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Standard Workflow Rework Workflow

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?  

Computer 
Factory

Given trajectory
(MLE, Hidden Markov Model, Viterbi Alg)

sched(working_at(wb(1)), assemble�, "5.�m") @ �.
sched(deliver_to(wb(2)), assemble�, "�.7m") @ 1.
sched(move_to(wb(1)), assemble�, "�.5m") @ 2.
sched(move_to(break_area), break1, "1.�m") @ 3.

behaviour ~ [assemble, break ...]. %% Distribution
worker ~ [1,2,3,4,5]. %% Distribution

action = working_at(wb(W)) @ � :-
behaviour = assemble,
worker = W.

action = deliver_to(wb(W+1)) @ 1 :-
behaviour = assemble,
worker = W.

loc = L @ T :- action = working_at(L) @ T.
dur ~ [1..1�] @ T :- action = working_at(_) @ T.
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This Paper

A probabilistic logic programming language 
- Probabilistic annotated heads  
- Discrete distributions 
- Built-in semantics of equations  
- Discrete time 
- Stratified default negation “by predicates and time”

0.98 :: happy(X) :- has_ICLP_paper(X).
X ~ [1..6] :- fair_dice(X).

p @ T+1 :- p @ T.
p @ T :-  q @ T, 

\+ r @ T,  

\+ p @ T-1.

x = 5 and x = 6 are inconsistent
1/6 :: X = 1 + … + 1/6 :: X = 6 :- fair_dice(X).



This Paper

A probabilistic logic programming language 
- Probabilistic annotated heads  
- Discrete distributions 
- Built-in semantics of equations  
- Discrete time 
- Stratified default negation “by predicates and time”

0.98 :: happy(X) :- has_ICLP_paper(X).
X ~ [1..6] :- fair_dice(X).

p @ T+1 :- p @ T.
p @ T :-  q @ T, 

\+ r @ T,  

\+ p @ T-1.

x = 5 and x = 6 are inconsistent
1/6 :: X = 1 + … + 1/6 :: X = 6 :- fair_dice(X).

Two-phase probabilistic inference algorithm 
- Phase 1: grounding the program; also removes default negation 

Phase 2: (stochastic) variable elimination on ground program 
  

Main contribution: efficient bottom-up grounding algorithm 
- Query guidance: query regression + inconsistency pruning 
- Good experimental results for e.g. filtering queries 

?- state=S @ 10 | obs = .. @ 0, …, obs = .. @ 10. 



Example Fusemate Probabilistic Logic Program

4

Drawing without replacement

sched(working_at(wb(1)), assemble�, "5.�m") @ �.

sched(deliver_to(wb(2)), assemble�, "�.7m") @ 1.

sched(move_to(wb(1)), assemble�, "�.5m") @ 2.

sched(move_to(break_area), break1, "1.�m") @ 3.

behaviour ~ [assemble, break ...]. %% Distribution

worker ~ [1,2,3,4,5]. %% Distribution

action = working_at(wb(W)) @ � :-

behaviour = assemble,

worker = W.

action = deliver_to(wb(W+1)) @ 1 :-

behaviour = assemble,

worker = W.

loc = L @ T :- action = working_at(L) @ T.

dur ~ [1..1�] @ T :- action = working_at(_) @ T.

assemble

break

urn([r(1), r(2), g(1)]) @ �. %% Initially two red and one green distinguishable balls

draw ~ Balls @ T :- urn(Balls) @ T, Balls \= []. %% Draw a ball uniformly if urn is not empty

urn(Balls -- [B]) @ T+1 :- urn(Balls) @ T, draw = B @ T. %% Drawing a ball removes it from urn

some(red) @ T :- draw=r(_) @ T. %% Abstract from ball id, color only

some(green) @ T :- draw=g(_) @ T.

?- some(green) @ �.

% �.333333

?- some(green) @ 1 | some(red) @ �.

% �.5 conditional query

?- some(C1) @ 1, some(C2) @ 2 | some(red) @ �. % Non-ground conditional query, two solutions:

% �.5 :: [C1 = red, C2 = green]

% �.5 :: [C1 = green, C2 = red]

1

Queries

sched(working_at(wb(1)), assemble�, "5.�m") @ �.

sched(deliver_to(wb(2)), assemble�, "�.7m") @ 1.

sched(move_to(wb(1)), assemble�, "�.5m") @ 2.

sched(move_to(break_area), break1, "1.�m") @ 3.

behaviour ~ [assemble, break ...]. %% Distribution

worker ~ [1,2,3,4,5]. %% Distribution

action = working_at(wb(W)) @ � :-

behaviour = assemble,

worker = W.

action = deliver_to(wb(W+1)) @ 1 :-

behaviour = assemble,

worker = W.

loc = L @ T :- action = working_at(L) @ T.

dur ~ [1..1�] @ T :- action = working_at(_) @ T.

assemble

break
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% �.333333

?- some(green) @ 1 | some(red) @ �.

% �.5 conditional query

?- some(C1) @ 1, some(C2) @ 2 | some(red) @ �. % Non-ground conditional query, two solutions:

% �.5 :: [C1 = red, C2 = green]

% �.5 :: [C1 = green, C2 = red]

1
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state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :-  
state=rainy @ T. 

obs ~ [R+3..R+30] @ T :-  
state=rainy @ T, T > 0, obs=R @ T-1. 

?- obs=0 @ 0, obs=4 @ 1, obs=20 @ 2.
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In increasing stratification order:

- Ground out program over current domain

- Query regression, inconsistency pruning

- Extend current domain with  heads⋃
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how the weather has been. For simplicity, this example assumes no evaporation, so the observations of
water in the bowl are non-decreasing. The logic program was described in Section 1.

We timed three kinds of filtering queries for estimating the current state based on past observations
trending around slightly rainy, sunny, and mixed, scenarios, respectively. In the slightly rainy scenario
each timepoint increased the amount of water observed by four, a value that can occur from either the
sunny or the rainy distributions. In the sunny scenario, each observation was of zero precipitation, so the
observations must have come from the sunny distribution. In the mixed weather scenario, a variety of
observations were included in this query, which meant there was a mixture of observations from both the
sunny and rainy distributions. For each scenario, the query complexity N was increased by increasing
the number of observations and the timepoint at which the final state is predicted. The results and sample
queries are described in Figure 2.

%% See Introduction for program

%% Queries for N=3
%% Sunny
?-state=X @ 3 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3.

%% Rainy
?-state=X @ 3 | obs=4 @ 1, obs=8 @ 2, obs=12 @ 3.

%% Mixed
state=X @ 3 | obs=0 @ 1, obs=4 @ 2, obs=24 @ 3.
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Figure 2: Timings for three kinds of queries to the hidden Markov model precipitation example: Fuse-
mate without query-guidance (green), Fusemate with query-guidance (red), and ProbLog (blue).

For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
the evidence of a slightly modifed “sunny” scenario by leaving out observations. For a query size N = 4,
for instance, we obtained the following runtime results (in seconds):

Inconsistency pruning
Query Off On
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3, obs=10 @ 4 7.5 7.5
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=10 @ 4 44.5 13.5
?- state=S @ 4 | obs=0 @ 1, obs=10 @ 4 >2000 30.0
?- state=S @ 4 | obs=10 @ 4 >2000 180.75

Rainy/sunny example from above
Smallest domain

Largest domain

Runtime Results Fusemate vs ProbLog
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how the weather has been. For simplicity, this example assumes no evaporation, so the observations of
water in the bowl are non-decreasing. The logic program was described in Section 1.

We timed three kinds of filtering queries for estimating the current state based on past observations
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Figure 2: Timings for three kinds of queries to the hidden Markov model precipitation example: Fuse-
mate without query-guidance (green), Fusemate with query-guidance (red), and ProbLog (blue).

For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
the evidence of a slightly modifed “sunny” scenario by leaving out observations. For a query size N = 4,
for instance, we obtained the following runtime results (in seconds):

Inconsistency pruning
Query Off On
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3, obs=10 @ 4 7.5 7.5
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=10 @ 4 44.5 13.5
?- state=S @ 4 | obs=0 @ 1, obs=10 @ 4 >2000 30.0
?- state=S @ 4 | obs=10 @ 4 >2000 180.75

Rainy/sunny example from above
Smallest domain

Largest domain
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In addition to overall solution times we were also interested in comparing groundings. For ProbLog we
observed unusual high grounding times, and for Fusemate with unguided grounding we observed large
but quickly computed groundings (which become unmanageable for inference quickly). For the mixed
weather problem, we observed:

Fusemate #ground rules ProbLog
N query-guided unguided total time grounding time #ground rules
2 2200 6500 9.0 8.3 53
3 2270 12900 30 19 276
4 2300 21400 119 33 499
5 2400 32000 50 682
6 2470 45000 65 839
7 2500 60000 95 1068

Grounding sizes between Fusemate and ProbLog are only roughly comparable. Fusemate outputs ground
normal rules, where ProbLog outputs ground rules with annotated disjunctions, where head probabilities
are left in place. The Fusemate total times are between 1 and 7 seconds and not listed in the table. For
ProbLog, grounding time is still well below solving time but well above Fusemate total times.

6 Conclusion

In this paper, we proposed a bottom-up grounding approach for an expressive probabilistic logic pro-
gramming language (expressive form of stratification, expressive default negation, dynamic distribu-
tions). We defined the semantics of the input languages as an extension of the standard Distribution
semantics via a standard fixpoint construction after grounding and transforming away default negation.
As the main contribution of this paper, we integrated and proved correct a novel technique for avoiding
ground instances that are irrelevant for proving a given query. Grounding, transforming away default
negation, and query-guided pruning are tightly integrated and carried out incrementally along the pro-
gram’s stratification order. They rest on a built-in semantics for equations as right-unique relations,
which is appropriate, e.g., for representing (finite) distributions.

We showed the effectiveness of query-guided pruning experimentally. The rationale is to tackle combi-
natorial explosion during grounding instead of attempting optimizations afterwards. Without guidance,
example problems tend to grow to unmanageable size quite quickly. Our system outperformed ProbLog
on hidden Markov model filtering problems with a high branching rate. (On other domains not reported
here we found that ProbLog often performs better than Fusemate.) We also showed that the performance
of our top-down variable elimination algorithm benefits from building-in inconsistency pruning. While
the result are somewhat limited in scope, we suggest that the research direction begun in this paper looks
promising for further exploration. We will consider optimized off-the-shelf backends for weighted infer-
ence as a possibly better alternative to our variable elimination algorithm in such cases. We also plan to
integrate a magic set transformation, which is complementary to our query-guided grounding.

We conjecture that query-guided grounding enables Fusemate to solve filtering queries in linear time.
This would be the same complexity as the dedicated forward-backward algorithm. The proof hinges on
an analysis of the solution caching mechanism in Fusemate’s variable elimination inference algorithm.

Acknowledgements. We thank the reviewers for their valuable comments.
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how the weather has been. For simplicity, this example assumes no evaporation, so the observations of
water in the bowl are non-decreasing. The logic program was described in Section 1.
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trending around slightly rainy, sunny, and mixed, scenarios, respectively. In the slightly rainy scenario
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observations must have come from the sunny distribution. In the mixed weather scenario, a variety of
observations were included in this query, which meant there was a mixture of observations from both the
sunny and rainy distributions. For each scenario, the query complexity N was increased by increasing
the number of observations and the timepoint at which the final state is predicted. The results and sample
queries are described in Figure 2.
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Figure 2: Timings for three kinds of queries to the hidden Markov model precipitation example: Fuse-
mate without query-guidance (green), Fusemate with query-guidance (red), and ProbLog (blue).

For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
the evidence of a slightly modifed “sunny” scenario by leaving out observations. For a query size N = 4,
for instance, we obtained the following runtime results (in seconds):

Inconsistency pruning
Query Off On
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3, obs=10 @ 4 7.5 7.5
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=10 @ 4 44.5 13.5
?- state=S @ 4 | obs=0 @ 1, obs=10 @ 4 >2000 30.0
?- state=S @ 4 | obs=10 @ 4 >2000 180.75

Rainy/sunny example from above
Smallest domain

Largest domain
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In addition to overall solution times we were also interested in comparing groundings. For ProbLog we
observed unusual high grounding times, and for Fusemate with unguided grounding we observed large
but quickly computed groundings (which become unmanageable for inference quickly). For the mixed
weather problem, we observed:

Fusemate #ground rules ProbLog
N query-guided unguided total time grounding time #ground rules
2 2200 6500 9.0 8.3 53
3 2270 12900 30 19 276
4 2300 21400 119 33 499
5 2400 32000 50 682
6 2470 45000 65 839
7 2500 60000 95 1068

Grounding sizes between Fusemate and ProbLog are only roughly comparable. Fusemate outputs ground
normal rules, where ProbLog outputs ground rules with annotated disjunctions, where head probabilities
are left in place. The Fusemate total times are between 1 and 7 seconds and not listed in the table. For
ProbLog, grounding time is still well below solving time but well above Fusemate total times.

6 Conclusion

In this paper, we proposed a bottom-up grounding approach for an expressive probabilistic logic pro-
gramming language (expressive form of stratification, expressive default negation, dynamic distribu-
tions). We defined the semantics of the input languages as an extension of the standard Distribution
semantics via a standard fixpoint construction after grounding and transforming away default negation.
As the main contribution of this paper, we integrated and proved correct a novel technique for avoiding
ground instances that are irrelevant for proving a given query. Grounding, transforming away default
negation, and query-guided pruning are tightly integrated and carried out incrementally along the pro-
gram’s stratification order. They rest on a built-in semantics for equations as right-unique relations,
which is appropriate, e.g., for representing (finite) distributions.

We showed the effectiveness of query-guided pruning experimentally. The rationale is to tackle combi-
natorial explosion during grounding instead of attempting optimizations afterwards. Without guidance,
example problems tend to grow to unmanageable size quite quickly. Our system outperformed ProbLog
on hidden Markov model filtering problems with a high branching rate. (On other domains not reported
here we found that ProbLog often performs better than Fusemate.) We also showed that the performance
of our top-down variable elimination algorithm benefits from building-in inconsistency pruning. While
the result are somewhat limited in scope, we suggest that the research direction begun in this paper looks
promising for further exploration. We will consider optimized off-the-shelf backends for weighted infer-
ence as a possibly better alternative to our variable elimination algorithm in such cases. We also plan to
integrate a magic set transformation, which is complementary to our query-guided grounding.

We conjecture that query-guided grounding enables Fusemate to solve filtering queries in linear time.
This would be the same complexity as the dedicated forward-backward algorithm. The proof hinges on
an analysis of the solution caching mechanism in Fusemate’s variable elimination inference algorithm.

Acknowledgements. We thank the reviewers for their valuable comments.
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ProbLog: 

Grounding OK? 

Bottleneck inference component?



Experimental Evaluation 2 - Markov Model

9

P. Baumgartner & Elena Tartaglia 11

we compared timings in Fusemate and ProbLog by running several sets of queries for increasing com-
plexity in the query. We only summarize our findings here. More details on the ProbLog and Fusemate
encodings are in the Appendix.

Markov model. This problem is from the ProbLog tutorial Markov chain example. 6 The code models
the movement in time between three locations a, b and c, where the probability of moving to the next
location depends only on the current location. We timed three kinds of queries which we refer to as
timesteps, specificity and timepoint. The timesteps query asks for the probability of being at position a
during a whole period of N = 0, . . . ,80 timesteps. The specificity query asks for the probability of being
in a certain location across nine timesteps, where complexity N is increased by decreasing the specificity
of those locations. We do that by replacing fixed location a with a variable, so the program has to repeat
the calculation for all possible locations, increasing the branching. The timepoint query asks for the
probability of being at location a at a final time point N. The logic program, sample queries and runtime
performance are in Figure 1.

%% Markov Model
in ~ [a, b, c] @ 0.
in ~ [[a, 0.9],[b, 0.05],

[c, 0.05]] @ T+1 :- in=a @ T.
in ~ [[a, 0.7],[c, 0.3]] @ T+1 :- in=b @ T.
in ~ [[a, 0.8],[c, 0.2]] @ T+1 :- in=c @ T.

%% Time steps N = 20
?- in=a@0, in=a@1,.., in=a@20.

%% Specificity, N = 7
?- in=a@0, in=a@1, in=L2@2,..,in=L8 @ 8.

%% Timepoint, N = 20
?- in=a@23.

Time steps Specificity Timepoint
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Figure 1: Timings for three kinds of queries to the Markov chain in Fusemate (red) and ProbLog (blue).

Results in Figure 1 indicate that Fusemate performs better than ProbLog for increasing problem com-
plexity. The Fusemate times are measured with query-guided grounding on. However, Fusemate can
also solve the problems without it. Runtimes and number of ground rules generated raise by a factor
of 2-3 without guidance. It seems that Fusemate’s variable elimination procedure is better suited to this
example than the ProbLog inference engine. Inconsistency pruning (line 7 in VE) did not have an impact
on these problems.

Hidden Markov model. This example is based on the example from the Wikipedia page for hidden
Markov models7. It models the situation where a prediction of the weather (sunny/rainy) is determined
by observations of how much water due to precipitation has been collected in a bowl that is placed
outside. The idea is that more water will be collected when it rains more, which is the measurement of

6https://dtai.cs.kuleuven.be/problog/tutorial/various/08_bayesian_dataflow.html
7https://en.wikipedia.org/wiki/Hidden_Markov_model

(ProbLog code from ProbLog tutorial web page)

Runtime Results Fusemate vs ProbLog
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Key idea 
- Fix semantics of ‘=‘ as a right-unique relation  
- Basis for pruning based on inconsistencies: x=5 and x=6 cannot be simultaneous true 
- However assumption: all models of the program are consistent 

Inconsistency pruning vs magic sets 
- Magic sets: generate rules that can potentially reach the query 
- Inconsistency pruning: prune rules that can impossibly reach the query 
- Can be combined - future work   

Extension: Inconsistency based pruning during inference 
- Prune inconsistent queries as soon as derived by regression                 ?- … x=5, x=6, … 
- Can improve performance considerable for less constrained queries   ?- state=S @ 3 |  obs = 20 @ 3. 
- See paper for details 

Implementation 
- In Scala; two-way integration; see paper for download URL 

Future work 
- More comparison with ProbLog; swap grounding and inference components 
- Positive cycles 


