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Project Background: A Logic Based System for Situational Awareness
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What’s the problem? 

• Multiple aspects: temporal/causal/structural/physical/… 

• Events happened ≠ events reported (errors, incomplete, late …) 

• Uncertainty: multiple plausible explanations for given facts 

Belief revision

Logic program

Models

Situational awareness ≈ comprehending system state as it evolves over time

Example: Food Supply Chain 

• Are goods delivered within 3 hours and stored below 25℃? 
• Why is the truck late? 
• What is the expected quality (shelf life) of the goods?

This Work 

• More expressive modelling language for better domain modelling 

• Extension 1: Description logic interface 

• Extension 2: Event calculus  

• Implementation in Fusemate system



Fusemate - Language and Model Computation Overview                           [IJCAR 2020]
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R(a,b) 
R(X,Y) :- R(Y,X) 
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules 

Default negation: stratification “by time”
GoodSleep(time) :-  

WakeUp(time),  
GoToBed(t), t <= time - 8, 
not (t <= s, s < time, WakeUp(s))

Botton-up procedures 
(Hyper tableau, Hyper resolution, …) 

Disjunctions: possible model semantics [Sakama 90]

Thirsty(time) or Hungry(time) :- GoodSleep(time)

Inclusive “or”

 Thirsty(10)  Hungry(10)  Hungry(10) 
      Thirsty(10)

Models

unhappy(time) :- Now(time), not winLottery(time+7)

“not” subgoals must be strictly

 earlier “<“ than current time

R(a,b) 
R(b,a)

Models

Belief revision 
fail(+ GoToBed(time - 8)) :-  

WakeUp(time),  
not (GoToBed(t), t <= time - 8) 6:0022:00

WakeUpGoToBedAdd retrospectively

GoodSleep

6:0021:00

WakeUpGoToBed
not WakeUp

Application: Situational awareness = model computation



Stratified Model Computation
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E2E1

I2I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

Time 0,1,2 
Model Computation

Bottom-up application 
of logic program 
rules until fixpoint

• EDB: Timestamped facts (“events”)                           E0, E1, E2, … 
• IDB:  Models for derived predicates up to “now”

Modelling Setup for Situational Awareness

Revision = programmable addition/removal of events in the past + restart of model computation

Revision

Effective because default negation can refer only to the past*



Logic Program Example:  Supply Chain
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In(time, obj, cont) :- 
  Load(time, obj, cont)

// In transitivity 
In(time, obj, cont) :- 
  In(time, obj, c), 
  In(time, c, cont)

// Frame axiom for In 
In(time, obj, cont) :- 
  In(prev, obj, cont), 
  Step(time, prev), 
  not Unload(prev, obj, cont), 
  not (In(prev, obj, c), Unload(time, c, cont))

// No Unload without earlier Load 
fail :- 
  Unload(time, obj, cont), 
  not (Load(t, obj, cont), t < time))

// Unload a different object 
fail(- Unload(time, obj, cont), + Unload(time, o, cont)) :- 
  Unload(time, obj, cont), 
  not (Load(t, obj, cont), t < time), 
  Load(t, o, cont), 
  t < time, 
  SameBatch(t, b), 
  ((b contains obj) && (b contains o))

+ 4 more rules

Derived “In” relation Integrity constraints and revision

Experience: Logic programs often
(a) are too low-level, and
(b) suffer from non-termination for “tuple generating dependencies”

-> Extend reasoning framework with Description Logic reasoning and Event Calculus
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Description Logic Reasoner Interface



Description Logics
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• A DL KB consists of a TBox (concept definitions) and an ABox (instance assertions) 
• The concrete choice of DL is not important here, but must include ALC and satisfiablity must be decidable

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Reasoning 
• Does Box0 have a temp attribute? 
• Is Box5 a FruitBox? 
• Are FruitBox and ToyBox disjoint? 
• Is (ABox, TBox) satisfiable?

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp
Low High
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[CADE-2021 SD]: 

DL ALCIF by mapping to Fusemate disjunctive 

logic program + loop check

KB = (ABox, TBox)

TBox

ABox



Description Logics + Logic Programming  Approach - Overview 
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DL and LP are Complementary 
Open world vs closed world, entailment vs models, unique name assumption no/yes

* “known” = “follows wrt FOL”

t=20 

• Box2 has a known high temp 

t=30 
• Box0 has a known high temp 

t=10 
• Box0 has a known* low temp 
• Box1 has some unknown temp 
• Box2 is not known to have a temp 
• Box3 is known to have no temp

Goal: Understanding situation as it evolves over time

Approach: DL+Rules(+Event Calculus) 

• DL: black-box theory reasoner - can talk about implicitly exisiting individuals 

• EC: actions and their effects over time - can add “from now on unless change” to above properties  

• Rules: glue between DL+EC - can bring in concrete domains (numbers) 
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ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Here: Timed Setting 
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t=50 Box0 temp problem?

Truck cooling problem?

What boxes to check?



Description Logic Interface - Queries
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TBox

DL Query Syntax 
The following forms can be used in rule bodies 
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The coupling between the rules and the DL reasoner is two-way and dynamic: it is
two-way in the sense that rules can not only call the DL reasoner wrt. a fixed ABox and
a TBox, the rules can also construct ABoxes during model computation, individually in
each possible model. It is dynamic in the sense that ABox assertions are time-stamped,
like ordinary atoms, and also all earlier ABoxes are accessible by the rules.

Syntax. Concepts and roles are treated as constants by the rule language while any free
ground term can be a DL individual. More precisely, assume a DL signature whose
concept and role names are disjoint with the signature of the rule language. Let C, C1, C2
be free possibly non-ground terms, ⇠ a concept, A a role and tt a time term. An untimed
DL-atom is of the form C :⇠ or (C1, C2) : A . Let IsAAt/3 and HasAAt/4 be distinguished
ordinary predicate symbols. A timed DL-atom is an ordinary atom IsAAt(C,⇠, tt) or
HasAAt(C1, A, C2, tt), usually written as C :⇠ @ tt or (C1, C2) : A @ tt, respectively. Timed
DL-atoms can appear in heads (and bodies) of ordinary rules. This allows to create time-
stamped ABoxes initially as sets of facts and dynamically during program execution. For
calling the DL reasoner, the rule language is extended by the following DL-call special
forms, where ) is a TBox, � is an ABox, and Æ@ (“query”) is a list of untimed DL-atoms.

) |= Æ@ DLISSAT()) DLISUNSAT())
(�,)) |= Æ@ DLISSAT(�,)) DLISUNSAT(�,))

The free variables are fvar( Æ@) in the left column cases, otherwise empty.

Semantics. Logic programming considers syntactically di�erent terms as unequal. This
is not enforced in DLs. Indeed, e.g., if � = {(a, c) : r, (a, b) : r} and r is a functional
role then � is satisfiable by making b and c equal. To avoid such discrepancies, DL
individuals are explicitly equipped with a unique name assumption, as follows.

Given an ABox �, let  (�) = {01, . . . 0=} be the set of all (“known”) individ-
uals mentioned in � and define UNA(�) = {08 : # (08 ,0 9 ) , 0 9 :¬# (08 ,0 9 ) | 08 , 0 9 2
 (�) and 1  8 < 9  =}. In that, # (08 ,0 9 ) are fresh concept names. The set UNA(�)
specifies that all individuals in � must be pairwise unequal (a, b and c in the example).

The definition of rule semantics in Section 2 is extended by DL-calls as follows:
�, V |= ((�,)) |= Æ@) i� (� [ UNA(�) [ UNA( Æ@V),)) |=DL Æ@V (Æ@V as a set); �, V |=
DLISSAT(�,)) i� (� [ UNA(�),)) is satisfiable; �, V |= DLISUNSAT(�,)) i� (� [
UNA(�),)) is unsatisfiable.

For the DL-calls on the first line, let time be the pivot variable of the rule containing
the DL-call and take � = abox(�, time V) for the corresponding definition with explicit
�, where abox(�, 3) = {C :⇠ | C :⇠ @ 3 2 �} [ {(C1, C2) : A | (C1, C2) : A @ 3 2 �} is the
induced ABox from � at time 3. Intuitively, such a DL-call gets its ABox from the current
interpretation by projection from its timed DL-atoms at the current time.

Notice the implicit dependency of an induced ABox on timed DL-atoms at pivot
time. This is why for the purpose of stratification every line one DL-call stands for
the two subgoals IsAAt(_, _, time) and HasAAt(_, _, _, time). For constant ABoxes on the
second line stratification is not an issue. (As such they are not very useful - but see
Example 2 and the example in Section 5 below.)

With all that in place, the possibly model semantics for stratified programs defined
in Section 2.1 carries over to the DL coupling without change. Notice that the semantics

•  is a TBox 
•  is an ABox, implicitly (currentI, now) where   

 

•  is a query, i.e., a sequence of terms representing an ABox 

•  means “ ”  as FOL formulas     

T
A A
A(I, t) = {a : C ∣ a : C @ t ∈ I} ∪ {(a, b) : R ∣ (a, b) : R @ t ∈ I}

⃗q

(A, T ) ⊧ ⃗q A ∪ T ⊧ ⋀ ⃗q

Interpretation I 
with timed 
ABox Assertions

Box0 : FruitBox @ 10 
  : 
Box2 : Box @ 20 
(Box0, High): temp @ 20

DL Query Example (Body Literal) 

(ABox(I, 20), TBox)   |=   Box2 : FruitBox,  (Box2, Temp): High

ABox in interpretation I at time 20



Description Logic Interface - Examples
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Can derive new ABox assertions (even in the past)!

Variables in DL Queries grounded now
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user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox
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The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Box0 : FruitBox @ 10 
  : 
Box2 : Box @ 20 
(Box0, High): temp @ 20

x : Box @ time :-  
  (x : _ @ time),   // x is an individual in an ABox assertion at “time” 
  TBox |= x : Box // Implicit ABox (A(I, time)  

Materialization

KnownTempBox(time, box) :-  
  box : Box @ time,  
  temp  { Low, High }, // Guess 
  TBox |= (box, temp): Temp

∈

Box has known temp

Box never had known high temp in the past
ColdBox(time, box) :- 
  box : Box @ time, 
  not ( t < time,  
     (A(I, t), TBox) |= box : Box, (box, High) : Temp ) 

TempBox(time, box) :-  
  box : Box @ time, 
  TBox |= box :  Temp . TempClass∃

Box has temp

(Stratifed) DL call under default negation!
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Query Evaluation 
Reduce query evaluation to standard DL knowledge base satisfiability

    iff  is unsatisfiable 

   iff  is unsatisfiable, with  fresh 

(A, T ) ⊧ a : C (A ∪ {a : ¬C}, T )
(A, T ) ⊧ (a, b) : r (A ∪ {a : ∀r . ¬B, b : B}, T ) B

Stratification 

• Implicit ABox  - use concept and role assertions timed    
• Explicit ABox: not automatically, use with care :) 

A(I, t) t

Unique Name Assumption (UNA) 
• DL does not assume UNA 

E.g.  with functional  is satisfiable only if  

• LP does assume unique name assumption, i.e.,  
• Solution: enforce UNA in DL by adding axioms 

E.g.   are all current named ABox individuals 

Add to ABox     where ’s are fresh concept names  

 

A = {(c, a) : r, (c, b) : r} r I(a) = I(b)
I(a) ≠ I(b)

N = {a, b, c}
{a : Nab, b : ¬Nab, a : Nac, c : ¬Nac, …} Nxy

See paper for details



Description Logic Interface - Soundness and Completeness

DL-safe rules 
• Named individuals: those that appear explicitly in ABox assertions 
• Unnamed individuals: implicitly constructed (Skolem)  
• Rules are DL-safe: unnamed individuals cannot escape their query scope  

Box2 :  temp . TempClass∃

Monotonicity 

• Rules  must be monotonic: if  and  then  
• No problem with stratified negation 

• [OK] DL queries  and DLISUNSAT( ) are always monotonic by monotonicity of FOL 

• DL queries , DLISUNSAT( , ), DLISSAT( ) and DLISSAT( , ) use with care 

H :- B I ⊧ B J ⊇ I J ⊧ B

T ⊧ ⃗q T

(A, T ) ⊧ ⃗q A T T A T

Compactness 
• Fixpoint model requires transfinite induction in general 

• Not effective for  aggregation operator  
• However not a problem because interest only in finite models 

• (DL query evaluation always compact because of FOL)

{P(x, t) ∣ Q(x, s), s < t}

ω1 ω2< < ⋯

Model computation soundness and completeness rests on the following properties
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Event Calculus
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• The event calculus (EC) is a logical language for representing and reasoning about actions and their effects 
• The formulation below follows the original logic program, with adaptions and extensions for DL

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Actions and Fluents

• A fluent is a property that HoldsAt over a time period 

• Fluents are initiated or terminated by actions that happen at given time point 
 
 
 
 
 

t=20  Load(Box2)  initiates  OnTruck(Box2)    HoldsAt(20, OnTruck(Box2))  

t=50  Unload   terminates OnTruck(Boxi)    HoldsAt(50, OnTruck(Boxi)) 

∈ I

∉ I

Problem Specific Axioms

Initiates(time, Load(box), OnTruck(box)) :-  
  box : Box @ time

Terminates(time, Unload(box), OnTruck(box)) :-  
  HoldsAt(time, OnTruck(box))

Problem Specific Events

Happens(20, Load(Box2))

Happens(50, Unload)

EC Library

HoldsAt(time+1, f) :-  
  Initiated(time, f), 
  not Terminated(time, f)

HoldsAt(time, f) :-  
  HoldsAt(time-1, f), 
  not Terminated(time, f)
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Linking DL with EC

x : c @ time  :-  
  HoldsAt(time, x : c)

(x, y): r @ time :- 
  HoldsAt(time,(x, y) : r)

• Often, ABox assertions are meant to hold over time instead of time points only 
• That is, timed ABox assertions can be fluents now  

 
  “From time 0 on”          vs  “At time 0” 

  HoldsAt(0, Box5: Box   Temp . TempClass)  vs  Box5: Box   Temp . TempClass @ 0   

• Add axioms for turning ABox fluents into timed ABox assertions again (but not vice versa)

⊓ ∃ ⊓ ∃

Rule with ABox Fluent, Action and Concrete Data

Initiates(time, SensorEvent(box, temp), (box, High) : Temp) and 
Terminates(time, SensorEvent(box, temp), (box, Low) : Temp) ) :- 
  Happens(time, SensorEvent(box, temp)), 
  temp > 0

If  box temp sensor  > 0 
then box temp is “high” from now on and 
  no longer “low” from on
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Contributions 

• Theoretical: very liberal Rule + DL combination, conditions for soundness and completeness 

• KR language design: extension of LP with DL + EC “very useful” for situational awareness  

Hard to quantify, but see paper for “complex” anomaly detection example 

• Implementation: Fusemate https://bitbucket.csiro.au/users/bau050/repos/fusemate  

Open Problem 

• The ramification problem is concerned with indirect consequences of actions, such as conflicts  

• It occurs in a pronounced way here 

• Example: rule for terminating a box’ temp fluent 
  Terminated(time+1, (box, temp) : Temp)) :– 
    RemoveTemp(time, box), // Some condition for removing box Temp 
     (box, temp) : Temp @ time // Attribute to be removed 

• This rule does not always work 

 E.g, for a FruitBox the box’ temp attribute is entailed by the “black box” TBox 

• AFAIK “repairing” ABoxes is ongoing research but can be done in special cases      

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

https://bitbucket.csiro.au/users/bau050/repos/fusemate

