraints on probabilities of these paths

Policy 0: what actions to chose in what state

Synthesis problem: determine O such that target property is satisfied

Policy Synthesis Problem

right right ‘ right

left "
0.1 /\ {Done}

Q 0.2
{E e}

0.01

0.1
ht > @%
ri
: @Er 039 0.09
0.9

So—>d1

so = P-og F (Eve AXPoogF Done)

Policy synthesis problem

Static: MDP

Dynamics: paths and probabilities of paths

Induced by actions chosen

Logic: specification of target property (see below)

Constraints on probabilities of these paths

Policy 0: what actions to chose in what state ~ Different kinds of policies

Synthesis problem: determine O such that target property is satisfied

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1
so: right

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1
so: right di: enter

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1
so: right di: enter ry: get

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1
so: right di: enter ry: get e exit

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1 v eventually Eve

so: right d1: enter r1: get er: exit X never Done

)

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1 v eventually Eve
so: right d1: enter r1: get er: exit X never Done
Attempt 2

)

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1 v eventually Eve
so: right d1: enter r1: get er: exit X never Done
Attempt 2
so: right

)

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1 v eventually Eve
so: right d1: enter r1: get er: exit X never Done
Attempt 2

so: right di: right

)

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1 v eventually Eve
so: right d1: enter r1: get er: exit X never Done
Attempt 2

so: right di: right da: right

)

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1 v eventually Eve
so: right d1: enter r1: get er: exit X never Done

Attempt 2 v eventually Done
so: right dip: right do: right X never Eve

right

{Done}

)

Policies - History Dependance and Randomization

Target property: so = P-o F (Eve A F Done)
Case M: History-independent policy

Attempt 1

so: right di: enter ry: get e exit
Attempt 2

so: right di: right da: right

right right
left

017
enter _ exit
exit
0.9
@y =
=
get {Eve}
0.8

v eventually Eve

never Done

D3

v eventually Done

never Eve

=

right

{Done}

~ Not expressive enough

Expressive enough without
logic constraints, e.g.
cost constraints only

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right

right right right

0.1 7 {Done}

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sp d1 ... d1 ... d1: enter

right right right

0.1 7 {Done}

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sp di ... d1 ... d1: enter sp ... r1: get

right right right
left -

0.1 7 {Done}

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sp di ... d1 ... d1: enter sp ... ri: get sp ... e1: exit

right right right
left -

0.1 7 {Done}

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sp di ... d1 ... d1: enter sp ... ri: get sp ... e1: exit
so di ... €1 ... di: right

right

{Done}

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sp di ... d1 ... d1: enter sp ... r1: get sp ... e1: exit
so di ... €1 ... di: right so ... da: right

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sg di ... di ... d1: enter sg .. ri: get sp..er: exit Vv eventually Eve
so d1 ... €1 ... di: right sg ... da: right v eventually Done

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sg di ... di ... d1: enter sg .. ri: get sp..er: exit Vv eventually Eve
so d1 ... €1 ... di: right sg ... da: right v eventually Done

X unbounded history length - highly undecidable

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case H: History-dependent policy

so: right sg di ... di ... d1: enter sg .. ri: get sp..er: exit Vv eventually Eve
so d1 ... €1 ... di: right sg ... da: right v eventually Done

X unbounded history length - highly undecidable

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right

right right right

0.1 7 {Done}

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right spdi: enter

right right right

0.1 7 {Done}

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right spdi: enter

didi: enter

right right right

0.1 7 {Done}

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right spdi: enter diry: get

didi: enter

right right right

0.1 7 {Done}

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right spdi: enter diry: get

didi: enter riri: get

right right right
left -

0.1 7 {Done}

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right spdi: enter diri: get rner: exit

didi: enter riri: get

right right right
left -

0.1 7 {Done}

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right spdi: enter diri: get rier: exit eidp: right

didi: enter riri: get

Policies - History Dependance and Randomization
Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right sodi: enter diri: get riep: exit eidp: right v eventually Eve

didi: enter rir1: get v eventually Done

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right soedi: enter diri: get rep: exit eids: right v eventually Eve
didi: enter rir1: get v eventually Done
Our approach

A priori finitely bounded history length - decidable (our main result)

right ’ right
2

left
{Done}
exit |

g {Eve}

Policies - History Dependance and Randomization

Target property: so = P-oF (Eve A F Done)
Case F: Finite history-dependent policy

so: right soedi: enter diri: get rep: exit eids: right v eventually Eve
didi: enter rir1: get v eventually Done
Our approach

A priori finitely bounded history length - decidable (our main result)

right ’ right
2

left
{Done}
exit |

~ Can do better (more expressive)
g {Eve}

Policies - History Dependance and Randomization

Target property: P-o F Left A P-¢ F Right

Case D: Deterministic policy

Policies - History Dependance and Randomization

Target property: P-o F Left A P-¢ F Right

Case D: Deterministic policy left right

Attempt 1
so: left v P-o F Left {Left} {Right}
x P.o F Right

Policies - History Dependance and Randomization

Target property: P-o F Left A P-¢ F Right

Case D: Deterministic policy

Attempt 1
so: left v P-o F Left
X P-o F Right
Attempt 2

So: right X P-o F Left
v P-o F Right

Policies - History Dependance and Randomization

Target property: P-o F Left A P-¢ F Right

Case D: Deterministic policy

Attempt 1
so: left v P-o F Left
X P-o F Right
Attempt 2
So: right X P-o F Left
v P-o F Right

left

{Left} °

~ Fix: randomized policies

right

{Right}

Policies - History Dependance and Randomization

Target property: so = P-og F Left A P~o F Right

Case R: Randomized policy

left right

O is a probability distribution over actions

for each state (history/state) a
{Left} {Right} e

“In 6 out of 10 experiments chose left”

so: [left — 0.6, right — 0.4] v P-o F Left
v P F Right

Policies - History Dependance and Randomization

Target property: so = P-og F Left A P~o F Right

Case R: Randomized policy

left right

O is a probability distribution over actions

for each state (history/state) °
{Left} {Right} e

“In 6 out of 10 experiments chose left”

so: [left — 0.6, right — 0.4] v P-o F Left
v P F Right

~ ldentified target policies: FR

Look at policy synthesis in more detail

Probabilities of Paths Again: Randomized case

Policy O
so: [— 0.6, B — 0.4]

Evaluation

so = Pwog F A

The probability of all paths from sg satisfying F A is > 0.6

10

Probabilities of Paths Again: Randomized case

Policy O
so: [— 0.6, B — 0.4]

Evaluation

so = P-os F A The probability of all paths from sg satisfying F A is > 0.6

iff
Pr{p | p is a 0-path from sp and p = F A} > 0.6

10

Probabilities of Paths Again: Randomized case

Policy O
so: [— 0.6, B — 0.4]

Evaluation

so = P-os F A The probability of all paths from sg satisfying F A is > 0.6

iff
Pr{p | p is a 0-path from sp and p = F A} > 0.6

"™ Non-probabilistic CTL/LTL/CTL*

o-path: non-0 probability actions

10

Probabilities of Paths Again: Randomized case

Policy O
so: [— 0.6, B — 0.4]

Evaluation

so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff

Prip | pis a g-path from so and p = F A} > 0.6
iff

"™ Non-probabilistic CTL/LTL/CTL*

Pr{soSa, sosc} > 0.6
o-path: non-0 probability actions

10

Probabilities of Paths Again: Randomized case

Policy O
so: [— 0.6, B — 0.4]

Evaluation
so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff
Pr{p | p is a 0-path from sp and p = F A} > 0.6
iff ®
““. Non-probabilistic CTL/LTL/CTL*
Pr{sosa, sosc} > 0.6
e o-path: non-0 probability actions
i

0.6-06 +0.4-0.7 =0.64 > 0.6

10

Probabilities of Paths Again: Randomized case

Policy O
so: [— 0.6, B — 0.4]

Evaluation
so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff
Pr{p | p is a 0-path from sp and p = F A} > 0.6
iff |
““. Non-probabilistic CTL/LTL/CTL*
Pr{sosa, sosc} > 0.6
e o-path: non-0 probability actions
i

0.6-06 +0.4-0.7 =0.64 > 0.6

~ Synthesis: quantify over action probabilities .

Policy Synthesis

Policy o 7

Synthesis
so = P~y F A

0.3

A 1A}

The probability of all paths from sg satisfying F A is > 0.6

11

Policy Synthesis

Policy o 7
0.3
A A
Synthesis A A
so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff

Pr{p | p is a 0-path from sp and p = F A} > 0.6

11

Policy Synthesis

Policy o 7
0.3
(50

Synthesis A A
so = P-os F A The probability of all paths from sg satisfying F A is > 0.6

iff
Pr{p | p is a 0-path from sp and p = F A} > 0.6

iff

Pr{soSa, sosc} > 0.6

11

Policy Synthesis

Policy o 7
0.3

A 1A}

Synthesis

so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff

Pr{p | p is a 0-path from sp and p = F A} > 0.6
iff

Pr{soSa, sosc} > 0.6
iff

x(so, ®)-0.6 + x(so, B)-0.7 > 0.6 and

11

Policy Synthesis

Policy o 7
0.3

A 1A}

Synthesis

so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff

Pr{p | p is a 0-path from sp and p = F A} > 0.6
iff

Pr{soSa, sosc} > 0.6
iff

x(so, ®)-0.6 + x(so, B)-0.7 > 0.6 and

x(so, &) + x(so, B) = 1 and x(sp, &) > 0 and x(so,) > 0

11

Policy Synthesis

Policy o 7
0.3

A 1A}

Synthesis

so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff

Pr{p | p is a 0-path from sp and p = F A} > 0.6
iff
Pr{soSa, sosc} > 0.6

iff
| Prescribed actions, define O-paths

x(so, ®)-0.6 + x(so, B)-0.7 > 0.6 and /\

x(so, &) + x(so, B) = 1 and x(sp, &) > 0 and x(so,) > 0

11

Policy Synthesis

Policy o 7
0.3
(50
Synthesis A A
so = P-os F A The probability of all paths from sg satisfying F A is > 0.6
iff
Pr{p | p is a 0-path from sp and p = F A} > 0.6
iff
s) 20 e ks gt of () ains
iff

Prescribed actions, define O-paths

x(so, ®)-0.6 + x(so, B)-0.7 > 0.6 and /\

x(so, &) + x(so, B) = 1 and x(sp, &) > 0 and x(so,) > 0

11

Tableau Calculus

Previous slides: basic notions, intuition, trivial examples

Now: the general case, tableau calculus

Issues

€ Fix a class of target policies: FR-policies (done)
€ Fix a logic for target specifications: PCTL*
€ Tableau calculus: complications
- “Loop check” to prune infinite paths (aka “runs”)

- Special treatment of bottom strongly connected component (BSCCs)

€ Soundness and completeness proof (see paper)

12

Tableau Calculus

Previous slides: basic notions, intuition, trivial examples

Now: the general case, tableau calculus

Issues

€ Fix a class of target policies: FR-policies (done)
€ Fix a logic for target specifications: PCTL*
€ Tableau calculus: complications
- “Loop check” to prune infinite paths (aka “runs”)

- Special treatment of bottom strongly connected component (BSCCs)

€ Soundness and completeness proof (see paper)

~ PCTL¥*, Tableau calculus

12

PCTL*

PCTL" is like CTL®, but E path quantifier replaced by P

d=A | drd | = | P, State formula
V= | YAy | ¢ | XY | YUY Path formula

where ~ e { <, <, >, =2 } and z € [0..1]
Sub-languages “probabilistic LTL" and “PCTL" obtained analogously
P>0.8 G ((T >30°) = P=0.5F G (T <24°))
With probability at least 0.8, whenever the temperature exceeds 30°
it will eventually stay below 24° with probability at least 0.5
Semantics

Parametric in policy O
Like CTL* but patched for P path quantifier

sEP_, Y iff Pr{r|risa o-runfromsandrkE P} ~z

13

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

[- {m,s) : WV

14

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

[- {m, s) : ¥

{m, s)

Current policy state <history, current state), e.g. {€, so)

14

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

[- {m, s) : ¥

{m, s)

Current policy state <history, current state), e.g. {€, so)

U = { Wy, ..., Pn }
A set of formulas, e.g. { P~o9 F (Eve A X P~gg F Done) }

14

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

[- {m, s) : ¥

{m, s)

Current policy state <history, current state), e.g. {€, so)

U = { Wy, ..., Pn }
A set of formulas, e.g. { P~o9 F (Eve A X P~gg F Done) }

m,s) : ¥V

Stands for { r | ris a run from (m, s) and r = AV

14

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

[- {m, s) : ¥

{m, s)

Current policy state <history, current state), e.g. {€, so)

U = { Wy, ..., Pn }
A set of formulas, e.g. { P~o9 F (Eve A X P~gg F Done) }

m,s) : ¥V

Stands for { r | ris a run from (m, s) and r = AV

-

“Program”: set of (non-linear) constraints on {(m, s) : ¥, e.g.
Xm, ¥ > 0.5 The probability of (m, s) : W is > 0.5

14

Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

[- {m, s) : ¥

{m, s)

Current policy state <history, current state), e.g. {€, so)

U = { Wy, ..., Pn }
A set of formulas, e.g. { P~o9 F (Eve A X P~gg F Done) }

m,s): V¥

Stands for { r | ris a run from (m, s) and r = AV

r ~ Tableau: derive definitions xm,, sV = ...

“Program”: set of (non-linear) constraints on {(m, s) : ¥, e.g.
Xm, ¥ > 0.5 The probability of (m, s) : W is > 0.5

14

Tableau Derivations

Initialization
Given state formula ¢, e.g. P~g9 F (Eve A X P~gs F Done)
Initial tableau with root node x(s0){®} =1 (€, sp) : {P}

Obligation to derive a satisfiable I' that specifies 0 and value for x. s0,{%}

Inference rules invariant Derivation structure
5
[- {m,s) : WV /\RM\
v X v X

{m, s) : W js eliminated by

adding to [an equation Xm, sV = .. Sub-derivations by nested P-formulas

for the probability of (m, s) : W Final [accumulated from sub-derivations

Solution of final ' provides policy O

15

Some Inference Rules

Rules for classical formulas

't {(m,s):0
v 3 .
[, x =1rV
(m,s)

' {m,s): {ytwW¥

if y is clas-

X F,x{w}w\P =0rX

(m,s)

' {m,s):{y}w¥

L, Yone F (m, s) : ¥

A

sical and

L(s) F ¥

A

(if y is clas-
sical and

L(s) Fy

Some Inference Rules

Rules for conjunctions (1)

' (m,s):{Y1 ANy} WP
I, Yone F {m, s) : {Y1, Y2} UY

A

{m,s): P1 A P2is intersection of (im,s): P; and {m,s): P

{m,s)

¢

P1 A Yo

17

Some Inference Rules

Rules for conjunctions (2) (disjunctions, really)

Ik (m,s) : {=(1 Ayp)} W
Cr(ms):{-yYy1}U¥ U Lyr{ms):{¢, Y} U¥
{=(1 Ayn) YWY . x{ﬂlﬂl}U‘P x{lﬁlﬁlﬁz}U‘P

(m,s) m,s) (m,s)

VA

where y = x +

Branching on disjoint union =(P1 A W2) = =P1 v = Po = —P1 v (Y1 A —Py)
(m,s)

*

18

Some Inference Rules

Rules for conjunctions (2) (disjunctions, really)

Ik (m,s) : {=(1 Ayp)} W
Cr(ms):{-yYy1}U¥ U Lyr{ms):{¢, Y} U¥
{=(1 Ayn) YWY . x{ﬂlﬂl}U‘P x{lﬂlﬁlﬁz}U‘P

(m,s) m,s) (m,s)

VA

where y = x +

Branching on disjoint union =(P1 A W2) = =P1 v = Po = —P1 v (Y1 A —Py)
(m,s)

*

Do not add up twice!

18

Some Inference Rules

Rules for conjunctions (2) (disjunctions, really)

I'F{m,s): {-(1 Ay2)t W ¥

VA
I'e{ms) {1} U¥Y U Lyrms):{y, WY} u¥
where v = x{ﬁ(%/\lﬂz)}@‘f’ . x{ﬂlﬂl}U‘P {lﬂl =y U
Y = (m,s) m,s) (m s)
\ Need both branches
Branching on disjoint union =(P1 A W2) = =P1 v = Po = —P1 v (Y1 A —Py)
{m,s)

*

Do not add up twice!

18

Some Inference Rules

Rules for P-formulas

Similar to classical state formula, but ..

[—m,s) : {P,P}uV

“im,s) EP_,Y” OR “im,s) ¥ P, YP”

Cannot know at this stage if (m, s) &= P, U holds or not - may depend on final I
Hence guess by branching out and invoke tableau with respective constraint
X<m, s Z Or X<m’ s Z

In any case simplify premise with decision made to make progress

Some Inference Rules

Rules for U-formulas

Basically: unfold using equivalences

Y1Uyo =yo V(Y1 A XY Uyn))
(Y1 U¢) =~ A (- V X =Y Uyn)) Disjoint union again

~

'k (m,s):{y;Uyr} ¥

U
I+ <WL,S> : {wz}U\P U F,fy|_ (m,s) . {wl,_”?bz, X('ﬁlUwz)}U‘I’
where y = x{% Uyntwt x{'ﬂz}U‘P +x{lﬂ1ﬁlﬂ2,x(¢1 Uyn)u¥
7T Mns) = Xims) T Fims)
U [+ (m,s) : {=(1Uyo)t ¥

Cr(m,s) : {1, Yo} UY U Lyr(ms): {y, 2, X=(f1 Uyo)} UY
{=(1 Uyn) yu¥ . x{—'llfl,—'llfz}U‘P + x{llfl,—'llfz,X—'(llfl Uyn)U¥Y

where y = x<m’s> = X sy (m,5)

Some Inference Rules

Rules for U-formulas

Basically: unfold using equivalences

Y1Uyo =4 V(1 AX(Y1Uyn))
(Y1 Uyr) = o A (=1 V X =1 Uyn)) Disjoint union again

v

'k (m,s):{y;Uyr} ¥

U
I+ <WL,S> : {;bz}U\P U F,y|— (m,s) . {lﬁl,—'lﬁz, X(wIUQbZ)}U\P
where y = x{'ﬁl Uyntwt x{'ﬁz}U‘I’ +x{lﬂ1ﬁlﬂ2,x(¢1 Uyn)u¥
7T Mns) = Xims) T Fims)
U [+ (m,s) : {=(1Uyo)t ¥

Cr(m,s) : {1, Yo} UY U Lyr(ms): {y, 2, X=(f1 Uyo)} UY
{=(1 Uyn) yu¥ . x{—'llfl,—'dfz}U‘P + x{llfl,—'lﬁz,X—'(dfl Uyn)U¥Y

where y = x<m’s> = X sy (m,5)

~ At this stage premise W is { X Y1, ..., X P, }

Some Inference Rules
X { W1,..,Pn } shorthand for poised { X P1,..,.X Y }

Rules for X-formulas
Advance to the next state by expansion

[{m,s): XV

X
“(A(m, s), sy EY" U KA(m, s), sy E P
where

S1 .. S are all “prescribed” successor states of s, i.e,

successor states reachable with non-0 probability

Some Inference Rules
X { W1,..,Pn } shorthand for poised { X P1,..,.X Y }

Rules for X-formulas
Advance to the next state by expansion

[{m,s): XV

X
“(A(m, s), sy EY" U KA(m, s), sy E P

where

S1 .. S are all “prescribed” successor states of s, i.e,

successor states reachable with non-0 probability

e

Requires guessing rule for action probabilities
“X<m1 S>°(> OH OR “X<m, s>o(- OH

Some Inference Rules
X { W1,..,Pn } shorthand for poised { X P1,..,.X Y }

Rules for X-formulas
Advance to the next state by expansion

[{m,s): XV

X
“(A(m, s), sy EY" U KA(m, s), sy E P

where

S1 .. S are all “prescribed” successor states of s, i.e,

successor states reachable with non-0 probability

e

Requires guessing rule for action probabilities
ux<m’ S>°(> OH OR “X<m, S>o(- OH

~ The X-rule is not applied in case of a “loop”

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C)

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C)

im,s) : XFA XFB, XFC, ..

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U
—

im,s) : XFA XFB, XFC, ..

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U
—

im,s) : XFA XFB, XFC, ..

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U
—

im,s) : XFA XFB, XFC, ..

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U
—

im,s) : XFA XFB, XFC, ..

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C)

—: XV
—
m,s)y : XFA XFB, XFC(C, ..
» T
llA”
K'
m,s) : X WV
K'
A

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C)

= XV
—
m,s): XFA XFB, XFC, ..
P
llA”
K'
m,s) : X WV
No progress made R

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U
—

im,s) : XFA XFB, XFC, ..

No progress made

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U
—

im,s) : XFA XFB, XFC, ..

P

“A”

K'
m,s) : X WV
No progress made .

4

A HB’ C

» A

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C)

—: XV
—
m,s)y : XFA XFB XFC, .
» T
“A”
K'
m,s) : X WV
No progress made *w% All eventualities satisfied

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C)

— = XV

im,s) : XFA XFB, XFC, ..

No progress made

All eventualities satisfied

/

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A A F B A F C) X U

—
m,s)y : XFA XFB, XFC(C, ..

No progress made All eventualities satisfied

/

. / Probabilities of all
"4

m, sy : X UV are the same

~ Maintain invariant,

but a problem remains

Bottom Strongly Connected Components (BSCCs)

a reachable sub-graph that is impossible to leave

Problem: if tableau contains BSCC for problematic W
then ' underspecifies probability: “xs3V = xs3¥"

Solution: if have Yes-Loop then add xs3V = 1 to I else add xs3V =0 to I

Conclusion

— Presented a tableau calculus for policy synthesis
Many details left out
— Very expressive target specification language: PCTL*
— Had to restrict to policies with finite-memory fixed a priori to get decidability

— Novelty: no other algorithm for policy synthesis under stated conditions

— Novelty: explores reachable states “only”

Traditional synthesis algorithms are based on automata

24

