
Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU
Australia

Tableaux for Policy Synthesis for MDPs with
PCTL* Constraints

Markov Decision Processes (MDPs)

2

Actions: move left, move right, enter, get Eve, exit

Markov Decision Processes (MDPs)

2

Actions: move left, move right, enter, get Eve, exit

Nondeterministic action ⟹ stochastic environment response

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Markov Decision Processes (MDPs)

2

0.9 0.5

Actions: move left, move right, enter, get Eve, exit

Nondeterministic action ⟹ stochastic environment response

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Markov Decision Processes (MDPs)

2

0.9 0.5

0.1 0.9

Actions: move left, move right, enter, get Eve, exit

Nondeterministic action ⟹ stochastic environment response

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Markov Decision Processes (MDPs)

2

0.9 0.5

0.1 0.9

Actions: move left, move right, enter, get Eve, exit

Nondeterministic action ⟹ stochastic environment response

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Decision making:
What action to take in what state to achieve objective?

Objective: P>0.9 F (Eve ∧ X P>0.8 F Done)

Markov Decision Processes (MDPs)

2

0.9 0.5

0.1 0.9

Actions: move left, move right, enter, get Eve, exit

Nondeterministic action ⟹ stochastic environment response

Environment: door possibly jams, location of Eve uncertain (10% - 90%)

Decision making:
What action to take in what state to achieve objective?

Objective: P>0.9 F (Eve ∧ X P>0.8 F Done) ↝ MDP formalism

MDPs, Execution Paths and Probabilities
Nondeterministic action ⟹ stochastic environment response

3

Paths (actions have been resolved)

s0 d1
right
1.0

enter
d10.1

0.9 r1

enter
d10.1

0.9 r1

s0 d1 d2 g

r1

right right

left
right

enter
0.9

0.1

get

0.2

0.8

e1

exit
exit

{Eve}

{Done}

MDPs, Execution Paths and Probabilities
Nondeterministic action ⟹ stochastic environment response

3

Paths (actions have been resolved)

s0 d1
right
1.0

enter
d10.1

0.9 r1

enter
d10.1

0.9 r1

0.01

0.09
0.9

Probabilities of paths

(Σ = 1.0)

“The probability of reaching r1 after at most two enter steps is 0.99”

s0 d1 d2 g

r1

right right

left
right

enter
0.9

0.1

get

0.2

0.8

e1

exit
exit

{Eve}

{Done}

MDPs, Execution Paths and Probabilities
Nondeterministic action ⟹ stochastic environment response

3

Paths (actions have been resolved)

s0 d1
right
1.0

enter
d10.1

0.9 r1

enter
d10.1

0.9 r1

0.01

0.09
0.9

Probabilities of paths

(Σ = 1.0)

“The probability of reaching r1 after at most two enter steps is 0.99”

s0 d1 d2 g

r1

right right

left
right

enter
0.9

0.1

get

0.2

0.8

e1

exit
exit

{Eve}

{Done}

↝ Policy synthesis problem

Policy Synthesis Problem

4

- Static: MDP

- Dynamics: paths and probabilities of paths
- Induced by actions chosen

s0 ⊨ P>0.9 F (Eve ∧ X P>0.8 F Done)
- Logic: specification of target property (see below)
- Constraints on probabilities of these paths

Policy σ: what actions to chose in what state
Synthesis problem: determine σ such that target property is satisfied

Policy synthesis problem

Policy Synthesis Problem

4

- Static: MDP

- Dynamics: paths and probabilities of paths
- Induced by actions chosen

s0 ⊨ P>0.9 F (Eve ∧ X P>0.8 F Done)
- Logic: specification of target property (see below)
- Constraints on probabilities of these paths

Policy σ: what actions to chose in what state
Synthesis problem: determine σ such that target property is satisfied

Policy synthesis problem

↝ Different kinds of policies

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

Attempt 1

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right
Attempt 1

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get e1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Donee1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Done

Attempt 2

e1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Done

s0: right
Attempt 2

e1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Done

s0: right d1: right
Attempt 2

e1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Done

s0: right d1: right
Attempt 2

d2: right

e1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Done

s0: right d1: right
Attempt 2

d2: right
✓
✗

eventually Done
never Eve

e1: exit

Policies - History Dependance and Randomization

5

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)
Case M: History-independent policy

s0: right d1: enter
Attempt 1

r1: get
✓
✗

eventually Eve
never Done

s0: right d1: right
Attempt 2

d2: right
✓
✗

eventually Done
never Eve

↝ Not expressive enough
Expressive enough without
logic constraints, e.g.
cost constraints only

e1: exit

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get s0 … e1: exit

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get s0 … e1: exit
s0 d1 … e1 … d1: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get s0 … e1: exit
s0 d1 … e1 … d1: right s0 … d2: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get ✓
✓

eventually Eve
eventually Done

s0 … e1: exit
s0 d1 … e1 … d1: right s0 … d2: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get ✓
✓

eventually Eve
eventually Done

s0 … e1: exit
s0 d1 … e1 … d1: right

✗ unbounded history length - highly undecidable

s0 … d2: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

6

Case H: History-dependent policy

s0: right s0 d1 … d1 … d1: enter s0 … r1: get ✓
✓

eventually Eve
eventually Done

s0 … e1: exit
s0 d1 … e1 … d1: right

✗ unbounded history length - highly undecidable

↝ Too expressive

s0 … d2: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter d1r1: get
d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
r1r1: get
d1r1: get

d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
r1r1: get

r1e1: exitd1r1: get
d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
r1r1: get

r1e1: exit e1d1: rightd1r1: get
d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
r1r1: get

✓
✓

eventually Eve
eventually Done

r1e1: exit e1d1: rightd1r1: get
d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
r1r1: get

✓
✓

eventually Eve
eventually Done

r1e1: exit e1d1: rightd1r1: get

 A priori finitely bounded history length - decidable (our main result)

Our approach

d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

7

Case F: Finite history-dependent policy

s0: right s0d1: enter
r1r1: get

✓
✓

eventually Eve
eventually Done

r1e1: exit e1d1: rightd1r1: get

 A priori finitely bounded history length - decidable (our main result)

Our approach

↝ Can do better (more expressive)

d1d1: enter

Target property: s0 ⊨ P>0 F (Eve ∧ F Done)

Policies - History Dependance and Randomization

8

Case D: Deterministic policy
s0

sl

right

{Left}

left

sr{Right}

Target property: P>0 F Left ∧ P>0 F Right

Policies - History Dependance and Randomization

8

Case D: Deterministic policy
s0

sl

right

{Left}

left

sr{Right}

Target property: P>0 F Left ∧ P>0 F Right

s0: left
Attempt 1

✓
✗

P>0 F Left
P>0 F Right

Policies - History Dependance and Randomization

8

Case D: Deterministic policy
s0

sl

right

{Left}

left

sr{Right}

Target property: P>0 F Left ∧ P>0 F Right

s0: left
Attempt 1

✓
✗

P>0 F Left
P>0 F Right

s0: right
Attempt 2

✓
✗ P>0 F Left

P>0 F Right

Policies - History Dependance and Randomization

8

Case D: Deterministic policy
s0

sl

right

{Left}

left

sr{Right}

Target property: P>0 F Left ∧ P>0 F Right

s0: left
Attempt 1

✓
✗

P>0 F Left
P>0 F Right

s0: right
Attempt 2

✓
✗ P>0 F Left

P>0 F Right

↝ Fix: randomized policies

Policies - History Dependance and Randomization

9

Case R: Randomized policy
s0

sl

right

{Left}

left

sr{Right}

Target property: s0 ⊨ P>0 F Left ∧ P>0 F Right

s0: [left → 0.6, right → 0.4]

σ is a probability distribution over actions
for each state (history/state)

✓
P>0 F Left
P>0 F Right

✓

“In 6 out of 10 experiments chose left”

Policies - History Dependance and Randomization

9

Case R: Randomized policy
s0

sl

right

{Left}

left

sr{Right}

Target property: s0 ⊨ P>0 F Left ∧ P>0 F Right

s0: [left → 0.6, right → 0.4]

σ is a probability distribution over actions
for each state (history/state)

✓
P>0 F Left
P>0 F Right

✓

“In 6 out of 10 experiments chose left”

↝ Identified target policies: FR
 Look at policy synthesis in more detail

Probabilities of Paths Again: Randomized case

10

s0: [α → 0.6, β → 0.4]
Policy σ

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Evaluation

Probabilities of Paths Again: Randomized case

10

s0: [α → 0.6, β → 0.4]
Policy σ

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Evaluation

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

Probabilities of Paths Again: Randomized case

10

s0: [α → 0.6, β → 0.4]
Policy σ

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Evaluation

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

Non-probabilistic CTL/LTL/CTL*

σ-path: non-0 probability actions

Probabilities of Paths Again: Randomized case

10

s0: [α → 0.6, β → 0.4]
Policy σ

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Evaluation

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

Non-probabilistic CTL/LTL/CTL*

σ-path: non-0 probability actions

Probabilities of Paths Again: Randomized case

10

s0: [α → 0.6, β → 0.4]
Policy σ

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Evaluation

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

0.6⋅0.6 + 0.4⋅0.7 = 0.64 > 0.6
iff

Non-probabilistic CTL/LTL/CTL*

σ-path: non-0 probability actions

Probabilities of Paths Again: Randomized case

10

s0: [α → 0.6, β → 0.4]
Policy σ

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Evaluation

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

0.6⋅0.6 + 0.4⋅0.7 = 0.64 > 0.6
iff

Non-probabilistic CTL/LTL/CTL*

σ-path: non-0 probability actions

↝ Synthesis: quantify over action probabilities

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

x(s0, α)⋅0.6 + x(s0, β)⋅0.7 > 0.6 and
iff

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

x(s0, α)⋅0.6 + x(s0, β)⋅0.7 > 0.6 and
iff

x(s0, α) + x(s0, β) = 1 and x(s0, α) > 0 and x(s0, β) > 0

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

x(s0, α)⋅0.6 + x(s0, β)⋅0.7 > 0.6 and
iff

x(s0, α) + x(s0, β) = 1 and x(s0, α) > 0 and x(s0, β) > 0

Prescribed actions, define σ-paths

Policy Synthesis

11

s0

sa

α
0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

Policy σ ?

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Synthesis

iff
Pr{p | p is a σ-path from s0 and p ⊨ F A} > 0.6

iff
Pr{s0sa, s0sc} > 0.6

x(s0, α)⋅0.6 + x(s0, β)⋅0.7 > 0.6 and
iff

↝ Tableau calculus deriving a set of (in)equations
 whose solutions, if any, provide a policy

x(s0, α) + x(s0, β) = 1 and x(s0, α) > 0 and x(s0, β) > 0

Prescribed actions, define σ-paths

Tableau Calculus

12

Previous slides: basic notions, intuition, trivial examples
Now: the general case, tableau calculus

Issues

 Fix a class of target policies: FR-policies (done)
 Fix a logic for target specifications: PCTL*
 Tableau calculus: complications  
 - “Loop check” to prune infinite paths (aka “runs”) 
 - Special treatment of bottom strongly connected component (BSCCs)
 Soundness and completeness proof (see paper)

Tableau Calculus

12

Previous slides: basic notions, intuition, trivial examples
Now: the general case, tableau calculus

Issues

 Fix a class of target policies: FR-policies (done)
 Fix a logic for target specifications: PCTL*
 Tableau calculus: complications  
 - “Loop check” to prune infinite paths (aka “runs”) 
 - Special treatment of bottom strongly connected component (BSCCs)
 Soundness and completeness proof (see paper)

↝ PCTL*, Tableau calculus

PCTL*

13

PCTL* is like CTL*, but E path quantifier replaced by P

ϕ := A | ϕ ∧ ϕ | ¬ϕ | P~z ψ
ψ := ϕ | ψ ∧ ψ | ¬ψ | X ψ | ψ U ψ

State formula
Path formula

Sub-languages “probabilistic LTL” and “PCTL” obtained analogously
where ~ ∈ { <, ≤, >, ≥ } and z ∈ [0..1]

Semantics
Parametric in policy σ
Like CTL* but patched for P path quantifier

s ⊨ P~z ψ iff Pr{r | r is a σ-run from s and r ⊨ ψ} ~ z

P≥0.8 G ((T > 30°) → P≥0.5 F G (T < 24°))
With probability at least 0.8, whenever the temperature exceeds 30°

it will eventually stay below 24° with probability at least 0.5

Sequent Data Structure
The tableau inference rules manipulate sequents of the following form

14

Γ ⊢ ⟨m, s⟩ : Ψ

Sequent Data Structure
The tableau inference rules manipulate sequents of the following form

14

Γ ⊢ ⟨m, s⟩ : Ψ
⟨m, s⟩

Current policy state ⟨history, current state⟩, e.g. ⟨ϵ, s0⟩

Sequent Data Structure
The tableau inference rules manipulate sequents of the following form

14

Γ ⊢ ⟨m, s⟩ : Ψ
⟨m, s⟩

Current policy state ⟨history, current state⟩, e.g. ⟨ϵ, s0⟩

Ψ = { ψ1, …, ψn }
A set of formulas, e.g. { P>0.9 F (Eve ∧ X P>0.8 F Done) }

Sequent Data Structure
The tableau inference rules manipulate sequents of the following form

14

Γ ⊢ ⟨m, s⟩ : Ψ
⟨m, s⟩

Current policy state ⟨history, current state⟩, e.g. ⟨ϵ, s0⟩

Ψ = { ψ1, …, ψn }
A set of formulas, e.g. { P>0.9 F (Eve ∧ X P>0.8 F Done) }

⟨m, s⟩ : Ψ

Stands for { r | r is a run from ⟨m, s⟩ and r ⊨ ∧Ψ

Sequent Data Structure
The tableau inference rules manipulate sequents of the following form

14

Γ ⊢ ⟨m, s⟩ : Ψ

Γ
“Program”: set of (non-linear) constraints on ⟨m, s⟩ : Ψ, e.g.
x⟨m, s⟩Ψ > 0.5 The probability of ⟨m, s⟩ : Ψ is > 0.5

⟨m, s⟩

Current policy state ⟨history, current state⟩, e.g. ⟨ϵ, s0⟩

Ψ = { ψ1, …, ψn }
A set of formulas, e.g. { P>0.9 F (Eve ∧ X P>0.8 F Done) }

⟨m, s⟩ : Ψ

Stands for { r | r is a run from ⟨m, s⟩ and r ⊨ ∧Ψ

Sequent Data Structure
The tableau inference rules manipulate sequents of the following form

14

Γ ⊢ ⟨m, s⟩ : Ψ

Γ
“Program”: set of (non-linear) constraints on ⟨m, s⟩ : Ψ, e.g.
x⟨m, s⟩Ψ > 0.5 The probability of ⟨m, s⟩ : Ψ is > 0.5

⟨m, s⟩

Current policy state ⟨history, current state⟩, e.g. ⟨ϵ, s0⟩

Ψ = { ψ1, …, ψn }
A set of formulas, e.g. { P>0.9 F (Eve ∧ X P>0.8 F Done) }

⟨m, s⟩ : Ψ

Stands for { r | r is a run from ⟨m, s⟩ and r ⊨ ∧Ψ
↝ Tableau: derive definitions x⟨m, s⟩Ψ ≐ … ?

Tableau Derivations

15

Initial tableau with root node x⟨ϵ, s0⟩
{ϕ} ≐ 1 ⊢ ⟨ϵ, s0⟩ : {ϕ}

Given state formula ϕ, e.g. P>0.9 F (Eve ∧ X P>0.8 F Done)

Initialization

Inference rules invariant

Γ ⊢ ⟨m, s⟩ : Ψ

Γ, x⟨m, s⟩Ψ ≐ … ⊢ Ψ’

⟨m, s⟩ : Ψ is eliminated by
adding to Γ an equation x⟨m, s⟩Ψ ≐ …
for the probability of ⟨m, s⟩ : Ψ

Derivation structure

✓ ✗ ✓ ✗

Sub-derivations by nested P-formulas
Final Γ accumulated from sub-derivations
Solution of final Γ provides policy σ

P>0 δ

δ

Obligation to derive a satisfiable Γ that specifies σ and value for x⟨ϵ, s0⟩
{ϕ}

Some Inference Rules

16

Rules for classical formulas
rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

Some Inference Rules

17

Rules for conjunctions (1)

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

⟨m,s⟩

ψ1 ψ2

ψ1 ∧ ψ2

⟨m,s⟩: ψ1 ∧ ψ2 is intersection of ⟨m,s⟩: ψ1 and ⟨m,s⟩: ψ1

Some Inference Rules

18

Rules for conjunctions (2) (disjunctions, really)

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

Branching on disjoint union ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2 ≡ ¬ψ1 ∨ (ψ1 ∧ ¬ψ2)

¬ψ1 ¬ψ2

⟨m,s⟩

Some Inference Rules

18

Rules for conjunctions (2) (disjunctions, really)

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

Branching on disjoint union ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2 ≡ ¬ψ1 ∨ (ψ1 ∧ ¬ψ2)

¬ψ1 ¬ψ2

Do not add up twice!

⟨m,s⟩

Some Inference Rules

18

Rules for conjunctions (2) (disjunctions, really)

rules. In order to lighten the notation, however, we usually drop the variable’s index,
leaving the node implicit. For instance, we write x

hm,si instead of (x

u

) hm,si . The index
u is needed for not inadvertently identifying the same pivot at di�erent points in the
symbolic execution of a run. Fresh names x, y, z, . . . for the variables would do as well.

Most unary union branching rules have a premise � ` hm, si : { }] and the
conclusion is �, �one ` hm, si : 0, for some 0. The pivot is specified by pattern
matching, where] is disjoint union, and �one is a macro that expands to x

{ }]
hm,si ⌘ x

 0
hm,si .

Other inference rules derive pseudo-sequents of the form � ` 7, � ` 3, � ` Yes-Loop

and � ` No-Loop. They indicate that the probability of the pivot is 0, 1, or that a loop
situation arises that may need further analysis. Pseudo-sequents are always leaves.

Now we turn to the concrete rules. They are listed in decreasing order of preference.

>
� ` hm, si : { }]
�, �one ` hm, si :

8>><
>>:

if is clas-
sical and
L(s) |=

7
� ` hm, si : { }]
�, x

{ }]
hm,si ⌘ 0 ` 7

8>><
>>:

if is clas-
sical and
L(s) 6|=

3
� ` hm, si : ;

�, x;hm,si ⌘ 1 ` 3
¬¬

� ` hm, si : {¬¬ }]
�, �one ` hm, si : { } [

¬P
� ` hm, si : {¬P⇠z }]

�, �one ` hm, si : {P⇠z } [
P¬

� ` hm, si : {P⇠z ¬ }]
�, �one ` hm, si : {P[⇠] 1�z } [

These are rules for evaluating classical formulas and for negation. The 7 rule terminates
the branch and assigns a probability of 0 to the premise pivot, as no run from hm, si
satisfies (the conjunction of) { }] , as is false in s. A similar reasoning applies to
the > and 3 rules. The ¬P and P¬ rules are justified by law (P1). The P¬ rule is needed
for removing negation between P-formulas as in P⇠z ¬P⇠v .

^
� ` hm, si : { 1 ^ 2}]
�, �one ` hm, si : { 1, 2} [

¬^
� ` hm, si : {¬(1 ^ 2)}]

� ` hm, si : {¬ 1} [[�, � ` hm, si : { 1,¬ 2} [

where � = x

{¬(1^ 2)}]
hm,si ⌘ x

{¬ 1 }[
hm,si + x

{ 1,¬ 2 }[
hm,si

These are rules for conjunction. Not both 1 and 2 can be classical by preference of
the > and 7 rules. The ^ rule is obvious with the conjunctive reading of formula sets.
The ¬^ rule deals, essentially, with the disjunction ¬ 1 _¬ 2, which requires splitting.
However, unlike to the classical logic case, ¬ 1 _ ¬ 2 represents the union of the runs
from s satisfying ¬ 1 and the runs from s satisfying ¬ 2. As these sets may overlap the
rule works with a disjoint union by taking ¬ 1 on the one side, and 1 ^ ¬ 2 on the
other side so that it is correct to add their probabilities up in �.

P1
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { 0} [

⇢
if P⇠z is the left hand side of an equivalence
(P2)-(P5) and 0 is its right hand side

P2
� ` hm, si : {P⇠z }]
�, �one ` hm, si : { } [if see text P3

� ` hm, si : {P⇠z }]
�, �one ` hm, si : {¬ } [if see text

8

Branching on disjoint union ¬(ψ1 ∧ ψ2) ≡ ¬ψ1 ∨ ¬ψ2 ≡ ¬ψ1 ∨ (ψ1 ∧ ¬ψ2)

¬ψ1 ¬ψ2

Do not add up twice!

Need both branches

⟨m,s⟩

Some Inference Rules

Rules for P-formulas

Γ ⊢ ⟨m, s⟩ : { P~z ψ } ⊎ Ψ

“⟨m, s⟩ ⊨ P~z ψ” “⟨m, s⟩ ⊭ P~z ψ”OR

Cannot know at this stage if ⟨m, s⟩ ⊨ P~z ψ holds or not - may depend on final Γ

Hence guess by branching out and invoke tableau with respective constraint
 x⟨m, s⟩ ~ z or x⟨m, s⟩ ≁ z

In any case simplify premise with decision made to make progress

 Similar to classical state formula, but …

P

Some Inference Rules

Rules for U-formulas

U
� ` hm, si : { 1 U 2}]

� ` hm, si : { 2} [[�, � ` hm, si : { 1,¬ 2, X (1 U 2)} [

where � = x

{ 1 U 2 }]
hm,si ⌘ x

{ 2 }[
hm,si + x

{ 1,¬ 2,X (1 U 2)}[
hm,si

¬U
� ` hm, si : {¬(1 U 2)}]

� ` hm, si : {¬ 1,¬ 2} [[�, � ` hm, si : { 1,¬ 2,X¬(1 U 2)} [

where � = x

{¬(1 U 2)}]
hm,si ⌘ x

{¬ 1,¬ 2 }[
hm,si + x

{ 1,¬ 2,X¬(1 U 2)}[
hm,si

These are expansion rules for U-formulas. The standard expansion law is 1 U 2 ⌘
 2 _ (1 ^ X (1 U 2)). As with the ¬^ rule, the disjunction in the expanded formula
needs to be disjoint by taking 2 _ (1 ^ ¬ 2 ^ X (1 U 2)) instead. Similarly for ¬U.

¬X
� ` hm, si : {¬X }]

�, �one ` hm, si : {X¬ } [

The ¬X rule is obvious.
At this stage, if � ` hm, si : is a leaf sequent then is of the form {X 1, . . . ,X n

},
for some n � 1. This is an important configuration that justifies a name: we say that
a labelled formula hm, si : , a sequent � ` hm, si : or a node labelled with
� ` hm, si : is poised if is of the form {X 1, . . . ,X n

} where n � 1. (The notion
“poised” is taken from [18].) A poised hm, si : {X 1, . . . ,X n

} will be expanded by
transition into the successor states of s by using enabled actions ↵ 2 A(s). That some
↵ is enabled does not, however, preclude a policy with act�(m, s, ↵) = 0. The rule A

makes a guess whether this is the case or not:

A

� ` hm, si :
�, �left ` hm, si : �, �right ` hm, si :

⇢
if � ` hm, si : is poised,
↵ 2 A(s), �left < � and �right < �

where �left = x

↵
hm,si ⌘ 0 and �right = x

↵
hm,si > 0

With a minor modification we get a calculus for deterministic policies. It only requires
to re-define �right as �right = x

↵
hm,si ⌘ 1. As a benefit the program �final will be linear.

After the A rule has been applied exhaustively, for each ↵ 2 A(s) either x

↵
hm,si > 0 2

� or x

↵
hm,si ⌘ 0 2 �. If x

↵
hm,si > 0 2 � we say that ↵ is prescribed in hm, si by � and

define Prescribed(hm, si, �) = {↵ | x

↵
hm,si > 0 2 �}.

The set of prescribed actions in a policy state determines the Succ-relation of the
Markov chain under construction. To get the required distribution over enabled actions,
it su�ces to enforce a distribution over prescribed actions, with this inference rule:

Prescribed
� ` hm, si :

�, �↵hm,si ` hm, si :

⇢if � ` hm, si : is poised,
↵ 2 A(s) and �↵hm,si < �

where �↵hm,si = ⌃↵2Prescribed(hm,si,�) x

↵
hm,si ⌘ 1

If the C����� operator in step two selects the leftmost branch among the A-inferences
then �final contains x

↵
hm,si ⌘ 0, for all ↵ 2 A(s). This is inconsistent with the constraint

10

In the preceding line, RunsM⇡ (s) denotes the set of all runs from s of M⇡ , and PrM⇡ (R)
denotes the probability of a (measurable) set R ✓ RunsM⇡ . That is, the probability
measure for M and ⇡ is defined via the probability measure of the Markov chain M⇡ .

We need to define the satisfaction relation M, ⇡, r |= , briefly r |= , for path
formulas . Let r = s1s2 · · · be a run of M and r[n] := s

n

s

n+1 · · · , for any n � 1. Then:

r |= � i� first(r) |= � r |= 1 ^ 2 i� r |= 1 and r |= 2

r |= ¬ i� r 6|= r |= X i� r[2] |=
r |= 1 U 2 i� exists n � 1 s.t. r[n] |= 2 and r[m] |= 1 for all 1 m < n

In this paper we focus on the problem of synthesizing only the act-component of an
otherwise fully specified finite memory policy. More formally:

Definition 2.1 (Policy Synthesis Problem). Let M = (S, sinit, A, P, L) be an MDP, and
⇡fin = (M, start,�, ·) be a partially specified finite-memory policy with act unspecified.
Given state formula �, find act s.th. M, ⇡fin, sinit |= � if it exists, otherwise report failure.

Useful facts about PCTL* operators. Next we summarize some well-known or easy-to-
prove facts about PCTL* operators. By the expansion laws for the U-operator we mean
the following equivalences:

 1 U 2 ⌘ 2 _ (1 ^ X (1 U 2)) ¬(1 U 2) ⌘ ¬ 2 ^ (¬ 1 _ X¬(1 U 2)) (E)

For ⇠ 2 {<, , >, �} define the operators ⇠ and [⇠] as follows:

< = � = > > = � = < [<] = > [] = � [>] = < [�] =

Some of the following equivalences cannot be used for “model checking” PCTL*
(the left (P1) equivalence, to be specific) which involves reasoning over all policies. In
the context of Markov Chains, which we implicitly have, there is no problem:

¬P⇠z ⌘ P⇠z P⇠z ¬ ⌘ P[⇠] 1�z (P1)
P�0 ⌘ true P>1 ⌘ false (P2)
P1 ⌘ true P<0 ⌘ false (P3)

P�u P⇠z ⌘ P⇠z if u , 0 P>u P⇠z ⌘ P⇠z if u , 1 (P4)
Pu P⇠z ⌘ P�1�u P⇠z P<u P⇠z ⌘ P>1�u P⇠z (P5)

Nonlinear programs. Finally, a (nonlinear) program is a set � of constraints of the form
e1 ./ e2 where ./ 2 {<, , >, �, ⌘} and e1 and e2 are arithmetic expressions comprised of
numeric real constants and variables. The numeric operators are {+,�, ·, /}, all with their
expected meaning (the symbol ⌘ is equality). All variables are implicitly bounded over
the range [0, 1]. A solver (for nonlinear programs) is a decision procedure that returns
a satisfying variable assignment (a solution) for a given �, and reports unsatisfiability
if no solution exists. We do not further discuss solvers in the rest of this paper, we just
assume one as given. Examples of open source solvers include Ipopt and Couenne.1

1 http://projects.coin-or.org/.

5

In the preceding line, RunsM⇡ (s) denotes the set of all runs from s of M⇡ , and PrM⇡ (R)
denotes the probability of a (measurable) set R ✓ RunsM⇡ . That is, the probability
measure for M and ⇡ is defined via the probability measure of the Markov chain M⇡ .

We need to define the satisfaction relation M, ⇡, r |= , briefly r |= , for path
formulas . Let r = s1s2 · · · be a run of M and r[n] := s

n

s

n+1 · · · , for any n � 1. Then:

r |= � i� first(r) |= � r |= 1 ^ 2 i� r |= 1 and r |= 2

r |= ¬ i� r 6|= r |= X i� r[2] |=
r |= 1 U 2 i� exists n � 1 s.t. r[n] |= 2 and r[m] |= 1 for all 1 m < n

In this paper we focus on the problem of synthesizing only the act-component of an
otherwise fully specified finite memory policy. More formally:

Definition 2.1 (Policy Synthesis Problem). Let M = (S, sinit, A, P, L) be an MDP, and
⇡fin = (M, start,�, ·) be a partially specified finite-memory policy with act unspecified.
Given state formula �, find act s.th. M, ⇡fin, sinit |= � if it exists, otherwise report failure.

Useful facts about PCTL* operators. Next we summarize some well-known or easy-to-
prove facts about PCTL* operators. By the expansion laws for the U-operator we mean
the following equivalences:

 1 U 2 ⌘ 2 _ (1 ^ X (1 U 2)) ¬(1 U 2) ⌘ ¬ 2 ^ (¬ 1 _ X¬(1 U 2)) (E)

For ⇠ 2 {<, , >, �} define the operators ⇠ and [⇠] as follows:

< = � = > > = � = < [<] = > [] = � [>] = < [�] =

Some of the following equivalences cannot be used for “model checking” PCTL*
(the left (P1) equivalence, to be specific) which involves reasoning over all policies. In
the context of Markov Chains, which we implicitly have, there is no problem:

¬P⇠z ⌘ P⇠z P⇠z ¬ ⌘ P[⇠] 1�z (P1)
P�0 ⌘ true P>1 ⌘ false (P2)
P1 ⌘ true P<0 ⌘ false (P3)

P�u P⇠z ⌘ P⇠z if u , 0 P>u P⇠z ⌘ P⇠z if u , 1 (P4)
Pu P⇠z ⌘ P�1�u P⇠z P<u P⇠z ⌘ P>1�u P⇠z (P5)

Nonlinear programs. Finally, a (nonlinear) program is a set � of constraints of the form
e1 ./ e2 where ./ 2 {<, , >, �, ⌘} and e1 and e2 are arithmetic expressions comprised of
numeric real constants and variables. The numeric operators are {+,�, ·, /}, all with their
expected meaning (the symbol ⌘ is equality). All variables are implicitly bounded over
the range [0, 1]. A solver (for nonlinear programs) is a decision procedure that returns
a satisfying variable assignment (a solution) for a given �, and reports unsatisfiability
if no solution exists. We do not further discuss solvers in the rest of this paper, we just
assume one as given. Examples of open source solvers include Ipopt and Couenne.1

1 http://projects.coin-or.org/.

5

Basically: unfold using equivalences

Disjoint union again

Some Inference Rules

Rules for U-formulas

U
� ` hm, si : { 1 U 2}]

� ` hm, si : { 2} [[�, � ` hm, si : { 1,¬ 2, X (1 U 2)} [

where � = x

{ 1 U 2 }]
hm,si ⌘ x

{ 2 }[
hm,si + x

{ 1,¬ 2,X (1 U 2)}[
hm,si

¬U
� ` hm, si : {¬(1 U 2)}]

� ` hm, si : {¬ 1,¬ 2} [[�, � ` hm, si : { 1,¬ 2,X¬(1 U 2)} [

where � = x

{¬(1 U 2)}]
hm,si ⌘ x

{¬ 1,¬ 2 }[
hm,si + x

{ 1,¬ 2,X¬(1 U 2)}[
hm,si

These are expansion rules for U-formulas. The standard expansion law is 1 U 2 ⌘
 2 _ (1 ^ X (1 U 2)). As with the ¬^ rule, the disjunction in the expanded formula
needs to be disjoint by taking 2 _ (1 ^ ¬ 2 ^ X (1 U 2)) instead. Similarly for ¬U.

¬X
� ` hm, si : {¬X }]

�, �one ` hm, si : {X¬ } [

The ¬X rule is obvious.
At this stage, if � ` hm, si : is a leaf sequent then is of the form {X 1, . . . ,X n

},
for some n � 1. This is an important configuration that justifies a name: we say that
a labelled formula hm, si : , a sequent � ` hm, si : or a node labelled with
� ` hm, si : is poised if is of the form {X 1, . . . ,X n

} where n � 1. (The notion
“poised” is taken from [18].) A poised hm, si : {X 1, . . . ,X n

} will be expanded by
transition into the successor states of s by using enabled actions ↵ 2 A(s). That some
↵ is enabled does not, however, preclude a policy with act�(m, s, ↵) = 0. The rule A

makes a guess whether this is the case or not:

A

� ` hm, si :
�, �left ` hm, si : �, �right ` hm, si :

⇢
if � ` hm, si : is poised,
↵ 2 A(s), �left < � and �right < �

where �left = x

↵
hm,si ⌘ 0 and �right = x

↵
hm,si > 0

With a minor modification we get a calculus for deterministic policies. It only requires
to re-define �right as �right = x

↵
hm,si ⌘ 1. As a benefit the program �final will be linear.

After the A rule has been applied exhaustively, for each ↵ 2 A(s) either x

↵
hm,si > 0 2

� or x

↵
hm,si ⌘ 0 2 �. If x

↵
hm,si > 0 2 � we say that ↵ is prescribed in hm, si by � and

define Prescribed(hm, si, �) = {↵ | x

↵
hm,si > 0 2 �}.

The set of prescribed actions in a policy state determines the Succ-relation of the
Markov chain under construction. To get the required distribution over enabled actions,
it su�ces to enforce a distribution over prescribed actions, with this inference rule:

Prescribed
� ` hm, si :

�, �↵hm,si ` hm, si :

⇢if � ` hm, si : is poised,
↵ 2 A(s) and �↵hm,si < �

where �↵hm,si = ⌃↵2Prescribed(hm,si,�) x

↵
hm,si ⌘ 1

If the C����� operator in step two selects the leftmost branch among the A-inferences
then �final contains x

↵
hm,si ⌘ 0, for all ↵ 2 A(s). This is inconsistent with the constraint

10

In the preceding line, RunsM⇡ (s) denotes the set of all runs from s of M⇡ , and PrM⇡ (R)
denotes the probability of a (measurable) set R ✓ RunsM⇡ . That is, the probability
measure for M and ⇡ is defined via the probability measure of the Markov chain M⇡ .

We need to define the satisfaction relation M, ⇡, r |= , briefly r |= , for path
formulas . Let r = s1s2 · · · be a run of M and r[n] := s

n

s

n+1 · · · , for any n � 1. Then:

r |= � i� first(r) |= � r |= 1 ^ 2 i� r |= 1 and r |= 2

r |= ¬ i� r 6|= r |= X i� r[2] |=
r |= 1 U 2 i� exists n � 1 s.t. r[n] |= 2 and r[m] |= 1 for all 1 m < n

In this paper we focus on the problem of synthesizing only the act-component of an
otherwise fully specified finite memory policy. More formally:

Definition 2.1 (Policy Synthesis Problem). Let M = (S, sinit, A, P, L) be an MDP, and
⇡fin = (M, start,�, ·) be a partially specified finite-memory policy with act unspecified.
Given state formula �, find act s.th. M, ⇡fin, sinit |= � if it exists, otherwise report failure.

Useful facts about PCTL* operators. Next we summarize some well-known or easy-to-
prove facts about PCTL* operators. By the expansion laws for the U-operator we mean
the following equivalences:

 1 U 2 ⌘ 2 _ (1 ^ X (1 U 2)) ¬(1 U 2) ⌘ ¬ 2 ^ (¬ 1 _ X¬(1 U 2)) (E)

For ⇠ 2 {<, , >, �} define the operators ⇠ and [⇠] as follows:

< = � = > > = � = < [<] = > [] = � [>] = < [�] =

Some of the following equivalences cannot be used for “model checking” PCTL*
(the left (P1) equivalence, to be specific) which involves reasoning over all policies. In
the context of Markov Chains, which we implicitly have, there is no problem:

¬P⇠z ⌘ P⇠z P⇠z ¬ ⌘ P[⇠] 1�z (P1)
P�0 ⌘ true P>1 ⌘ false (P2)
P1 ⌘ true P<0 ⌘ false (P3)

P�u P⇠z ⌘ P⇠z if u , 0 P>u P⇠z ⌘ P⇠z if u , 1 (P4)
Pu P⇠z ⌘ P�1�u P⇠z P<u P⇠z ⌘ P>1�u P⇠z (P5)

Nonlinear programs. Finally, a (nonlinear) program is a set � of constraints of the form
e1 ./ e2 where ./ 2 {<, , >, �, ⌘} and e1 and e2 are arithmetic expressions comprised of
numeric real constants and variables. The numeric operators are {+,�, ·, /}, all with their
expected meaning (the symbol ⌘ is equality). All variables are implicitly bounded over
the range [0, 1]. A solver (for nonlinear programs) is a decision procedure that returns
a satisfying variable assignment (a solution) for a given �, and reports unsatisfiability
if no solution exists. We do not further discuss solvers in the rest of this paper, we just
assume one as given. Examples of open source solvers include Ipopt and Couenne.1

1 http://projects.coin-or.org/.

5

In the preceding line, RunsM⇡ (s) denotes the set of all runs from s of M⇡ , and PrM⇡ (R)
denotes the probability of a (measurable) set R ✓ RunsM⇡ . That is, the probability
measure for M and ⇡ is defined via the probability measure of the Markov chain M⇡ .

We need to define the satisfaction relation M, ⇡, r |= , briefly r |= , for path
formulas . Let r = s1s2 · · · be a run of M and r[n] := s

n

s

n+1 · · · , for any n � 1. Then:

r |= � i� first(r) |= � r |= 1 ^ 2 i� r |= 1 and r |= 2

r |= ¬ i� r 6|= r |= X i� r[2] |=
r |= 1 U 2 i� exists n � 1 s.t. r[n] |= 2 and r[m] |= 1 for all 1 m < n

In this paper we focus on the problem of synthesizing only the act-component of an
otherwise fully specified finite memory policy. More formally:

Definition 2.1 (Policy Synthesis Problem). Let M = (S, sinit, A, P, L) be an MDP, and
⇡fin = (M, start,�, ·) be a partially specified finite-memory policy with act unspecified.
Given state formula �, find act s.th. M, ⇡fin, sinit |= � if it exists, otherwise report failure.

Useful facts about PCTL* operators. Next we summarize some well-known or easy-to-
prove facts about PCTL* operators. By the expansion laws for the U-operator we mean
the following equivalences:

 1 U 2 ⌘ 2 _ (1 ^ X (1 U 2)) ¬(1 U 2) ⌘ ¬ 2 ^ (¬ 1 _ X¬(1 U 2)) (E)

For ⇠ 2 {<, , >, �} define the operators ⇠ and [⇠] as follows:

< = � = > > = � = < [<] = > [] = � [>] = < [�] =

Some of the following equivalences cannot be used for “model checking” PCTL*
(the left (P1) equivalence, to be specific) which involves reasoning over all policies. In
the context of Markov Chains, which we implicitly have, there is no problem:

¬P⇠z ⌘ P⇠z P⇠z ¬ ⌘ P[⇠] 1�z (P1)
P�0 ⌘ true P>1 ⌘ false (P2)
P1 ⌘ true P<0 ⌘ false (P3)

P�u P⇠z ⌘ P⇠z if u , 0 P>u P⇠z ⌘ P⇠z if u , 1 (P4)
Pu P⇠z ⌘ P�1�u P⇠z P<u P⇠z ⌘ P>1�u P⇠z (P5)

Nonlinear programs. Finally, a (nonlinear) program is a set � of constraints of the form
e1 ./ e2 where ./ 2 {<, , >, �, ⌘} and e1 and e2 are arithmetic expressions comprised of
numeric real constants and variables. The numeric operators are {+,�, ·, /}, all with their
expected meaning (the symbol ⌘ is equality). All variables are implicitly bounded over
the range [0, 1]. A solver (for nonlinear programs) is a decision procedure that returns
a satisfying variable assignment (a solution) for a given �, and reports unsatisfiability
if no solution exists. We do not further discuss solvers in the rest of this paper, we just
assume one as given. Examples of open source solvers include Ipopt and Couenne.1

1 http://projects.coin-or.org/.

5

Basically: unfold using equivalences

Disjoint union again

↝ At this stage premise Ψ is { X ψ1, …, X ψn }

Some Inference Rules

Rules for X-formulas

Advance to the next state by expansion

where
s1 … sn are all “prescribed” successor states of s, i.e,  
successor states reachable with non-0 probability

Γ ⊢ ⟨m, s⟩ : X Ψ

“⟨∆(m, s), s1⟩ ⊨ ψ” “⟨∆(m, s), sn⟩ ⊨ ψ”∪
X

X { ψ1,…,ψn } shorthand for poised { X ψ1,…,X ψn }

Some Inference Rules

Rules for X-formulas

Advance to the next state by expansion

where
s1 … sn are all “prescribed” successor states of s, i.e,  
successor states reachable with non-0 probability

Γ ⊢ ⟨m, s⟩ : X Ψ

“⟨∆(m, s), s1⟩ ⊨ ψ” “⟨∆(m, s), sn⟩ ⊨ ψ”∪
X

X { ψ1,…,ψn } shorthand for poised { X ψ1,…,X ψn }

Requires guessing rule for action probabilities
“x⟨m, s⟩α > 0” OR “x⟨m, s⟩α ≐ 0”

Some Inference Rules

Rules for X-formulas

Advance to the next state by expansion

where
s1 … sn are all “prescribed” successor states of s, i.e,  
successor states reachable with non-0 probability

Γ ⊢ ⟨m, s⟩ : X Ψ

“⟨∆(m, s), s1⟩ ⊨ ψ” “⟨∆(m, s), sn⟩ ⊨ ψ”∪
X

X { ψ1,…,ψn } shorthand for poised { X ψ1,…,X ψn }

↝ The X-rule is not applied in case of a “loop”

Requires guessing rule for action probabilities
“x⟨m, s⟩α > 0” OR “x⟨m, s⟩α ≐ 0”

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

=: X Ψ

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

=: X Ψ

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

=: X Ψ

“A”

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

No progress made

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

No-Loop

No progress made

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

No-Loop

No progress made

“B, C”

⟨m, s⟩ : X Ψ

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

No-Loop

No progress made

“B, C”

⟨m, s⟩ : X Ψ

All eventualities satisfied

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

No-Loop

No progress made

“B, C”

⟨m, s⟩ : X Ψ

Yes-Loop

All eventualities satisfied

Loop Check

Adapted from LTL satisfiability tableau by Mark Reynolds

Recurring eventualities G (F A ∧ F B ∧ F C)

⟨m, s⟩ : X F A, X F B, X F C, …

⟨m, s⟩ : X Ψ

=: X Ψ

“A”

“A”

⟨m, s⟩ : X Ψ

No-Loop

No progress made

“B, C”

⟨m, s⟩ : X Ψ

Yes-Loop

All eventualities satisfied

Probabilities of all
⟨m, s⟩ : X Ψ are the same

↝ Maintain invariant,
but a problem remains

Bottom Strongly Connected Components (BSCCs)

s0

s1 s2

s3 s4s5

BSCC a reachable sub-graph that is impossible to leave

Problem: if tableau contains BSCC for problematic Ψ  
 then Γ underspecifies probability: “xs3Ψ ≐ xs3Ψ”

Solution: if have Yes-Loop then add xs3Ψ ≐ 1 to Γ else add xs3Ψ ≐ 0 to Γ

Ψ

Conclusion
– Presented a tableau calculus for policy synthesis  

Many details left out
– Very expressive target specification language: PCTL*
– Had to restrict to policies with finite-memory fixed a priori to get decidability
– Novelty: no other algorithm for policy synthesis under stated conditions
– Novelty: explores reachable states “only”  

Traditional synthesis algorithms are based on automata

24

