
Peter Baumgartner
 Joshua Bax

Proving Infinite Satisfiability

Baumgartner/Bax Proving Infinite Satisfiability

Goal

2

Theorem Proving in Hierarchic Combinations of Specifications

Background theory
linear integer arithmetic

Data structures
list axioms/arrays axioms

Definitions
length/append/isSorted

⊨ Conjecture
specific query

?

Approaches
 First-order proving modulo theories
 SMT
 (Many specialised procedures in particular for arrays)

This
work

Dis

- incomplete
- incomplete

“No refutation”
does not mean
“not entailed”

Baumgartner/Bax Proving Infinite Satisfiability

Example

3

Linear integer arithmetic (LIA)

Lists over integers

 (l ≈ nil) ∨ (l ≈ cons(head(l), tail(l)))
 ¬(cons(k, l) ≈ nil)
 head(cons(k, l)) ≈ k
 tail(cons(k, l)) ≈ l
!
The inRange predicate
 inRange(l, n) ↔ (l ≈ nil ∨ (0 ≤ head(l) < n ∧ inRange(tail(l), n)))

⊨ inRange([1,0,5], 6)

⊭ inRange(l, n) → inRange(l, n-1)
Not directly refutable by Z3, Beagle
Easy with our method

⊭ inRange([1,0,5], 5)

Baumgartner/Bax Proving Infinite Satisfiability

Example in Context [TABLEAUX 2014]

4

Analysis of dynamical systems

inRange(po, n)

po := tail(po)

inRange(po, n) ?

n := n-1

inRange(po, n) ?

po means “purchase order”

Source for non-theorems
 - Bugs
 - Task is reachability (planning)
 - Partial-order reduction analysis: many simple ones

Baumgartner/Bax Proving Infinite Satisfiability

Our Approach
“Disproving by proving”
The goal is to establish Ax ∪ Def ⊭ Con

5

Rest of this talk: (1) - (3) for lists and for arrays

Proof:
 By (2) there is an interpretation I such that I ⊨ Ax ∪ Def
 With (3) conclude I ⊨ ¬Con , hence I ⊭ Con
 Together Ax ∪ Def ⊭ Con □

(1) Suppose Ax is satisfiable (wrt hierarchic interpretations)
 This needs to be shown once and for all

(2) Make sure Ax ∪ Def is satisfiable
 We provide a template language for Def’s for that

(3) Prove Ax ∪ Def ⊨ ¬Con by a theorem prover/SMT solver
 It follows Ax ∪ Def ⊭ Con as desired

Baumgartner/Bax Proving Infinite Satisfiability

(1) Suppose Ax is satisfiable (Lists)

6

Satisfiability of list axioms can be shown automatically

(l ≈ nil) ∨ (l ≈ cons(head(l), tail(l)))
¬(cons(k, l) ≈ nil)
head(cons(k, l)) ≈ k
tail(cons(k, l)) ≈ l

Hierarchic superposition terminates with a finite saturation

∃d . head(nil) ≈ d // required for sufficient completeness
tail(nil) ≈ nil // required for sufficient completeness

Together with sufficient completeness this entails satisfiability

Baumgartner/Bax Proving Infinite Satisfiability

(1) Suppose Ax is satisfiable (Arrays)

7

Satisfiability of array axioms can be shown automatically

read(write(a, i, x), i) ≈ x
read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j

read(a, i) ≉ read(b, i) ∨ a ≈ b // Extensional equality

read(init(x), i) ≈ x // Constant arrays

Hierarchic superposition terminates with a finite saturation
Together with sufficient completeness this entails satisfiability

Baumgartner/Bax Proving Infinite Satisfiability

(2) Make sure Ax ∪ Def is satisfiable - general

8

Let Σ be a signature (e.g. ΣLIST)

Def [admissible definition]
Given:
 - op, a new operator not in Σ (e.g. length)
 - Def(op), a set of Σ∪{op} -sentences (e.g. length def)
Def(op) is admissible iff
every Σ-interpretation I with domain D can be extended to a
Σ∪{op}-interpretation J with domain D such that J ⊨ Def(op)

- Assume Ax is satisfiable, by (1)
- Build stepwise extension Ax ∪ {Def(op1), …, Def(opn)}
 with admissible definitions
- It follows Ax ∪ {Def(op1), …, Def(opn)} is satisfiable

Justifies stepwise extensions of Ax in a stratified way

Example: Extend lists by length, count, inRange, append, …

Baumgartner/Bax Proving Infinite Satisfiability

(2) Make sure Ax ∪ Def is satisfiable - list relations

9

Given Σ+ ⊇ ΣLIST, domain D = LIST, new pred symbol P ∉ Σ+

Template for admissible definition Def(P)

∀ kℤ lLIST . P(k,l) ↔

 l ≈ nil ∧ B[k] (Base case nil)
 ∨ ∃ hℤ tLIST . l ≈ cons(h, t) ∧ C[k,h,t] (Base case cons)
 ∨ ∃ hℤ tLIST . l ≈ cons(h, t) ∧ D[k,h,t] ∧ P(k,t) (Recursion case)

where B, C and D are Σ+-formulas of the proper arities

Example: Def(inRange)
Proposition: templates Def(P) provide admissible definitions

Proof sketch: by induction on LIST define least model J of Def(P)
in the ← direction bottom-up
Because J is the least model it also satisfies the → direction □

Baumgartner/Bax Proving Infinite Satisfiability

(3) Prove Ax ∪ Def ⊨ ¬Con

10

List examplesThis example comes from a case study with the first-order logic model checker from [1].
The inRange predicate is used there to specify lists of “ordered items” handled in a
purchase order process, which must all be in a range 0..N � 1, for some N � 0. The
other examples in this paper are contrived.

The following table lists some sample problems together with the runtimes (in sec-
onds) needed to disprove them with the provers mentioned.2

Problem Beagle Spass+T Z3
inRange(4, cons(1, cons(5, cons(2, nil)))) 6.2 0.3 0.2
n > 4) inRange(n, cons(1, cons(5, cons(2, nil)))) 7.2 0.3 0.2
inRange(n, tail(l))) inRange(n, l) 3.9 0.3 0.2
9 nZ lLIST . l 0 nil ^ inRange(n, l) ^ n � head(l) < 1 2.7 0.3 0.2
inRange(n, l)) inRange(n � 1, l) 8.2 0.3 >60
l 0 nil ^ inRange(n, l)) n � head(l) > 2 2.8 0.3 0.2
n > 0 ^ inRange(n, l) ^ l

0 = cons(n � 2, l)) inRange(n, l0) 4.5 5.2 0.2

We remark that none of these problems are solvable by using any of the provers to
directly establish consistency of the axioms, definitions and the conjecture. Even if
only the(-direction is used, Z3 and Spass+T do not terminate. Because the universally
quantified variables in the conjectures lead to Skolem constants, the resulting clause set
is no longer su�ciently complete (see [3]), and a finite saturation obtained by Beagle
does not allow one to conclude satisfiability.

Functions. Let ⌃+ ◆ ⌃LIST be a signature, s 2 sorts(⌃) and f < ⌃+ a function symbol
with arity Z⇥LIST 7! s. Let Def

f

be a set of (implicitly) universally quantified formulas
of the form below, where k and h are Z-sorted and t is LIST-sorted:

f (k, nil) ⇡ b[k](B[k] (f0)
f (k, cons(h, t)) ⇡ c1[k, h, t, f (k, t)](C1[k, h, t, f (k, t)] (f1)

...

f (k, cons(h, t)) ⇡ c

n

[k, h, t, f (k, t)](C

n

[k, h, t, f (k, t)] (f
n

)

where B is a ⌃+-formula of arity Z, each C

i

is a ⌃+-formula of arity Z⇥Z⇥ LIST⇥ s, b

is a ⌃+-term of arity Z 7! s, and each c

i

is a ⌃+-term with arity Z ⇥ Z ⇥ LIST ⇥ s 7! s.

Lemma 3.2. Let D be a ⌃+-domain with DLIST = LIST. If for all 1 i < j n the

formula

8 kZ hZ tLIST x

s

.C
i

[k, h, t, x] ^C

j

[k, h, t, x]) c

i

[k, h, t, x] ⇡ c

j

[k, h, t, x]

is valid in all ⌃+-interpretations with domain D then Def
f

is an admissible definition

of f wrt. ⌃+ and D.

2 Here and below, Beagle has been run with “cautious simplification on” and “ordinary vari-
ables on”; Z3, version 4.3.1 with the options ”pull-nested-quantifiers”, “mbqi” and “macro-
finder” on; SPASS+T used Yices as a theory solver. All timings obtained on reasonable
recent computer hardware. The input problems are available on the Beagle website http:
//users.cecs.anu.edu.au/

˜

baumgart/systems/beagle/.

Lemma 3.1. Let D be a ⌃+-domain with DLIST = LIST. Then Def
P

is an admissible

definition of P wrt. ⌃+ and D.

Proof. Briefly, the proof proceeds by constructing a canonical (minimal) model of the
(-direction of Def

P

, which is also always a model of the)-direction. From a logic-
programming angle, the user could as well give only the(-direction of Def

P

, then the
system can add the completion ()-direction) for disproving purposes.

We assume Interpretations include a valuation component for variables. We write
I[x 7!d] to indicate an update for the variable x to the domain element d.

Let I be a ⌃+-interpretation with domain D. We have to show that I can be expanded
to a (⌃+ [{P})-interpretation I

0 = I [I(P), such that I

0 |= Def
P

.
The definition of I(P) utilizes transfinite induction, and we need several orderings

for that. Let ⌫Z be a (any) well-ordering on the integers and ⌫ its extension to the
quasi-lexicographic ordering on LIST.1 Because ⌫Z is well-founded and total, ⌫ is
well-founded and total, too (this is well-known). Let � denote the strict subset of ⌫.

Next, we define an ordering ⌫
P

on pairs over integers and finite lists over integers
as (k

1

, l
1

) ⌫
P

(k
2

, l
2

) i↵ l
1

� l
2

or else l
1

= l
2

and k
1

⌫Z k
2

. Notice that ⌫
P

is also total
and well-founded. Let �

P

denote the strict subset of ⌫
P

.
Let (k, l) 2 Z ⇥ LIST be chosen arbitrarily. We need to decide whether to include

(k, l) in I

0(P) or not, that is, whether to make I

0(P)(k, l) true or false, respectively. We
do this by evaluating the body of Def

P

, which resorts to evaluating smaller elements
only.

More formally, for a given pair (k, l) we define subsets ✏
P

(k, l) and I(P)(k,l) of Z ⇥
DLIST. Assume that ✏

P

(k0, l0) has already been defined for all (k0, l0) 2 Z ⇥ DLIST with
(k, l) �

P

(k0, l0). Where I(P)(k,l) =
S

(k,l)�
P

(k0,l0) ✏P(k0, l0) define

✏
P

(k, l) = {(k, l)} if

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

l = nil and I[k 7!k] |= B[k] or

l = cons(h, t) and I[k 7!k,h 7!h,t 7!t] |= C[k, h, t],
for some h 2 Z and t 2 DLIST or

l = cons(h, t), I[k 7!k,h 7!h,t 7!t] |= D[k, h, t] and
(I [I(P)(k,l))[k 7!k,t 7!t] |= P(k, t),

for some h 2 Z and t 2 DLIST

In all other cases define ✏
P

(k, l) = ;. Finally define I(P) =
S

(k,l) ✏P(k, l).
Notice that the conditions in the definition of ✏

P

(k, l) are all well-defined. In partic-
ular, we have (k, l) �

P

(k, t) in the last case. With the definition of I(P) it is straight-
forward to show (I [I(P)) |= Def

P

(assume a �
P

-minimal pair (k, l) under which Def
P

evaluates to false in I [I(P) and lead this to a contradiction). ut

Example. Let inRange : Z ⇥ LIST be a predicate symbol. Consider the extension of
AxLIST with the following (admissible) definition for P (the free variables are universally
quantified with the obvious sorts).

inRange(n, l), l ⇡ nil _ 9 hZ tLIST . (l ⇡ cons(h, t) ^ 0 h ^ h < n ^ inRange(n, t))
1 A quasi-lexicographic ordering, or shortlex ordering, compares firstly lists by their length, so

that nil comes first, and then compares lists of the same length lexicographically.

Baumgartner/Bax Proving Infinite Satisfiability

(2) Make sure Ax ∪ Def is satisfiable - list functions

11

Given Σ+ ⊇ ΣLIST, domain D = LIST, new fun symbol f ∉ Σ+

Template for admissible definition Def(f)

f(k, nil) ≈ b[k] ← B[k] (Base case)
f(k, cons(h, t) ≈ c1[k, h, t, f(k, t)] ← C1[k, h, t, f(k, t)] (Recursion case 1)

 …
f(k, cons(h, t) ≈ cn[k, h, t, f(k, t)] ← Cn[k, h, t, f(k, t)] (Recursion case n)

!
where B, Ci are Σ+-formulas and ci is a Σ+-term of the proper arities

Proposition: templates Def(f) provide admissible definitions
if all recursion cases are consistent (which is a theorem proving task)

Baumgartner/Bax Proving Infinite Satisfiability

(3) Prove Ax ∪ Def ⊨ ¬Con

12

List examples

Proof. The proof of Lemma 3.2 uses the same model construction technique as the
proof of Lemma 3.1. Totality is obtained by interpreting f on an argument tuple such
that none of the conditions f0 to f

n

holds true by an arbitrary domain element. The
condition in the lemma statement enforces right-uniqueness (functionality). ut

The condition in the statement of Lemma 3.2 is needed to make sure that all cases (f
i

)
and (f

j

) for i , j are consistent. For example, for f(cons(h, t)) ⇡ 1 (h ⇡ 1 and
f(cons(h, t)) ⇡ a (h ⇡ 1 + a this is not the case. Indeed, 8 hZ . h ⇡ 1 ^ h ⇡ 1 + a)
1 ⇡ a is not valid. Notice that establishing the condition is a theorem proving task,
which fits well with our method. In the examples below it is trivial.

Example. Let length : LIST 7! Z, count : Z ⇥ LIST 7! Z, append : LIST ⇥ LIST 7!
LIST and in : Z⇥LIST be operators. Consider the extension of AxLIST with the following
(admissible) definitions, in the given order.

length(nil) ⇡ 0 append(nil, l) ⇡ l

length(cons(h, t) ⇡ 1 + length(t) append(cons(h, t), l) ⇡ cons(h, append(t, l))
count(k, nil) ⇡ 0

count(k, cons(h, t)) ⇡ count(k, t)(k 0 h in(k, l), count(k, l) > 0
count(k, cons(h, t)) ⇡ count(k, t) + 1(k ⇡ h

Here are some sample conjectures together with the times for disproving them.3

Problem Beagle Spass+T Z3
length(l1) ⇡ length(l2)) l1 ⇡ l2 4.3 9.0 0.2
n � 3 ^ length(l) � 4) inRange(n, l) 5.4 1.1 0.2
count(n, l) ⇡ count(n, cons(1, l)) 2.5 0.3 >60
count(n, l) � length(l) 2.7 0.3 >60
l1 0 l2) count(n, l1) 0 count(n, l2) 2.4 0.8 >60
length(append(l1, l2)) ⇡ length(l1) 2.1 0.3 0.2
length(l1) > 1 ^ length(l2) > 1) length(append(k, l)) > 4 37 >60 >60
in(n1, l1) ^ ¬in(n2, l2) ^ l3 ⇡ append(l1, cons(n2, l2)))

count(n, l3) ⇡ count(n, l1)
>60 (6.2) 9.1 >60

4 Arrays

The signature ⌃ARRAY consist of sorts ARRAY and Z and the operators read : ARRAY⇥
Z 7! Z, write : ARRAY ⇥ Z ⇥ Z 7! ARRAY, and init : Z 7! ARRAY. The array axioms

AXARRAY follow:

read(write(a, i, x), i) ⇡ x read(a, i) ⇡ read(b, i)) a ⇡ b

read(write(a, i, x), j) ⇡ read(a, j) _ i ⇡ j read(init(x), i) ⇡ x

3 The time of 6.2 seconds for the last problem is with “ordinary variables o↵”.

Proof. The proof of Lemma 3.2 uses the same model construction technique as the
proof of Lemma 3.1. Totality is obtained by interpreting f on an argument tuple such
that none of the conditions f0 to f

n

holds true by an arbitrary domain element. The
condition in the lemma statement enforces right-uniqueness (functionality). ut

The condition in the statement of Lemma 3.2 is needed to make sure that all cases (f
i

)
and (f

j

) for i , j are consistent. For example, for f(cons(h, t)) ⇡ 1 (h ⇡ 1 and
f(cons(h, t)) ⇡ a (h ⇡ 1 + a this is not the case. Indeed, 8 hZ . h ⇡ 1 ^ h ⇡ 1 + a)
1 ⇡ a is not valid. Notice that establishing the condition is a theorem proving task,
which fits well with our method. In the examples below it is trivial.

Example. Let length : LIST 7! Z, count : Z ⇥ LIST 7! Z, append : LIST ⇥ LIST 7!
LIST and in : Z⇥LIST be operators. Consider the extension of AxLIST with the following
(admissible) definitions, in the given order.

length(nil) ⇡ 0 append(nil, l) ⇡ l

length(cons(h, t) ⇡ 1 + length(t) append(cons(h, t), l) ⇡ cons(h, append(t, l))
count(k, nil) ⇡ 0

count(k, cons(h, t)) ⇡ count(k, t)(k 0 h in(k, l), count(k, l) > 0
count(k, cons(h, t)) ⇡ count(k, t) + 1(k ⇡ h

Here are some sample conjectures together with the times for disproving them.3

Problem Beagle Spass+T Z3
length(l1) ⇡ length(l2)) l1 ⇡ l2 4.3 9.0 0.2
n � 3 ^ length(l) � 4) inRange(n, l) 5.4 1.1 0.2
count(n, l) ⇡ count(n, cons(1, l)) 2.5 0.3 >60
count(n, l) � length(l) 2.7 0.3 >60
l1 0 l2) count(n, l1) 0 count(n, l2) 2.4 0.8 >60
length(append(l1, l2)) ⇡ length(l1) 2.1 0.3 0.2
length(l1) > 1 ^ length(l2) > 1) length(append(l1, l2)) > 4 37 >60 >60
in(n1, l1) ^ ¬in(n2, l2) ^ l3 ⇡ append(l1, cons(n2, l2)))

count(n, l3) ⇡ count(n, l1)
>60 (6.2) 9.1 >60

4 Arrays

The signature ⌃ARRAY consist of sorts ARRAY and Z and the operators read : ARRAY⇥
Z 7! Z, write : ARRAY ⇥ Z ⇥ Z 7! ARRAY, and init : Z 7! ARRAY. The array axioms

AXARRAY follow:

read(write(a, i, x), i) ⇡ x read(a, i) ⇡ read(b, i)) a ⇡ b

read(write(a, i, x), j) ⇡ read(a, j) _ i ⇡ j read(init(x), i) ⇡ x

3 The time of 6.2 seconds for the last problem is with “ordinary variables o↵”.

Baumgartner/Bax Proving Infinite Satisfiability

(2) Make sure Ax ∪ Def is satisfiable - array relations

13

Given Σ+ ⊇ ΣARRAY, domain D = ARRAY, new operators f,P ∉ Σ+

Template for admissible definition Def(P)

∀ kℤ aARRAY . P(a,k) ⇔ C[a,k]

where C is a Σ+-formula of the proper arity

f(a, k) ≈ y ← C1[a, k, y] (Case 1)

 …
f(a, k) ≈ y ← Cn[a, k, y] (Case n)
where Ci is a Σ+-formula of the proper arities

Template for admissible definition Def(f)

As with lists one has to establish that the cases are consistent

Baumgartner/Bax Proving Infinite Satisfiability

(3) Prove Ax ∪ Def ⊨ ¬Con

14

Array examples

With the axiom read(init(x), i) ⇡ x, a term init(t) represents an array that is initialized
everywhere with t. As with the list axioms, the satisfiability of the array axioms can be
established automatically with the Beagle prover by means of a finite saturation.

Relations. Let ⌃+ ◆ ⌃ARRAY be a signature and P < ⌃+ a new predicate symbol with
arity Z ⇥ ARRAY. Let Def

P

be a formula of the form 8 kZ xARRAY . P(k, x) , C[k, x],
where C is a ⌃+-formula with arity Z ⇥ ARRAY.

This is a simpler definition than that for LIST, as it does not admit recursion with
the new operator P. Of course, this is balanced by the strength of the read operator for
arrays. Using it we can easily define useful predicates without recursion. For example
the sorted predicate defines arrays in which the first N elements are sorted in increasing
order: sorted(a, n), (0 i ^ i < j ^ j < n)) read(a, i) read(a, j).

Lemma 4.1. Def
P

is an admissible definition of P wrt. ⌃+ and D.

Proof. This must be so, since for any ⌃+-interpretation I over D and any x, k, I provides
an evaluation of �[k, x] and so the obvious interpretation I(P) for ⌃+ [{P} can be
defined. ut

Functions. Let ⌃+ ◆ ⌃ARRAY be a signature, s 2 sorts(⌃) and f < ⌃+ a function symbol
with arity Z ⇥ ARRAY 7! s. Let Def

f

be a set of (implicitly) universally quantified
formulas of the form below, where k is Z-sorted, a is ARRAY-sorted and y is s-sorted:

f (a, k) ⇡ y(C1[a, k, y] (f1)
...

f (a, k) ⇡ y(C

n

[a, k, y] (f
n

)

where each C

i

is a ⌃+-formula of arity ARRAY ⇥ Z ⇥ s. Note the di↵erences between
the LIST version and this definition. Here we do not allow recursion- each C

i

is strictly
over the signature ⌃+ and, instead of a term c

i

we have a universally quantified variable
y as the evaluation of f . While some functions on arrays are di�cult or impossible
to express in this way (for example, the sum of the first N elements of an array), many
other interesting functions fit this framework. Consider the function rev : ARRAY⇥Z 7!
ARRAY that returns a copy of an array with the order of the first N elements reversed:

rev(a, n) ⇡ b(8 iZ . 0 i ^ i < n ^ read(b, i) ⇡ read(a, n � (i + 1))
_ ((0 > i _ i � n) ^ read(b, i) ⇡ read(a, i))

Lemma 4.2. Let D be a ⌃+-domain. If, for all 1 i j n the formula

C

i

[a, k, y1] ^C

j

[a, k, y2]) y1 ⇡ y2

is valid in all ⌃+-interpretations with domain D, then Def
f

is an admissible definition

of f wrt. ⌃+ and D.

Proof. Assume that the above condition is met and that I is a ⌃+ interpretation over
D. For this particular I(f), let f be a function which maps a tuple of domain elements

x to a domain element y of the correct sort such that I |= C

i

[x, y] for some i or to
some arbitrary d 2 D of the correct sort if no such i and y exist. Since each C

i

is a ⌃+
formula, it has an evaluation in I and by assumption any satisfying y is unique up to
sort equivalence. Where an arbitrary element is selected no contradiction arises since
I(f) 6|= f (x) = d) C[x, d]. Thus, Def

f

is an admissible definition for f . ut

Examples. Let the operators inRange : ARRAY ⇥ Z ⇥ Z, max, distinct be defined as
follows (sorted and rev are as defined previously):

inRange(a, r, n), distinct(a, n),
8 i . (n � i ^ i � 0) 8 i, j . (n > i ^ n > j ^ j � 0 ^ i � 0)
) (r � read(a, i) ^ read(a, i) � 0)) read(a, i) ⇡ read(a, j)) i ⇡ j)

max(a, n) ⇡ w(8 i . (n > i ^ i � 0)) w � read(a, i)) ^ (9 i . n > i ^ i � 0 ^ read(a, i) ⇡ w)

Here are some sample conjectures together with the times for disproving them. 4

Note that u indicates termination with a status “unknown”.

Problem Beagle Spass+T Z3
n � 0) inRange(a,max(a, n), n) 1.40 0.16 u
distinct(init(n), i) 0.98 0.15 u
read(rev(a, n + 1), 0) = read(a, n)) >60 >60(0.27) >60
distinct(a, n)) distinct(rev(a, n)) >60 0.11 0.36
9 nZ .¬sorted(rev(init(n),m),m) >60 0.16 u
sorted(a, n) ^ n > 0) distinct(a, n) 2.40 0.17 0.01

In addition, SPASS+T, Beagle and Z3 were used to prove the functionality condition
in Lemma 4.2 for the max and rev operators. All provers verified the condition for max
but only SPASS+T and Z3 verified that for rev.

5 Conclusions

The aim of this work is to provide a reasonably expressive language (in practical terms)
that allows one to specify properties of data structures under consideration, like lists
and arrays, and that supports disproving by existing theorem provers. The main idea
is to capitalize on the strengths of these systems in theorem proving and use these for
solving (appropriately phrased)disproving problems, instead of relying on their model-
building capabilities. The latter, direct approach does not work well in the context of
(integer) background theories: both saturation based and SMT methods are inherently
incomplete, and so non-provability does not entail non-validity. See [3] for further de-
tails under which complete theorem proving is possible.

We gave some example problems and tested them with the theorem provers SPASS+T,
Beagle and Z3. These examples are all non-solvable with the direct approach and solv-
able with our approach. All of them could be solved, and in short time. In general, the

4 SPASS+T used Yices as a theory solver. The time of 0.27s in the third problem is obtained by
excluding the inRange definition.

x to a domain element y of the correct sort such that I |= C

i

[x, y] for some i or to
some arbitrary d 2 D of the correct sort if no such i and y exist. Since each C

i

is a ⌃+
formula, it has an evaluation in I and by assumption any satisfying y is unique up to
sort equivalence. Where an arbitrary element is selected no contradiction arises since
I(f) 6|= f (x) = d) C[x, d]. Thus, Def

f

is an admissible definition for f . ut

Examples. Let the operators inRange : ARRAY ⇥ Z ⇥ Z, max, distinct be defined as
follows (sorted and rev are as defined previously):

inRange(a, r, n), distinct(a, n),
8 i . (n � i ^ i � 0) 8 i, j . (n > i ^ n > j ^ j � 0 ^ i � 0)
) (r � read(a, i) ^ read(a, i) � 0)) read(a, i) ⇡ read(a, j)) i ⇡ j)

max(a, n) ⇡ w(8 i . (n > i ^ i � 0)) w � read(a, i)) ^ (9 i . n > i ^ i � 0 ^ read(a, i) ⇡ w)

Here are some sample conjectures together with the times for disproving them. 4

Note that u indicates termination with a status “unknown”.

Problem Beagle Spass+T Z3
n � 0) inRange(a,max(a, n), n) 1.40 0.16 u
distinct(init(n), i) 0.98 0.15 u
read(rev(a, n + 1), 0) = read(a, n)) >60 >60(0.27) >60
sorted(a, n)) ¬sorted(rev(a, n), n) >60 0.11 0.36
9 nZ .¬sorted(rev(init(n),m),m) >60 0.16 u
sorted(a, n) ^ n > 0) distinct(a, n) 2.40 0.17 0.01

In addition, SPASS+T, Beagle and Z3 were used to prove the functionality condition
in Lemma 4.2 for the max and rev operators. All provers verified the condition for max
but only SPASS+T and Z3 verified that for rev.

5 Conclusions

The aim of this work is to provide a reasonably expressive language (in practical terms)
that allows one to specify properties of data structures under consideration, like lists
and arrays, and that supports disproving by existing theorem provers. The main idea
is to capitalize on the strengths of these systems in theorem proving and use these for
solving (appropriately phrased)disproving problems, instead of relying on their model-
building capabilities. The latter, direct approach does not work well in the context of
(integer) background theories: both saturation based and SMT methods are inherently
incomplete, and so non-provability does not entail non-validity. See [3] for further de-
tails under which complete theorem proving is possible.

We gave some example problems and tested them with the theorem provers SPASS+T,
Beagle and Z3. These examples are all non-solvable with the direct approach and solv-
able with our approach. All of them could be solved, and in short time. In general, the

4 SPASS+T used Yices as a theory solver. The time of 0.27s in the third problem is obtained by
excluding the inRange definition.

Baumgartner/Bax Proving Infinite Satisfiability

Conclusions

15

Experiments
 Run with same prover settings
 Include all definitions, even not needed ones
 Works well on the examples shown
 Cannot disprove ∃ nℤ ∀ lLIST length(cons(n, l)) ≈ 0
!
Finite model finders
 Cannot use finite model finders, LIST has only infinite models
 (Injective functions that are not surjective do not admit finite domains)
!
Satisfiability task
 Same thing: to show that Ax ∪ Def ∪ { F } is satisfiable
 it suffices to prove Ax ∪ Def ⊨ F
!
Future work
 Implement method in full, integrate into model checker

