The Model Evolution Calculus and an Application to Ontological Reasoning

Peter Baumgartner Max-Planck-Institute for Informatics Saarbrücken,Germany

Joint work with Cesare Tinelli, U Iowa

Background – Instance Based Methods

- Model Evolution is related to Instance Based Methods
 - Ordered Semantic Hyper Linking [Plaisted et al]
 - Primal Partial Instantiation [Hooker et al]
 - Disconnection Method [Billon], DCTP [Letz&Stenz]
 - Inst-Gen [Ganzinger&Korovin]
 - First-Order DPLL [B.]
- Principle: Reduce proof search in first-order (clausal) logic to propositional logic in an "intelligent" way
- Different to Resolution, Model Elimination,... (Pro's and Con's)

Background - DPLL

- The best modern SAT solvers (satz, MiniSat, zChaff, Berkmin,...) are based on the Davis-Putnam-Logemann-Loveland procedure [DPLL 1960-1963]
- Can DPLL be lifted to the first-order level? Can we combine
 - successful SAT techniques
 (unit propagation, backjumping, learning,...)
 - successful first-order techniques?
 (unification, subsumption, ...)?
- Model Evolution (ME) and its predecessor First-Order DPLL do so
- ME different to Resolution, Tableaux and Model Elimination but related to "Instance Based Methods"

DPLL procedure

Input: Propositional clause set **Output:** Model or "unsatisfiable"

Algorithm components:

- Propositional semantic tree enumerates interpretations
- Simplification
- Split
- Backtracking

Lifting to first-order logic?

 $\{A, B\} \stackrel{?}{\models} \neg A \lor \neg B \lor C \lor D, \dots$ No, split on C: $\{A, B, C\} \models \neg A \lor \neg B \lor C \lor D, \dots$

A First-Order Davis-Putnam Procedure and its Application to Ontological Reasoning

Model Evolution as First-Order DPLL

Lifing of semantic tree data structure and derivation rules to first-order

Input: First-order clause set Output: Model or "unsatisfiable" if termination

Algorithm components:

- First-order semantic tree enumerates interpretations
- Simplification
- Split
- Backtracking

$$\{\mathsf{P}(\mathsf{a},\mathsf{v}),\neg\mathsf{P}(\mathsf{a},\mathsf{b})\} \stackrel{?}{\models} \mathsf{Q}(\mathsf{x},\mathsf{y}) \lor \mathsf{P}(\mathsf{x},\mathsf{y})$$

Interpretation induced by a branch?

Interpretation Induced by a Branch

A branch literal specifies the truth value of its ground instances unless there is a more specific branch literal with opposite sign \neg_{V}

Branch:

 $\{\neg v, P(a, z), \neg P(a, b)\}$

Induced Interpretation true: P(a, a)false: P(a, b), Q(a, b)

How to determine Split literal? Calculus?

$$\begin{cases} \neg v, P(a, v), \neg P(a, b) \} \stackrel{?}{\models} Q(x, y) \lor P(x, y) \\ \text{No, because} \quad \{ \neg v, P(a, v), \neg P(a, b) \} \not\models Q(a, b) \lor P(a, b) \\ \Rightarrow \quad \text{Split with } Q(a, b) \text{ to satisfy } P(a, b) \lor Q(a, b) \end{cases}$$

Model Evolution Calculus

- Branches and clause sets may **shrink** as the derivation proceeds
- Such dynamics is best modeled with a sequent style calculus:

- Derivation Rules
 - To simplify the clause set Φ , to simplify the context Λ
 - Splitting
 - Close

Derivation Rules – Simplified (1)

Split
$$\frac{\Lambda \vdash \Phi, C \lor L}{\Lambda, L\sigma \vdash \Phi, C \lor L}$$
if

1.
$$\sigma$$
 is a simultaneous mgu of $C \lor L$ against Λ ,
2. neither $L\sigma$ nor $\overline{L}\sigma$ is contained in Λ , and
3. $L\sigma$ contains no variables (parameters OK)
 $\Lambda: P(u, u) Q(v, b)$
 $C \lor L: \neg P(x, y) \lor \neg Q(a, z) \qquad \sigma = \{x \mapsto u, y \mapsto u, y \mapsto u, y \mapsto u, z \mapsto b\}$
 $(C \lor L)\sigma: \neg P(x, x) \lor \neg Q(a, b)$
2. violated 2. satisfied
 $L\sigma = \neg Q(a, b)$ is admissible for Split

Derivation Rules – Simplified (2)

Close
$$\frac{\Lambda \vdash \Phi, C}{\Lambda \vdash \bot}$$

if

1. $\Phi \neq \emptyset$ or $C \neq \bot$

2. there is a simultaneous mgu σ of C against Λ such that Λ contains the complement of each literal of C σ

Close is applicable

A First-Order Davis-Putnam Procedure and its Application to Ontological Reasoning

Derivation Rules – Simplification Rules (1)

Propositional level:

Subsume
$$\frac{\Lambda, L \vdash \Phi, L \lor C}{\Lambda, L \vdash \Phi}$$

First-order level pprox unit subsumption:

- All variables in context literal L must be universally quantified
- Replace equality by matching

Derivation Rules – Simplification Rules (2)

Propositional level:

Resolve
$$\frac{\Lambda, L \vdash \Phi, L \lor C}{\Lambda, L \vdash \Phi, C}$$

First-order level pprox restricted unit resolution

- All variables in context literal L must be universally quantified
- Replace equality by unification
- The unifier must not modify C

Derivation Rules – Simplification Rules (3)

Compact
$$\begin{array}{ccc} \Lambda, \ K, \ L & \vdash & \Phi \\ \hline \Lambda, \ K & \vdash & \Phi \end{array}$$

if

- 1. all variables in K are universally quantified
- 2. K σ = L, for some substitution σ

Derivations and Completeness

Fairness

Closed tree or open limit tree, with some branch satisfying:

1. Close not applicable to any Λ_i 2. For all $C \in \Phi_{\infty}$ and subst. γ , ``if for some i, $\Lambda_i \not\models C\gamma$ then there is $j \ge i$ such that $\Lambda_j \models C\gamma$

(Use Split to achieve this)

Completeness

Suppose a fair derivation that is not a closed tree

Show that $\Lambda_{\infty} \models \Phi_{\infty}$

Implementation: Darwin

- "Serious" Implementation
 Part of Master Thesis, will be continued in Ph.D. project
- (Intended) Applications
 - detecting dependent variables in CSP problems
 - strong equivalence of logic programs
 - Bernays-Schoenfinkel fragment of autoepistemic logic
- Currently extended:
 - Lemma learning
 - Equality inference rules
- Written in OCaml, 14K LOC
- User manual, proof tree output (GraphViz)

Darwin Performance

Results of ATP system competition at IJCAR 2004

MIX: Clause logic with Equality

MIV	Vampire	E-SETHEO	E	EP	Vampire	DCTP	THEO	DCTP	Darwin	SOS	Otter
	7.0	csp04	0.82	0.82	6.0	10.21p	J2004	1.31	CASC-J2	1.0	3.3
Attempted	200	200	200	200	200	200	200	200	200	200	200
Solved	180	174	162	161	157	103	83	66	45	39	37
Av. Time	51.36	36.02	<mark>26.41</mark>	27.69	80.33	33.19	73.25	17.13	29.34	124.20	74.56
Solutions	180	0	0	156	157	0	82	0	C	39	37

EPR: function free clause logic (without Equality)

EPR	DCTP 10.21p	E-SETHEO csp04	Darwin CASC-J2	DCTP 1.31-EPR	DCTP 1.3-EPR	Paradox 1.1-casc	Vampire 7.0
Attempted	80	80	80	80	80	80	80
Solved	79	79	72	72	72	56	46
Av. Time	26.45	38.28	14.67	36.14	66.75	39.90	17.98
Solutions	0	0	37	0	0	28	37

Application: Ontological Reasoning

- Automated reasoning on formal ontologies is of growing interest
- Description logics are a widely used logical formalism, e.g. OWL

- Highly optimized reasoners for decidable DLs can cope with realistically sized ontologies (FaCT, Racer)
- Can one also use Darwin/off-the-shelf provers?
- And why?

A First-Order Davis-Putnam Procedure and its Application to Ontological Reasoning

Why? Going Beyond Description Logics

DL + Rules:

- Rules cause undecidability
- Cannot use DL reasoner
- Translate to first-order logic and use theorem prover
- How? (Naive approach fails)

How? Our Approach

Equality

Work in collaboration with Master's student

Equality comes in, e.g., in the translation of

– nominals ("oneOf")

cardinality restrictions

-> Need an (efficient) way to treat equality

Equality

- **Options**: equality axioms builtin in prover by transformation
- Our transformation:

- Brand's transformation is theoretically more attractive
- But advantages do not apply for "typical" ontologies
- In practice, our transformation works much better

Blocking

• **Problem:** Termination in case of satisfiable input. Caused by certain DL language constructs and cyclic definitions:

• **Solution:** Idea: Re-use old individual to satisfy ∃ -quantifier. Technical: encode search for finite domain model in clause set:

• **Issue:** Search space reduction: don't speculate all possible equalities

Experimental Evaluation – OWL Test Cases from W3C

System	Consistent 56 problems	Inconsistent 72 problems	Entailment 57 problems
Darwin +blocking	89%	92%	89%
Darwin - blocking	7%	94%	93%
KRHyper +blocking	86%	89%	93%
KRHyper - blocking	75%	94%	93%
Darwin U KRHyper	93%	94%	93%
Hoolet (Vampire)	78%	94%	72%
Surnia (Otter)	-	0%	13%
Euler ("Prover")	0%	98%	100%
Fact (DL)	42%	85%	7%
Pellet (DL)	96%	98%	86%
OWLP (DL)	50%	26%	53%
Cerebra (DL)	90%	59%	61%
FOWL (OWL)	53%	4%	32%
ConsVISor (OWL-full)	77%	65%	-

A First-Order Davis-Putnam Procedure and its Application to Ontological Reasoning

Conclusions

- Objective: "robust" reasoning support beyond description logics:
 - Equality treatment
 - Blocking (decides standard services for cyclic ALC TBoxes)
 - It's not only "strategy hacking" need theoretical results
 - Competitive with DL systems on common domain
- "Rules" not benchmarked (no benchmarks available), but they turned out to be very useful in own application projects:
 - Reputational risk management
 - Document management (E-Learning)
 - Upper ontology for computational linguistic application
- Nonmonotonic negation of KRHyper very useful How to integrate it in Model Evolution?