
Automated Deduction Techniques for
Knowledge Representation Applications

Peter Baumgartner

Max-Planck-Institute for Informatics

Automated Deduction Techniques for Knowledge Representation Applications 2

The Big Picture

Ontologies
- OWL DL
(Tambis, Wine, Galen)

- First-Order
(SUMO/MILO, OpenCyc)

- FrameNet

Rules (SWRL)

Data (ABox)

Knowledge Base

Tasks

- TBox: (Un)satisfiability,Subsumption

- ABox: Instance, Retrieve

- General entailment tasks

Theorem provers for:

- Classical FO (ME: Darwin)

- FO with Default Negation

(Hyper Tableaux: KRHyper)

Reasoning

Robust Reasoning Services?

- Issues: undecidable logic, model computation, equality, size

- Approach: transformation of KB tailored to exploit prover features

Automated Deduction Techniques for Knowledge Representation Applications 3

Contents

• Transforming the knowledge base for reasoning

– Transformation of OWL to clause logic: about equality

– Treating equality

– Blocking

• Theorem proving

– KRHyper model generation prover

– Experimental evaluation

• Rules: an application for reasoning on FrameNet

Automated Deduction Techniques for Knowledge Representation Applications 4

• We use the WonderWeb OWL API to get FO Syntax first

• Then apply standard clause normalform trafo (except for "blocking")

• Equality comes in, e.g., for

– nominals ("oneOf")

– cardinality restrictions

• -> Need an (efficient) way to treat equality

Transformation of OWL to Clause Logic

WhiteLoire � ∀madeFromGrape . Sauvignon�Chenin� Pinot

WhiteLoire(x) ∧ madeFromGrape(x, y) ⇒

y = Sauvignon ∨ y = Chenin ∨ y = Pinot

Cation � ≤4 hasCharge

Cation(x) ∧ hasCharge(x, x1) ∧ · · · ∧ hasCharge(x, x5) ⇒

x1 = x2 ∨ x1 = x3 ∨ · · · ∨ x4 = x5

Automated Deduction Techniques for Knowledge Representation Applications 5

Equality

• Option1: use equality axioms

But substitution axioms - cumbersome

• Option 2: use a (resolution) prover with built-in equality

But how to extract a model from a failed resolution proof?

We focus on systems for model generation

• Option 3: Transform equality away a la Brand's transformation

Problem: Brand's Transformation is not "efficient enough"

Solution: Use a suitable, modified Brand transformation

x = y ⇒ f(x) = f(y)

Automated Deduction Techniques for Knowledge Representation Applications 6

Brand's Transformation Revisited

Extension of Brand's Method: UNA for constants (optional)

Modified Flattening

A clause is flatt iff all proper subterms are constants or variables

Our Transformation
- modified flattening
- add equivalence relation axioms for =
- add predicate substitution axioms

It works much better in practice!

Add ¬(a = b) for all different constants a and b

Given: P(f(x)) ← f(g(a)) = h(a, x)

Brand: P(z1) ← f(z2) = z3, h(z4, x) = z3,
f(x) = z1, g(z4) = z2, a = z4

Our trafo: P(f(x)) ← f(z1) = h(a, x), g(a) = z1

P(y) ← P(x), x = y

Automated Deduction Techniques for Knowledge Representation Applications 7

Blocking

• Problem: Termination in case of satisfiable input
Specifically: cyclic definitions in TBox
Example from Tambis KB:

• Solution: Learn from blocking technique from description logics
"Re-use" previously introduced individual to satisfy exist-quantifier
Here: encode search for model with finite domain in clause logic:

• Issue: Make it work fast: don't be too ambitious on speculating

TBox

AuthoredChapter CollectionBook

∃ hasAuthor

∃ hasPart

Try this first
aC(a) ∧ dom(a)

aC(P(A(a))) ∧ P(A(a)) = a

aC(P(A(a))) ∧ dom(P(A(a)))

Automated Deduction Techniques for Knowledge Representation Applications 8

KRHyper

• Semantics

• Classical predicate logic (refutational complete)

• Stable models of normal programs (with transformation)

• Possible models for disjunctive programs (with transformation)

• Efficient Implementation (in Ocaml):

Transitive closure of 16.000 facts -> 217.000 facts:

KRHyper: 17 sec, 63 Mb

Otter (pos. hyperres) 37 min, 124 Mb

Compiling SATCHMO: 2:14 h, 271 Mb

smodels: - -

• User manual

• Proof tree output

Automated Deduction Techniques for Knowledge Representation Applications 9

Computing Models with KRHyper

- Disjunctive logic programs
- Stratified default negation

a. (1)
b ; c :- a. (2)
a ; d :- c. (3)
false :- a,b. (4)

{} ���� (1) {a,b} ���� (4)

a

b c

{a} ���� (2)

a

X

X {a,c} ���� (1)-(4)

a

b c

X

e :- c, not d. (5)

e

- Variant for predicate logic
- Extensions: minimal models, abduction, default negation

Automated Deduction Techniques for Knowledge Representation Applications 10

Experimental Evaluation

OWL Test Cases

System Consistent (56) Inconsistent (72) Entailment (111)
KRHyper
with blocking 86% 89% 93%
KRHyper
w/o blocking 79% 94% 93%
Fact 42% 85% 7%
Hoolet 78% 94% 72%
FOWL 53% 4% 32%
Pellet 96% 98% 86%
Euler 0% 98% 100%
OWLP 50% 26% 53%
Cerebra 90% 59% 61%
Surnia - 0% 13%
ConsVISor 77% 65% -

Automated Deduction Techniques for Knowledge Representation Applications 11

Realistically Sized Ontologies

• Tambis

– About chemical structures, functions, processes, etc within a cell

– 345 concepts,107 roles

– KRHyper: 2 sec per subsumption test

• Wine

– Wine and food ontology, from the OWL test suite

– 346 concepts, 16 roles, 150 GCIs, ABox

– KRHyper: 80 sec / 3 sec per negative / positive subsumption test

• Galen Common Reference Model

– Medical teminology ontology

– big: 24.000 concepts, 913.000 relations, 400 GCIs, transitivity

– KRHyper: 5 sec per subsumption test

• OpenCyc

– 480.000 (simple) rules. Darwin: 60 sec for satisfiability

Automated Deduction Techniques for Knowledge Representation Applications 12

Rules

• Adding logic programming style rules is currently discussed in the
Semantic Web context (SWRL and many others)

• Example:

Cannot be expressed in description logics

• Adding rules to the input language is trivial in approaches that
transform ontologies to clause logic

• Problem: can simulate Role-Value maps, leading to undecidability

• Rationale of doing it nethertheless:

– Better have only a semi-decision procedure than nothing

– In many cases have termination nethertheless (with blocking)

– Really useful in some applications

HomeWorker(x) ← work(x, y) ∧ live(x, z) ∧ loc(y, w) ∧ loc(z, w)

Automated Deduction Techniques for Knowledge Representation Applications 13

From Natural Language Text To Frame Representation

Frame
Representation

Com GT

Buyer: BMW
Seller: BA
Goods: Rover

Money: unknown

Linguistic
Method

BMW
Rover

BA
Rover

Buy Sell

Com GT

FrameNet
550 Frames
7000 Lex Units

Deduction
System

Text

BMW
bought
Rover
from BA

Logic

Work in Colaboration with Computer Linguistics Department (Prof. Pinkal)

Automated Deduction Techniques for Knowledge Representation Applications 14

Transfer of Role Fillers

The plane manufacturer has from Great Britain the order for 25 transport planes received.

Task: Fill in the missing elements of „Request“ frame

(Slide by Gerd Fliedner)

Automated Deduction Techniques for Knowledge Representation Applications 15

Transfer of Role Fillers

receivereceivereceivereceive
target: „received“
donor: „Great Britain“

recipient: manufacturer1
theme: request1

receive1:

The plane manufacturer has from Great Britain the order for 25 transport planes received.

requestrequestrequestrequest
target: „order“

speaker:
addressee:

message: „transport plane“

request1:

Parsing gives partially filled FrameNet
frame instances of „receive“ and „request“:

� Transfer of role fillers done so far manually

� Can be done automatically. By „model generation“

„„„„Great BritainGreat BritainGreat BritainGreat Britain““““
manufacturermanufacturermanufacturermanufacturer

Automated Deduction Techniques for Knowledge Representation Applications 16

Transfer of Role Fillers by Rules

speaker(Request, Donor) :-
receive(Receive),
donor(Receive, Donor),
theme(Receive, Request),
request(Request).

receive(receive1).
donor(receive1,

„Great Britain“).
theme(receive1,request1).
request(request1).

receivereceivereceivereceive
target: „received“
donor: „Great Britain“

recipient: manufacturer1
theme: request1

receive1:

requestrequestrequestrequest
target: „order“
speaker:

addressee:
message: „transport plane“

„„„„Great BritainGreat BritainGreat BritainGreat Britain““““

request1:

FactsRules

Automated Deduction Techniques for Knowledge Representation Applications 17

Exploiting Nonmonotonic Negation: Default Values

Insert default value as a role filler in absence of specific information

receivereceivereceivereceive
target: „received“
donor: „Great Britain“

recipient: manufacturer1
theme: request1

receive1:

requestrequestrequestrequest
target: „order“
speaker:

addressee:
message: „transport plane“

„„„„Great BritainGreat BritainGreat BritainGreat Britain““““

request1:

Should transfer "donor" role filler only if "speaker" is not already filled:

default_request_speaker(Request, Donor) :-
receive(Receive),
donor(Receive, Donor),
theme(Receive, Request),
request(Request).

Automated Deduction Techniques for Knowledge Representation Applications 18

Default Values

Insert default value as a role filler in absence of specific information

Example:
In Stock Market context use default "share" for "goods" role of "buy":

default_buy_goods(Buy, "share") :-

'Buy is an event in a stock market context'.

Example:
Disjunctive (uncertain) information

Linguistic analysis is uncertain whether "Rover" or "Chrysler" was bought:

default_buy_goods(buy1,"Rover").
default_buy_goods(buy1,"Chrysler").

This amounts to two models, representing the uncertainty
They can be analyzed further

Automated Deduction Techniques for Knowledge Representation Applications 19

Default Value – General Transformation

Choice to fill with default value or not:

goods(F,R) :-
not not_goods(F,R),
buy(F),
default_buy_goods(F,R).

not_goods(F,R) :-
not goods(F,R),
buy(F),
default_buy_goods(F,R).

Case of waiving default value:

false :-
buy(F),
default_buy_goods(F,R1),
goods(F,R1),
goods(F,R2),
not equal(R1,R2).

equal(X,X).

Technique:
a :- not not_a.
not_a :- not a.

has two stable models: one where a is true and one where a is false

Require at least one filler for role:

false :-
buy(F),
not some_buy_goods(F).

Role is filled:

some_buy_goods(F) :-
buy(F),
goods(F,R).

Automated Deduction Techniques for Knowledge Representation Applications 20

Conclusions

• Objective: "robust" reasoning support beyond description logics

• Method

– FO theorem prover, specifically model generation paradigm

– Tailor translation to capitalize on prover features

– Exploit nonmonotonic features (for KB with FO semantics!)

• Practice

– Experimental evaluation on OWL test suite "promising"

– Need more experiments with e.g. OpenCyc and FrameNet

