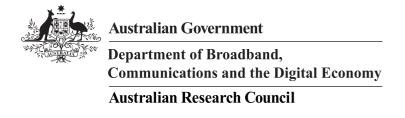


Tableaux for Verification of Data-Centric Processes

Andreas Bauer^{1,2}
Peter Baumgartner^{1,2}
Martin Diller¹
Michael Norrish^{1,2}

- ¹ NICTA
- ² ANU



NICTA Funding and Supporting Members and Partners

SYDNEY

Goal

Application viewpoint

To build a verification system for analysing temporal properties of data-centric (business) processes

Current technology is mainy Petri-Nets and propositional model checking

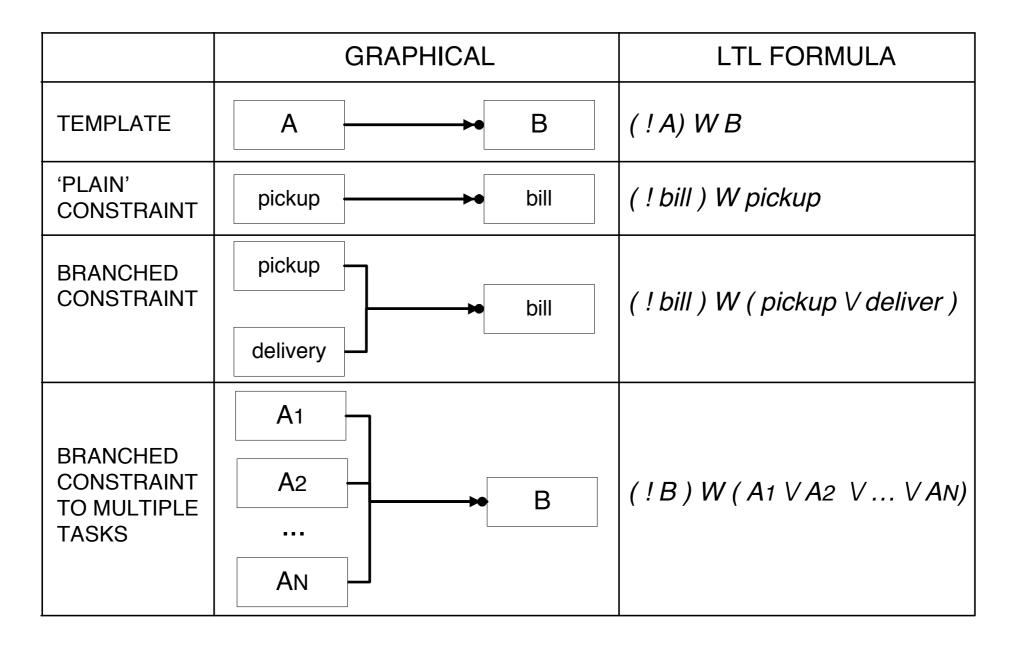
Tableaux viewpoint

To build a model checker for CTL*(FOL(Arrays+Lists+LIA))

Is it feasibly in practice despite (high) undecidability?

The Role of Propositional Model Checking

Modelling with process fragments in YAWL



We follow a similar approach but use FOL instead of PL

Talk Overview

- 1. Modelling Language and Reasoning Problems
- 2. Tableau calculus
- 3. Implementation and Experiments

Typed Data Modelling Language

JSON Types

```
DB = \{
 stock: Array[Stock],
 nrStockItems: Integer,
 open: List[Integer],
 gold: Boolean,
 invoice: Bool,
 paid: Bool,
 shipped: Bool }
\mathsf{Stock} = \{
 ident: String,
 price: Integer,
 available: Integer }
```

Typed Data Modelling Language

JSON Types

```
\mathsf{DB} = \{
 stock: Array[Stock],
 nrStockItems: Integer,
 open: List[Integer],
 gold: Boolean,
 invoice: Bool,
 paid: Bool,
 shipped: Bool }
Stock = \{
 ident: String,
 price: Integer,
 available: Integer }
```

Terms

(over FOL(Array+Records+List+LIA))

```
db.stock[head(db.open)].available - 1 
 <math>db.open := tail(db.open)
```

Formulas

```
\forall db:DB (acceptable(db) \Leftrightarrow db.open \neq nil)
```

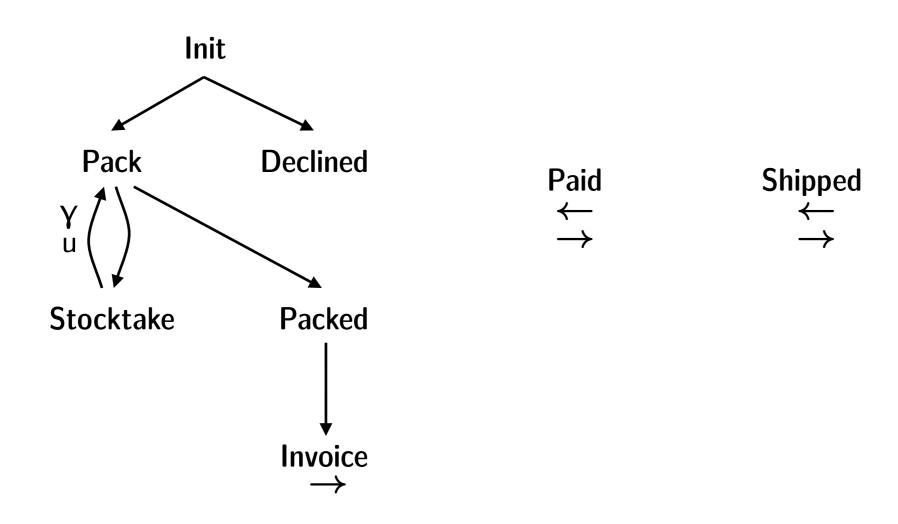
Semantics

```
(I, \alpha) \models acceptable(db) \land db.paid = false
```

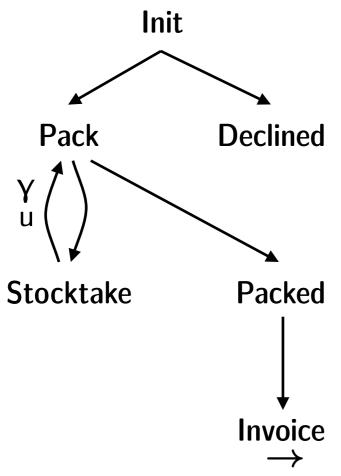
where

I is an Array+Records+List+LIA interpretation and α is an assignment to db

State Transition Systems (1)



State Transition Systems (1)

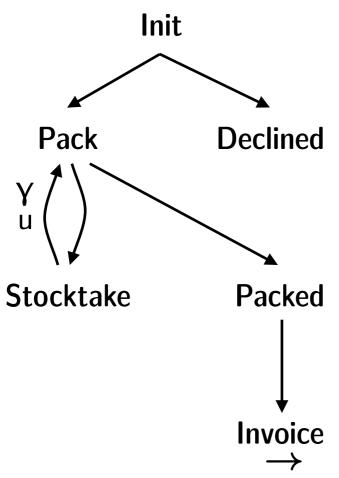


A state s is a pair (ℓ , α) where ℓ is a node and α is an assignment to db

Guard $\gamma[db]$

db.stock[head(db.open)].available > 0

State Transition Systems (1)



A state s is a pair (ℓ, α) where ℓ is a **node** and α is an assignment to db

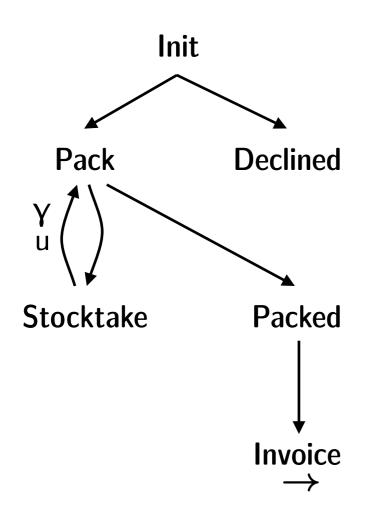
Guard $\gamma[db]$

db.stock[head(db.open)].available > 0

Update term u[db]

 $db.\mathsf{stock}[\mathsf{head}(db.\mathsf{open})].\mathsf{available} := db.\mathsf{stock}[\mathsf{head}(db.\mathsf{open})].\mathsf{available} - 1; \\ db.\mathsf{open} := \mathsf{tail}(db.\mathsf{open})$

State Transition Systems (2)



All fragment exit nodes → implicitly connected with all fragment entry nodes ←

CTL* constraints

db.gold = false \Rightarrow (db.shipped = false \mathbf{W} db.paid = true))

For non-gold customers no shipping until payment

Syntax

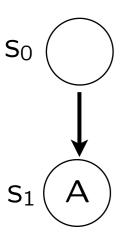
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

First-order formulas $\alpha ::= Atom | \neg \alpha | \alpha \vee \alpha | \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]



Syntax

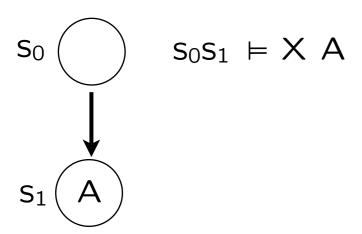
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

First-order formulas $\alpha ::= Atom | \neg \alpha | \alpha \vee \alpha | \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]



Syntax

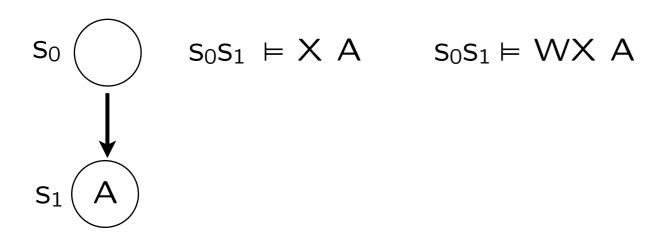
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

First-order formulas $\alpha ::= Atom | \neg \alpha | \alpha \vee \alpha | \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]



Syntax

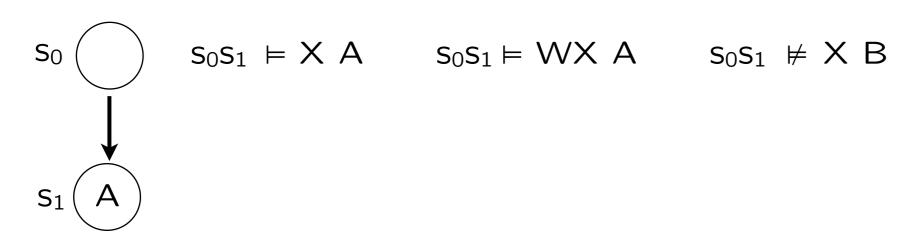
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

First-order formulas $\alpha ::= Atom \mid \neg \alpha \mid \alpha \lor \alpha \mid \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]



Syntax

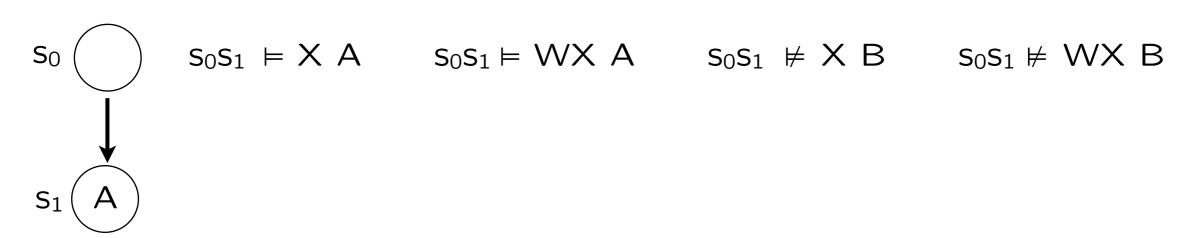
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

First-order formulas $\alpha ::= Atom | \neg \alpha | \alpha \vee \alpha | \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]



Syntax

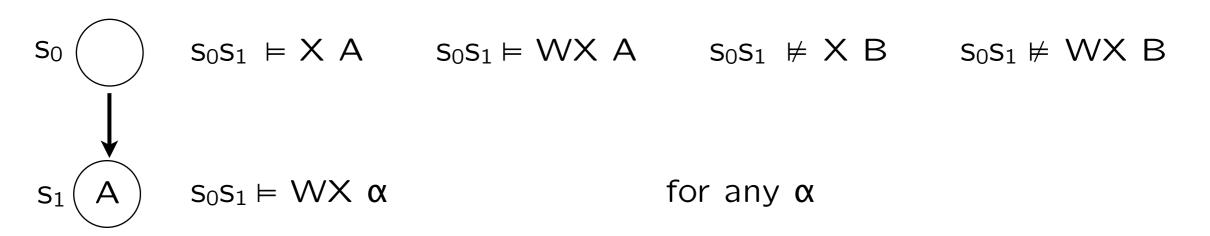
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

First-order formulas $\alpha ::= Atom | \neg \alpha | \alpha \vee \alpha | \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]



Syntax

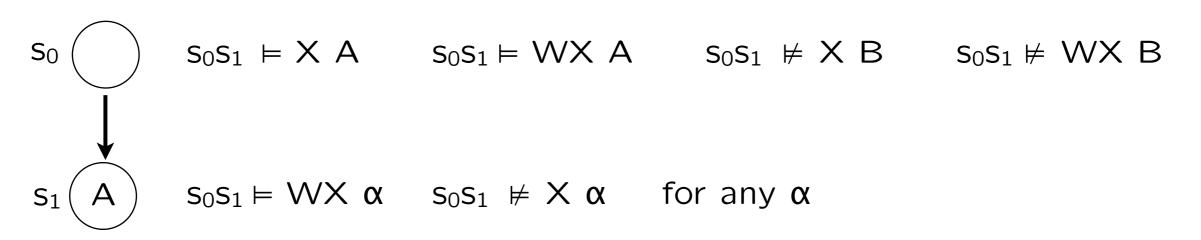
State formulas $\Psi ::= \alpha[db] \mid \neg \Psi \mid \Psi \vee \Psi \mid E \Phi \mid A \Phi$

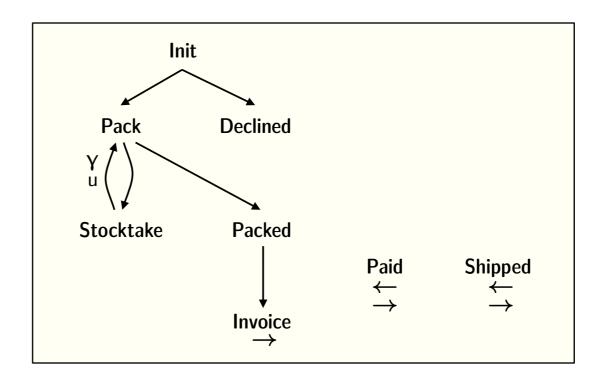
Path formulas $\Phi ::= \Psi \mid \neg \Phi \mid \Phi \lor \Phi \mid X \Phi \mid WX \Phi \mid \Phi \cup \Phi \mid \Phi \land \Phi$

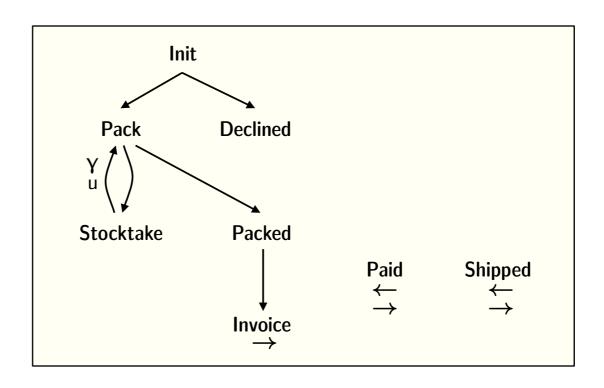
First-order formulas $\alpha ::= Atom | \neg \alpha | \alpha \vee \alpha | \forall x \alpha$

(W, F, G, ∃ are macros)

Finite trace semantics [Manna&Pnueli 1995]

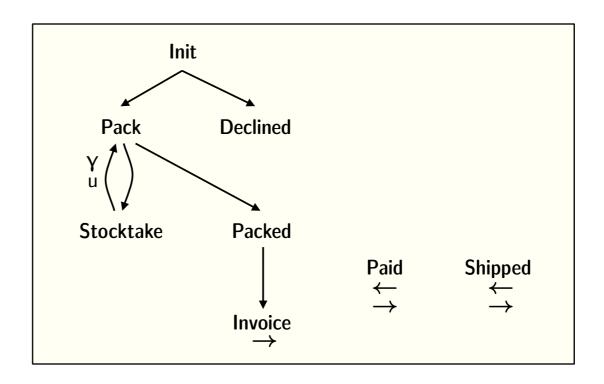






completed: \forall s:Status.(completed(s) \Leftrightarrow (s.paid = true \land s.shipped = true)) accepted: \forall db:DB.(acceptable(db) \Leftrightarrow (\neg isEmpty(db.order))) readyToShip: \forall s:Status.(readyToShip(s) \Leftrightarrow (isEmpty(s.open)))...

 $nongold: (db.gold = false \Rightarrow (db.status.shipped = false W db.status.paid = true))$

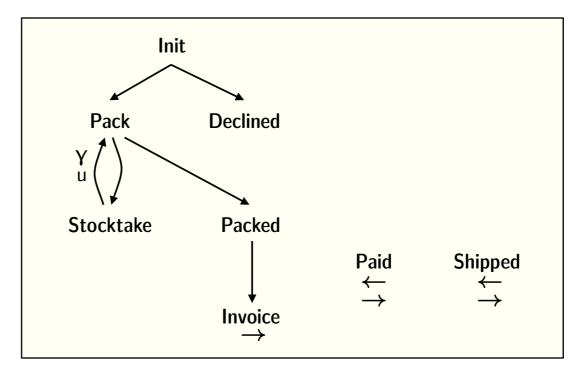


```
П
```

completed: $\forall s:Status.(completed(s) \Leftrightarrow (s.paid = true \land s.shipped = true))$ accepted: $\forall db:DB.(acceptable(db) \Leftrightarrow (\neg isEmpty(db.order)))$ readyToShip: $\forall s:Status.(readyToShip(s) \Leftrightarrow (isEmpty(s.open))) \dots$ nongold: $(db.gold = false \Rightarrow (db.status.shipped = false W db.status.paid = true))$


```
CX
   "order" : [1],
   "gold" : true,
   "stock" : [ { "ident" : "Mouse",
                 "price" : 10,
                 "available": 0 },
               { "ident" : "Monitor",
                 "price" : 200,
                 "available" : 2 },
               { "ident" : "Computer",
                 "price" : 1000,
                 "available" : 4 } ],
   "status" : { "open" : [],
                 "value" : 0,
                 "shipping" : 0,
                 "paid" : false,
                 "shipped" : false,
                 "final" : false }
```

```
?
|= Query
```



```
П
```

```
\begin{split} & completed: \forall s. Status \;.\; (completed(s) \Leftrightarrow (s.paid = true \land s.shipped = true)) \\ & accepted: \forall db: DB \;.\; (acceptable(db) \Leftrightarrow (\neg isEmpty(db.order))) \\ & readyToShip: \forall s. Status \;.\; (readyToShip(s) \Leftrightarrow (isEmpty(s.open))) \;. \;. \end{split} & nongold: (db.gold = false \Rightarrow (db.status.shipped = false \ W \ db.status.paid = true)) \end{split}
```



```
,Init)
CX
   "order" : [1],
   "gold" : true,
   "stock" : [ { "ident" : "Mouse",
                 "price" : 10,
                 "available": 0 },
               { "ident" : "Monitor",
                 "price" : 200,
                 "available" : 2 },
               { "ident" : "Computer",
                 "price" : 1000,
                 "available" : 4 } ],
   "status" : { "open" : [],
                 "value" : 0,
                 "shipping" : 0,
                 "paid" : false,
                 "shipped" : false,
                 "final" : false }
```

```
?
|= Query
```



```
П
```

```
\begin{split} & completed: \forall s: Status \ . \ (completed(s) \Leftrightarrow (s.paid = true \land s.shipped = true)) \\ & accepted: \forall db: DB \ . \ (acceptable(db) \Leftrightarrow (\neg is Empty(db.order))) \\ & ready To Ship: \forall s: Status \ . \ (ready To Ship(s) \Leftrightarrow (is Empty(s.open))) \ ... \\ & nongold: \ (db.gold = false \Rightarrow (db.status.shipped = false \ W \ db.status.paid = true)) \end{split}
```



```
"order" : [1],
"gold" : true,
"stock" : [ { "ident" : "Mouse",
              "price" : 10,
              "available": 0 },
            { "ident" : "Monitor",
              "price" : 200,
              "available" : 2 },
            { "ident" : "Computer",
              "price" : 1000,
              "available" : 4 } ],
"status" : { "open" : [],
              "value" : 0,
              "shipping" : 0,
              "paid" : false,
              "shipped" : false,
              "final" : false }
```

```
?
,I) ⊨ Query
```

```
Pack Declined

Y

Stocktake Packed

Paid Shipped

Invoice
```

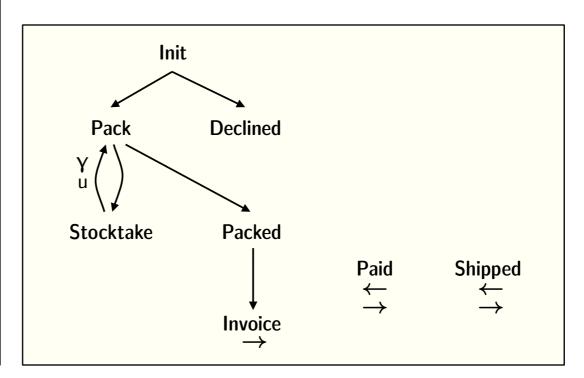
```
completed: ∀s:Status.(completed(s) ⇔ (s.paid = true ∧ s.shipped = true))
accepted: ∀db:DB.(acceptable(db) ⇔ (¬isEmpty(db.order)))
readyToShip: ∀s:Status.(readyToShip(s) ⇔ (isEmpty(s.open)))...
nongold: (db.gold = false ⇒ (db.status.shipped = false W db.status.paid = true))
```



```
"order" : [1],
"gold" : true,
"stock" : [ { "ident" : "Mouse",
              "price" : 10,
              "available" : 0 },
            { "ident" : "Monitor",
              "price" : 200,
              "available" : 2 },
            { "ident" : "Computer",
              "price" : 1000,
              "available" : 4 } ],
"status" : { "open" : [],
              "value" : 0.
              "shipping" : 0,
              "paid" : false,
              "shipped" : false,
              "final" : false }
```

```
\vdash Ε (Π \land F db.status.final=true)
```

Is some final state reachable? Planning task



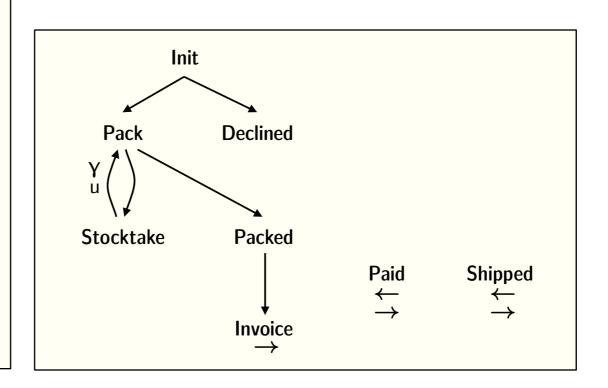
completed: $\forall s:Status.(completed(s) \Leftrightarrow (s.paid = true \land s.shipped = true))$ accepted: $\forall db:DB.(acceptable(db) \Leftrightarrow (\neg isEmpty(db.order)))$ readyToShip: $\forall s:Status.(readyToShip(s) \Leftrightarrow (isEmpty(s.open)))...$ nongold: $(db.gold = false \Rightarrow (db.status.shipped = false W db.status.paid = true))$

General Model Checking Problem

((α ,Init) ?

 $(I) \models E (\Pi \land F db.status.final=true)$

Is some final state reachable?
Planning task



```
П
```

completed: $\forall s:Status.(completed(s) \Leftrightarrow (s.paid = true \land s.shipped = true))$ accepted: $\forall db:DB.(acceptable(db) \Leftrightarrow (\neg isEmpty(db.order)))$ readyToShip: $\forall s:Status.(readyToShip(s) \Leftrightarrow (isEmpty(s.open)))...$ nongold: $(db.gold = false \Rightarrow (db.status.shipped = false W db.status.paid = true))$

Essentially

Symbolic execution of the state transition system

Reduction to pure FOL proof problems

Unsatisfiability of the FOL proof problems proves the given (temporal) query unsatisfiable

Main data structure: Sequent $(m, t) \vdash_Q \varphi_1, ..., \varphi_n$

m: node name, the current node

t: a ground term, the current database

 $Q \in \{ E, A \}$ path quantifier context

 $\phi_i[db]$: formulas; read conjunctively if Q = E, disjunctively if Q = A

Tableau nodes are conjunctions of sequents

Tableau branches out disjunctively

Boolean Rules

where
$$s = (m, t)$$

Rules for Path Quantifiers

Rules to expand U and R formulas

$$\text{U-Exp} \ \frac{s \vdash_{\mathcal{Q}} (\phi \, \mathsf{U} \, \psi), \Phi; \Sigma}{s \vdash_{\mathcal{Q}} \psi \, \lor \, (\phi \, \land \, \mathsf{X} \, (\phi \, \mathsf{U} \, \psi)), \Phi; \Sigma} \qquad \mathsf{R-Exp} \ \frac{s \vdash_{\mathcal{Q}} (\phi \, \mathsf{R} \, \psi), \Phi; \Sigma}{s \vdash_{\mathcal{Q}} (\psi \, \land \, (\phi \, \lor \, \overline{\mathsf{X}} \, (\phi \, \mathsf{R} \, \psi))), \Phi; \Sigma}$$

Rules to simplify X formulas

E-X-Simp
$$\frac{s \vdash_{\mathsf{E}} \mathsf{X} \phi_{1}, \dots, \mathsf{X} \phi_{n}, \overline{\mathsf{X}} \psi_{1}, \dots, \overline{\mathsf{X}} \psi_{m}; \Sigma}{s \vdash_{\mathsf{E}} Y (\phi_{1} \land \dots \land \phi_{n} \land \psi_{1} \land \dots \land \psi_{m}); \Sigma}$$

where
$$Y = \overline{X}$$
 if n=0 else Y = X

A-X-Simp: similary

Rules to expand X-formulas

$$= \overline{\mathsf{X}} - \mathsf{Exp} - \frac{(m,t) \vdash_{\mathsf{E}} \overline{\mathsf{X}} \phi; \Sigma}{(n_1,u_1[t]) \vdash_{\mathsf{E}} \gamma_1[t] \land \phi; \Sigma \quad \cdots \quad (n_k,u_k[t]) \vdash_{\mathsf{E}} \gamma_k[t] \land \phi; \Sigma \quad (m,t) \vdash_{\mathsf{E}} \neg \gamma_1[t] \land \cdots \land \neg \gamma_k[t]; \Sigma}$$

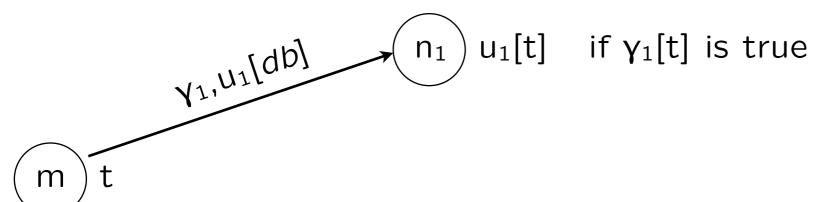
Intuitively

m,n	node
$\gamma[db]$	guard
u[<i>db</i>]	update-term

Rules to expand X-formulas

$$= \overline{\mathsf{X}} - \mathsf{Exp} - \frac{(m,t) \vdash_{\mathsf{E}} \overline{\mathsf{X}} \, \phi; \varSigma}{(n_1,u_1[t]) \vdash_{\mathsf{E}} \gamma_1[t] \land \phi; \varSigma} \cdots (n_k,u_k[t]) \vdash_{\mathsf{E}} \gamma_k[t] \land \phi; \varSigma} \quad (m,t) \vdash_{\mathsf{E}} \neg \gamma_1[t] \land \cdots \land \neg \gamma_k[t]; \varSigma}$$

Intuitively

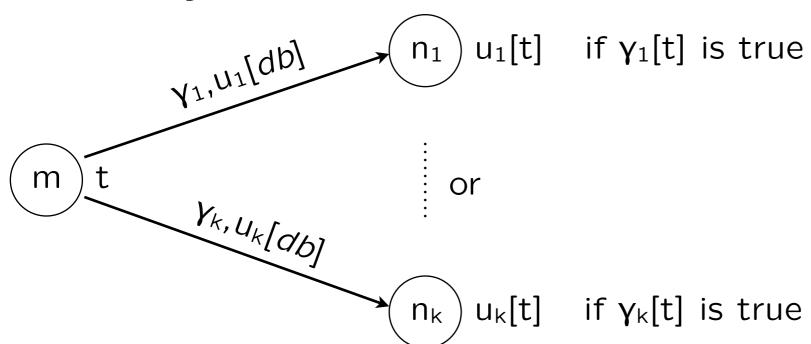


m,n	node
$\gamma[db]$	guard
u[<i>db</i>]	update-term

Rules to expand X-formulas

$$= \overline{(n_1, u_1[t]) \vdash_{\mathsf{E}} \gamma_1[t] \land \phi; \Sigma} \qquad (m, t) \vdash_{\mathsf{E}} \overline{\mathsf{X}} \phi; \Sigma} \qquad (n_1, u_1[t]) \vdash_{\mathsf{E}} \gamma_1[t] \land \phi; \Sigma \qquad (n_k, u_k[t]) \vdash_{\mathsf{E}} \gamma_k[t] \land \phi; \Sigma \qquad (m, t) \vdash_{\mathsf{E}} \neg \gamma_1[t] \land \cdots \land \neg \gamma_k[t]; \Sigma}$$

Intuitively

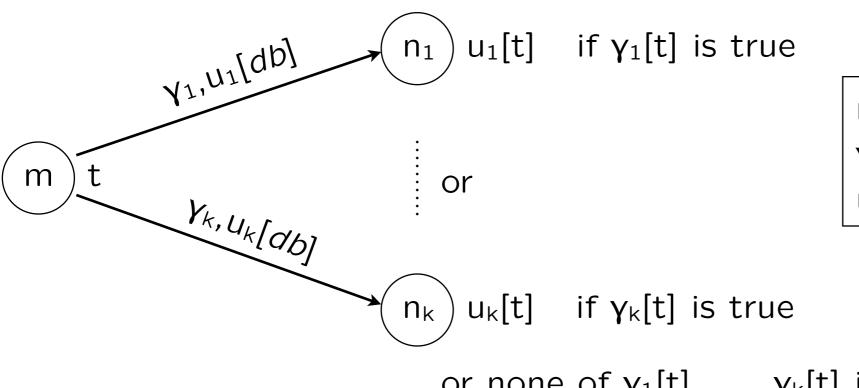


m,n	node
$\gamma[db]$	guard
u[<i>db</i>]	update-term

Rules to expand X-formulas

$$= \overline{\mathsf{X}} - \mathsf{Exp} - \frac{(m,t) \vdash_{\mathsf{E}} \overline{\mathsf{X}} \phi; \varSigma}{(n_1,u_1[t]) \vdash_{\mathsf{E}} \gamma_1[t] \land \phi; \varSigma} \cdots (n_k,u_k[t]) \vdash_{\mathsf{E}} \gamma_k[t] \land \phi; \varSigma} (m,t) \vdash_{\mathsf{E}} \neg \gamma_1[t] \land \cdots \land \neg \gamma_k[t]; \varSigma}$$

Intuitively



m,n	node
$\gamma[db]$	guard
u[<i>db</i>]	update-term

or none of $\gamma_1[t]$, ..., $\gamma_k[t]$ is true

Rule for Closing branches

Unsat
$$s_1 \vdash_{Q_1} \Phi_1; \cdots; s_n \vdash_{Q_n} \Phi_n$$

if all ϕ_i are **classical** formulas and $\phi_1 \wedge \cdots \wedge \phi_n$ is unsatisfiable

Rule for Closing branches

Unsat
$$\frac{s_1 \vdash_{Q_1} \Phi_1; \cdots; s_n \vdash_{Q_n} \Phi_n}{}$$

if all ϕ_i are **classical** formulas and $\phi_1 \wedge \cdots \wedge \phi_n$ is unsatisfiable

Theorem: soundness/completeness (decidability) for bounded model checking modulo FOL

Implementation and Experiments

Fitzroy

Scala implementation of the above calculus + K-Induction

FOL-prover is currently Z3

"High-level" input language, type checker

Bounded model checking for paths up to given length n

E.g. \mathbf{F} completed(db) and n=8 gives

Init \rightarrow Pack \rightarrow Stocktake \rightarrow Pack \rightarrow Invoice \rightarrow Shipped \rightarrow Paid

 $Init \rightarrow Pack \rightarrow Stocktake \rightarrow Pack \rightarrow Stocktake \rightarrow Pack \rightarrow Invoice \rightarrow Shipped \rightarrow Paid$

 $Init \rightarrow Pack \rightarrow Stocktake \rightarrow Pack \rightarrow Invoice \rightarrow Paid \rightarrow Shipped$

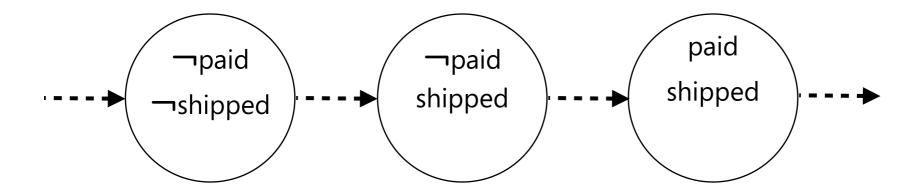
 $Init \rightarrow Pack \rightarrow Stocktake \rightarrow Pack \rightarrow Stocktake \rightarrow Pack \rightarrow Invoice \rightarrow Paid \rightarrow Shipped$

(223 branches closed, 912 inferences, Z3 called 529 times, 30 sec)

Bounded Model Checking Example

(Recall queries are implicitly **E**-quantified)

(**F** completed(db)) \land (db.shipped=true **R** db.paid=false)



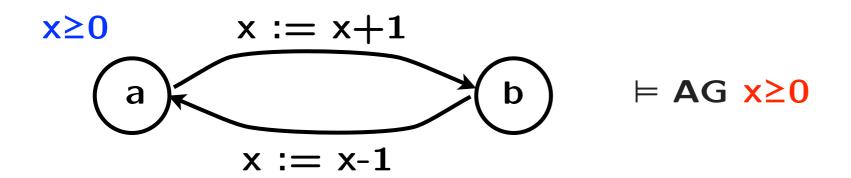
The query is satisfiable because db.gold is possible

init \rightarrow pack \rightarrow stocktake \rightarrow pack \rightarrow invoice \rightarrow shipped \rightarrow paid

Question

Given a classical formula $\Phi[db]$, does $(I, s_0) \models \mathbf{AG} \Phi[db]$ hold, for all interpretations I and all $s_0 \in Init$?

K-induction [Sheeran et al 2000, deMoura et al 2003]



K = 0,1,2,... length of paths considered for inductive proofs

- 0-induction fails
- 1-induction goes through

Base case: $x \ge 0 \land x' = x + 1 \models x \ge 0 \land x' \ge 0$

Step case, e.g.: $x \ge 0 \land x' = x-1 \land x' \ge 0 \land x'' = x'+1 \models x'' \ge 0$

AG (\forall i:Integer.((0 \leq i \land i < db.nrStockItems) \Rightarrow db.stock[i].available \geq 0))

The number of available stock items is non-negative

Easy, after adding constraint on initial state $db.nrStockItems \ge 0 \land (\forall i:Integer.((0 \le i \land i < db.nrStockItems) \Rightarrow db.stock[i].available \ge 0))$

NB: *db*.nrStockItems is given *symbollically* - goes beyond propositional model checking

AG $((db.paid = true \land db.shipped = false) \Rightarrow F db.shipped = true)$

Paid but unshipped orders will be shipped eventually

Easy

InRange predicate

∀ I:List[Integer]. ∀n:Integer.

AG inRange(db.open, db.nrStockItems)

All item numbers in the open list are in the range 0 ... db.nrStockItems-1

 $(inRange(I, n) \Leftrightarrow (I = nil \lor (0 \le head(I) \land head(I) < n \land inRange(tail(I), n)))$

Provable with k=2 after adding constraint on inital state db.nrStockItems $\geq 0 \land inRange(db.open,db.nrStockItems)$

Caveat

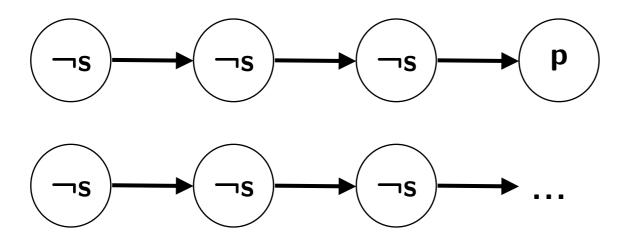
k=1 gives unprovable proof obligations where Z3 does not terminate. These proof obligations are *not quantifier-free*

21

AG
$$((db.gold = false \land db.shipped = true) \Rightarrow db.paid = true)$$

Follows from constraint

$$db$$
.gold = false \Rightarrow (db .shipped = false \mathbf{W} db .paid = true))



But not provable because above constraint is ignored for K-Induction

Future Work

Fighting the search space

Partial order reduction (gives many unprovable FOL-obligations)
Loop checks

Functional extensions

Nondeterministic assignments

```
db.nrRouters > 0 
 array[0..db.nrRouters] of Router 
 db.chosenRouter := i where 0 < i < db.nrRouters
```

Outputing refutations and models Modules

First-order prover

Z3 incompleteness really hurts, e.g. can't show LIST $\not\models$ 4 \in [1,2,3] Integrate Beagle [B&Waldmann, CADE 2013]