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Purpose of Tutorial

Instance Based Methods (IMs): a family of calculi and proof procedures

for first-order clause logic, developed during past ten years

Tutorial provides overview about the following

Common principles behind IMs, some calculi, proof procedures

Comparison among IMs, difference from tableaux and resolution

Ranges of applicability/non-applicability

Improvements and extensions: universal variables, equality, . . .

Picking up SAT techniques

Implementations and implementation techniques
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Setting the Stage

Skolem-Herbrand-Löwenheim Theorem

∀φ is unsatisfiable iff some finite set of ground instances

{φγ1, . . . , φγn} is unsatisfiable

For refutational theorem proving (i.e. start with negated conjecture) it

thus suffices to

enumerate growing finite sets of such ground instances, and

test each for propositional unsatisfiability. Stop with “unsatisfiable”

when the first propositionally unsatisfiability set arrives

This has been known for a long time: Gilmore’s algorithm, DPLL

It is also a common principle behind IMs

So what’s special about IMs? Do this in a clever way!
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An early IM: the DPLL Procedure

Grounding

Propositional
DPLL

∧∀z ¬P(z, a)

Given Formula

P( f (x), x)
¬P(z, a)

Clause Form

∀x ∃y P(y, x)Preprocessing:

Outer loop:

Inner loop:

Problems/Issues:

Controlling the grounding process in outer loop (irrelevant
instances)

Repeat work across inner loops

Weak redundancy criterion within inner loop
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An early IM: the DPLL Procedure

Proof found

Grounding

Propositional
DPLL

Outer Loop
STOP:

∧∀z ¬P(z, a)

Given Formula

P( f (x), x)
¬P(z, a)

Clause Form

P( f (a),a)
¬P(a, a)

Sat?

∀x ∃y P(y, x)

No

Preprocessing:

Outer loop:

Inner loop:

Yes

Continue

Problems/Issues:

Controlling the grounding process in outer loop (irrelevant
instances)

Repeat work across inner loops

Weak redundancy criterion within inner loop
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Part I: Overview of IMs
Classification of IMs and some representative calculi

Emphasis not too much on the details

We try to work out common principles and also differences

Comparison with Resolution and Tableaux

Applicability/Non-Applicability
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Development of IMs (I)

Purpose of this slide

List existing methods (apologies for “forgotten” ones . . . )

Define abbreviations used later on

Provide pointer to literature

Itemize structure indicates reference relation (when obvious)

Not: table of contents of what follows
(presentation is systematic instead of historical)

DPLL – Davis-Putnam-Logemann-Loveland procedure
[Davis and Putnam, 1960], [Davis et al., 1962b], [Davis et al., 1962a],
[Davis, 1963], [Chinlund et al., 1964]

FDPLL – First-Order DPLL [Baumgartner, 2000]

ME – Model Evolution Calculus [Baumgartner and Tinelli, 2003]

• ME with Equality [Baumgartner and Tinelli, 2005]
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Development of IMs (II)

HL – Hyperlinking [Lee and Plaisted, 1992]

SHL – Semantic Hyper Linking [Chu and Plaisted, 1994]

OSHL – Ordered Semantic Hyper Linking
[Plaisted and Zhu, 1997]

PPI – Primal Partial Instantiation (1994) [Hooker et al., 2002]

“Inst-Gen” [Ganzinger and Korovin, 2003]

MACE-Style Finite Model Buiding [McCune, 1994],. . . ,
[Claessen and Sörensson, 2003]

DC – Disconnection Method [Billon, 1996]

HTNG - Hyper Tableaux Next Generation [Baumgartner, 1998]

DCTP – Disconnection Tableaux [Letz and Stenz, 2001]

Ginsberg & Parkes method [Ginsberg and Parkes, 2000]

OSHT – Ordered Semantic Hyper Tableaux [Yahya and Plaisted, 2002]
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Two-Level vs. One-Level Calculi

Two-Level Calculi

Separation between instance generation and SAT solving phase

Uses (arbitrary) propositional SAT solver as a subroutine

DPLL, HL, SHL, OSHL, PPI, Inst-Gen

Problem: how to tell SAT solver e.g. ∀xP(x)?

· · ·

C1(x1)
C2(x2)

Current clauses

instances
Add input clause

ground

· · ·

C1($)
C2($)

Propositionally
unsatisfiable?
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Two-Level vs. One-Level Calculi

One-Level Calculi
Monolithic: one single base calculus, two modes of operation
First-order mode: builds base calculus data structure from input
clause instances
Propositional mode: $-instance of data structures drives first-order
mode
HyperTableaux NG, DCTP (see Part II), OSHT, FDPLL, ME

L1(x1)

· · ·
L2(x2)

clause instances
Current branch
unsatisfiable?

Extend by input

· · ·
L2($)

L1($)

First-order mode Propositional mode

ground

E.g. Tableaux:

Next: two-level calculus “Inst-Gen”
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Inst-Gen

We have chosen Inst-Gen for presentation because of its elegance

and simplicity

Talk proceeds with

Idea behind Inst-Gen

(it provides a clue to the working of two-level calculi)

Inst-Gen calculus

Comparison to Resolution

Mentioning some improvements, as justified by “idea behind”

See [Ganzinger and Korovin, 2003] for details
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Inst-Gen - Underlying Idea (I)

Important notation: ⊥ denotes both a unique constant and a

substitution that maps every variable to⊥.

Example (S is “current clause set”):

S : P(x, y)∨P(y, x)

¬P(x, x)

S⊥ : P(⊥,⊥)∨P(⊥,⊥)

¬P(⊥,⊥)

Analyze S⊥:

Case 1: SAT detects unsatisfiability of S⊥

Then Conclude S is unsatisfiable

But what if S⊥ is satisfied by some model, denoted by I⊥?
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Inst-Gen - Underlying Idea (II)

Main idea: associate to model I⊥ of S⊥ a candidate model IS of S.

Calculus goal: add instances to S so that IS becomes a model of S

Example:

S : P(x)∨Q(x)

¬P(a)

S⊥ : P(⊥)∨Q(⊥)

¬P(a)

Analyze S⊥:

Case 2: SAT detects model I⊥ = {P(⊥),¬P(a)} of S⊥

Case 2.1: candidate model IS = {¬P(a)} derived from

literals selected in S by I⊥ is not a model of S

Add “problematic” instance P(a)∨Q(a) to S to refine IS
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Inst-Gen - Underlying Idea (III)

Clause set after adding P(a)∨Q(a)

S : P(x)∨Q(x)

P(a)∨Q(a)

¬P(a)

S⊥ : P(⊥)∨Q(⊥)

P(a)∨Q(a)

¬P(a)

Analyze S⊥:

Case 2: SAT detects model I⊥ = {P(⊥),Q(a),¬P(a)} of S⊥

Case 2.2: candidate model IS = {Q(a),¬P(a)} derived from

literals selected in S by I⊥ is a model of S

Then conclude S is satisfiable

How to derive candidate model IS?
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Inst-Gen - Model Construction

It provides (partial) interpretation for Sground for given clause set S

S : P(x)∨Q(x)

P(a)∨Q(a)

¬P(a)

Σ = {a, b}, Sground : P(b)∨Q(b)

P(a)∨Q(a)

¬P(a)

For each Cground ∈ Sground find most specific C ∈ S that can be
instantiated to Cground
Select literal in Cground corresponding to selected literal in that C
Add selected literal of that Cground to IS if not in conflict with IS

Thus, IS = {P(b),Q(a),¬P(a)}
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Inst-Gen - Summary so far

Previous slides showed the main ideas underlying the working of
calculus - not the calculus itself

The models I⊥ and the candidate model IS are not needed in the
calculus, but justify improvements

And they provide the conceptual tool for the completeness proof:
as instances of clauses are added, the initial approximation of a
model of S is refined more and more

The purpose of this refinement is to remove conflicts “A – ¬A” by
selecting different literals in instances of clauses

If this process does not lead to a refutation, every ground instance
Cγ of a clause C ∈ S will be assigned true by some sufficiently
developed candidate model

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 15



Inst-Gen Inference Rule

Inst-Gen
C∨L L′∨D

(C∨L)θ (L′∨D)θ
where

(i) θ = mgu(L, L′), and

(ii) θ is a proper instantiator: maps some variables to nonvariable
terms

Example:

Inst-Gen
Q(x)∨P(x, b) ¬P(a, y)∨R(y)
Q(a)∨P(a, b) ¬P(a, b)∨R(b) where

(i) θ = mgu(P(x, b),¬P(a, y)) = {x→a, y→b}, and

(ii) θ is a proper instantiator
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Inst-Gen - Outer Loop

f.o. clauses

S
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Inst-Gen - Outer Loop

f.o. clauses

S

ground clauses

S⊥

⊥ : x̄→⊥
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Inst-Gen - Outer Loop
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Properties and Improvements

As efficient as possible in propositional case

Literal selection in the calculus

Require “back channel” from SAT solver (output of models) to
select literals in S (as obtained in I⊥)

Restrict inference rule application to selected literals

Need only consider instances falsified in IS

Allows to extract model if S is finitely saturated

Flexibility: may change models I⊥ arbitrarily during derivation

Hyper-type inference rule, similar to Hyper Linking
[Lee and Plaisted, 1992]

Subsumption deletion by proper subclauses

Special variables: allows to replace SAT solver by solver for richer
fragment (guarded fragment, two-variable fragment)
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Resolution vs. Inst-Gen

Resolution Inst-Gen

(C∨L) (L′∨D)
(C∨D)θ

θ = mgu(L, L′)

C∨ L L′∨D
(C∨ L)θ (L′∨D)θ

θ = mgu(L, L′)

• Inefficient in propositional case

• Length of clauses can grow fast

• Recombination of clauses

• Subsumption deletion

• A-Ordered resolution: selection
based on term orderings

• Difficult to extract model

• Decides guarded fragment,
two-variable fragment, some
classes defined by Leitsch et al.,
not Bernays-Schönfinkel class

• Efficient in propositional case

• Length of clauses fixed

• No recombination of clauses

• Subsumption deletion limited

• Selection based on propositional
model

• Easy to extract model

• Decides Bernays-Schönfinkel
class, nothing else known yet

• Current CASC-winning provers use Resolution
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Other Two-Level Calculi (I)

DPLL - Davis-Putnam-Logemann-Loveland Procedure

Weak concept of redundancy already present (purity deletion)

PPI – Primal Partial Instantiation

Comparable to Inst-Gen, but see [Jacobs and Waldmann, 2005]

With fixed iterative deepening over term-depth bound

MACE-Style Finite Model Buiding (Different Focus)

Enumerate finite domains {0}, {0, 1}, {0, 1, 2}, . . .

Transform clause set to encode search for model with finite domain

Apply (incremental) SAT solver

Complete for finite models, not refutationally complete
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Other Two-Level Calculi (II) - HL and SHL

HL - Hyper Linking (Clause Linking)

Uses hyper type of inference rule, based on simultaneous mgu of
nucleus and electrons

Doesn’t use selection (no guidance from propositional model)

SHL - Semantic Hyper Linking

Uses “back channel” from SAT solver to guide search: find single
ground clause Cγ so that I⊥ 6|= Cγ and add it

Doesn’t use unification; basically guess ground instance, but . . .

Practical effectiveness achieved by other devices:

Start with “natural” initial interpretation

“Rough resolution” to eliminate “large” literals

Predicate replacement to unfold definitions [Lee and Plaisted, 1989]

See also important paper [Plaisted, 1994]
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Other Two-Level Calculi (III) - OSHL

OSHL - Ordered Semantic Hyper Linking [Plaisted and Zhu, 1997],
[Plaisted and Zhu, 2000]

Goal-orientation by chosing “natural” initial interpretation I0 that
falsifies (negated) theorem clause, but satisfies most of the theory
clauses

Stepwisely modify I0
Modified interpretation represented as I0(L1, . . . , Lm)
(which is like I0 except for ground literals L1, . . . , Lm)

Completeness via fair enumeration of modifications

Special treatment of unit clauses

Subsumption by proper subclauses

Uses A-ordered resolution as propositional decision procedure

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 22



OSHL Proof Procedure

Input: S, I0 ;; S input clauses, I0 initial interpretation
I := I0 ;; Current interpretation
G := {} ;; Set of current ground instances of clauses of S
while {} /∈ G do

if I |= S ;; . . . and this can be detected
then return “satisfiable”

search C ∈ S and γ
such that I 6|= Cγ ;; Instance generation

G := simplify (G,Cγ) ;; Have Cγ ∈ G after simplification
I := update(I0,G) ;; Update such that I |= G

od
return “unsatisfiable”

How to search C and γ for given I = I0(L1, . . . , Lm)

Guess C ∈ S and partition C = C1 ∪ C2

Let θ matcher of C1 to (L1, . . . , Lm)

Guess δ s.th. I0(L1, . . . , Lm) 6|= Cγ, where γ = θδ
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Search and Update in OSHL

Io = {Ra}

(all other atoms false)

S: (1) R(a) ← (4) ←Q(a, c)

(2) P(x) ←R(a) (5) ←R(c)

(3) R(y)∨Q(x, y)←P(x)
OSHL Refutation:
(2) I0 6|= P(x)←R(a)

I0 6|= P(a)←R(a)

(3) I0(P(a)) 6|= R(y)∨Q(x, y)←P(x)

I0(P(a)) 6|= R(y)∨Q(a, y)←P(a)

I0(P(a)) 6|= R(c)∨Q(a, c)←P(a)

(5) I0(P(a),R(c)) 6|= ←R(c)

(4) I0(P(a),Q(a, c)) 6|= ←Q(a, c)

(1) I0(¬R(a)) 6|= R(a)←

Unsatisfiable
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IMs - Classification

Recall:

Two-level calculi: instance generation separated from SAT solving –
may use any SAT solver

One-level calculi: monolithic, with two modes of operation:
First-order mode and propositional mode
Developed so far:

IM Extended Calculus
DC Connection Method, Tableaux
DCTP Tableaux
OSHT Hyper Tableaux
Hyper Tableaux NG Hyper Tableaux
FDPLL DPLL
ME DPLL

Next: one-level calculus: FDPLL (simpler) / ME (better)
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Motivation for FDPLL/ME

FDPLL: lifting of propositional core of DPLL to F irst-order logic

Why?

Migrate to the first-order level those very effective techniques
developed for propositional DPLL

From propositional DPLL: binary splitting, backjumping, learning,
restarts, selection heuristics, simplification, . . .
Not all achieved yet; simplification not in FDPLL, but in ME

Successful first-order techniques: unification, special treatment of
unit clauses, subsumption (limited)

Theorem Proving: alternative to established methods

Model computation:
counterexamples, diagnosis, abduction, planning, nonmonotonic
reasoning,. . . – largely unexplored
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Contents FDPLL/ME Part

Propositional DPLL as a semantic tree method

FDPLL calculus

Model Evolution calculus

FDPLL/ME vs. OSHL

FDPLL/ME vs. Inst-Gen
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Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C∨¬A (3) D∨¬C∨¬A (4) ¬D∨¬B

{} 6|= A∨B

{} |= C∨¬A

{} |= D∨¬C∨¬A

{} |= ¬D∨¬B

〈empty tree〉

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (?)
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Propositional DPLL as a Semantic Tree Method
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{A,C} |= A∨B

{A,C} |= C∨¬A

{A,C} 6|= D∨¬C∨¬A
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A

C ¬C

¬A

?

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (?)

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 28



Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C∨¬A (3) D∨¬C∨¬A (4) ¬D∨¬B

{A,C,D} |= A∨B

{A,C,D} |= C∨¬A

{A,C,D} |= D∨¬C∨¬A

{A,C,D} |= ¬D∨¬B

A

C ¬C

D ¬D

¬A

?

?

Model {A,C,D} found.

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (?)
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Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C∨¬A (3) D∨¬C∨¬A (4) ¬D∨¬B

{B} |= A∨B

{B} |= C∨¬A

{B} |= D∨¬C∨¬A

{B} |= ¬D∨¬B

A

C ¬C

D ¬D

¬A

¬B

?

? ?

Model {B} found.

B

A Branch stands for an interpretation

Purpose of splitting: satisfy a clause that is currently falsified

Close branch if some clause is plainly falsified by it (?)
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Meta-Level Strategy

Lifted data structures:

DPLL FDPLL

Clauses B∨C P(x, y)∨Q(x, x)

Semantic
Trees

B

A ¬A

¬B

C ¬C
?

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

¬Q(x, y)
?

Q(x, y)
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First-Order Semantic Trees

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

¬Q(x, y)
?

Q(x, y)

Issues:

How are variables treated?

(a) Universal?, (b) Rigid?, (c) Schematic!

What is the interpretation represented by a branch?

Clue to understanding of FDPLL (as is for Inst-Gen)
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Extracting an Interpretation from a Branch

Branch B:

P(x, y)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

Branch B:

P(a, a)

P(a, b)

P(b, a)

P(b, b)

P(x, y)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

Branch B:

P(a, a)

P(a, b)

P(b, a)

P(b, b)

P(x, y)

¬P(a, y)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

P(b, b)

P(x, y)

¬P(a, y)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

¬P(a, b)

P(b, a)

¬P(b, b)

P(x, y)

¬P(a, y)

¬P(b, b)

P(a, b)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

Branch B:

¬P(a, a)

P(a, b)

P(b, a)

¬P(b, b)

P(x, y)

¬P(a, y)

¬P(b, b)

P(a, b)

Interpretation IB = {...}:

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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Extracting an Interpretation from a Branch

Branch B: Interpretation IB = {. . .}:

{

}

, ,

,

P(x, y)

P(a, b)
P(a, b)

¬P(a, y)

¬P(b, b)

¬P(a, a) P(b, a)

¬P(b, b)

A branch literal specifies the truth values for all its ground
instances, unless there is a more specific literal specifying the
opposite truth value

The order of literals does not matter
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

〈empty
tree〉

Init

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

? ?

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

? ?
Closed?

No Yes

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

unsatisfiable

? ?
Closed?

No

STOP:

Yes

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

unsatisfiablebranch B

? ?

? ?

Closed?

STOP:

Yes

B

No

Select open

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable

B

? ?

? ?

No

Yes

Closed?

STOP:

No

Select open

Yes

IB
?
|= S

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable

satisfiable

? ?

? ?

No

Closed?

STOP:

No

Select open

Yes

IB
?
|= S

Yes

STOP:

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B

satisfiable

unsatisfiable
and split B
with L and ¬L

L ¬L

? ?

STOP:

Yes

Closed?

STOP:

No

Select open

Yes

IB
?
|= S

Select literal L

No

? ?

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL Calculus - Main Loop

Input: a clause set S
Output: “unsatisfiable” or “satisfiable” (if it terminates)
Note: Strategy much like in inner loop of propositional DPLL:

branch B unsatisfiable
and split B
with L and ¬L

satisfiable

L ¬L

? ?

Closed?

STOP:

No

Select open

Yes
Select literal L

No

IB
?
|= S

Yes

STOP:

? ?

Not here: FDPLL derivation rules for testing IB |= S and Splitting
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FDPLL – Model Computation Example

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight from X to Y.

(2) -flight(sb,X). %% no flight from sb to anywhere.

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric.

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection.

(5) connect(X,Y) :- train(X,Y). %% a train is a connection.

(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive relation.

connect(Y,Z).

Computed Model (as output by Darwin implementation)

+ flight(X, Y)

- flight(sb, X)

- flight(X, sb)

+ train(sb, Y)

+ train(Y, sb)

+ connect(X, Y)
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FDPLL – Model Computation Example

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight from X to Y.

(2) -flight(sb,X). %% no flight from sb to anywhere.

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric.

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection.

(5) connect(X,Y) :- train(X,Y). %% a train is a connection.

(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive relation.

connect(Y,Z).

Computed Model (as output by Darwin implementation)

+ flight(X, Y)

- flight(sb, X)

- flight(X, sb)

+ train(sb, Y)

+ train(Y, sb)

+ connect(X, Y)
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FDPLL Model Computation Example - Derivation

•

Clause instance used in inference: train(x, y)∨flight(x, y)

Done.

Return “satisfiable with model {flight (x, y), . . . ,connect(x, y)}”
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FDPLL Model Computation Example - Derivation

¬flight(x, y)flight(x, y)

Clause instance used in inference: ¬flight(sb, x)

Done. Return

“satisfiable with model {flight(x, y), . . . ,connect(x, y)}”
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FDPLL Model Computation Example - Derivation

flight(x, y) ¬flight(x, y)

flight(sb, x)¬flight(sb, x)

Clause instance used in inference: train(sb, y)∨flight(sb, y)

Done. Return “satisfiable with model

{flight(x, y), . . . ,connect(x, y)}”
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FDPLL Model Computation Example - Derivation

flight(x, y) ¬flight(x, y)

flight(sb, x)

¬train(sb, y)train(sb, y)

¬flight(sb, x)

Clause instance used in inference: flight(sb, y)∨¬flight(y, sb)

Done. Return “satisfiable with model

{flight(x, y), . . . ,connect(x, y)}”
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FDPLL Model Computation Example - Derivation

flight(x, y)

¬flight(sb, x)

train(sb, y)

¬flight(x, y)

flight(sb, x)

¬train(sb, y)

flight(y, sb)¬flight(y, sb)

Clause instance used in inference: train(x, sb)∨flight(x, sb)

Done. Return “satisfiable with model

{flight(x, y), . . . ,connect(x, y)}”
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FDPLL Model Computation Example - Derivation

¬flight(sb, x)

train(sb, y)

¬flight(y, sb)

train(x, sb)

¬flight(x, y)

flight(sb, x)

¬train(sb, y)

flight(y, sb)

¬train(x, sb)

flight(x, y)

Clause instance used in inference: connect(x, y)∨¬flight(x, y)

Done. Return “satisfiable with model

{flight(x, y), . . . ,connect(x, y)}”
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FDPLL Model Computation Example - Derivation

flight(x, y)

¬flight(sb, x)

train(sb, y)

¬flight(y, sb)

train(x, sb)

connect(x, y)

¬flight(x, y)

flight(sb, x)

¬train(sb, y)

flight(y, sb)

¬train(x, sb)

¬connect(x, y)

Done. Return “satisfiable with model

{flight(x, y), . . . ,connect(x, y)}”
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Model Evolution (ME) Calculus

Same motivation as for FDPLL: lift propositional DPLL to first-order

Loosely based on FDPLL, but wouldn’t call it “extension”

Extension of Tinelli’s sequent-style DPLL [Tinelli, 2002]

See [Baumgartner and Tinelli, 2003] for calculus,

[Baumgartner et al., 2005] for implementation “Darwin”

Difference to FDPLL

Systematic treatment of universal and schematic variables

Includes first-order versions of unit simplification rules

Presentation as a sequent-style calculus, to cope with dynamically

changing branches and clause sets due to simplification
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Instance Based Methods - Tutorial at TABLEAUX 2005

• Branches and clause sets may shrink as the derivation proceeds

• Such dynamics is best modeled with a sequent style calculus:

Model Evolution Calculus – Data Structure

Context: A set of literals

(the „current branch“)

Current Clause Set

Λ � Φ

Derivation Rules

–Simplification rules

–Split

–Close
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• Branches and clause sets may shrink as the derivation proceeds

• Such dynamics is best modeled with a sequent style calculus:

Model Evolution Calculus – Data Structure

Context: A set of literals

(the „current branch“)

Current Clause Set

Λ � Φ

¬v � Input clause set

Λ1 � Φ1

Λ2 � Φ2

Λn � Φn

closed

Derivation Rules

–Simplification rules

–Split

–Close

Derivations



Instance Based Methods - Tutorial at TABLEAUX 2005

Derivation Rules - Split

Split
Λ, Lσ � Φ, C ∨ L Λ, Lσ � Φ, C ∨ L

Λ � Φ, C ∨ L

σ C ∨ L

Lσ Lσ
Λ current context

Φ, C ∨ L current clause set

if

1. σ is a simultaneous mgu of C ∨ L against Λ,
2. neither Lσ nor Lσ is contained in Λ, and
3. Lσ contains no variables (schematic variables OK, for simplicity here)



Instance Based Methods - Tutorial at TABLEAUX 2005

Derivation Rules – Split Example

Split
Λ, Lσ � Φ, C ∨ L Λ, Lσ � Φ, C ∨ L

Λ � Φ, C ∨ L

Λ: P (u, u) Q(v, b)

C ∨ L : ¬P (x, y) ∨ ¬Q(a, z)

if

1. σ is a simultaneous mgu of C ∨ L against Λ,
2. neither Lσ nor Lσ is contained in Λ, and
3. Lσ contains no variables (schematic variables OK, for simplicity here)
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Derivation Rules – Split Example

Split
Λ, Lσ � Φ, C ∨ L Λ, Lσ � Φ, C ∨ L

Λ � Φ, C ∨ L

Λ: P (u, u) Q(v, b)

C ∨ L : ¬P (x, y) ∨ ¬Q(a, z)

(C ∨ L)σ : ¬P (x, x) ∨ ¬Q(a, b)

σ = { x �→ u, y �→ u,

v �→ a, z �→ b }

if

1. σ is a simultaneous mgu of C ∨ L against Λ,
2. neither Lσ nor Lσ is contained in Λ, and
3. Lσ contains no variables (schematic variables OK, for simplicity here)
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Derivation Rules – Split Example

2. violated 2. satisfied

Split
Λ, Lσ � Φ, C ∨ L Λ, Lσ � Φ, C ∨ L

Λ � Φ, C ∨ L

Λ: P (u, u) Q(v, b)

C ∨ L : ¬P (x, y) ∨ ¬Q(a, z)

(C ∨ L)σ : ¬P (x, x) ∨ ¬Q(a, b)

σ = { x �→ u, y �→ u,

v �→ a, z �→ b }

Lσ = ¬Q(a, b) is admissible for Split

if

1. σ is a simultaneous mgu of C ∨ L against Λ,
2. neither Lσ nor Lσ is contained in Λ, and
3. Lσ contains no variables (schematic variables OK, for simplicity here)
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Derivation Rules – Close

Close

Λ current context

σ

Φ, C current clause set

C

Λ � Φ, C

Λ � ⊥

if

1. Φ 	= ∅ or C 	= ⊥, and
2. there is a simultaneous mgu σ of C against Λ such that
Λ contains the complement of each literal of Cσ

⊥
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Derivation Rules – Close Example

Close
Λ � Φ, C

Λ � ⊥

if

1. Φ 	= ∅ or C 	= ⊥, and
2. there is a simultaneous mgu σ of C against Λ such that
Λ contains the complement of each literal of Cσ

Λ: P (u, u) Q(a, b)

C : ¬P (x, y) ∨ ¬Q(a, z)
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Derivation Rules – Close Example

Close
Λ � Φ, C

Λ � ⊥

if

1. Φ 	= ∅ or C 	= ⊥, and
2. there is a simultaneous mgu σ of C against Λ such that
Λ contains the complement of each literal of Cσ

Λ: P (u, u) Q(a, b)

C : ¬P (x, y) ∨ ¬Q(a, z)

Cσ : ¬P (x, x) ∨ ¬Q(a, b)

σ = { x �→ u, y �→ u, z �→ b }
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Derivation Rules – Close Example

2. satisfied 2. satisfied

Close is applicable

Close
Λ � Φ, C

Λ � ⊥

if

1. Φ 	= ∅ or C 	= ⊥, and
2. there is a simultaneous mgu σ of C against Λ such that
Λ contains the complement of each literal of Cσ

Λ: P (u, u) Q(a, b)

C : ¬P (x, y) ∨ ¬Q(a, z)

Cσ : ¬P (x, x) ∨ ¬Q(a, b)

σ = { x �→ u, y �→ u, z �→ b }
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Derivation Rules – Simplification Rules (1)

Subsume

Propositional level:

First-order level ≈≈≈≈ unit subsumption:

- All variables in context literal L must be universally quantified

- Replace equality by matching

Λ, L � Φ, L ∨ C

Λ, L � Φ
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Derivation Rules – Simplification Rules (2)

Resolve

Propositional level:

First-order level ≈≈≈≈ restricted unit resolution

- All variables in context literal L must be universally quantified

- Replace equality by unification
- The unifier must not modify C

Λ, L � Φ, L ∨ C

Λ, L � Φ, C
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Derivation Rules – Simplification Rules (3)

Compact
Λ, K, L � Φ

Λ, K � Φ

if

1. all variables in K are universally quantified
2. Kσ = L, for some substitution σ
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Derivations and Completeness

¬v � Input clause set
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Derivations and Completeness

¬v � Input clause set

Λ1 � Φ1
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Derivations and Completeness

¬v � Input clause set

Λ1 � Φ1

closed
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Derivations and Completeness

¬v � Input clause set

Λ1 � Φ1

Λ2 � Φ2

Λn � Φn

closed
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Derivations and Completeness

¬v � Input clause set

Λ1 � Φ1

Λ2 � Φ2

Λn � Φn

Φ∞ :=
⋃
i≥0

⋂
j≥i Φj

closed



Instance Based Methods - Tutorial at TABLEAUX 2005

Derivations and Completeness

¬v � Input clause set

Λ1 � Φ1

Λ2 � Φ2

Λn � Φn

Λ∞ :=
⋃
i≥0

⋂
j≥i Λj

Φ∞ :=
⋃
i≥0

⋂
j≥i Φj

closed



Instance Based Methods - Tutorial at TABLEAUX 2005

Derivations and Completeness

¬v � Input clause set

Λ1 � Φ1

Λ2 � Φ2

Λn � Φn

Λ∞ :=
⋃
i≥0

⋂
j≥i Λj

Φ∞ :=
⋃
i≥0

⋂
j≥i Φj

closed

Fairness
Closed tree or open limit tree,
with some branch satisfying:

1. Close not applicable to any Λi
2. For all C ∈ Φ∞ and subst. γ,

"if for some i, Λi 	|= Cγ

then there is j ≥ i

such that Λj |= Cγ

(Use Split to achieve this)

Completeness
Suppose a fair derivation
of an open limit tree

Show that Λ∞ |= Φ∞
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Implementation: Darwin

• „Serious“ Implementation

Part of Master Thesis, continued in Ph.D. project (A. Fuchs)

• (Intended) Applications

• detecting dependent variables in CSP problems

• strong equivalence of logic programs

• Finite countermodels for program verification purposes

• Bernays-Schoenfinkel fragment of autoepistemic logic

• Currently extended:

• Lemma learning

• Equality inference rules [Baumgartner and Tinelli, 2005]

• Written in OCaml, 14K LOC

• User manual, proof tree output (GraphViz)

• Download at  http://goedel.cs.uiowa.edu/Darwin/



FDPLL/ME vs. OSHL

Recall OSHL:

Stepwisely modify I0
Modified interpretation represented as I0(L1, . . . , Lm)
Find next ground instance Cγ by unifying subclause of C against
(L1, . . . , Lm) and guess Herbrand-instantiation of rest clause, so
that I0(L1, . . . , Lm) 6|= Cγ

FDPLL/ME

Initial interpretation I0 is a trival one (e.g. “false everywhere”)

But (L1, . . . , Lm) is a set of first-order literals now

Find next (possibly) non-ground instance Cσ by unifying C against
(L1, . . . , Lm) so that (L1, . . . , Lm) 6|= Cσ
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FDPLL/ME vs. Inst-Gen

FDPLL/ME and Inst-Gen temporarily switch to propositional reasoning.
But:

Inst-Gen (and other two-level calculi)

Use the⊥-version S⊥ of the current clause set S
⇒ Works globally, on clause sets

Flexible: may switch focus all the time – but memory problem (?)

FDPLL/ME (and other one-level calculi)

Use the $-version of the current branch

⇒ Works locally in context of current branch

Not so flexible – but don’t expect memory problems:
FDPLL/ME need not keep any clause instance
DCTP needs to keep clause instances only along current branch
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Applicability/Non-Applicability of IMs

Comparison: Resolution vs. Tableaux vs. IMs

Conclusions from that
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Resolution vs. Tableaux vs. IMs

Consider a transitivity clause P(x, z)←P(x, y)∧P(y, z)

Resolution

Resolution may generate clauses of unbounded length:

P(x, z′) ← P(x, y)∧P(y, z)∧P(z, z′)

P(x, z′′) ← P(x, y)∧P(y, z)∧P(z, z′)∧P(z′, z′′)

- Does not decide function-free clause sets

- Complicated to extract model

+ (Ordered) Resolution very good on some classes, Equality
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Resolution vs. Tableaux vs. IMs

Consider a transitivity clause P(x, z)←P(x, y)∧P(y, z)

Rigid Variables Approaches (Tableaux, Connection Methods)

Have to use unbounded number of variants per clause:

P(x′, z′) ← P(x′, y′)∧P(y′, z′)

P(x′′, z′′) ← P(x′′, y′′)∧P(y′′, z′′)

- Weak redundancy criteria

- Difficult to exploit proof confluence

Usual calculi backtrack more than theoretically necessary

But see [Giese, 2001], [Baumgartner et al., 1999], [Beckert, 2003]

Model Elimination: goal-orientedness compensates drawback
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Difficulty with Rigid Variable Methods

Rigid variable methods “destructively” modify data structure

S: ∀x(P(x)∨Q(x))

¬P(a)

¬P(b)

¬Q(b)

(1) P(X)∨Q(X) (2) P(X)∨Q(X)

¬P(a)

(3) P(a)∨Q(a)

¬P(a)

(5) P(a)∨Q(a)

¬P(a)

P(X ′)∨Q(X ′)

¬P(b)

(7) P(a)∨Q(a)

¬P(a)

P(b)∨Q(b)

¬P(b)

¬Q(b)

Connection method (and tableaux) are proof confluent: no deadends

Difficulty to find fairness criterion due to “destructive” nature

All IMs are non-destructive – no problem here
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Resolution vs. Tableaux vs. IMs

Consider a transitivity clause P(x, z)←P(x, y)∧P(y, z)

Instance Based Methods

May need to generate and keep proper instances of clauses:

P(x, z) ← P(x, y)∧P(y, z)

P(a, z) ← P(a, y)∧P(y, b)

- Cannot use subsumption: weaker than Resolution

- Clauses do not grow in length, no recombination of clauses:

better than Resolution, same as in rigid variables approaches

+ Need not keep variants: better than rigid variables approaches
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Applicability/Non-Applicability of IMs: Conclusions

Suggested applicability for IMs:

Near propositional clause sets

Clause sets without function symbols (except constants)

E.g. Translation from basic modal logics, Datalog

Model computation (sometimes)

Other methods (currently?) better at:

Goal orientation

Equality, theory reasoning

Many decidable fragments (Guarded fragment, two-variable

fragment)
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Open Research Problem

ARM (atomic representation of models) [Gottlob and Pichler, 1998]

ARM: set of atoms. Set of all ground instances is an interpretation

Contexts are stronger than ARMs. E.g., for Λ = {P(u,v),¬P(u,u)}

and ΣF = {a/0, f/1} there is no equivalent ARM

Contexts are equivalent to DIGs (Disjunctions of Implicit

Generalizations) [Fermüller and Pichler, 2005]

Contexts cannot represent certain infinite interpretations, e.g.

minimal models of the clause set

P(x)∨P( f (x)), ¬P(x)∨¬P( f (x))

Instance Based Method based on more powerful model representation?
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Part II: A Closer Look
Disconnection calculus

Theory Reasoning and Equality

Implementations and Techniques

Available Implementations

Proof Procedures

Exploiting SAT techniques
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Disconnection Tableaux
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The Disconnection Calculus(I)

Analytic tableau calculus for first order clause logic

Introduced by J.-P. Billon (1996)

Special characteristics of calculus:

No rigid variables

No variants in tableau

Proof confluence: One proof tree only, no backtracking in search

Saturated branches as indicator of satisfiability

Decision procedure for certain classes of formulae

Related methods: hyper linking, hyper tableaux, first order

Davis-Putnam . . .
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The Disconnection Calculus (II)

Singular inference rule: Linking

Q(x) P(x,b)

R(u, y) ¬P(a, y) S(u,w)

R(x, z)C

D

potentially complementary
literals on path

⇒

Q(x) P(x,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b) S(u′,w′)

R(a, z′)

S(u,w)

R(x, z)C

D

Cσ

Dσ

Concept of ∀-closure of branches

closure by simultaneous instantiation of all variables by the same

constant: path with P(x, y) and ¬P(z, z) is closed
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Singular inference rule: Linking

Q(x) P(x,b)

R(u, y) ¬P(a, y) S(u,w)

R(x, z)C

D

unifier for literals:
{x/a, y/b}

⇒
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The Disconnection Calculus (II)

Singular inference rule: Linking

Q(x) P(x,b)

R(u, y) ¬P(a, y) S(u,w)

R(x, z)C

D

append instances with
substitution {x/a, y/b} to path

⇒

Q(x) P(x,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b) S(u′,w′)

R(a, z′)

S(u,w)

R(x, z)C

D

Cσ

Dσ

Concept of ∀-closure of branches

closure by simultaneous instantiation of all variables by the same

constant: path with P(x, y) and ¬P(z, z) is closed

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 56



The Disconnection Calculus (II)

Singular inference rule: Linking

Q(x) P(x,b)

R(u, y) ¬P(a, y) S(u,w)

R(x, z)C

D

original path closed
new open paths added

⇒

Q(x) P(x,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b)
∗

S(u′,w′)

R(a, z′)

S(u,w)

R(x, z)C

D

Cσ

Dσ

Concept of ∀-closure of branches

closure by simultaneous instantiation of all variables by the same

constant: path with P(x, y) and ¬P(z, z) is closed
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Proof Search in the Disconnection Calculus

Proof process in two phases:

An initial active path through the formula is don’t-care

nondeterministically selected

Using the links contained in the active path, instances of linked

clauses are used to build a tableau

An open tableau path may be selected don’t-care

nondeterministically, it becomes the next active path

Each link can be used only once on a path (explains the name

"disconnection")

Absence of usable links (saturation of a path) indicates satisfiability

of the formula

Only requirement for (strong) completeness: fairness of link selection
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An Example Proof

P(x, z)

P(b, c)

P(a, b)

¬P(a, c)

∨¬P(x, y)∨¬P(y, z)

Input

Clauses
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An Example Proof
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Input
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An Example Proof
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Variant Freeness

Two clauses are variants if they can be obtained from each other by

variable renaming

A tableau is variant-free if no branch contains literals l and k where

the clauses of l and k are variants

All disconnection tableaux are required to be variant-free

Variant-freeness provides essential pruning (weak form of

subsumption)

Vital for model generation

Implies the idea of branch saturation:

A branch is saturated if it cannot be extended in a variant-free manner
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Failed Proof Attempts

Proof attempts may fail - what happens then?
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example: the signs are inverted
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Failed Proof Attempts

Proof attempts may fail - what happens then?

In order to show this, we will change one clause in the previous

example: the signs are inverted

¬P(x, z)

P(b, c)

P(a, b)

¬P(a, c)

∨P(x, y)∨P(y, z)

Input

Clauses

Again, we attempt to find a proof
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A Saturated Open Tableau

¬P(x, z)

¬P(c, b)

¬P(a, b)

P(a, c)

¬P(a, c)
∗

P(a, y)

¬P(a, c)
∗

P(a, b)
∗

P(b, c)

¬P(b, c)
∗

P(b, y)

¬P(b, z)
∗

P(b, y)

¬P(a, z)
∗

P(a, y)

¬P(a, z)
∗

P(a, b)
∗

P(b, z)

P(y, z)

P(y, z)

P(y, c)

P(y, c)

∨P(x, y)∨P(y, z)

Input

Clauses

This open tableau cannot be

closed
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A Saturated Open Tableau

¬P(x, z)

¬P(c, b)

¬P(a, b)

P(a, c)

¬P(a, c)
∗

P(a, y)

¬P(a, c)
∗

P(a, b)
∗

P(b, c)

¬P(b, c)
∗

P(b, y)

¬P(b, z)
∗

P(b, y)

¬P(a, z)
∗

P(a, y)

¬P(a, z)
∗

P(a, b)
∗

P(b, z)
saturated branch

P(y, z)

P(y, z)

P(y, c)

P(y, c)

∨P(x, y)∨P(y, z)

Input

Clauses

This open tableau cannot be

closed

Indicated branch is saturated
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A Saturated Open Tableau

¬P(x, z)

¬P(c, b)

¬P(a, b)

P(a, c)

¬P(a, c)
∗

P(a, y)

¬P(a, c)
∗

P(a, b)
∗

P(b, c)

¬P(b, c)
∗

P(b, y)

¬P(b, z)
∗

P(b, y)

¬P(a, z)
∗

P(a, y)

¬P(a, z)
∗

P(a, b)
∗

P(b, z)
saturated branch

P(y, z)

P(y, z)

P(y, c)

P(y, c)

∨P(x, y)∨P(y, z)

Input

Clauses

This open tableau cannot be

closed

Indicated branch is saturated

Saturated open branch

provides model
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A Saturated Open Tableau

¬P(x, z)

¬P(c, b)

¬P(a, b)

P(a, c)

¬P(a, c)
∗

P(a, y)

¬P(a, c)
∗

P(a, b)
∗

P(b, c)

¬P(b, c)
∗

P(b, y)

¬P(b, z)
∗

P(b, y)

¬P(a, z)
∗

P(a, y)

¬P(a, z)
∗

P(a, b)
∗

P(b, z)
saturated branch

P(y, z)

P(y, z)

P(y, c)

P(y, c)

∨P(x, y)∨P(y, z)

Input

Clauses

This open tableau cannot be

closed

Indicated branch is saturated

Saturated open branch

provides model

How to extract model?

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 61



Instance Preserving Enumerations

Instance Preserving Enumerations: lists of literal occurrences on a

path

Path literals are partially ordered in enumeration (not unique)

Each literal must occur before all more general instances of itself

Instance preserving enumeration of a saturated open branch implies

model

Example: For the open (sub-) branch

¬P(a)

P(x)

¬P(c)

With Herbrand universe {a, b, c,d, e} and enumera-

tion

[¬P(a) ¬P(c) P(x)]

the model implied is {¬P(a),P(b),¬P(c),P(d),P(e)}
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Model Extraction

We extract an instance preserving enumeration for the open branch of

the preceding tableau:

¬P(c, b)

¬P(a, b)

P(a, c)

¬P(a, c)∨P(a, b)∨ P(b, c)

¬P(a, z)∨P(a, b)∨ P(b, z)

¬P(a, c)∨ P(a, y) ∨P(y, c)

¬P(b, c)∨ P(b, y) ∨P(y, c)

¬P(b, z)∨ P(b, y) ∨P(y, z)

¬P(a, z)∨ P(a, y) ∨P(y, z)

¬P(x, z) ∨P(x, y)∨P(y, z)

From which we get the finite Herbrand

model:

{ ¬P(c, b),¬P(a,b),P(a, c),

P(b, c),P(b,a),P(b,b),

P(a,a),¬P(c,a),¬P(c, c) }
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Model Extraction
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the preceding tableau:
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From which we get the finite Herbrand
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{ ¬P(c, b),¬P(a, b),P(a, c),

P(b, c),P(b,a),P(b, b),

P(a,a),¬P(c,a),¬P(c, c) }
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Infinite Herbrand Models

Model extraction also works for infinite Herbrand universes

Given a saturated tableau with open branch B:

P( f ( f (x)))

P(a)

¬P( f ( f ( f (a))))

1

P( f ( f (a)))

Saturation

state

P( f ( f ( f (a))))

¬P( f ( f ( f (a))))
∗

¬P( f (a))

B

Saturation

state

∨¬P(x)P( f (x))∨

1

Input

clauses

S

The enumeration for B

¬P( f ( f ( f (a)))), ¬P( f (a)), P(a), P( f ( f (x)))

implies a finite representation of

an infinite Herbrand model:

{¬P( f ( f ( f (a)))),¬P( f (a)),P(a)},{P( f ( f (s)))}

with the constraint s 6= f (a),

where s ranges over the Her-

brand universe of S.
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Model extraction also works for infinite Herbrand universes

Given a saturated tableau with open branch B:

P( f ( f (x)))

P(a)

¬P( f ( f ( f (a))))

1

P( f ( f (a)))

Saturation

state

P( f ( f ( f (a))))

¬P( f ( f ( f (a))))
∗

¬P( f (a))

B

Saturation

state

∨¬P(x)P( f (x))∨

1

Input

clauses

S

The enumeration for B

¬P( f ( f ( f (a)))), ¬P( f (a)), P(a), P( f ( f (x)))

implies a finite representation of

an infinite Herbrand model:

{¬P( f ( f ( f (a)))),¬P( f (a)),P(a)},{P( f ( f (s)))}

with the constraint s 6= f (a),

where s ranges over the Her-

brand universe of S.
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Completeness

Basic concept: open saturated branch represents partial model

Non-equational case: branch determines path through Herbrand set

non-ground open branch (non-rigid) ground Herbrand set

← →



































.

.

.

← →



































.

.

.

.

.

.

.

.

.

← →



































.

.

.

Closed ground path corresponds to applicable link

⇔ contradicts saturation
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The Saturation Property

Saturated open branch specifies a model (only such a branch)

Model characterised as exception-based representation (EBR)

P( f ( f (x)))

P(a)

¬P( f ( f ( f (a))))

1

P( f ( f (a)))

Saturation

state

P( f ( f ( f (a))))

¬P( f ( f ( f (a))))
∗

¬P( f (a))

Saturation

state

∨¬P(x)P( f (x))∨

1
Input

clauses
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The Saturation Property

Saturated open branch specifies a model (only such a branch)

Model characterised as exception-based representation (EBR)

P( f ( f (x)))

P(a)

¬P( f ( f ( f (a))))

1

P( f ( f (a)))

Saturation

state

P( f ( f ( f (a))))

¬P( f ( f ( f (a))))
∗

¬P( f (a))

Saturation

state

∨¬P(x)P( f (x))∨

1
Input

clauses

Model: {¬P( f ( f ( f (a)))),¬P( f (a)),P(a)} ∪ {P( f ( f (s))) : s 6= f (a)}
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The Saturation Property

Saturated open branch specifies a model (only such a branch)

Model characterised as exception-based representation (EBR)

P( f ( f (x)))

P(a)

¬P( f ( f ( f (a))))

1

P( f ( f (a)))

Saturation

state

P( f ( f ( f (a))))

¬P( f ( f ( f (a))))
∗

¬P( f (a))

Saturation

state

∨¬P(x)P( f (x))∨

1
Input

clauses

EBR for model: {P(a),¬P( f (a)),P( f ( f (x))),¬P( f ( f ( f (a))))}
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An Example for Non-Termination

¬S
P(x)
¬P(x)
Q(x)
¬Q(a)

P(x)

¬P(x)
∗

¬S

Q(a)
∗

¬Q( f (a))

Q( f (a))
∗

¬Q( f ( f (a)))
...

P( f ( f (a)))

P( f (a))

S
∗

∨ S
∨¬S
∨¬Q( f (x))∨P( f (x))

Input

clauses

The above problem is obviously satisfiable (P true, S and Q false)

However, in general, the disconnection calculus does not terminate

Termination fragile, depends on branch selection function
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The Problem

Here, the model is approximated, but not finitely represented

{P(x),¬S,¬Q(a),¬Q( f (a)),¬Q( f ( f (a))),¬Q( f ( f ( f (a)))) . . .}

Observation: linking instances are subsumed by path literal P(x)

But: general subsumption does not work

What can we do?
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Link Blocking

Original idea of model characterisation:

Currently considered branch is seen as an interpretation I

If a literal L is on branch, all instances of L are considered true in I

if a conflict occurs (a link is on the branch), the link is applied and I

is modified

Consequence: Ignore clauses subsumed by I

Concept of temporary link blocking

Path subgoal L will disable all links producing literals K = Lσ

Unblocking of links occurs when a conflict involving L is resolved,

i.e. the interpretation I is changed

Similar to productivity restriction in ME
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Candidate Models

Precise criteria needed to find out whether a literal is blocking

EBRs are lists of branch literals partially sorted according to

respective specialisation

Candidate model (CM): EBR enhanced by link blockings

Blockings require a modified ordering on CMs, not necessarily based

on instantiation

Interpretation of a literal L given by CM-matcher:

the rightmost literal in CM subsuming L or∼ L
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Link Blocking Example

The non-termination example revisited

¬S
P(x)
¬P(x)
Q(x)
¬Q(a)

∨ S
∨¬S
∨¬Q( f (x))∨P( f (x))

Input

clauses

Use of link blocking allows termination

Largely independent of selection functions
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Link Blocking Example

The non-termination example revisited

¬S
P(x)
¬P(x)
Q(x)
¬Q(a)

P(x)

¬P(x)
∗

¬S

S
∗

∨ S
∨¬S
∨¬Q( f (x))∨P( f (x))

Input

clauses

Use of link blocking allows termination

Largely independent of selection functions
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Link Blocking Example

The non-termination example revisited

¬S
P(x)
¬P(x)
Q(x)
¬Q(a)

P(x)

¬P(x)
∗

¬S

P(x) blocked S
∗

∨ S
∨¬S
∨¬Q( f (x))∨P( f (x))

Input

clauses

Use of link blocking allows termination

Largely independent of selection functions
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Link Blocking Example

The non-termination example revisited

¬S
P(x)
¬P(x)
Q(x)
¬Q(a)

P(x)

¬P(x)
∗

¬S

P(x) blocked

Q(a) ¬Q( f (a)) P( f (a))

S
∗

∨ S
∨¬S
∨¬Q( f (x))∨P( f (x))

Input

clauses

Blocked

linking

instance

Use of link blocking allows termination

Largely independent of selection functions
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Link Blocking Example

The non-termination example revisited

¬S
P(x)
¬P(x)
Q(x)
¬Q(a)

P(x)

¬P(x)
∗

¬S

P(x) blocked

Saturation state

S
∗

∨ S
∨¬S
∨¬Q( f (x))∨P( f (x))

Input

clauses

Use of link blocking allows termination

Largely independent of selection functions
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Cyclic Link Blocking

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

For the above clause set, using blockings no refutation can be found

Reason: The blocking relation for the clause set is cyclic

To preserve completeness, blocking cycles must be avoided

Well-founded ordering imposed on link blockings based on branch

position
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Cyclic Link Blocking

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

A

B

two links

For the above clause set, using blockings no refutation can be found

Reason: The blocking relation for the clause set is cyclic

To preserve completeness, blocking cycles must be avoided

Well-founded ordering imposed on link blockings based on branch

position
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Cyclic Link Blocking

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

A

B

blocked

blocked

For the above clause set, using blockings no refutation can be found

Reason: The blocking relation for the clause set is cyclic

To preserve completeness, blocking cycles must be avoided

Well-founded ordering imposed on link blockings based on branch

position
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Cyclic Link Blocking

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

no link

applicable

A

B

blocked

blocked

For the above clause set, using blockings no refutation can be found

Reason: The blocking relation for the clause set is cyclic

To preserve completeness, blocking cycles must be avoided

Well-founded ordering imposed on link blockings based on branch

position
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Cyclic Link Blocking Resolved

We try again, this time with a blocking ordering

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

A

B

Allowing link A to be applied, we initiate a series of blockings and

unblockings that allow to refute the formula
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We try again, this time with a blocking ordering

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

A

B

not blocked

blocked

Allowing link A to be applied, we initiate a series of blockings and

unblockings that allow to refute the formula
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Cyclic Link Blocking Resolved

We try again, this time with a blocking ordering

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

Q(a, b)

¬Q(a, b)
∗

P(a, b)

¬Q(a,b) unblocked

¬P(a, b)
¬P(a,b) unblocked

∗
¬Q(a, b)
∗

¬P(a, b)

Q(a,b) unblocked

P(a, b)
∗

Q(a, b)

P(a,b) unblocked

¬Q(a, b)
¬Q(a,b) unblocked

∗
P(a, b)
∗

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

A

B

not blocked

blocked

Allowing link A to be applied, we initiate a series of blockings and

unblockings that allow to refute the formula
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Cyclic Link Blocking Resolved

We try again, this time with a blocking ordering

Q(a, y)

¬Q(x, b)

P(a, y)

¬P(x, b)

Q(a, b)

¬Q(a, b)
∗

P(a, b)

¬Q(a,b) unblocked

¬P(a, b)
¬P(a,b) unblocked

∗
¬Q(a, b)
∗

¬P(a, b)

Q(a,b) unblocked

P(a, b)
∗

Q(a, b)

P(a,b) unblocked

¬Q(a, b)
¬Q(a,b) unblocked

∗
P(a, b)
∗

∨¬P(a, y)

∨P(x, b)

∨Q(a, y)

∨¬Q(x, b)

Unsatisfiable

clause set

A

B

not blocked

blocked

Allowing link A to be applied, we initiate a series of blockings and

unblockings that allow to refute the formula Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 73



The Basic Idea behind Completeness

Completeness approach as in classical disconnection calculus:

saturated open tableau branch B+

=⇒

consistent path P∗ through Herbrand set

P∗ path literal in each ground clause is determined by CM-matcher

Tricky part: There exists a matched literal in each ground clause

Partial order of CM dynamically evolving with the branch

Acyclicity of blocking relation ensures that partial order exists
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FDPLL/ME vs. DCTP - Conceptual Difference

FDPLL/ME and DCTP use propositional version of current branch to determine
branch closure. But:

DCTP

Branch is closed if it contains both L⊥ and L⊥ (two clauses involved)

Inference rule guided syntactically: find connection among branch literals

n-way branching on literals of clause instance L1∨ · · · ∨ Ln

Can simulate FDPLL/ME binary branching to some degree (folding up)

Need to keep clause instances along current branch

FDPLL/ME

Branch is closed if $-version falsifies some single clause

Inference rule guided semantically: find falsified clause instance

Binary branching on literals L - L taken from falsified clause instance
Can simulate n-way branching clause literals in ground case

Need not keep any clause instance, but better cache certain subclauses
(remainders) to support heuristics
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Theory Reasoning and Equality
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Theory Reasoning (I)

Problem: Given a theory T and a clause set S. Is S T-unsatisfiable?

Verification applications: T is usually a combination of theories

(arithmetic, arrays, records, . . . )

Example: Precondition: x > 0
Program: y := x + 1
Postcondition: y > 1

T is linear integer arithmetic. Show T-validity of

∀x, y ((x > 0)∧ (y = x + 1)→ (y > 0))

More generally, have to show T-validity of a formula ∀x φ(x)
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Theory Reasoning (II)

Popular approch to prove T-validity of ∀x φ(x)

Treat φ(x) as propositional formula

Use DPLL (BDD, Tableaux, . . . ) to get model {L1, . . . , Ln} of φ(x)

Verify that ∀(L1∧ · · · ∧Ln) is T-valid (i.e. Li’s are interpreted again)

The latter can be done for many useful theories (arrays, restricted

arithmetic, integers, lists) and also combinations

Bag of techniques to make this approach efficient
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Theory Reasoning (III)

Notation: ∀x φ(x) is T-valid: |=T ∀x φ(x)

General problem: show T-validity under assumptions Γ:

Γ |=T ∀x φ(x) (Γ could be ∀x ψ(x))

Example (T theory of equality, variables universally quantified):

{ f (h(x))≈ c, h(x)≈ x} |=T f (a) 6≈ c

Propositional reasoning is not enough:

{ f (h(⊥))≈ c, h(⊥)≈⊥} 6|=T f (a) 6≈ c

How to discover required instances f (h(a))≈ c and h(a)≈ a ?
Propositional reasoning doesn’t provide guidance!
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Theory Reasoning (III)

Notation: ∀x φ(x) is T-valid: |=T ∀x φ(x)

General problem: show T-validity under assumptions Γ:

Γ |=T ∀x φ(x) (Γ could be ∀x ψ(x))

Example (T theory of equality, variables universally quantified):

{ f (h(x))≈ c, h(x)≈ x} |=T f (a) 6≈ c

Propositional reasoning is not enough:

{ f (h(⊥))≈ c, h(⊥)≈⊥} 6|=T f (a) 6≈ c

How to discover required instances f (h(a))≈ c and h(a)≈ a ?
Propositional reasoning doesn’t provide guidance!
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Theory Reasoning (IV)

Dilemma:

Could enumerate ground instances or make heuristic choice

(current practice in verification tools, e.g. CVC Lite)

- Inefficient, incomplete

+ Can use existing decision procedures for T

Use theory reasoner to compute T-unifiers

+ Possibly complete and efficient, depending from T

(see below for Inst-Gen with equality)

- Does not exploit existing decision procedures for T,

have to design new theory reasoner

Perhaps the most pressing research problem!
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Theory Reasoning for Equality

Equality is by far the most important and mostly used theory

Unlike other theories handled on the first-order level

Different ways of integrating equality into instance based methods

The easiest form: axiomatic equality handling

Other methods all based on paramodulation:

Superposition-like [Bachmair and Ganzinger, 1994] eq-linking

(disconnection calculus)

Disagreement linking (disconnection calculus)

Unit paramodulation and non-proper demodulation (Inst-Gen)
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Unlike other theories handled on the first-order level

Different ways of integrating equality into instance based methods

The easiest form: axiomatic equality handling
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Superposition-like [Bachmair and Ganzinger, 1994] eq-linking
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Axiomatic Equality Handling

Simplest form of treating equational problems

No special inference rules or adaption of calculus/prover required

Equality axioms added to input clause set

Axioms for reflexivity, transitivity and symmetry

Substitution axioms for all functors and predicate symbols. For

example:

x≈ y→ f (. . . , x, . . .)≈ f (. . . , y, . . .)

for every argument position of every functor f

Inefficient due to redundancy and incompatibility with orderings

“Disconnects” altered terms from their clauses
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Eq-Linking

Additional inference rule: tableau equivalent of paramodulation

. . . s≈ t

. . . L|p(s′) . . .

. . .c

d

=⇒
. . . s≈ t

. . . L|p(s′)

. . . (s≈ t)σ

(s 6≈ t)σ
∗

. . . L|p(t)σ . . .

. . .

. . .

. . .c

d

cσ

d′σ

Negation of applied equation added to modified clause: e-instance
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Eq-Linking

Additional inference rule: tableau equivalent of paramodulation

. . . s≈ t

. . . L|p(s′) . . .

. . .c

d

=⇒
. . . s≈ t

. . . L|p(s′)

. . . (s≈ t)σ

(s 6≈ t)σ
∗

. . . L|p(t)σ . . .

. . .

. . .

. . .c

d

cσ

d′σ

eq-link on path: one side s of equation
and subterm s′ unifiable with unifier σ

Negation of applied equation added to modified clause: e-instance
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Eq-Linking

Additional inference rule: tableau equivalent of paramodulation

. . . s≈ t

. . . L|p(s′) . . .

. . .c

d

=⇒
. . . s≈ t

. . . L|p(s′)

. . . (s≈ t)σ

(s 6≈ t)σ
∗

. . . L|p(t)σ . . .

. . .

. . .

. . .c

d

cσ

d′σ

append instance of equation
and e-instance of overlapped clause

Negation of applied equation added to modified clause: e-instance
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Eq-Linking

Additional inference rule: tableau equivalent of paramodulation

. . . s≈ t

. . . L|p(s′) . . .

. . .c

d

=⇒
. . . s≈ t

. . . L|p(s′)

. . . (s≈ t)σ

(s 6≈ t)σ
∗

. . . L|p(t)σ . . .

. . .

. . .

. . .c

d

cσ

d′σ

expansion literal

Negation of applied equation added to modified clause: e-instance
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Eq-Linking (II)

Overlapping equation and overlapped literal form eq-link

Expansion literals not necessary when eq-linking with unit equations

Reflexivity linking rule required for completeness:

C∨ s 6≈ t

Cσ
where σ is the most general unifier of s and t

Unrestricted application of eq-linking introduces large amount of

redundancy

But: eq-linking also compatible with term orderings

Ordered eq-linking allows destructive rewriting of subgoals
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An Example Proof with Eq-Linking

h(a) 6≈ c

h(e)≈ d

h( f )≈ h(b)

a≈ b

c≈ d

e≈ f

Input

clauses
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Completeness and Equality (I)

Basic concept: open saturated branch represents partial model

Non-equational case: branch determines path through Herbrand set

non-ground open branch (non-rigid) ground Herbrand set
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Completeness and Equality (II)

Now: one ground clause may correspond to many branch e-variants

non-ground open branch (non-rigid) ground Herbrand set
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Branch may pass through different literals in each of these e-variants

One representative for each set of e-variants needs to be selected
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Eager Variable Elimination

Given: clause c with literal l = x 6≈ t (x does not occur in t)

l is a condition for the rest of the clause: x≈ t→ c \ {l}

Eager variable elimination as a deterministic inference rule:

x 6≈ t∨k1∨ . . . ∨kn

k1∨ . . . ∨kn{x/t}
Helps keeping clause sizes down

Care must be taken when eq-linking with unit equations

Preservation of completeness is still an open problem

[Gallier and Snyder, 1989]
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Disagreement Linking

Inspired by RUE-resolution [Digricoli and Harrison, 1986] and lazy

paramodulation [Gallier and Snyder, 1989]

Similar in behaviour to Brand- and STE-modification on the fly

Based on the concept of disagreement sets:

L(s1, . . . , sn) and L(t1, . . . , tn), n≥ 0 terms or literals

Disagreement set: {s1 6≈ t1, . . . , sn 6≈ tn}

Top-level unification of variable terms: disagreement substitution

Eager variable elimination performed on disagreement set
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Disagreement Linking (II)

Inference rule:

. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn) . . .

. . .c

d

=⇒
. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn)

. . . K(s1, . . . , sn)σ . . .

. . .

. . .c

d

cσ
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. . . L(t1, . . . , tn)
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. . .

. . .c

d

cσ

L and K share the
same predicate symbol but
have complementary signs
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Disagreement Linking (II)

Inference rule:

. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn) . . .

. . .c

d

=⇒
. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn)

. . . K(s1, . . . , sn)σ . . .

. . .

. . .c

d

cσ

Some of the si and t j are variables
forming the

disagreement substitution σ
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Disagreement Linking (II)

Inference rule:

. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn) . . .

. . .c

d

=⇒
. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn)

. . . K(s1, . . . , sn)σ . . .

. . .

. . .c

d

cσ

Expand tableau first
by disagreement instance cσ
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Disagreement Linking (II)

Inference rule:

. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn) . . .

. . .c

d

=⇒
. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn)

. . . K(s1, . . . , sn)σ

. . . L(s1, . . . , sn)σ
∗

. . . . . . (si 6≈ ti)σ . . .

. . .

. . .

. . .c

d

cσ

d′σ

Then add altered
disagreement instance d′σ replacing

the terms of L by those of Kσ
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Disagreement Linking (II)

Inference rule:

. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn) . . .

. . .c

d

=⇒
. . . K(s1, . . . , sn)

. . . L(t1, . . . , tn)

. . . K(s1, . . . , sn)σ

. . . L(s1, . . . , sn)σ
∗

. . . . . . (si 6≈ ti)σ . . .

. . .

. . .

. . .c

d

cσ

d′σ

Also, d′σ is augmented
by the disagreement set
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Disagreement Linking (III)

Decomposition rule required for completeness:

f (s1, . . . , sn) 6≈ f (t1, . . . , tn)

s1 6≈ t1∨ . . . ∨ sn 6≈ tn

Also, Imitation rule for disequations of the form x 6= f (x)

Incompatible with term orderings

Disagreement linking cannot simulate full unification

Additional standard linking necessary for instantiating terms

Explicit symmetry handling required

Sometimes improved recognition of e-satisfiability
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Inst-Gen and Equational Reasoning

Recently developed equational reasoning for Inst-Gen

[Ganzinger and Korovin, 2004]

New method maintains separation of instance generation and ground

satisfiability checking

Instance generation not by linking, but by paramodulation rules

Paramodulation performed on selected units

Sound and complete

Various techniques of redundancy elimination available
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Inst-Gen and Equational Reasoning (II)

f.o. clauses

S
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Inst-Gen and Equational Reasoning (II)

f.o. clauses

S

ground clauses

S⊥

⊥ : x̄→⊥
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Inst-Gen and Equational Reasoning (II)

f.o. clauses

S

ground clauses

S⊥

⊥ : x̄→⊥ theorem

proved

S⊥ UnSAT
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Inst-Gen and Equational Reasoning (II)

f.o. clauses

S

ground clauses

S⊥

⊥ : x̄→⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥
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Inst-Gen and Equational Reasoning (II)

f.o. clauses

S

ground clauses

S⊥

⊥ : x̄→⊥ theorem

proved

S⊥ UnSAT

Semantic selection

of literals I⊥ |= L⊥

S⊥ SAT

I⊥ |= S⊥

theorem

unprovable

L 6 ` �

Instance generation

from paramodulation proofs L ` �
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Assessment of Equality Handling Methods

Axiomatic Equality Handling

+ Can be used without modification of prover
- Incompatible with orderings, hopelessly inefficient

Eq-Linking

+ Proven standard technique, compatible with orderings
- Slightly increases clause lengths

Disagreement Linking

+ Due to basicness can sometimes detect satisfiability more easily
- Incompatible with orderings, creates long clauses

Inst-Gen Equational Instance Generation [Ganzinger and Korovin, 2004]

+ Maintains separation of first-order and SAT part
+ Good redundancy elimination, clauses do not grow in length
- Not implemented
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Implementations and Techniques
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Available Implementations

Some implementations of instantiation based methods have been

realised

CLIN-S: ancient implementation of Hyperlinking

LINUS: hyperlinking with unit support (obsolete)

PPI: to our knowledge prototypical implementation

OHSL-U: Ordered Semantic Hyperlinking by Plaisted et al.

DARWIN: Model Evolution prover written in OCaml

DCTP: disconnection calculus tableau prover written in Scheme

Of the implementations named above, DARWIN and DCTP

participated in CASC-J2 (and CASC-20).

Unfortunately, no implementation is available yet for Inst-Gen
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Model Evolution - Darwin’s Proof Procedure (I)

1 function darwin S
2 // input: a clause set S
3 // output: either "unsatisfiable"

4 // or a set of literals encoding a model of S
5 let Context = ∅ // set of literals

6 let L = ¬v // (pseudo) literal

7 //Context∪{L} is the current context

8 let Candidates = set of assert literals consisting of the

9 unit clauses in S
10 try me(S,Context,L,Candidates)

11 catch CLOSED -> "unsatisfiable"

Candidates: the literals eligible for application of assert or of split
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Model Evolution - Darwin’s Proof Procedure (II)

1 function me(S,Context,K,Candidates)

2 let Candidates ′ =

3 add_new_candidates(S,Context,K,Candidates)

4 let S′ = S simplified by Subsume and Resolve

5 let Context ′ = Context ∪ {K} simplified by Compact

6 if Candidates ′ = ∅ then Context ′ // Got a model of S′

7 else

8 let L = select_best(Candidates ′,Context ′)

9 if L is an assert literal then

10 me(S′,Context ′,L,Candidates ′ \ {L}) // assert L
11 else

12 try

13 me(S′,Context ′,L,Candidates ′ \ {L}) // left split on L
14 catch CLOSED ->

15 me(S′,Context ′,L sko
,Candidates ′ \ {L}) // right split on L
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Model Evolution - Darwin’s Proof Procedure (III)

1 function add_new_candidates(S,Context,L,Candidates)

2 adds to Candidates all assert literals from context unifiers involving L
3 and one split literal from each remainder of a context unifier involving L
4 raises the exception CLOSED if it finds a closing context unifier

Similar to semi-naïve evaluation of database rules (delta-iteration).

1 function select_best(Candidates,Context)

2 returns the best assert or split literal in Candidates

To make select_best good and efficient, all theoretically required
remainders are kept in store. See next slide.
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Computing Remainders and Candidates [Baumgartner et al., 2004]

θ1

L

L1

Ln

S1

Sn

Remainder

⊆ Cσ

···
···

···

θn

C

K′· · · · · ·K

K Kθ = Lθ

③ σ = θθ1 · · ·θn
④⑤

② θ
②

K′

θ

①

Candidates

Partial context unifiers

Partial context unifier: mgu of clause literal and context literal
① add literal K to context – ② compute all partial context unifiers θ of K and
clause literals, and store with clause literals – ③ compute all context unifiers
involving θ – ④ determine all remainders – ⑤ select K′ from remainder and
add to candidates (don’t care nondeterminism)
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Selection Heuristics for New Candidates

In decreasing preferrence:

1. Universality (x - universally quantified; u - schematic variable)

P(x) is better than P(u)

2. Remainder Size

P(a) is better than P(b)∨Q(b)

3. Term Weight

P(a) is better than P( f (a))

4. Generation

Prefer literals from remainders derived from elder context literals

Rationale: prefer literals close to the original clause set
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The Main Loop of DCTP

procedure disconnect( clauses )
select_initial_path;
create_links( initial_path ); start_sg := last( initial_path );
solve_subgoal( start_sg, links, initial_path );
print( “Proof”);

procedure solve_subgoal( sg, links, path )
if ( ¬ forall_closed( sg ) ) then

create_new_links( sg );
if ( apply_linking_step( links ) ) then

foreach new_sg ∈ ( new_subgoals )
solve_subgoal( new_sg, links, initial_path ∪ sg );

end
else

print( “Saturation state reached” ); stop;
endif;

endif;
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Picking Up SAT Techniques

Merely a summary of what has been said before

Universal Variables and Unit Propagation

Picked up in OSHL, DCTP and ME with varying realization

Lemma Generation (Learning in SAT)

Local unit lemmas in DCTP

Global lemma possible in ME (work in progress)
In DPLL: lemma clause determined from resolution derivation
associated to closed subtree – idea lifts to ME

Other

Dependency directed backtracking (backjumping, tableau pruning):
a must for any serious prover. . .

DPLL splitting heuristics, randomized restarts – unexplored
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Unit Propagation in SAT

Unit propagation is a fundamental technique for efficient SAT proving

Main technical motivation for Model Evolution calculus (see Part I)

P

¬Q Q

¬P

The current open branch
is indicated in red

Input clauses
...

¬P∨Q∨¬R
...
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Unit Propagation in SAT

Unit propagation is a fundamental technique for efficient SAT proving

Main technical motivation for Model Evolution calculus (see Part I)

P

¬Q

?

Q

¬P

It must be decided over which
variable to branch next

Input clauses
...

¬P∨Q∨¬R
...

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 104



Unit Propagation in SAT

Unit propagation is a fundamental technique for efficient SAT proving

Main technical motivation for Model Evolution calculus (see Part I)

P

¬Q

?

Q

¬P

The path context is used
to count down the length of input clauses

Input clauses
...

¬P∨Q∨¬R
...
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Unit Propagation in SAT

Unit propagation is a fundamental technique for efficient SAT proving

Main technical motivation for Model Evolution calculus (see Part I)

P

¬Q

R ¬R

Q

¬P

In one input clause
only one unmatched literal remains

This literal is used for the next branching

Input clauses
...

¬P∨Q∨¬R
...
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Unit Propagation in SAT

Unit propagation is a fundamental technique for efficient SAT proving

Main technical motivation for Model Evolution calculus (see Part I)

P

¬Q

R
∗

¬P∨Q∨¬R

¬R

Q

¬P

One of the new branches can immediately be closed
The proof search continues effectively

without branching and with an extended path context

Input clauses
...

¬P∨Q∨¬R
...
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Unit Propagation in Disconnection Tableaux

Concept not fully applicable to DC: instantiation influences closure

Alternative: count down links instead of clauses [Stenz, 2005]

Q(x) P(x,b)

R(u, y) ¬P(a, y)

C

D
⇒

Q(x) P(x,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b)

C

D

Cσ

Dσ

Method need not terminate due to new links by new instances

Selection heuristic instead of deciding strategy
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C

D

new open paths are created

⇒

Q(x) P(x,b)

R(u, y) ¬P(a, y)

Q(a) P(a,b)

R(u′,b) ¬P(a,b)
∗

C

D

Cσ

Dσ

Method need not terminate due to new links by new instances

Selection heuristic instead of deciding strategy

Instance Based Methods – Tutorial at TABLEAUX 2005 – p. 105



Unit Propagation in Disconnection Tableaux

Concept not fully applicable to DC: instantiation influences closure

Alternative: count down links instead of clauses [Stenz, 2005]
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D
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Conclusions

Instance Based Methods provide a new angle to tackle problems

Two-level methods able to capitalise on successful SAT technology

Single-level methods successful in their own right

Some SAT techniques are liftable to first-order

Possible topics for future research

Incorporating theory decision procedures

Deciding interesting classes of first-order logic

Comparing calculi (e.g. stepwise simulation or wrt. instance sets)

Improving implementations (more SAT techniques, heuristics, data

structures)
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