Proving Infinite Satisfiability

Peter Baumgartner Joshua Bax

Goal

Theorem Proving in Hierarchic Combinations of Specifications

Background theory linear integer arithmetic

Data structures list axioms/arrays axioms

Definitions length/append/isSorted

Conjecture specific query

"No refutation"

Approaches

First-order proving modulo theories - incomplete - incomplete SMT

does not mean "not entailed"

(Many specialised procedures in particular for arrays)

This

work

Example

Linear integer arithmetic (LIA) Lists over integers $(l \approx \text{nil}) \lor (l \approx \text{cons}(\text{head}(l), \text{tail}(l)))$ $\neg(\text{cons}(k, l) \approx \text{nil})$ $\text{head}(\text{cons}(k, l)) \approx k$ $\text{tail}(\text{cons}(k, l)) \approx l$

The inRange predicate

 $inRange(I, n) \leftrightarrow (I \approx nil \lor (0 \le head(I) < n \land inRange(tail(I), n)))$

⊨ inRange([1,0,5], 6)

 \nvDash inRange([1,0,5], 5)

 $\not\models$ inRange(*I*, *n*) \rightarrow inRange(*I*, *n*-1)

Not directly refutable by Z3, Beagle Easy with our method

Example in Context

- Bugs
- Task is reachability (planning)
- Partial-order reduction analysis: many simple ones

Our Approach

"Disproving by proving"

The goal is to establish $Ax \cup Def \nvDash Con$

- (1) **Suppose Ax is satisfiable (wrt hierarchic interpretations)** This needs to be shown once and for all
- (2) Make sure Ax U Def is satisfiableWe provide a template language for Def's for that
- (3) **Prove** $Ax \cup Def \vDash \neg Con$ by a theorem prover/SMT solver It follows $Ax \cup Def \nvDash Con$ as desired

Proof:

By (2) there is an interpretation *I* such that $I \models Ax \cup Def$ With (3) conclude $I \models \neg Con$, hence $I \nvDash Con$ Together $Ax \cup Def \nvDash Con$

Rest of this talk: (1) - (3) for lists and for arrays

(1) Suppose Ax is satisfiable (Lists)

Satisfiability of list axioms can be shown automatically

```
(I \approx \text{nil}) \lor (I \approx \text{cons}(\text{head}(I), \text{tail}(I)))

\neg(\text{cons}(k, I) \approx \text{nil})

\text{head}(\text{cons}(k, I)) \approx k

\text{tail}(\text{cons}(k, I)) \approx I
```

 $\exists d \text{ head(nil)} \approx d \quad // \text{ required for sufficient completeness}$ tail(nil) $\approx \text{nil} \quad // \text{ required for sufficient completeness}$

Hierarchic superposition terminates with a finite saturation Together with sufficient completeness this entails satisfiability

(1) Suppose Ax is satisfiable (Arrays)

Satisfiability of array axioms can be shown automatically

```
read(write(a, i, x), i) \approx x
read(write(a, i, x), j) \approx read(a, j) \lor i \approx j
read(a, i) \approx read(b, i) \lor a \approx b \quad // \text{ Extensional equality}
read(init(x), i) \approx x \qquad // \text{ Constant arrays}
```

Hierarchic superposition terminates with a finite saturation Together with sufficient completeness this entails satisfiability

(2) Make sure $Ax \cup Def$ is satisfiable - general

Let Σ be a signature (e.g. Σ_{LIST})

Def [admissible definition]

Given:

- op, a new operator not in Σ
- Def(op), a set of $\Sigma \cup \{op\}$ -sentences

(e.g. length) (e.g. length def)

Def(op) is admissible iff every Σ -interpretation I with domain D can be extended to a $\Sigma \cup \{op\}$ -interpretation J with domain D such that $J \models Def(op)$

Justifies stepwise extensions of Ax in a stratified way

- Assume Ax is satisfiable, by (1)
- Build stepwise extension $Ax \cup \{Def(op_1), ..., Def(op_n)\}$ with admissible definitions
- It follows $Ax \cup \{Def(op_1), ..., Def(op_n)\}$ is satisfiable

Example: Extend lists by length, count, inRange, append, ...

(2) Make sure $Ax \cup Def$ is satisfiable - list relations

Given $\Sigma^+ \supseteq \Sigma_{\text{LIST}}$, domain D = LIST, new pred symbol $P \notin \Sigma^+$

Template for admissible definition *Def*(*P*)

```
 \forall k_{\mathbb{Z}} l_{\text{LIST}} \cdot P(k,l) \leftrightarrow 
 I \approx \text{nil} \land B[k] \qquad (Base \ case \ nil) 
 \forall \exists h_{\mathbb{Z}} t_{\text{LIST}} \cdot I \approx \text{cons}(h, t) \land C[k,h,t] \qquad (Base \ case \ cons) 
 \forall \exists h_{\mathbb{Z}} t_{\text{LIST}} \cdot I \approx \text{cons}(h, t) \land D[k,h,t] \land P(k,t) \qquad (Recursion \ case) 
 \text{where } B, \ C \ \text{and} \ D \ \text{are } \Sigma^+ \text{-formulas of the proper arities}
```

Example: *Def*(inRange)

Proposition: templates Def(P) provide admissible definitions

Proof sketch: by induction on LIST define least model J of Def(P) in the \leftarrow direction bottom-up

Because J is the least model it also satisfies the \rightarrow direction \Box

(3) Prove $Ax \cup Def \vDash \neg Con$

List examples

inRange $(n, l) \Leftrightarrow l \approx nil \lor \exists h_{\mathbb{Z}} t_{\text{LIST}} . (l \approx cons(h, t) \land 0 \leq h \land h < n \land inRange(n, t))$

Problem	Beagle	Spass+7	ΓΖ3
inRange(4, cons(1, cons(5, cons(2, nil))))	6.2	0.3	0.2
$n > 4 \Rightarrow inRange(n, cons(1, cons(5, cons(2, nil))))$	7.2	0.3	0.2
$inRange(n, tail(l)) \Rightarrow inRange(n, l)$	3.9	0.3	0.2
$\exists n_{\mathbb{Z}} l_{\text{LIST}} . l \not\approx \text{nil} \land \text{inRange}(n, l) \land n - \text{head}(l) < 1$	2.7	0.3	0.2
$inRange(n, l) \Rightarrow inRange(n - 1, l)$	8.2	0.3	>60
$l \not\approx \operatorname{nil} \wedge \operatorname{inRange}(n, l) \Rightarrow n - \operatorname{head}(l) > 2$	2.8	0.3	0.2
$n > 0 \land \text{inRange}(n, l) \land l' = \text{cons}(n - 2, l) \Rightarrow \text{inRange}(n, l')$	4.5	5.2	0.2

(2) Make sure $Ax \cup Def$ is satisfiable - list functions

Given $\Sigma^+ \supseteq \Sigma_{\text{LIST}}$, domain D = LIST, new fun symbol $f \notin \Sigma^+$

Template for admissible definition Def(f)

$$\begin{split} f(k, \operatorname{nil}) &\approx b[k] \leftarrow B[k] & (\text{Base case}) \\ f(k, \operatorname{cons}(h, t) &\approx c_1[k, h, t, f(k, t)] \leftarrow C_1[k, h, t, f(k, t)] & (\text{Recursion case 1}) \\ & \dots \\ f(k, \operatorname{cons}(h, t) &\approx c_n[k, h, t, f(k, t)] \leftarrow C_n[k, h, t, f(k, t)] & (\text{Recursion case n}) \end{split}$$

where *B*, C_i are Σ^+ -formulas and c_i is a Σ^+ -term of the proper arities

Proposition: templates *Def(f)* provide admissible definitions if all recursion cases are consistent (which is a theorem proving task)

(3) Prove $Ax \cup Def \models \neg Con$

List examples

$length(nil) \approx 0$	append(nil, l) $\approx l$
$length(cons(h, t) \approx 1 + length(t)$	$append(cons(h, t), l) \approx cons(h, append(t, l))$
$count(k, nil) \approx 0$	
$\operatorname{count}(k, \operatorname{cons}(h, t)) \approx \operatorname{count}(k, t) \Leftarrow k \not\approx h$	$in(k, l) \Leftrightarrow count(k, l) > 0$
$\operatorname{count}(k, \operatorname{cons}(h, t)) \approx \operatorname{count}(k, t) + 1 \Leftarrow k \approx h$	

Problem	Beagle	Spass+T	Z3
$length(l_1) \approx length(l_2) \Rightarrow l_1 \approx l_2$	4.3	9.0	0.2
$n \ge 3 \land \text{length}(l) \ge 4 \Rightarrow \text{inRange}(n, l)$	5.4	1.1	0.2
$count(n, l) \approx count(n, cons(1, l))$	2.5	0.3	>60
$count(n, l) \ge length(l)$	2.7	0.3	>60
$l_1 \not\approx l_2 \Rightarrow \operatorname{count}(n, l_1) \not\approx \operatorname{count}(n, l_2)$	2.4	0.8	>60
$length(append(l_1, l_2)) \approx length(l_1)$	2.1	0.3	0.2
$length(l_1) > 1 \land length(l_2) > 1 \Rightarrow length(append(l_1, l_2)) > 4$	37	>60	>60
$in(n_1, l_1) \land \neg in(n_2, l_2) \land l_3 \approx append(l_1, cons(n_2, l_2)) \Rightarrow$	> 60 (6.2)	9.1	>60
$count(n, l_3) \approx count(n, l_1)$	>00 (0.2)		

(2) Make sure $Ax \cup Def$ is satisfiable - array relations

Given $\Sigma^+ \supseteq \Sigma_{ARRAY}$, domain D = ARRAY, new operators $f, P \notin \Sigma^+$

Template for admissible definition *Def*(*P*)

 $\forall k_{\mathbb{Z}} a_{ARRAY} . P(a,k) \Leftrightarrow C[a,k]$

where C is a Σ^+ -formula of the proper arity

Template for admissible definition Def(f)

 $f(a, k) \approx y \leftarrow C_1[a, k, y] \qquad (Case 1)$

 $f(a, k) \approx y \leftarrow C_n[a, k, y] \qquad (Case n)$

where C_i is a Σ^+ -formula of the proper arities

As with lists one has to establish that the cases are consistent

Baumgartner/Bax

Proving Infinite Satisfiability

(3) Prove $Ax \cup Def \vDash \neg Con$

Array examples

$$\operatorname{rev}(a,n) \approx b \Leftarrow \forall i_{\mathbb{Z}} \ . \ 0 \le i \land i < n \land \operatorname{read}(b,i) \approx \operatorname{read}(a,n-(i+1))$$
$$\lor \ ((0 > i \lor i \ge n) \land \operatorname{read}(b,i) \approx \operatorname{read}(a,i))$$

$nRange(a, r, n) \Leftrightarrow$	$distinct(a, n) \Leftrightarrow$
$\forall i . (n \ge i \land i \ge 0)$	$\forall i, j . (n > i \land n > j \land j \ge 0 \land i \ge 0)$
\Rightarrow ($r \ge \operatorname{read}(a, i) \land \operatorname{read}(a, i) \ge 0$)	\Rightarrow read $(a, i) \approx$ read $(a, j) \Rightarrow i \approx j)$
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$	$d(x, i) \land (\neg i, x \land i \land i \land 0 \land x \land d(x, i) \land (\neg i)$

 $\max(a, n) \approx w \Leftarrow \forall i . (n > i \land i \ge 0) \Rightarrow w \ge \operatorname{read}(a, i)) \land (\exists i . n > i \land i \ge 0 \land \operatorname{read}(a, i) \approx w)$

Problem	Beagle	Spass+T	Z3
$n \ge 0 \Rightarrow \text{inRange}(a, \max(a, n), n)$	1.40	0.16	u
distinct(init(n), i)	0.98	0.15	u
read(rev(a, n + 1), 0) = read(a, n))	>60	>60(0.27)	>60
$sorted(a, n) \Rightarrow \neg sorted(rev(a, n), n)$	>60	0.11	0.36
$\exists n_{\mathbb{Z}} . \neg sorted(rev(init(n), m), m)$	>60	0.16	u
$sorted(a, n) \land n > 0 \Rightarrow distinct(a, n)$	2.40	0.17	0.01

Conclusions

Experiments

Run with same prover settings Include all definitions, even not needed ones Works well *on the examples shown* Cannot disprove $\exists n_{\mathbb{Z}} \forall l_{\text{LIST}} \text{length}(\text{cons}(n, l)) \approx 0$

Finite model finders

Cannot use finite model finders, LIST has only infinite models (Injective functions that are not surjective do not admit finite domains)

Satisfiability task

Same thing: to show that $Ax \cup Def \cup \{F\}$ is satisfiable it suffices to prove $Ax \cup Def \models F$

Future work

Implement method in full, integrate into model checker