Proving Infinite Satisfiability

Peter Baumgartner
Joshua Bax

Goal

```
Theorem Proving in Hierarchic Combinations of Specifications
Dis
Background theory
linear integer arithmetic
Data structures
list axioms/arrays axioms
```


Definitions

```
length/append/isSorted
```



```None
```

> "No refutation" does not mean "not entailed"

First-order proving modulo theories - incomplete SMT

- incomplete

Example

Linear integer arithmetic (LIA)
Lists over integers

$$
\begin{aligned}
& (I \approx \operatorname{nil}) \vee(I \approx \operatorname{cons}(\operatorname{head}(I), \text { tail }(I))) \\
& \neg(\operatorname{cons}(k, I) \approx \operatorname{nil}) \\
& \operatorname{head}(\operatorname{cons}(k, I)) \approx k \\
& \operatorname{tail}(\operatorname{cons}(k, I)) \approx I
\end{aligned}
$$

The inRange predicate
inRange $(I, n) \leftrightarrow(I \approx \operatorname{nil} \vee(0 \leq \operatorname{head}(I)<n \wedge \operatorname{inRange}(\operatorname{tail}(I), n)))$
\vDash inRange([1,0,5], 6)
\neq inRange $([1,0,5], 5)$
\neq inRange $(I, n) \rightarrow$ inRange $(I, n-1)$

Not directly refutable by Z3, Beagle Easy with our method

Example in Context

Analysis of dynamical systems

Our Approach

"Disproving by proving"
The goal is to establish $A x \cup \operatorname{Def} \not \equiv$ Con
(1) Suppose $\boldsymbol{A x}$ is satisfiable (wrt hierarchic interpretations) This needs to be shown once and for all
(2) Make sure $\boldsymbol{A x} \cup$ Def is satisfiable We provide a template language for Def's for that
(3) Prove $A x \cup D e f \vDash \neg C o n$ by a theorem prover/SMT solver It follows $A x \cup \operatorname{Def} \not \approx$ Con as desired Proof:
By (2) there is an interpretation I such that $I \vDash A x \cup$ Def With (3) conclude $I \vDash \neg$ Con, hence $I \not \vDash$ Con
Together Axu Def $\not \approx$ Con

> Rest of this talk: (1) - (3) for lists and for arrays

(1) Suppose $A x$ is satisfiable (Lists)

Satisfiability of list axioms can be shown automatically

```
(I \approx nil) \vee (I \approx cons(head(I), tail(I)))
\neg(cons(k,l) \approx nil)
head(cons(k,l)) \approxk
tail(}\operatorname{cons}(k,l))\approx
\existsd.head(nil) \approxd // required for sufficient completeness
tail(nil) \approx nil // required for sufficient completeness
```

Hierarchic superposition terminates with a finite saturation
Together with sufficient completeness this entails satisfiability

(1) Suppose $A x$ is satisfiable (Arrays)

Satisfiability of array axioms can be shown automatically

```
read(write(a,i,x),i)\approxx
read(write(a,i,x),j) \approx read}(a,j)\veei\approx
read(a,i)\not= read(b,i)\veea\approxb // Extensional equality
read(init}(x),i)\approx
    // Constant arrays
```

Hierarchic superposition terminates with a finite saturation Together with sufficient completeness this entails satisfiability

(2) Make sure $A x \cup$ Def is satisfiable - general

Let Σ be a signature
(e.g. $\left.\Sigma_{\text {LIST }}\right)$

Def [admissible definition]

Given:

- op, a new operator not in Σ
- $\operatorname{Def}(o p)$, a set of $\Sigma u\{o p\}$-sentences
(e.g. length)
(e.g. length def)
$\operatorname{Def}(O P)$ is admissible iff
every Σ-interpretation I with domain D can be extended to a $\Sigma u\{o p\}$-interpretation J with domain D such that $J \vDash \operatorname{Def}(o p)$

Justifies stepwise extensions of $A x$ in a stratified way

- Assume $A x$ is satisfiable, by (1)
- Build stepwise extension $A x \cup\left\{\operatorname{Def}\left(o p_{1}\right), \ldots, \operatorname{Def}\left(o p_{n}\right)\right\}$ with admissible definitions
- It follows $A x \cup\left\{\operatorname{Def}\left(o p_{1}\right), \ldots, \operatorname{Def}\left(o p_{n}\right)\right\}$ is satisfiable

Example: Extend lists by length, count, inRange, append, ...

(2) Make sure $A x \cup$ Def is satisfiable - list relations

Given $\Sigma^{+} \supseteq \Sigma_{\text {LIST, }}$ domain $D=$ LIST, new pred symbol $P \notin \Sigma^{+}$
Template for admissible definition $\operatorname{Def}(P)$

```
* k
    l\approx nil ^B[k]
    \vee\exists}\mp@subsup{\boldsymbol{h}}{\mathrm{ Z }}{}\mp@subsup{\textrm{t}}{\mathrm{ LIST }}{}.l|\operatorname{cons}(h,t)\wedgeC[k,h,t
    \vee\exists}\mp@subsup{\mathbf{h}}{Z}{}\mp@subsup{\mathbf{t}}{\mathrm{ LIST }}{}.l|\operatorname{cons}(h,t)\wedgeD[k,h,t]^P(k,t
        (Base case nil)
    (Base case cons)
    (Recursion case)
where B,C and D are \Sigma+
```

Example: $\operatorname{Def}($ inRange $)$
Proposition: templates $\operatorname{Def}(P)$ provide admissible definitions
Proof sketch: by induction on LIST define least model J of $\operatorname{Def}(P)$
in the \leftarrow direction bottom-up
Because J is the least model it also satisfies the \rightarrow direction

(3) Prove $A x \cup D e f \vDash \neg C o n$

List examples

inRange $(n, l) \Leftrightarrow l \approx \operatorname{nil} \vee \exists h_{\mathbb{Z}} t_{\text {LIST }} .(l \approx \operatorname{cons}(h, t) \wedge 0 \leq h \wedge h<n \wedge \operatorname{inRange}(n, t))$

Problem	Beagle		
inRange $(4, \operatorname{cons}(1, \operatorname{cons}(5, \operatorname{cons}(2$, nil $))))$	6.2	0.3	0.2
$n>4 \Rightarrow \operatorname{inRange}(n, \operatorname{cons}(1, \operatorname{cons}(5, \operatorname{cons}(2$, nil $))))$	7.2	0.3	0.2
inRange $(n$, tail $(l)) \Rightarrow \operatorname{inRange}(n, l)$	3.9	0.3	0.2
$\exists n_{\mathbb{Z}} l_{\text {LIST }} . l \not \approx \operatorname{nil} \wedge \operatorname{inRange}(n, l) \wedge n-\operatorname{head}(l)<1$	2.7	0.3	0.2
inRange $(n, l) \Rightarrow \operatorname{inRange}(n-1, l)$	8.2	0.3	>60
$l \not \approx \operatorname{nil} \wedge \operatorname{inRange}(n, l) \Rightarrow n-\operatorname{head}(l)>2$	2.8	0.3	0.2
$n>0 \wedge \operatorname{inRange}(n, l) \wedge l^{\prime}=\operatorname{cons}(n-2, l) \Rightarrow \operatorname{inRange}\left(n, l^{\prime}\right)$	4.5	5.2	0.2

(2) Make sure $A x \cup D e f$ is satisfiable - list functions

Given $\Sigma^{+} \supseteq \Sigma_{\text {LIST, }}$ domain $D=$ LIST, new fun symbol $f \notin \Sigma^{+}$
Template for admissible definition $\operatorname{Def}(f)$

$$
\begin{array}{ll}
f(k, \text { nil }) \approx b[k] \leftarrow B[k] & \text { (Base case) } \\
f\left(k, \operatorname{cons}(h, t) \approx c_{1}[k, h, t, f(k, t)] \leftarrow C_{1}[k, h, t, f(k, t)]\right. & \text { (Recursion case 1) } \\
\cdots & \\
f\left(k, \operatorname{cons}(h, t) \approx c_{n}[k, h, t, f(k, t)] \leftarrow C_{n}[k, h, t, f(k, t)] \quad\right. \text { (Recursion case n) } \\
\text { where } B, C_{i} \text { are } \Sigma^{+} \text {-formulas and } c_{i} \text { is a } \Sigma^{+} \text {-term of the proper arities }
\end{array}
$$

Proposition: templates $\operatorname{Def}(f)$ provide admissible definitions if all recursion cases are consistent (which is a theorem proving task)

(3) Prove $A x \cup D e f \vDash \neg C o n$

List examples

```
    length(nil) \(\approx 0\)
length \((\operatorname{cons}(h, t) \approx 1+\) length \((t)\)
    \(\operatorname{count}(k\), nil) \(\approx 0\)
```

$\operatorname{count}(k, \operatorname{cons}(h, t)) \approx \operatorname{count}(k, t) \Leftarrow k \not \approx h$
$\operatorname{in}(k, l) \Leftrightarrow \operatorname{count}(k, l)>0$
$\operatorname{count}(k, \operatorname{cons}(h, t)) \approx \operatorname{count}(k, t)+1 \Leftarrow k \approx h$

Problem	Beagle	Spass+T $\mathrm{Z3}$	
length $\left(l_{1}\right) \approx \operatorname{length}\left(l_{2}\right) \Rightarrow l_{1} \approx l_{2}$	4.3	9.0	0.2
$n \geq 3 \wedge$ length $(l) \geq 4 \Rightarrow \operatorname{inRange}(n, l)$	5.4	1.1	0.2
$\operatorname{count}(n, l) \approx \operatorname{count}(n, \operatorname{cons}(1, l))$	2.5	0.3	>60
$\operatorname{count}(n, l) \geq$ length (l)	2.7	0.3	>60
$l_{1} \neq l_{2} \Rightarrow \operatorname{count}\left(n, l_{1}\right) \not \approx \operatorname{count}\left(n, l_{2}\right)$	2.4	0.8	>60
length $\left(\operatorname{append}\left(l_{1}, l_{2}\right)\right) \approx \operatorname{length}\left(l_{1}\right)$	2.1	0.3	0.2
length $\left(l_{1}\right)>1 \wedge \operatorname{length}\left(l_{2}\right)>1 \Rightarrow \operatorname{length}\left(\operatorname{append}\left(l_{1}, l_{2}\right)\right)>4$	37	>60	>60
$\operatorname{in}\left(n_{1}, l_{1}\right) \wedge \operatorname{in}\left(n_{2}, l_{2}\right) \wedge l_{3} \approx \operatorname{append}\left(l_{1}, \operatorname{cons}\left(n_{2}, l_{2}\right)\right) \Rightarrow$	$>60(6.2)$	9.1	>60
$\quad \operatorname{count}\left(n, l_{3}\right) \approx \operatorname{count}\left(n, l_{1}\right)$			

(2) Make sure $A x \cup$ Def is satisfiable - array relations

Given $\Sigma^{+} \supseteq \Sigma_{\text {ARRAY, domain }} \mathrm{D}=$ ARRAY, new operators $f, P \notin \Sigma^{+}$
Template for admissible definition $\operatorname{Def}(P)$

```
\forall kZ a arRAY . P(a,k)\LeftrightarrowC[a,k]
where C is a \Sigma '+
```

Template for admissible definition $\operatorname{Def}(f)$

$$
\begin{align*}
& f(a, k) \approx y \leftarrow C_{1}[a, k, y] \quad \text { (Case } 1 \text {) } \tag{Case1}\\
& \ldots \tag{Casen}\\
& f(a, k) \approx y \leftarrow C_{n}[a, k, y] \quad \text { (Case } n \text {) } \\
& \text { where } C_{i} \text { is a } \Sigma^{+} \text {-formula of the proper arities }
\end{align*}
$$

As with lists one has to establish that the cases are consistent

(3) Prove Ax \cup Def \vDash ᄀCon

Array examples

$$
\begin{aligned}
& \begin{array}{ll}
\operatorname{rev}(a, n) \approx b \Leftarrow & \forall i_{\mathbb{Z}} .0 \leq i \wedge i<n \wedge \operatorname{read}(b, i) \approx \operatorname{read}(a, n-(i+1)) \\
& \vee((0>i \vee i \geq n) \wedge \operatorname{read}(b, i) \approx \operatorname{read}(a, i))
\end{array} \\
& \\
& \begin{array}{cc}
\operatorname{inRange}(a, r, n) \Leftrightarrow & \operatorname{distinct}(a, n) \Leftrightarrow \\
\forall i .(n \geq i \wedge i \geq 0) & \forall i, j .(n>i \wedge n>j \wedge j \geq 0 \wedge i \geq 0) \\
\Rightarrow(r \geq \operatorname{read}(a, i) \wedge \operatorname{read}(a, i) \geq 0) & \Rightarrow \operatorname{read}(a, i) \approx \operatorname{read}(a, j) \Rightarrow i \approx j) \\
\max (a, n) \approx w \Leftarrow \forall i .(n>i \wedge i \geq 0) \Rightarrow w \geq \operatorname{read}(a, i)) \wedge(\exists i . n>i \wedge i \geq 0 \wedge \operatorname{read}(a, i) \approx w)
\end{array}
\end{aligned}
$$

Problem	Beagle	Spass+T	Z3
$n \geq 0 \Rightarrow \operatorname{inRange}(a, \max (a, n), n)$	1.40	0.16	u
$\operatorname{distinct}(\operatorname{init}(n), i)$	0.98	0.15	u
$\operatorname{read}(\operatorname{rev}(a, n+1), 0)=\operatorname{read}(a, n))$	>60	$>60(0.27)$	>60
$\operatorname{sorted}(a, n) \Rightarrow \neg \operatorname{sorted}(\operatorname{rev}(a, n), n)$	>60	0.11	0.36
$\exists n_{\mathbb{Z}} \cdot \neg \operatorname{Sorted}(\operatorname{rev}(\operatorname{init}(n), m), m)$	>60	0.16	u
$\operatorname{sorted}(a, n) \wedge n>0 \Rightarrow \operatorname{distinct}(a, n)$	2.40	0.17	0.01

Conclusions

Experiments

Run with same prover settings
Include all definitions, even not needed ones
Works well on the examples shown
Cannot disprove $\exists \mathbf{n}_{\mathbb{Z}} \forall \mathrm{I}_{\text {LIST }}$ length $(\operatorname{cons}(\mathrm{n}, \mathrm{I})) \approx 0$

Finite model finders

Cannot use finite model finders, LIST has only infinite models (Injective functions that are not surjective do not admit finite domains)

Satisfiability task

Same thing: to show that $A x \cup \operatorname{Def} \cup\{F\}$ is satisfiable it suffices to prove $A x \cup D e f \vDash F$

Future work
Implement method in full, integrate into model checker

