Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU Australia

Actions: move left, move right, enter, get Eve, exit

Nondeterministic action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Nondeterministic action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Nondeterministic action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Nondeterministic action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Decision making:

What **action** to take in what **state** to achieve **objective**?

Objective: $P_{>0.9} F$ (Eve $\land X P_{>0.8} F$ Done)

Nondeterministic action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Decision making:

What **action** to take in what **state** to achieve **objective**?

Objective: $\mathbf{P}_{>0.9} \mathbf{F}$ (Eve $\wedge \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F}$ Done)

→ MDP formalism

MDPs, Execution Paths and Probabilities

Nondeterministic action \implies stochastic environment response

MDPs, Execution Paths and Probabilities

Nondeterministic action \implies **stochastic environment response**

"The probability of reaching \mathbf{r}_1 after at most two enter steps is 0.99"

MDPs, Execution Paths and Probabilities

Nondeterministic action \implies **stochastic environment response**

"The probability of reaching \mathbf{r}_1 after at most two enter steps is 0.99"

Policy Synthesis Problem

Static: MDP

$$\mathbf{s_0} \models \mathbf{P}_{>0.9} \mathbf{F} (Eve \land \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F} Done)$$

- Dynamics: paths and probabilities of paths
 Induced by actions chosen
- **Logic**: specification of target property (see below)
- Constraints on probabilities of these paths

Policy synthesis problem

Policy \sigma: what actions to chose in what state

Synthesis problem: determine σ such that target property is satisfied

Policy Synthesis Problem

Static: MDP

$$\mathbf{s_0} \models \mathbf{P}_{>0.9} \mathbf{F} (Eve \land \mathbf{X} \mathbf{P}_{>0.8} \mathbf{F} Done)$$

- **Dynamics**: paths and probabilities of paths Induced by actions chosen
- **Logic**: specification of target property (see below)
- Constraints on probabilities of these paths

Policy synthesis problem

Policy σ **:** what actions to chose in what state \rightarrow **Different kinds of policies Synthesis problem:** determine σ such that target property is satisfied

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

Target property: $s_0 \models P_{>0} F$ (Eve $\land F$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get e_1 : exit

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get e_1 : exit

- \checkmark eventually Eve
- X never Done

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get e_1 : exit

- \checkmark eventually Eve
- ✗ never Done

Attempt 2

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get e_1 : exit

- \checkmark eventually Eve
- ✗ never Done

Attempt 2

s₀: right

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get e_1 : exit

- \checkmark eventually Eve
- X never Done

Attempt 2

s₀: right **d**₁: right

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1

 s_0 : right d_1 : enter r_1 : get e_1 : exit

- \checkmark eventually Eve
- X never Done

Attempt 2

so: right d1: right d2: right

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

 $\begin{array}{c} \mbox{Attempt 1} \\ \mbox{s}_0: \ \mbox{right} \quad \mbox{d}_1: \ \mbox{enter} \quad \ \mbox{r}_1: \ \mbox{get} \quad \ \mbox{e}_1: \ \mbox{exit} \end{array}$

Attempt 2

 s_0 : right d_1 : right d_2 : right

- \checkmark eventually Eve
- ✗ never Done
- ✓ eventually Done✗ never Eve

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case M: History-independent policy

Attempt 1 **s**₀: right **d**₁: enter **r**₁: get **e**₁: exit

Attempt 2

 s_0 : right d_1 : right d_2 : right

- \checkmark eventually Eve
- ✗ never Done
- ✓ eventually Done✗ never Eve

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

s₀: right

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

 s_0 : right $s_0 d_1 \dots d_1 \dots d_1$: enter

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

 s_0 : right $s_0 d_1 \dots d_1 \dots d_1$: enter $s_0 \dots r_1$: get

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

 s_0 : right $s_0 d_1 \dots d_1 \dots d_1$: enter $s_0 \dots r_1$: get $s_0 \dots e_1$: exit

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case H: History-dependent policy

 s_0 : right $s_0 d_1 \dots d_1 \dots d_1$: enter $s_0 \dots r_1$: get $s_0 \dots e_1$: exit \checkmark eventually Eve $s_0 d_1 \dots e_1 \dots d_1$: right $s_0 \dots d_2$: right \checkmark eventually Done

Target property: $s_0 \models P_{>0} F$ (Eve $\land F$ Done)Case H: History-dependent policy s_0 : right $s_0 d_1 \dots d_1 \dots d_1$: enter $s_0 \dots r_1$: get $s_0 \dots e_1$: exit \checkmark eventually Eve $s_0 d_1 \dots e_1 \dots d_1$: right $s_0 \dots d_2$: right \checkmark eventually Done

X unbounded history length - highly undecidable

Target property: $s_0 \models P_{>0} F$ (Eve $\land F$ Done)Case H: History-dependent policy s_0 : right $s_0 d_1 \dots d_1 \dots d_1$: enter $s_0 \dots r_1$: get $s_0 \dots e_1$: exit \checkmark eventually Eve $s_0 d_1 \dots e_1 \dots d_1$: right $s_0 \dots d_2$: right \checkmark eventually Done

X unbounded history length - highly undecidable

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

s₀: right

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

s₀: right **s**₀**d**₁: enter

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 s_0 : right s_0d_1 : enter d_1d_1 : enter

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 s_0 : right s_0d_1 : enter d_1r_1 : get d_1d_1 : enter r_1r_1 : get

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 $s_0: \ right \quad s_0d_1: \ enter \qquad d_1r_1: \ get \qquad r_1e_1: \ exit \\ d_1d_1: \ enter \qquad r_1r_1: \ get \qquad$

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 $s_0: \ \text{right} \quad s_0d_1: \ \text{enter} \qquad d_1r_1: \ \text{get} \qquad r_1e_1: \ \text{exit} \qquad e_1d_1: \ \text{right} \\ d_1d_1: \ \text{enter} \qquad r_1r_1: \ \text{get}$

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 s_0 : right s_0d_1 : enter d_1r_1 : get r_1e_1 : exit e_1d_1 : right \checkmark eventually Eve d_1d_1 : enter r_1r_1 : get r_1e_1 : exit e_1d_1 : right \checkmark eventually Done

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 s_0 : right s_0d_1 : enter d_1r_1 : get r_1e_1 : exit e_1d_1 : right \checkmark eventually Eve d_1d_1 : enter r_1r_1 : get \checkmark eventually Done

Our approach

A priori finitely bounded history length - decidable (our main result)

Target property: $\mathbf{s_0} \models \mathbf{P}_{>0} \mathbf{F}$ (Eve $\land \mathbf{F}$ Done)

Case F: Finite history-dependent policy

 s_0 : right s_0d_1 : enter d_1r_1 : get r_1e_1 : exit e_1d_1 : right \checkmark eventually Eve d_1d_1 : enter r_1r_1 : get \checkmark eventually Done

Our approach

A priori finitely bounded history length - decidable (our main result)

Target property: $P_{>0}$ F Left $\land P_{>0}$ F Right

Case D: Deterministic policy

Target property: $P_{>0}$ F Left \land $P_{>0}$ F Right

Case D: Deterministic policy

Attempt 1

s₀: left $\checkmark P_{>0} F$ Left $\thickapprox P_{>0} F$ Right

Target property: $P_{>0}$ F Left \land $P_{>0}$ F Right

Case D: Deterministic policy

Attempt 1

s₀: left $\checkmark P_{>0} F$ Left $\thickapprox P_{>0} F$ Right

Attempt 2

s₀: right $X P_{>0} F$ Left

✓ $P_{>0}$ F Right

Target property: $P_{>0}$ F Left $\land P_{>0}$ F Right

Case D: Deterministic policy

Attempt 1

s₀: left $\checkmark \mathbf{P}_{>0} \mathbf{F}$ Left $\thickapprox \mathbf{P}_{>0} \mathbf{F}$ Right

Attempt 2

s₀: right $X P_{>0} F$ Left

✓ $P_{>0}$ F Right

→ Fix: randomized policies

Target property: $s_0 \models P_{>0} F$ Left $\land P_{>0} F$ Right

Case R: Randomized policy

 σ is a **probability distribution** over actions for each state (history/state)

"In 6 out of 10 experiments chose left"

 $\label{eq:s0} \textbf{s_0:} \ [\text{left} \rightarrow 0.6, \ \text{right} \rightarrow 0.4] \qquad \checkmark \ \textbf{P}_{>0} \ \textbf{F} \ \text{Left} \\ \checkmark \ \textbf{P}_{>0} \ \textbf{F} \ \text{Right} \\ \end{cases}$

Target property: $s_0 \models P_{>0} F$ Left $\land P_{>0} F$ Right

Case R: Randomized policy

 σ is a **probability distribution** over actions for each state (history/state)

"In 6 out of 10 experiments chose left"

 $\label{eq:s0} \textbf{s_0:} \ [\text{left} \to 0.6, \ \text{right} \to 0.4] \qquad \checkmark \ \textbf{P}_{>0} \ \textbf{F} \ \text{Left} \\ \checkmark \ \textbf{P}_{>0} \ \textbf{F} \ \text{Right} \\ \end{cases}$

→ Identified target policies: FR
 Look at policy synthesis in more detail

 $s_0 \models P_{>0.6} F A$

The probability of all paths from s_0 satisfying **F** A is > 0.6

iff

 $\mathsf{Pr}\{p \mid p \text{ is a } \sigma\text{-path from } s_0 \text{ and } p \vDash F A\} > 0.6$

 $\mathbf{s_0} \models \mathbf{P}_{>0.6} \mathbf{F} \mathbf{A}$ The probability of all paths from $\mathbf{s_0}$ satisfying $\mathbf{F} \mathbf{A}$ is > 0.6

iff

 $Pr\{p \mid p \text{ is a } \sigma\text{-path from } s_0 \text{ and } p \vDash F A\} > 0.6$

Non-probabilistic CTL/LTL/CTL*

 σ -path: non-0 probability actions

→ Synthesis: quantify over action probabilities

 $s_0 \models P_{>0.6} F A$

The probability of all paths from s_0 satisfying $F\ \mbox{A}\ is>0.6$

iff

 $Pr\{p \mid p \text{ is a } \sigma\text{-path from } s_0 \text{ and } p \vDash F A\} > 0.6$

 $\mathsf{Pr}\{\textbf{s_0s_a, s_0s_c}\} > 0.6$

Tableau Calculus

Previous slides: basic notions, intuition, trivial examples Now: the general case, tableau calculus

Issues

- Fix a class of **target policies**: FR-policies (done)
- Fix a **logic** for target specifications: PCTL*
- **Tableau** calculus: complications
 - "Loop check" to prune infinite paths (aka "runs")
 - Special treatment of bottom strongly connected component (BSCCs)
- Soundness and completeness proof (see paper)

Tableau Calculus

Previous slides: basic notions, intuition, trivial examples Now: the general case, tableau calculus

Issues

- Fix a class of **target policies**: FR-policies (done)
- Fix a **logic** for target specifications: PCTL*
- **Tableau** calculus: complications
 - "Loop check" to prune infinite paths (aka "runs")
 - Special treatment of bottom strongly connected component (BSCCs)
- Soundness and completeness proof (see paper)
- → PCTL*, Tableau calculus

PCTL*

PCTL* is like CTL*, but E path quantifier replaced by P

$$\begin{split} \varphi &:= A & | \ \varphi \land \varphi & | \ \neg \varphi & | \ P_{\sim z} \psi \\ \psi &:= \varphi & | \ \psi \land \psi & | \ \neg \psi & | \ X \psi & | \ \psi U \psi \\ \end{split}$$
 State formula

where $\sim \in \{ <, \le, >, \ge \}$ and $z \in [0..1]$ Sub-languages "probabilistic LTL" and "PCTL" obtained analogously $P_{\ge 0.8} G ((T > 30^\circ) \rightarrow P_{\ge 0.5} F G (T < 24^\circ))$

> With probability at least 0.8, whenever the temperature exceeds 30° it will eventually stay below 24° with probability at least 0.5

Semantics

Parametric in policy σ

Like CTL* but patched for **P** path quantifier

 $\mathbf{s} \models \mathbf{P}_{\sim z} \ \psi$ iff $\Pr\{r \mid r \text{ is a } \sigma\text{-run from } \mathbf{s} \text{ and } r \models \psi\} \sim z$

The tableau inference rules manipulate sequents of the following form

 $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

The tableau inference rules manipulate sequents of the following form

 $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

 $\langle m, \, s
angle$

Current policy state $\langle history, current state \rangle$, e.g. $\langle \varepsilon, s_0 \rangle$

The tableau inference rules manipulate sequents of the following form

 $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

 $\langle m, s
angle$

Current policy state $\langle history, current state \rangle$, e.g. $\langle \varepsilon, s_0 \rangle$

 $\Psi = \left\{ \ \psi_1, \ ..., \ \psi_n \ \right\}$

A set of formulas, e.g. { $P_{>0.9} F$ (Eve $\land X P_{>0.8} F$ Done) }

The tableau inference rules manipulate sequents of the following form

 $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

 $\langle {\rm m,~s}
angle$

Current policy state $\langle history, current state \rangle$, e.g. $\langle \varepsilon, s_0 \rangle$

$$\begin{split} \Psi &= \left\{ \begin{array}{l} \psi_1, \ ..., \ \psi_n \end{array} \right\} \\ \text{A set of formulas, e.g. } \left\{ \begin{array}{l} \textbf{P}_{>0.9} \ \textbf{F} \ \left(\text{Eve} \ \land \ \textbf{X} \ \textbf{P}_{>0.8} \ \textbf{F} \ \text{Done} \right) \end{array} \right\} \end{split}$$

 $\langle \mathbf{m}, \mathbf{s} \rangle$: Ψ

Stands for { r | r is a run from $\langle \boldsymbol{m},\,\boldsymbol{s}\rangle$ and r $\vDash \Lambda \Psi$

The tableau inference rules manipulate sequents of the following form

 $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

 $\langle {\sf m}, \; {\sf s}
angle$

Current policy state $\langle history, current state \rangle$, e.g. $\langle \varepsilon, s_0 \rangle$

$$\begin{split} \Psi &= \left\{ \begin{array}{l} \psi_1, \ ..., \ \psi_n \end{array} \right\} \\ \text{A set of formulas, e.g. } \left\{ \begin{array}{l} \textbf{P}_{>0.9} \ \textbf{F} \left(\text{Eve} \ \land \textbf{X} \ \textbf{P}_{>0.8} \ \textbf{F} \ \text{Done} \right) \end{array} \right\} \end{split}$$

 $\langle \mathbf{m}, \mathbf{s} \rangle$: Ψ

Г

Stands for { r | r is a run from $\langle \mathbf{m}, \mathbf{s} \rangle$ and r $\models \Lambda \Psi$

"Program": set of (non-linear) constraints on $\langle \mathbf{m}, \mathbf{s} \rangle$: Ψ , e.g. $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \Psi > 0.5$ The probability of $\langle \mathbf{m}, \mathbf{s} \rangle$: Ψ is > 0.5
Sequent Data Structure

The tableau inference rules manipulate sequents of the following form

 $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

 $\langle {\sf m}, \; {\sf s}
angle$

Current policy state $\langle history, current state \rangle$, e.g. $\langle \varepsilon, s_0 \rangle$

$$\begin{split} \Psi &= \left\{ \begin{array}{l} \psi_1, \ ..., \ \psi_n \end{array} \right\} \\ & \text{A set of formulas, e.g. } \left\{ \begin{array}{l} \textbf{P}_{>0.9} \ \textbf{F} \left(\text{Eve} \ \land \textbf{X} \ \textbf{P}_{>0.8} \ \textbf{F} \ \text{Done} \right) \end{array} \right\} \end{split}$$

 $\langle \mathbf{m}, \mathbf{s} \rangle$: Ψ

Г

Stands for { r | r is a run from $\langle \mathbf{m}, \mathbf{s} \rangle$ and r $\models \Lambda \Psi$

→ Tableau: derive definitions $x_{(m, s)}^{\Psi} \doteq ...$?

"Program": set of (non-linear) constraints on $\langle \mathbf{m}, \mathbf{s} \rangle : \Psi$, e.g. $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \Psi > 0.5$ The probability of $\langle \mathbf{m}, \mathbf{s} \rangle : \Psi$ is > 0.5

Tableau Derivations

Initialization

Given state formula ϕ , e.g. $P_{>0.9}$ F (Eve \land X $P_{>0.8}$ F Done)

 $\label{eq:linitial_tableau} \mbox{Initial_tableau} \mbox{ with root node } \mathbf{x}_{\langle \boldsymbol{\varepsilon}, \ \mathbf{s0} \rangle} ^{\{\varphi\}} \doteq 1 \quad \vdash \langle \boldsymbol{\varepsilon}, \ \mathbf{s_0} \rangle : \{\varphi\}$

Obligation to derive a satisfiable Γ that specifies σ and value for $\mathbf{x}_{\langle \epsilon, s0 \rangle} \{ \phi \}$

Inference rules invariant

Derivation structure

$$\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \Psi$$
$$\Gamma \mathbf{x}_{(\mathbf{m}, \mathbf{s})} \stackrel{\Psi}{=} \vdash \Psi'$$

 $\langle \mathbf{m}, \mathbf{s} \rangle : \Psi$ is eliminated by adding to Γ an equation $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \Psi \doteq ...$ for the probability of $\langle \mathbf{m}, \mathbf{s} \rangle : \Psi$

Sub-derivations by nested P-formulas Final Γ accumulated from sub-derivations Solution of final Γ provides policy σ

Rules for classical formulas

$$\checkmark \quad \frac{\Gamma \vdash \langle m, s \rangle : \emptyset}{\Gamma, x_{\langle m, s \rangle}^{\emptyset} \doteq 1 \vdash \checkmark}$$

$$\mathbf{X} \quad \frac{\Gamma \vdash \langle m, s \rangle : \{\psi\} \uplus \Psi}{\Gamma, x_{\langle m, s \rangle}^{\{\psi\} \uplus \Psi} \doteq 0 \vdash \mathbf{X}} \begin{cases} \text{if } \psi \text{ is classical and} \\ \text{sical and} \\ L(s) \not\models \psi \end{cases}$$

$$\top \quad \frac{\Gamma \vdash \langle m, s \rangle : \{\psi\} \uplus \Psi}{\Gamma, \gamma_{\text{one}} \vdash \langle m, s \rangle : \Psi} \begin{cases} \text{if } \psi \text{ is classical and} \\ \text{sical and} \\ L(s) \models \psi \end{cases}$$

Rules for conjunctions (1)

$$\wedge \quad \frac{\Gamma \vdash \langle m, s \rangle : \{\psi_1 \land \psi_2\} \uplus \Psi}{\Gamma, \gamma_{\text{one}} \vdash \langle m, s \rangle : \{\psi_1, \psi_2\} \cup \Psi}$$

 $\langle \mathbf{m}, \mathbf{s} \rangle$: $\psi_1 \land \psi_2$ is intersection of $\langle \mathbf{m}, \mathbf{s} \rangle$: ψ_1 and $\langle \mathbf{m}, \mathbf{s} \rangle$: ψ_1

Rules for conjunctions (2) (disjunctions, really)

$$\neg \land \qquad \Gamma \vdash \langle m, s \rangle : \{\neg(\psi_1 \land \psi_2)\} \uplus \Psi$$

$$\neg \land \qquad \Gamma \vdash \langle m, s \rangle : \{\neg\psi_1\} \cup \Psi \quad \cup \quad \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_1, \neg\psi_2\} \cup \Psi$$

$$\text{where } \gamma = x_{\langle m, s \rangle}^{\{\neg(\psi_1 \land \psi_2)\} \uplus \Psi} \doteq x_{\langle m, s \rangle}^{\{\neg\psi_1\} \cup \Psi} + x_{\langle m, s \rangle}^{\{\psi_1, \neg\psi_2\} \cup \Psi}$$

Branching on disjoint union $\neg(\psi_1 \land \psi_2) \equiv \neg\psi_1 \lor \neg\psi_2 \equiv \neg\psi_1 \lor (\psi_1 \land \neg\psi_2)$

 $\langle {\sf m}, {\sf s}
angle$

Rules for conjunctions (2) (disjunctions, really)

$$\neg \land \qquad \Gamma \vdash \langle m, s \rangle : \{\neg(\psi_1 \land \psi_2)\} \uplus \Psi$$

$$\neg \land \qquad \Gamma \vdash \langle m, s \rangle : \{\neg\psi_1\} \cup \Psi \quad \cup \quad \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_1, \neg\psi_2\} \cup \Psi$$

$$\text{where } \gamma = x_{\langle m, s \rangle}^{\{\neg(\psi_1 \land \psi_2)\} \uplus \Psi} \doteq x_{\langle m, s \rangle}^{\{\neg\psi_1\} \cup \Psi} + x_{\langle m, s \rangle}^{\{\psi_1, \neg\psi_2\} \cup \Psi}$$

Branching on disjoint union $\neg(\psi_1 \land \psi_2) \equiv \neg\psi_1 \lor \neg\psi_2 \equiv \neg\psi_1 \lor (\psi_1 \land \neg\psi_2)$

Rules for conjunctions (2) (disjunctions, really)

$$\neg \land \qquad \Gamma \vdash \langle m, s \rangle : \{\neg (\psi_1 \land \psi_2)\} \uplus \Psi$$

$$\neg \land \qquad \Gamma \vdash \langle m, s \rangle : \{\neg \psi_1\} \cup \Psi \qquad \cup \qquad \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_1, \neg \psi_2\} \cup \Psi$$

where $\gamma = x_{\langle m, s \rangle}^{\{\neg (\psi_1 \land \psi_2)\} \uplus \Psi} \doteq x_{\langle m, s \rangle}^{\{\neg \psi_1\} \cup \Psi} + x_{\langle m, s \rangle}^{\{\psi_1, \neg \psi_2\} \cup \Psi}$
Need both branches

Branching on disjoint union $\neg(\psi_1 \land \psi_2) = \neg\psi_1 \lor \neg\psi_2 = \neg\psi_1 \lor (\psi_1 \land \neg\psi_2)$

Rules for P-formulas

Similar to classical state formula, but ...

$$\mathsf{P} \quad \frac{\mathsf{\Gamma} \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \{ \mathsf{P}_{\sim z} \psi \} \uplus \Psi}{``\langle \mathbf{m}, \mathbf{s} \rangle \models \mathsf{P}_{\sim z} \psi'' \quad \mathsf{OR} \quad ``\langle \mathbf{m}, \mathbf{s} \rangle \not\models \mathsf{P}_{\sim z} \psi''}$$

Cannot know at this stage if $\langle \mathbf{m}, \mathbf{s} \rangle \models \mathbf{P}_{\sim z} \Psi$ holds or not - may depend on final Γ Hence guess by branching out and invoke tableau with respective constraint

 $x_{\langle m,\ s\rangle} \sim \text{z} \ \text{ or } x_{\langle m,\ s\rangle} \not\sim \text{z}$

In any case simplify premise with decision made to make progress

Rules for U-formulas

Basically: unfold using equivalences

$$\psi_{1} \mathbf{U} \psi_{2} \equiv \psi_{2} \vee (\psi_{1} \wedge \mathbf{X} (\psi_{1} \mathbf{U} \psi_{2}))$$

$$\neg (\psi_{1} \mathbf{U} \psi_{2}) \equiv \neg \psi_{2} \wedge (\neg \psi_{1} \vee \mathbf{X} \neg (\psi_{1} \mathbf{U} \psi_{2}))$$
Disjoint union again
$$\mathbf{U} \xrightarrow{\Gamma \vdash \langle m, s \rangle : \{\psi_{2}\} \cup \Psi \cup \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_{1}, \neg \psi_{2}, \mathbf{X} (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}$$
where $\gamma = x_{\langle m, s \rangle}^{\{\psi_{1} \mathbf{U} \psi_{2}\} \oplus \Psi} \doteq x_{\langle m, s \rangle}^{\{\psi_{2}\} \cup \Psi} + x_{\langle m, s \rangle}^{\{\psi_{1}, \neg \psi_{2}, \mathbf{X} (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}$

$$\neg \mathbf{U} \xrightarrow{\Gamma \vdash \langle m, s \rangle : \{\neg \psi_{1}, \neg \psi_{2}\} \cup \Psi \cup \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}$$
where $\gamma = x_{\langle m, s \rangle}^{\{\neg (\psi_{1} \mathbf{U} \psi_{2})\} \oplus \Psi} = x_{\langle m, s \rangle}^{\{\neg (\psi_{1} \mathbf{U} \psi_{2})\} \oplus \Psi}$

$$r \vdash \langle m, s \rangle : \{\neg (\psi_{1} \mathbf{U} \psi_{2})\} \oplus \Psi$$

$$r \vdash \langle m, s \rangle : \{\neg (\psi_{1} \mathbf{U} \psi_{2})\} \oplus \Psi + x_{\langle m, s \rangle}^{\{\neg (\psi_{1} \neg \psi_{2}, \mathbf{X} \neg (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}$$

Rules for U-formulas

Basically: unfold using equivalences

$$\psi_{1} \mathbf{U} \psi_{2} \equiv \psi_{2} \vee (\psi_{1} \wedge \mathbf{X} (\psi_{1} \mathbf{U} \psi_{2}))$$

$$\neg (\psi_{1} \mathbf{U} \psi_{2}) \equiv \neg \psi_{2} \wedge (\neg \psi_{1} \vee \mathbf{X} \neg (\psi_{1} \mathbf{U} \psi_{2}))$$
Disjoint union again
$$\mathbf{U} \xrightarrow{\Gamma \vdash \langle m, s \rangle : \{\psi_{2}\} \cup \Psi \cup \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_{1}, \neg \psi_{2}, \mathbf{X} (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}_{\text{where } \gamma = x_{\langle m, s \rangle}^{\{\psi_{1} \mathbf{U} \psi_{2}\} \uplus \Psi} \doteq x_{\langle m, s \rangle}^{\{\psi_{2}\} \cup \Psi} + x_{\langle m, s \rangle}^{\{\psi_{1}, \neg \psi_{2}, \mathbf{X} (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}$$

$$\neg \mathbf{U} \xrightarrow{\Gamma \vdash \langle m, s \rangle : \{\neg (\psi_{1} \mathbf{U} \psi_{2})\} \uplus \Psi}_{\Gamma \vdash \langle m, s \rangle : \{\neg (\psi_{1}, \neg \psi_{2})\} \cup \Psi \cup \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}_{\text{where } \gamma = x_{\langle m, s \rangle}^{\{\neg (\psi_{1}, \neg \psi_{2}\} \cup \Psi} \cup \Gamma, \gamma \vdash \langle m, s \rangle : \{\psi_{1}, \neg \psi_{2}, \mathbf{X} \neg (\psi_{1} \mathbf{U} \psi_{2})\} \cup \Psi}_{\text{where } \gamma = x_{\langle m, s \rangle}^{\{\neg (\psi_{1} \mathbf{U} \psi_{2})\} \uplus \Psi} \pm x_{\langle m, s \rangle}^{\{\neg (\psi_{1}, \neg \psi_{2}\} \cup \Psi} + x_{\langle m, s \rangle}^{\{\neg (\psi_{1}, \neg \psi_{2})\} \cup \Psi}$$

 \rightarrow At this stage premise Ψ is { X Ψ_1 , ..., X Ψ_n }

where

Χ

 $\mathbf{s}_1 \dots \mathbf{s}_n$ are all "prescribed" successor states of \mathbf{s} , i.e., successor states reachable with non-0 probability

X { $\Psi_1, ..., \Psi_n$ } shorthand for poised { **X** $\Psi_1, ..., \mathbf{X} \Psi_n$ } **Rules for X-formulas** Advance to the next state by expansion $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \mathbf{X} \Psi$ " $(\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_1) \models \psi$ " U " $(\Delta(\mathbf{m}, \mathbf{s}), \mathbf{s}_n) \models \psi$ "

where

Χ

 $\mathbf{s}_1 \dots \mathbf{s}_n$ are all "prescribed" successor states of \mathbf{s} , i.e., successor states reachable with non-0 probability

> Requires guessing rule for action probabilities " $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \boldsymbol{\alpha} > 0$ " OR " $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \boldsymbol{\alpha} \doteq 0$ "

Χ

where

X { $\Psi_1, ..., \Psi_n$ } shorthand for poised { **X** $\Psi_1, ..., \mathbf{X} \Psi_n$ } **Rules for X-formulas** Advance to the next state by expansion $\Gamma \vdash \langle \mathbf{m}, \mathbf{s} \rangle : \mathbf{X} \Psi$ $`` \langle \Delta(\mathbf{m, s}), \mathbf{s_1} \rangle \models \psi " \quad \cup \quad `` \langle \Delta(\mathbf{m, s}), \mathbf{s_n} \rangle \models \psi "$

 $\mathbf{s}_1 \dots \mathbf{s}_n$ are all "prescribed" successor states of \mathbf{s} , i.e., successor states reachable with non-0 probability

> Requires guessing rule for action probabilities " $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \boldsymbol{\alpha} > 0$ " OR " $\mathbf{x}_{\langle \mathbf{m}, \mathbf{s} \rangle} \boldsymbol{\alpha} \doteq 0$ "

→ The X-rule is not applied in case of a "loop"

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities $G (F A \land F B \land F C)$

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities $G(F A \land F B \land F C)$

 $\langle \textbf{m, s} \rangle : \textbf{X F A}, \textbf{X F B}, \textbf{X F C}, ...$

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities **G** (**F A** \wedge **F B** \wedge **F C**)

 $=: \mathbf{X} \Psi$

 $\langle m, s \rangle$: X F A, X F B, X F C, ...

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities $G(F A \land F B \land F C)$

 $\langle m, s \rangle : X F A, X F B, X F C, ...$

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities $G(FA \land FB \land FC)$

 $\langle \mathbf{m}, \mathbf{s} \rangle$: **X F A**, **X F B**, **X F C**, ...

"**A**"

_ =: Χ Ψ

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A \land F B \land F C) $\langle \mathbf{m}, \mathbf{s} \rangle : \mathbf{X} \mathbf{F} \mathbf{A}, \mathbf{X} \mathbf{F} \mathbf{B}, \mathbf{X} \mathbf{F} \mathbf{C}, \dots$ $(\mathbf{A}^{''})$ $\langle \mathbf{m}, \mathbf{s} \rangle : \mathbf{X} \Psi$

Bottom Strongly Connected Components (BSCCs)

) a reachable sub-graph that is impossible to leave

BSCC

Problem: if tableau contains BSCC for problematic Ψ

then Γ underspecifies probability: " $x_{s3}^{\psi} \doteq x_{s3}^{\psi''}$

Solution: if have Yes-Loop then add $\mathbf{x}_{s3}^{\Psi} \doteq 1$ to Γ else add $\mathbf{x}_{s3}^{\Psi} \doteq 0$ to Γ

Conclusion

- Presented a tableau calculus for policy synthesis
 Many details left out
- Very expressive target specification language: PCTL*
- Had to restrict to policies with finite-memory fixed a priori to get decidability
- Novelty: no other algorithm for policy synthesis under stated conditions
- Novelty: explores reachable states "only"

Traditional synthesis algorithms are based on automata

