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Goal

2

Application viewpoint

To build a verification system for analysing temporal properties of  
data-centric (business) processes

Current technology is mainy Petri-Nets and propositional model checking 

Tableaux viewpoint

To build a model checker for CTL*(FOL(Arrays+Lists+LIA))

Is it feasibly in practice despite (high) undecidability? 
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The Role of Propositional Model Checking
Modelling with process fragments in YAWL
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Fig. 6.6: Branching the response template

6.2.4 An Example Language: ConDec

As explained before, we use LTL as a basis to define constraint templates. The
template is defined by specifying the corresponding LTL formula and graphical rep-
resentation. This makes it easy to create various languages, as any collection of
constraint templates forms a language. In this chapter, the focus is on the ConDec
language. ConDec provides more than twenty constraint templates, among which
the ones depicted in Figure 6.5. ConDec templates are structured into three groups:
(1) Existence templates specify how many times or when a task can be executed,
e.g. init and existence templates; (2) relation templates define some relation be-
tween two (or more) tasks, e.g. response, precedence and succession; (3) negation
templates define a negative relation between tasks, e.g. not co-existence; and (4)
choice templates define a choice between tasks, e.g. 1 of 4.

Figure 6.7 depicts the relation between constraint templates, constraints and
models for ConDec. At the template abstraction level, templates are defined on a
predefined number of abstract parameters (e.g. parameter A and B). When a con-
straint is specified, the abstract parameter is replaced by a concrete one, e.g. in
Figure 6.7 the left precedence constraint concretizes abstract parameter A from the
precedence template with concrete parameter bill. A “plain” constraint is a con-
cretization of the predefined parameters of a constraint template (cf. Figure 6.6).
Each constraint can easily be extended to deal with more parameters than defined
by its template by the means of branching.

Every ConDec template involves a specific number of tasks. For example, tem-
plates existence(A), precedence(A,B) and 1 of 4(A,B,C,D) involve one, two, and four
tasks, respectively. When a constraint is created based on a template, the constraint

We follow a similar approach but use FOL instead of PL
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Talk Overview

4

1. Modelling Language and Reasoning Problems

2. Tableau calculus

3. Implementation and Experiments
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Typed Data Modelling Language

5

DB = {
  stock: Array[Stock],
  nrStockItems: Integer,   
  open: List[Integer],
  gold: Boolean,
  invoice: Bool,
  paid: Bool,
  shipped: Bool } 

Stock = {
  ident: String,
  price: Integer,
  available: Integer }

JSON Types
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Typed Data Modelling Language

5

DB = {
  stock: Array[Stock],
  nrStockItems: Integer,   
  open: List[Integer],
  gold: Boolean,
  invoice: Bool,
  paid: Bool,
  shipped: Bool } 

Stock = {
  ident: String,
  price: Integer,
  available: Integer }

JSON Types Terms
(over FOL(Array+Records+List+LIA))

db.stock[head(db.open)].available - 1
db.open := tail(db.open) 

Formulas

∀ db:DB (acceptable(db) ⇔ db.open ≠ nil)

Semantics

(I,α) ⊨ acceptable(db) ∧ db.paid = false

where 
I is an Array+Records+List+LIA 
interpretation and 
α is an assignment to db
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State Transition Systems (1) 
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Paid

→
←

Shipped

→
←

Init

Pack Declined

Stocktake Packed

Invoice
→

γ
u
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State Transition Systems (1) 
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Paid

→
←

Shipped

→
←

Init

Pack Declined

Stocktake Packed

Invoice
→

γ
u

db.stock[head(db.open)].available > 0

Guard γ[db]

A state s is a pair (ℓ, α) 

where ℓ is a node and

α is an assignment to db 
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State Transition Systems (1) 
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Paid
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→
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Update term u[db]

db.stock[head(db.open)].available := db.stock[head(db.open)].available - 1;
db.open := tail(db.open) 

db.stock[head(db.open)].available > 0

Guard γ[db]

A state s is a pair (ℓ, α) 

where ℓ is a node and

α is an assignment to db 



Bauer/Baumgartner/Diller/Norrish Tableaux for Verification of Data-Centric Processes

State Transition Systems (2) 
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Paid

→
←

Shipped

→
←

All fragment exit nodes →
implicitly connected with 
all fragment entry nodes ← 

Init

Pack Declined

Stocktake Packed

Invoice
→

γ
u

CTL* constraints

 db.gold = false ⇒ (db.shipped = false W db.paid = true))

For non-gold customers no shipping until payment
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Query Language CTL*
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Syntax

State formulas       Ψ ::= α[db] | ¬Ψ | Ψ ∨ Ψ | E Φ | A Φ
Path formulas        Φ ::= Ψ | ¬Φ | Φ ∨ Φ | X Φ | WX Φ | Φ U Φ | Φ R Φ
First-order formulas α ::= Atom | ¬α | α ∨ α | ∀x α
(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]
For e.g. X and WX

 

A

s0

s1



Bauer/Baumgartner/Diller/Norrish Tableaux for Verification of Data-Centric Processes

Query Language CTL*
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Syntax

State formulas       Ψ ::= α[db] | ¬Ψ | Ψ ∨ Ψ | E Φ | A Φ
Path formulas        Φ ::= Ψ | ¬Φ | Φ ∨ Φ | X Φ | WX Φ | Φ U Φ | Φ R Φ
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s0s1  ⊨ X As0
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Query Language CTL*

8

Syntax

State formulas       Ψ ::= α[db] | ¬Ψ | Ψ ∨ Ψ | E Φ | A Φ
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A

s0s1  ⊨ X A s0s1 ⊨ WX As0
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Query Language CTL*

8

Syntax

State formulas       Ψ ::= α[db] | ¬Ψ | Ψ ∨ Ψ | E Φ | A Φ
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s0s1  ⊨ X A s0s1 ⊨ WX A s0s1  ⊭ X Bs0

s1
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Query Language CTL*

8

Syntax
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s0s1  ⊨ X A s0s1 ⊨ WX A s0s1  ⊭ X B s0s1 ⊭ WX Bs0
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Query Language CTL*
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Query Language CTL*

8

Syntax

State formulas       Ψ ::= α[db] | ¬Ψ | Ψ ∨ Ψ | E Φ | A Φ
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For e.g. X and WX

 

A

s0s1  ⊨ X A s0s1 ⊨ WX A s0s1  ⊭ X B s0s1 ⊭ WX Bs0

s1 s0s1  ⊭ X α s0s1 ⊨ WX α for any α 
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Satisfaction Relation
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Satisfaction Relation
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Process model:

Init

Pack

Stocktake

Declined

Packed

Invoice

e1 e2

e4e3 e5

e6

Paid

e7

Shipped

e8

Completed

e9

entry = “true”
exit = “true”

guard = “db.status.paid <> true”
script = “db.status.paid = true”

entry = “true”
final = “true”

guard = “⇠acceptable(db)”
script = “db.status.final = true”

Definitions:
completed: 8s:Status . (completed(s), (s.paid = true ^ s.shipped = true))
accepted: 8db:DB . (acceptable(db), (¬isEmpty(db.order)))
readyToShip: 8s:Status . (readyToShip(s), (isEmpty(s.open))) . . .

Constraints:
nongold: (db.gold = false) (db.status.shipped = falseW db.status.paid = true))

Fig. 1. Model of a purchase order system as process fragments and definitions.

The rest of the paper is structured as follows. In Section 2 we present a running
example. In Section 3 we explain the way we handle the rich data of our models: with
JSON values, a special type system for those values, and a sorted first order logic for
further constraining and describing those values. This much covers business rules; in
Section 4, we describe how we can model processes. When processes (actually process
fragments) combine with rules, we get what we call specifications. In Section 5, we
describe the tableau-based model checking algorithm that is used to decide user queries
of the two sorts identified above. Section 6 discusses how we have implemented our
technology, and describes some experimental results. Finally, we conclude in Section 7.

2 A Running Example: Purchase Order

In this section, we introduce a simplified model of a purchase order system using pro-
cess fragments. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The whole model is depicted as a graph in Fig. 1, where
the biggest process fragment is on the left, with further atomic fragments beside it (la-
belled Paid, Shipped, and Completed, respectively). Both process tasks, represented
as nodes in the graph, and connections are typically annotated with extra information.
Node annotations determine whether or not a node is an initial and/or a final node, an
entry and/or an exit node. This information is used to constrain the ways in fragments

3

Π

Process model:

Init

Pack

Stocktake

Declined

Packed

Invoice

e1 e2

e4e3 e5

e6

Paid

e7

Shipped

e8

Completed

e9

entry = “true”
exit = “true”

guard = “db.status.paid <> true”
script = “db.status.paid = true”

entry = “true”
final = “true”

guard = “⇠acceptable(db)”
script = “db.status.final = true”

Definitions:
completed: 8s:Status . (completed(s), (s.paid = true ^ s.shipped = true))
accepted: 8db:DB . (acceptable(db), (¬isEmpty(db.order)))
readyToShip: 8s:Status . (readyToShip(s), (isEmpty(s.open))) . . .

Constraints:
nongold: (db.gold = false) (db.status.shipped = falseW db.status.paid = true))

Fig. 1. Model of a purchase order system as process fragments and definitions.

The rest of the paper is structured as follows. In Section 2 we present a running
example. In Section 3 we explain the way we handle the rich data of our models: with
JSON values, a special type system for those values, and a sorted first order logic for
further constraining and describing those values. This much covers business rules; in
Section 4, we describe how we can model processes. When processes (actually process
fragments) combine with rules, we get what we call specifications. In Section 5, we
describe the tableau-based model checking algorithm that is used to decide user queries
of the two sorts identified above. Section 6 discusses how we have implemented our
technology, and describes some experimental results. Finally, we conclude in Section 7.

2 A Running Example: Purchase Order

In this section, we introduce a simplified model of a purchase order system using pro-
cess fragments. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The whole model is depicted as a graph in Fig. 1, where
the biggest process fragment is on the left, with further atomic fragments beside it (la-
belled Paid, Shipped, and Completed, respectively). Both process tasks, represented
as nodes in the graph, and connections are typically annotated with extra information.
Node annotations determine whether or not a node is an initial and/or a final node, an
entry and/or an exit node. This information is used to constrain the ways in fragments

3



Bauer/Baumgartner/Diller/Norrish Tableaux for Verification of Data-Centric Processes

Satisfaction Relation

9

 ⊨? Query

9

Paid
→
←

Shipped
→
←

Init

Pack Declined

Stocktake Packed

Invoice
→

γ
u

Process model:

Init

Pack

Stocktake

Declined

Packed

Invoice

e1 e2

e4e3 e5

e6

Paid

e7

Shipped

e8

Completed

e9

entry = “true”
exit = “true”

guard = “db.status.paid <> true”
script = “db.status.paid = true”

entry = “true”
final = “true”

guard = “⇠acceptable(db)”
script = “db.status.final = true”

Definitions:
completed: 8s:Status . (completed(s), (s.paid = true ^ s.shipped = true))
accepted: 8db:DB . (acceptable(db), (¬isEmpty(db.order)))
readyToShip: 8s:Status . (readyToShip(s), (isEmpty(s.open))) . . .

Constraints:
nongold: (db.gold = false) (db.status.shipped = falseW db.status.paid = true))

Fig. 1. Model of a purchase order system as process fragments and definitions.

The rest of the paper is structured as follows. In Section 2 we present a running
example. In Section 3 we explain the way we handle the rich data of our models: with
JSON values, a special type system for those values, and a sorted first order logic for
further constraining and describing those values. This much covers business rules; in
Section 4, we describe how we can model processes. When processes (actually process
fragments) combine with rules, we get what we call specifications. In Section 5, we
describe the tableau-based model checking algorithm that is used to decide user queries
of the two sorts identified above. Section 6 discusses how we have implemented our
technology, and describes some experimental results. Finally, we conclude in Section 7.

2 A Running Example: Purchase Order

In this section, we introduce a simplified model of a purchase order system using pro-
cess fragments. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The whole model is depicted as a graph in Fig. 1, where
the biggest process fragment is on the left, with further atomic fragments beside it (la-
belled Paid, Shipped, and Completed, respectively). Both process tasks, represented
as nodes in the graph, and connections are typically annotated with extra information.
Node annotations determine whether or not a node is an initial and/or a final node, an
entry and/or an exit node. This information is used to constrain the ways in fragments

3

Π

Process model:

Init

Pack

Stocktake

Declined

Packed

Invoice

e1 e2

e4e3 e5

e6

Paid

e7

Shipped

e8

Completed

e9

entry = “true”
exit = “true”

guard = “db.status.paid <> true”
script = “db.status.paid = true”

entry = “true”
final = “true”

guard = “⇠acceptable(db)”
script = “db.status.final = true”

Definitions:
completed: 8s:Status . (completed(s), (s.paid = true ^ s.shipped = true))
accepted: 8db:DB . (acceptable(db), (¬isEmpty(db.order)))
readyToShip: 8s:Status . (readyToShip(s), (isEmpty(s.open))) . . .

Constraints:
nongold: (db.gold = false) (db.status.shipped = falseW db.status.paid = true))

Fig. 1. Model of a purchase order system as process fragments and definitions.

The rest of the paper is structured as follows. In Section 2 we present a running
example. In Section 3 we explain the way we handle the rich data of our models: with
JSON values, a special type system for those values, and a sorted first order logic for
further constraining and describing those values. This much covers business rules; in
Section 4, we describe how we can model processes. When processes (actually process
fragments) combine with rules, we get what we call specifications. In Section 5, we
describe the tableau-based model checking algorithm that is used to decide user queries
of the two sorts identified above. Section 6 discusses how we have implemented our
technology, and describes some experimental results. Finally, we conclude in Section 7.

2 A Running Example: Purchase Order

In this section, we introduce a simplified model of a purchase order system using pro-
cess fragments. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The whole model is depicted as a graph in Fig. 1, where
the biggest process fragment is on the left, with further atomic fragments beside it (la-
belled Paid, Shipped, and Completed, respectively). Both process tasks, represented
as nodes in the graph, and connections are typically annotated with extra information.
Node annotations determine whether or not a node is an initial and/or a final node, an
entry and/or an exit node. This information is used to constrain the ways in fragments

3



Bauer/Baumgartner/Diller/Norrish Tableaux for Verification of Data-Centric Processes

Satisfaction Relation

9

 ⊨? Query

9

Paid
→
←

Shipped
→
←

Init

Pack Declined

Stocktake Packed

Invoice
→

γ
u

JSON database
{ "order" : [1],

"gold" : true,

"stock" : [ { "ident" : "Mouse",

"price" : 10,

"available" : 0 },

{ "ident" : "Monitor",

"price" : 200,

"available" : 2 },

{ "ident" : "Computer",

"price" : 1000,

"available" : 4 } ],

"status" : { "open" : [],

"value" : 0,

"shipping" : 0,

"paid" : false,

"shipped" : false,

"final" : false } }

DB = { order: List[Integer],

gold: Bool,

stock: List[Stock],

status: Status }

Stock = { ident: String,

price: Integer,

available: Integer }

Status = { open: List[Integer],

value: Integer,

shipping: Integer,

paid: Bool,

shipped: Bool,

final: Bool }

Fig. 2. Left: Example database as JSON document. Right: JSON type constraints.

items, the number of available items is non-negative. Such queries are typical during
design time, and pose an unrestricted model checking problem.

3 Modelling Data With JSON Logic

Faithful modelling of business processes requires being able to model the objects (or
data) manipulated by the processes and, of course, their evolution over time. In this
section we focus on data modelling, which is based on JSON extended with a type
system.

JSON [4] is simple, standardised, textual data representation format. In addition to a
standard set of atomic values such as integers and strings, JSON supports two structur-
ing techniques: sequencing (“arrays”) and arbitrarily nested hierarchies (through “ob-
jects”). Our choice of JSON (rather than XML, say), is based on the ease with which
it can be written and understood by humans. JSON is su�ciently rich to be a plausible
format for representing the data used in business processes, and its human ease-of-use
is extremely helpful.

Other than simply being the medium in which data is represented, there are two
important functions that JSON must support. Firstly, it must be possible to manipulate
JSON values in the course of executing a specification. This functionality is realised
through the use of the Groovy programming notation.

Secondly, it must be possible to express logical predicates over JSON values, both
to guard process transitions and to pick out certain forms of value that are of interest.
In particular, if a specification is to achieve a particular end-goal, with a database being
in a particular configuration, we need to be able to describe how the various values in
that database inter-relate. It is this that motivates our choice of the logically expressive
capabilities of first order logic, together with sorts such as lists and numbers.

In addition to first-order predicates, we also use a simple type system over JSON
values. This provides a simple mapping into the sorts of our underlying first-order logic.
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In this section, we introduce a simplified model of a purchase order system using pro-
cess fragments. The purpose of the modelled system is to accept incoming purchase
orders and process them further (packing, shipping, etc.), or to decline them straight
away if there are problems. The whole model is depicted as a graph in Fig. 1, where
the biggest process fragment is on the left, with further atomic fragments beside it (la-
belled Paid, Shipped, and Completed, respectively). Both process tasks, represented
as nodes in the graph, and connections are typically annotated with extra information.
Node annotations determine whether or not a node is an initial and/or a final node, an
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Fig. 2. Left: Example database as JSON document. Right: JSON type constraints.

items, the number of available items is non-negative. Such queries are typical during
design time, and pose an unrestricted model checking problem.

3 Modelling Data With JSON Logic

Faithful modelling of business processes requires being able to model the objects (or
data) manipulated by the processes and, of course, their evolution over time. In this
section we focus on data modelling, which is based on JSON extended with a type
system.

JSON [4] is simple, standardised, textual data representation format. In addition to a
standard set of atomic values such as integers and strings, JSON supports two structur-
ing techniques: sequencing (“arrays”) and arbitrarily nested hierarchies (through “ob-
jects”). Our choice of JSON (rather than XML, say), is based on the ease with which
it can be written and understood by humans. JSON is su�ciently rich to be a plausible
format for representing the data used in business processes, and its human ease-of-use
is extremely helpful.

Other than simply being the medium in which data is represented, there are two
important functions that JSON must support. Firstly, it must be possible to manipulate
JSON values in the course of executing a specification. This functionality is realised
through the use of the Groovy programming notation.

Secondly, it must be possible to express logical predicates over JSON values, both
to guard process transitions and to pick out certain forms of value that are of interest.
In particular, if a specification is to achieve a particular end-goal, with a database being
in a particular configuration, we need to be able to describe how the various values in
that database inter-relate. It is this that motivates our choice of the logically expressive
capabilities of first order logic, together with sorts such as lists and numbers.

In addition to first-order predicates, we also use a simple type system over JSON
values. This provides a simple mapping into the sorts of our underlying first-order logic.
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fragments) combine with rules, we get what we call specifications. In Section 5, we
describe the tableau-based model checking algorithm that is used to decide user queries
of the two sorts identified above. Section 6 discusses how we have implemented our
technology, and describes some experimental results. Finally, we conclude in Section 7.
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design time, and pose an unrestricted model checking problem.

3 Modelling Data With JSON Logic

Faithful modelling of business processes requires being able to model the objects (or
data) manipulated by the processes and, of course, their evolution over time. In this
section we focus on data modelling, which is based on JSON extended with a type
system.

JSON [4] is simple, standardised, textual data representation format. In addition to a
standard set of atomic values such as integers and strings, JSON supports two structur-
ing techniques: sequencing (“arrays”) and arbitrarily nested hierarchies (through “ob-
jects”). Our choice of JSON (rather than XML, say), is based on the ease with which
it can be written and understood by humans. JSON is su�ciently rich to be a plausible
format for representing the data used in business processes, and its human ease-of-use
is extremely helpful.

Other than simply being the medium in which data is represented, there are two
important functions that JSON must support. Firstly, it must be possible to manipulate
JSON values in the course of executing a specification. This functionality is realised
through the use of the Groovy programming notation.

Secondly, it must be possible to express logical predicates over JSON values, both
to guard process transitions and to pick out certain forms of value that are of interest.
In particular, if a specification is to achieve a particular end-goal, with a database being
in a particular configuration, we need to be able to describe how the various values in
that database inter-relate. It is this that motivates our choice of the logically expressive
capabilities of first order logic, together with sorts such as lists and numbers.

In addition to first-order predicates, we also use a simple type system over JSON
values. This provides a simple mapping into the sorts of our underlying first-order logic.
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of the two sorts identified above. Section 6 discusses how we have implemented our
technology, and describes some experimental results. Finally, we conclude in Section 7.
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Node annotations determine whether or not a node is an initial and/or a final node, an
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items, the number of available items is non-negative. Such queries are typical during
design time, and pose an unrestricted model checking problem.

3 Modelling Data With JSON Logic

Faithful modelling of business processes requires being able to model the objects (or
data) manipulated by the processes and, of course, their evolution over time. In this
section we focus on data modelling, which is based on JSON extended with a type
system.

JSON [4] is simple, standardised, textual data representation format. In addition to a
standard set of atomic values such as integers and strings, JSON supports two structur-
ing techniques: sequencing (“arrays”) and arbitrarily nested hierarchies (through “ob-
jects”). Our choice of JSON (rather than XML, say), is based on the ease with which
it can be written and understood by humans. JSON is su�ciently rich to be a plausible
format for representing the data used in business processes, and its human ease-of-use
is extremely helpful.

Other than simply being the medium in which data is represented, there are two
important functions that JSON must support. Firstly, it must be possible to manipulate
JSON values in the course of executing a specification. This functionality is realised
through the use of the Groovy programming notation.

Secondly, it must be possible to express logical predicates over JSON values, both
to guard process transitions and to pick out certain forms of value that are of interest.
In particular, if a specification is to achieve a particular end-goal, with a database being
in a particular configuration, we need to be able to describe how the various values in
that database inter-relate. It is this that motivates our choice of the logically expressive
capabilities of first order logic, together with sorts such as lists and numbers.

In addition to first-order predicates, we also use a simple type system over JSON
values. This provides a simple mapping into the sorts of our underlying first-order logic.
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Essentially

Symbolic execution of the state transition system

Reduction to pure FOL proof problems

Unsatisfiability of the FOL proof problems proves the given
(temporal) query unsatisfiable 

Main data structure: Sequent

m: node name, the current node              
t: a ground term, the current database

Q ∈ { E, A } path quantifier context      

ϕi[db]: formulas; read conjunctively if Q = E, disjunctively if Q = A

Tableau nodes are conjunctions of sequents

Tableau branches out disjunctively

(m, t) ⊢Q ϕ1, ..., ϕn
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Let �C be a given expended query and S a specification as introduced before. The
initial sequent is the sequent s0 `E ¬�C, where s0 = (n0, db) is the initial state, for
some fresh constant db. Notice that the expanded query is negated, corresponding to
the intuition of attempting to compute a countermodel for the negation of the expanded
query.

Because we are adopting a standard notion of tableau derivations it su�ces to define
the inference rules. (The root node contains the initial sequent only.) The components
P andD are left implicit below.

Boolean rules. The implicit reading of � as disjunctions/conjunctions in a `
A

/`
E

se-
quent sanction the following rules.

E-^ s `
E

� ^  ,�;⌃
s `

E

�, ,�;⌃
E-_ s `

E

� _  ,�;⌃
s `

E

�,�;⌃ s `
E

 ,�;⌃

A-_ s `
A

� _  ,�;⌃
s `

A

�, ,�;⌃
A-^ s `

A

� ^  ,�;⌃
s `

A

�,�; s `
A

 ,�;⌃

if � is not classical or  is not classical (no need to break classical formulas apart).

Rules to separate classical sequents. The following rules separate away the classical
formulas from the modal atoms in �. Every classical sequent can be passed on to a
first-order theorem prover; if the result is “unsatisfiable” then the node is closed.

E-Split

s `
E

�;⌃
s `

E

�[u[db]]; s `
E

�\�;⌃
A-Split

s `
A

�;⌃
s `

A

�[u[db]];⌃ s `
A

�\�;⌃

if s = (n, u[db]) for some n, � consists of all classical formulas in �, �[u[db]] is
obtained from � by replacing every free occurence of the variable db in all its formulas
by u[db], and � , ; and �[u[db]] , �.

The left rule exploits the equivalence E(� ^�) ⌘ E� ^ E� if � is classical, and the
right rule exploits the equivalence A(� _�) ⌘ A� _ A� if � is classical.

Rules for path quantifiers. The next rules eliminate path quantifiers, where Q 2 {E,A}.

E-Elim

s `
E

Q �,�;⌃
s `Q �; s `

E

�;⌃
A-Elim

s `
A

Q �,�;⌃
s `Q �;⌃ s `

A

�;⌃

The soundness of the left rule follows from the equivalences E (Q � ^ �) ⌘ E Q � ^
E� ⌘ Q � ^ E�, and the soundness of the right rule follows from the equivalences
A (Q � _�) ⌘ A Q � _ A� ⌘ Q � _ A�.

The above rules apply also if � is empty. Notice that in this case � represents the
empty conjunction in s `

E

�, which is equivalent to >, and the empty disjunction in
s `

A

�, which is equivalent to ?.
When applied exhaustively, the rules so far lead to sequents that all have the form

s `Q � such that (a) � consists of classical formulas only, or (b) � consists of modal
atoms only with top-level operators from {U,R,X,X}.
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if � is not classical or  is not classical (no need to break classical formulas apart).

Rules to separate classical sequents. The following rules separate away the classical
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obtained from � by replacing every free occurence of the variable db in all its formulas
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The left rule exploits the equivalence E(� ^�) ⌘ E� ^ E� if � is classical, and the
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Rules for path quantifiers. The next rules eliminate path quantifiers, where Q 2 {E,A}.
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The soundness of the left rule follows from the equivalences E (Q � ^ �) ⌘ E Q � ^
E� ⌘ Q � ^ E�, and the soundness of the right rule follows from the equivalences
A (Q � _�) ⌘ A Q � _ A� ⌘ Q � _ A�.

The above rules apply also if � is empty. Notice that in this case � represents the
empty conjunction in s `

E

�, which is equivalent to >, and the empty disjunction in
s `

A

�, which is equivalent to ?.
When applied exhaustively, the rules so far lead to sequents that all have the form

s `Q � such that (a) � consists of classical formulas only, or (b) � consists of modal
atoms only with top-level operators from {U,R,X,X}.

12

Rules for Path Quantifiers

where s = (m, t)
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Rules to expand U and R formulasRules to expand U and R formulas. The following rules perform one-step expansions
of modal atoms with U and R operators.

U-Exp

s `Q (�U ),�;⌃
s `Q  _ (� ^ X (�U )),�;⌃

R-Exp

s `Q (�R ),�;⌃
s `Q ( ^ (� _ X (�R ))),�;⌃

When applied exhaustively, the rules so far lead to sequents that all have the form s `Q
� such that (a) � consists of classical formulas only, or � consists of modal atoms only
with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
pansions of sequents of the form s `Q X � and `Q X �. The following inference rules
prepare their application.

E-X-Simp

s `
E

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

E

Y (�1 ^ · · · ^ �n ^  1 ^ · · · ^  m);⌃

if n+m > 0, where Y = X if n = 0 else Y = X. Intuitively, if just one of the modal atoms
in the premise is an X-formula then a successor state must exist to satisfy it, hence the
X-formula in the conclusion. Similarly:

A-X-Simp

s `
A

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

A

Y(�1 _ · · · _ �n _  1 _ · · · _  m);⌃

if n + m > 0, where Y = X if m = 0 else Y = X.
The correctness of this rule follows from the equivalences A (X �_ X ) ⌘ A (X �_

X ) ⌘ A X (� _  ).
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.

Unsat

s1 `Q1 �1; · · · ; sn `Qn �n

if every�i consists of closed classical formulas, and
V

(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).

Rules to expand X and X formulas.

E-X-Exp

(m, t) `
E

X �;⌃
(n1, u1[t]) `

E

�1[t] ^ �;⌃ · · · (nk, uk[t]) `
E

�k[t] ^ �;⌃ (m, t) `
E

¬�1[t] ^ · · · ^ ¬�k[t];⌃

if there is a k � 0 such that m
�i,ui�! ni are all transitions in P emerging from m, where

1  i  k.
This rule binds the variable db in the guards to the term t,which represents the

current database, while it leaves the formula � untouched. The variable db in X� refers

13
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A
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if n + m > 0, where Y = X if m = 0 else Y = X.
The correctness of this rule follows from the equivalences A (X �_ X ) ⌘ A (X �_

X ) ⌘ A X (� _  ).
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.

Unsat

s1 `Q1 �1; · · · ; sn `Qn �n

if every�i consists of closed classical formulas, and
V

(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).

Rules to expand X and X formulas.

E-X-Exp

(m, t) `
E

X �;⌃
(n1, u1[t]) `

E

�1[t] ^ �;⌃ · · · (nk, uk[t]) `
E

�k[t] ^ �;⌃ (m, t) `
E

¬�1[t] ^ · · · ^ ¬�k[t];⌃

if there is a k � 0 such that m
�i,ui�! ni are all transitions in P emerging from m, where

1  i  k.
This rule binds the variable db in the guards to the term t,which represents the

current database, while it leaves the formula � untouched. The variable db in X� refers

13

where Y = X if n=0 else Y = X

A-X-Simp: similary
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Rules to expand X-formulas

Rules to expand U and R formulas. The following rules perform one-step expansions
of modal atoms with U and R operators.

U-Exp

s `Q (�U ),�;⌃
s `Q  _ (� ^ X (�U )),�;⌃

R-Exp

s `Q (�R ),�;⌃
s `Q ( ^ (� _ X (�R ))),�;⌃

When applied exhaustively, the rules so far lead to sequents that all have the form s `Q
� such that (a) � consists of classical formulas only, or � consists of modal atoms only
with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
pansions of sequents of the form s `Q X � and `Q X �. The following inference rules
prepare their application.

E-X-Simp

s `
E

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

E

Y (�1 ^ · · · ^ �n ^  1 ^ · · · ^  m);⌃

if n+m > 0, where Y = X if n = 0 else Y = X. Intuitively, if just one of the modal atoms
in the premise is an X-formula then a successor state must exist to satisfy it, hence the
X-formula in the conclusion. Similarly:

A-X-Simp

s `
A

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

A

Y(�1 _ · · · _ �n _  1 _ · · · _  m);⌃

if n + m > 0, where Y = X if m = 0 else Y = X.
The correctness of this rule follows from the equivalences A (X �_ X ) ⌘ A (X �_

X ) ⌘ A X (� _  ).
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.

Unsat

s1 `Q1 �1; · · · ; sn `Qn �n

if every�i consists of closed classical formulas, and
V

(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).

Rules to expand X and X formulas.

E-X-Exp

(m, t) `
E

X �;⌃
(n1, u1[t]) `

E

�1[t] ^ �;⌃ · · · (nk, uk[t]) `
E

�k[t] ^ �;⌃ (m, t) `
E

¬�1[t] ^ · · · ^ ¬�k[t];⌃

if there is a k � 0 such that m
�i,ui�! ni are all transitions in P emerging from m, where

1  i  k.
This rule binds the variable db in the guards to the term t,which represents the

current database, while it leaves the formula � untouched. The variable db in X� refers

13m t

m,n        node
γ[db]       guard
u[db]       update-term

Intuitively
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Rules to expand X-formulas

Rules to expand U and R formulas. The following rules perform one-step expansions
of modal atoms with U and R operators.
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When applied exhaustively, the rules so far lead to sequents that all have the form s `Q
� such that (a) � consists of classical formulas only, or � consists of modal atoms only
with top-level operators from {X,X}.
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To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.
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(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).
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current database, while it leaves the formula � untouched. The variable db in X� refers

13m t

n1 u1[t]   if γ1[t] is true
γ1,u1[db

]

m,n        node
γ[db]       guard
u[db]       update-term

Intuitively
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Rules to expand X-formulas

Rules to expand U and R formulas. The following rules perform one-step expansions
of modal atoms with U and R operators.

U-Exp
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R-Exp
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When applied exhaustively, the rules so far lead to sequents that all have the form s `Q
� such that (a) � consists of classical formulas only, or � consists of modal atoms only
with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
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X ) ⌘ A X (� _  ).
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.
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s1 `Q1 �1; · · · ; sn `Qn �n
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current database, while it leaves the formula � untouched. The variable db in X� refers

13m t

n1 u1[t]   if γ1[t] is true
γ1,u1[db

]

m,n        node
γ[db]       guard
u[db]       update-term

Intuitively

nk uk[t]   if γk[t] is true

γk,uk[db]

or
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Rules to expand X-formulas

Rules to expand U and R formulas. The following rules perform one-step expansions
of modal atoms with U and R operators.

U-Exp
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s `Q  _ (� ^ X (�U )),�;⌃

R-Exp

s `Q (�R ),�;⌃
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When applied exhaustively, the rules so far lead to sequents that all have the form s `Q
� such that (a) � consists of classical formulas only, or � consists of modal atoms only
with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
pansions of sequents of the form s `Q X � and `Q X �. The following inference rules
prepare their application.

E-X-Simp

s `
E

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

E

Y (�1 ^ · · · ^ �n ^  1 ^ · · · ^  m);⌃

if n+m > 0, where Y = X if n = 0 else Y = X. Intuitively, if just one of the modal atoms
in the premise is an X-formula then a successor state must exist to satisfy it, hence the
X-formula in the conclusion. Similarly:

A-X-Simp

s `
A

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

A

Y(�1 _ · · · _ �n _  1 _ · · · _  m);⌃

if n + m > 0, where Y = X if m = 0 else Y = X.
The correctness of this rule follows from the equivalences A (X �_ X ) ⌘ A (X �_

X ) ⌘ A X (� _  ).
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.

Unsat

s1 `Q1 �1; · · · ; sn `Qn �n

if every�i consists of closed classical formulas, and
V

(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).

Rules to expand X and X formulas.

E-X-Exp

(m, t) `
E

X �;⌃
(n1, u1[t]) `

E

�1[t] ^ �;⌃ · · · (nk, uk[t]) `
E
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if there is a k � 0 such that m
�i,ui�! ni are all transitions in P emerging from m, where

1  i  k.
This rule binds the variable db in the guards to the term t,which represents the

current database, while it leaves the formula � untouched. The variable db in X� refers

13m t

n1 u1[t]   if γ1[t] is true
γ1,u1[db

]

m,n        node
γ[db]       guard
u[db]       update-term

Intuitively

nk uk[t]   if γk[t] is true

γk,uk[db]

or

or none of γ1[t], ..., γk[t] is true 
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Rule for Closing branches

Rules to expand U and R formulas. The following rules perform one-step expansions
of modal atoms with U and R operators.

U-Exp

s `Q (�U ),�;⌃
s `Q  _ (� ^ X (�U )),�;⌃

R-Exp

s `Q (�R ),�;⌃
s `Q ( ^ (� _ X (�R ))),�;⌃

When applied exhaustively, the rules so far lead to sequents that all have the form s `Q
� such that (a) � consists of classical formulas only, or � consists of modal atoms only
with top-level operators from {X,X}.

Rules to simplify X and X formulas. Below we define inference rules for one-step ex-
pansions of sequents of the form s `Q X � and `Q X �. The following inference rules
prepare their application.

E-X-Simp

s `
E

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

E

Y (�1 ^ · · · ^ �n ^  1 ^ · · · ^  m);⌃

if n+m > 0, where Y = X if n = 0 else Y = X. Intuitively, if just one of the modal atoms
in the premise is an X-formula then a successor state must exist to satisfy it, hence the
X-formula in the conclusion. Similarly:
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s `
A

X �1, . . . ,X �n,X 1, . . . ,X m;⌃
s `

A

Y(�1 _ · · · _ �n _  1 _ · · · _  m);⌃

if n + m > 0, where Y = X if m = 0 else Y = X.
The correctness of this rule follows from the equivalences A (X �_ X ) ⌘ A (X �_

X ) ⌘ A X (� _  ).
To summarize, with the rules so far, all sequents can be brought into one of the

following forms: (a) s `Q �, where � consists of classical formulas only, (b) s `Q X �,
or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.

Unsat

s1 `Q1 �1; · · · ; sn `Qn �n

if every�i consists of closed classical formulas, and
V

(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).

Rules to expand X and X formulas.
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(m, t) `
E

X �;⌃
(n1, u1[t]) `

E

�1[t] ^ �;⌃ · · · (nk, uk[t]) `
E

�k[t] ^ �;⌃ (m, t) `
E

¬�1[t] ^ · · · ^ ¬�k[t];⌃

if there is a k � 0 such that m
�i,ui�! ni are all transitions in P emerging from m, where

1  i  k.
This rule binds the variable db in the guards to the term t,which represents the

current database, while it leaves the formula � untouched. The variable db in X� refers

13

if all ϕi are classical formulas and ϕ1 ∧ ⋯ ∧ ϕn is unsatisfiable 
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Tableau Calculus
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Rule for Closing branches
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To summarize, with the rules so far, all sequents can be brought into one of the
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or (c) s `Q X �.

Rule to close branches. The following rule derives no conclusions and this way indi-
cates that a branch in a tableau is “closed”.
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if every�i consists of closed classical formulas, and
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(D[�1[· · ·[�n) is unsatisfiable
(not satisfiable).
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E

�1[t] ^ �;⌃ · · · (nk, uk[t]) `
E

�k[t] ^ �;⌃ (m, t) `
E

¬�1[t] ^ · · · ^ ¬�k[t];⌃

if there is a k � 0 such that m
�i,ui�! ni are all transitions in P emerging from m, where

1  i  k.
This rule binds the variable db in the guards to the term t,which represents the

current database, while it leaves the formula � untouched. The variable db in X� refers

13

if all ϕi are classical formulas and ϕ1 ∧ ⋯ ∧ ϕn is unsatisfiable 

Theorem: soundness/completeness (decidability) for bounded model 
checking modulo FOL
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Implementation and Experiments
Fitzroy

Scala implementation of the above calculus + K-Induction

FOL-prover is currently Z3

"High-level" input language, type checker

Bounded model checking for paths up to given length n

E.g. F completed(db)   and   n=8 gives

Init → Pack → Stocktake → Pack → Invoice → Shipped → Paid
Init → Pack → Stocktake → Pack → Stocktake → Pack → Invoice → Shipped → Paid 
Init → Pack → Stocktake → Pack → Invoice → Paid → Shipped
Init → Pack → Stocktake → Pack → Stocktake → Pack → Invoice → Paid → Shipped
(223 branches closed, 912 inferences, Z3 called 529 times, 30 sec)

17
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Bounded Model Checking Example
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(Recall queries are implicitly E-quantified)

(F completed(db)) ∧ (db.shipped=true R db.paid=false)

¬paid

¬shipped

¬paid
shipped

paid

shipped

The query is satisfiable because db.gold is possible

init → pack → stocktake → pack → invoice → shipped → paid
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Proving Safety Properties with K-Induction
Question

Given a classical formula Φ[db] ,does (I, s0) ⊨ AG Φ[db] hold,

   for all interpretations I and all s0 ∈ Init?

K-induction [Sheeran et al 2000, deMoura et al 2003]

K = 0,1,2,... length of paths considered for inductive proofs
- 0-induction fails 
- 1-induction goes through
   Base case: x≥0 ∧ x'=x+1 ⊨ x≥0 ∧ x'≥0 
   Step case, e.g.: x≥0 ∧ x'=x-1 ∧ x'≥0 ∧ x''=x'+1  ⊨ x''≥0

19

 ⊨ AG x≥0

x := x+1

a b

x≥0

x := x-1
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Proving Safety Properties with K-Induction
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AG (∀i:Integer.((0 ≤ i ∧ i < db.nrStockItems) ⇒ db.stock[i].available ≥ 0)) 

The number of available stock items is non-negative

Easy, after adding constraint on initial state 
db.nrStockItems ≥ 0 ∧ 
(∀i:Integer.((0 ≤ i ∧ i < db.nrStockItems) ⇒ db.stock[i].available ≥ 0))

NB:  db.nrStockItems is given symbollically - goes beyond propositional 

model checking

AG ((db.paid = true ∧ db.shipped = false) ⇒ F db.shipped = true)

Paid but unshipped orders will be shipped eventually

Easy
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Proving Safety Properties with K-Induction
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InRange predicate
∀ l:List[Integer]. ∀n:Integer. 
     (inRange(l, n) ⇔ (l = nil ∨ (0 ≤ head(l) ∧ head(l) < n ∧ inRange(tail(l), n)))) 

AG inRange(db.open, db.nrStockItems)
All item numbers in the open list are in the range 0 ... db.nrStockItems-1
Provable with k=2 after adding constraint on inital state

db.nrStockItems ≥ 0 ∧ inRange(db.open,db.nrStockItems) 

Caveat
k=1 gives unprovable proof obligations where Z3 does not terminate.
These proof obligations are not quantifier-free

inRange([1,4,0,5], 6) 
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Proving Safety Properties with K-Induction
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AG ((db.gold = false ∧ db.shipped = true) ⇒ db.paid = true)

Follows from constraint 
db.gold = false ⇒ (db.shipped = false W db.paid = true))

But not provable because above constraint is ignored for K-Induction

 

¬s ¬s ¬s p

¬s ¬s ¬s ...
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Future Work

Fighting the search space

Partial order reduction (gives many unprovable FOL-obligations) 
Loop checks 

Functional extensions

Nondeterministic assignments

 

Outputing refutations and models
Modules

First-order prover

Z3 incompleteness really hurts, e.g. can't show  LIST ⊭ 4 ∈ [1,2,3]
Integrate Beagle [B&Waldmann, CADE 2013]
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db.nrRouters > 0
array[0..db.nrRouters] of Router
db.chosenRouter := i where 0 < i <  db.nrRouters


