e

I DATA
bl

~N 7~

The Fusemate Logic Programming System

Peter Baumgartner
Data61|CSIRO and ANU, Canberra, Australia

Fusemate - Language and Model Computation Overview

Fusemate - Language and Model Computation Overview

Input language: Prolog-like rules
R(a,b)

R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Fusemate - Language and Model Computation Overview

Input language: Prolog-like rules

R(a,b) Models

R(X,Y) - R(Y,X) R(a,b) & — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ...)

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

model computation

Input language: Prolog-like rules

R(a,b) Models
RIX,Y) = ROY,X) R(a,b) fi— Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,Z) R(b,a) U

(Hyper tableau, Hyper resolution, SATCHMO, ..)

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules

model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,Z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ..)

Default negation: stratification “by time”

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,Z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ..)

Default negation: stratification “by time”

GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time
WakeUp(time), o

GoToBed(t), t <= time - 8, =
not (s < time, t < s, WakeUp(s))

Oasal) []

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) fi— Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,Z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ..)

Default negation: stratification “by time”
GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time

WakeUp(time), |
GoToBed(t), t <= time - 8, | unhappy(time) :- Now(time), not winLottery(time+7)
not (s < time, t < s, WakeUp(s))

Oasal) []

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,Z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ..)

Default negation: stratification “by time”

GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time
WakeUp(time), o

GoToBed(t), t <= time - 8, =
not (s < time, t < s, WakeUp(s))

Oasal) []

ttery(time+7)

unhappy(time) :

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) & — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ...)

Default negation: stratification “by time”

GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time
WakeUp(time), o

GoToBed(t), t <= time - 8, =
not (s < time, t < s, WakeUp(s))

Oasal) []

ttery(time+7)

unhappy(time) :

Disjunctions: possible model semantics [Sakama 90]
Thirsty(time) or Hungry(time) :- GoodSleep(time)

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) & — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ...)

Default negation: stratification “by time”

GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time

WakeUp(time), ‘kf’f
GoToBed(t), t <= time - 8, i Unhappy(tlme) :

Ttery(time+7)

not (s < time, t < s, WakeUp(s))
e == Inclusive reading of “or”

“ Models

Thirsty(10) Hungry(10) Hungry(10)
Thirsty(10)

Disjunctions: possible model semantics [Sakama 90]

Thirsty(time) or Hungry(time) :- GoodSleep(time)

2

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) & — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ...)

Default negation: stratification “by time”

GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time
WakeUp(time), o

GoToBed(t), t <= time - 8,

not (s < time, t < s, WakeUp(s))
e == Inclusive reading of “or”

“ Models

Thirsty(10) Hungry(10) Hungry(10)

Ttery(time+7)

unhappy(time) :

Disjunctions: possible model semantics [Sakama 90]

Thirsty(time) or Hungry(time) :- GoodSleep(time)

. . . Thirsty(10)
Belief revision
fail(+ GoToBed(time - 8)) :- 2
WakeUp(time),

not (GoToBed(t), t <= time - 8)

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) & — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ...)

Default negation: stratification “by time”

GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time
WakeUp(time), o

GoToBed(t), t <= time - 8,

not (s < time, t < s, WakeUp(s))
e == Inclusive reading of “or”

“ Models

Thirsty(10) Hungry(10) Hungry(10)
Thirsty(10)

Ttery(time+7)

unhappy(time) :

Disjunctions: possible model semantics [Sakama 90]

Thirsty(time) or Hungry(time) :- GoodSleep(time)

Belief revision [IJCAR 2020]

fail(+ GoToBed(time - 8)) :- .
WakeUp(time),
not (GoToBed(t), t <= time - 8)

. . Application:
Fusemate - Language and Model Computation Overview , ,
Situational awareness

Input language: Prolog-like rules model computation

R(a,b) Models
R(X,Y) - R(Y,X) R(a,b) & — Botton-up model generation
R(X,Z) :- R(X,Y), r(Y,z) R(b,a) (Hyper tableau, Hyper resolution, SATCHMO, ...)

Default negation: stratification “by time”
GoodSleep(time) :- “not” subgoals must be strictly earlier “<“ than current time

WakeUp(time), ‘kf’y -
GoToBed(t), t <= time - 8, i unhappy(time) : Ttery(time+7)

not (s < time, t < s, WakeUp(s))
e == Inclusive reading of “or”

“ Models

Thirsty(10) Hungry(10) Hungry(10)
Thirsty(10)

Disjunctions: possible model semantics [Sakama 90]

Thirsty(time) or Hungry(time) :- GoodSleep(time)

Belief revision [IJCAR 2020]

fail(+ GoToBed(time - 8)) :- What’s special? 2
WakeUp(time),

not (GoToBed(t), t <= time - 8) What’s new?

-
=Scala DOCUMENTATION DOWNLOAD COMMUNITY LIBRARIES CONTRIBUTE BLOG

Wh at ,S S pECia l? The Scala Programming Language

Scala combines object-oriented and functional programming in one concise, high-level
language. Scala's static types help avoid bugs in complex applications, and its JVM and
JavaScript runtimes let you build high-performance systems with easy access to huge

Implementation language: Scala

 Scala combines object-oriented and functional programming
def gsort(l: List[Int]): List[Int] =
L match {
case Nil => Nil
case pivot :: tail => gsort(tail filter {_ < pivot}) ::: pivot
qsort(tail filter {_ >= pivot})

ion
>

D:

o Access to huge ecosystem of libraries

« Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

-
=Scala DOCUMENTATION DOWNLOAD COMMUNITY LIBRARIES CONTRIBUTE BLOG

Wh at ,S S pECia l? The Scala Programming Language

Scala combines object-oriented and functional programming in one concise, high-level
language. Scala's static types help avoid bugs in complex applications, and its JVM and

Implementation language: Scala R
 Scala combines object-oriented and functional programming =
def gsort(l: List[Int]): List[Int] = —
1 match {
case Nil => Nil

case pivot :: tail => gsort(tail filter {_ < pivot}) ::: pivot
qsort(tail filter {_ >= pivot})

"~ Pattern matching
o Access to huge ecosystem of libraries

« Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

-
=Scala DOCUMENTATION ~ DOWNLOAD COMMUNI

Wh at ,S S pECia l? The Scala Programming Language

Scala combines object-oriented and functional programming in one concise, high-level
language. Scala's static types help avoid bugs in complex applications, and its JVM and
JavaScript runtimes let you build high-performance systems with easy access to huge

Implementation language: Scala

 Scala combines object-oriented and functional programming
def gsort(l: List[Int]): List[Int] =

L match {
case Nil => Nil
case pivot :: tail => gsort(tail filter {_ < pivot}) ::: pivot

qsort(tail filter {_ >= pivot})

. Pattern matching
o Access to huge ecosystem of libraries

« Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

Implementation technique: shallow embedding

» Logic program translated into Scala program that is executed for model computation

AFAIK Fusemate is the only logic programming system implemented that way

Q: what are the advantages/disadvantages of this approach?

E.g. in terms of capitalizing on / integrating the above features of Scala

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Rules

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Rules

« The rules are macro expanded into Scala curried partial functions
(I: Interpretation) => {
case WakeUp(time) => {
case GoToBed(t) if t <= time - 8 && I.failsOn(“bodyofnot”) => GoodSleep(time)

}

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Rules

« The rules are macro expanded into Scala curried partial functions

(I: Interpretation) => { ‘!ix
case WakeUp(time) => {

case GoToBed(t) if t <= time - 8 && I.failsOn(“bodyofnot”) => GoodSleep(time)

}

function application mimics rule evaluation

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Rules

« The rules are macro expanded into Scala curried partial functions

(I: Interpretation) => { ‘!i\
case WakeUp(time) => {

case GoToBed(t) if t <= time - 8 && I.failsOn(“bodyofnot”) => GoodSleep(time)

} ..

Recursive call of model computation

function application mimics rule evaluation

Shallow Embedding Into Scala

 User writes Scala program with rules embedded into it
type Time = Int
case class GoodSleep(time: Time) extends Atom

@rules

GoodSleep(time) :-
WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Rules

« The rules are macro expanded into Scala curried partial functions

(I: Interpretation) => { ‘!:\
case WakeUp(time) => {

case GoToBed(t) if t <= time - 8 && I.failsOn(“bodyofnot”) => GoodSleep(time)

} ..

Recursive call of model computation

function application mimics rule evaluation

« Given-clause loop operating on rules-as-partial-functions and interpretations (tableaux)

Shallow Embedding Into Scala Logic Scala

Pred/Fun signature Class declaration
» User writes Scala program with rules embedded into it Atom/Term Class instance
Interpretation Set of class instances
type Time = Int Variable Variable
Rule Partial function
case class GOOdSleep(time: Time) extends Atom Matching subst Pattern matching

@rules
All logic notions are Scala

GoodSleep(time) :- e “Interpretation” available as term
WakeUp(time), e Trivial interface to/from Scala
GoToBed(t), t <= time - 8, e Type checking/inference for free
not (s < time, t < s, WakeUp(s)) . .

Every Scala term is a term of the logic

« The rules are macro expanded into Scala curried partial functions

(I: Interpretation) => { ‘!ix
case WakeUp(time) => {

Rules

function application mimics rule evaluation

case GoToBed(t) if t <= time - 8 && I.failsOn(“bodyofnot”) => GoodSleep(time)

} ..

) Recursive call of model computation

« Given-clause loop operating on rules-as-partial-functions and interpretations (tableaux)

What’s New? (1)

What’s New? (1)

General aggregation operator

What’s New? (1)
General aggregation operator

« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

What’s New? (1)
General aggregation operator

« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

What’s New? (1)
General aggregation operator

« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator “Logic term = Scala term”
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

What’s New? (1)
General aggregation operator

« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator “Logic term = Scala term”
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

« Recover standard aggregation functionality #... with Scala operator

2 < gsTimes.size

What’s New? (1)
General aggregation operator

« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator “Logic term = Scala term”
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

« Recover standard aggregation functionality #... with Scala operator
2 < gsTimes.size
« Butis more expressive

(gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

What’s New? (1)
General aggregation operator
« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator “Logic term = Scala term”
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

« Recover standard aggregation functionality #... with Scala operator
2 < gsTimes.size
« Butis more expressive

(gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

Comprehension operator
choose(t < time sth GoodSleep(t))
“The most recent t before time such that GoodSleep(t)”

 Useful for analysing “current state” in situational awareness application

What’s New? (1)
General aggregation operator

« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator “Logic term = Scala term”
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

« Recover standard aggregation functionality #... with Scala operator
2 < gsTimes.size
« Butis more expressive

(gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

Comprehension operator
choose(t < time sth GoodSleep(t))
“The most recent t before time such that GoodSleep(t)”

These operators are user-definable

 Useful for analysing “current state” in situational awareness application

What’s New? (2)

Stratification by predicates and by time (SBTP)
« Stratification disallows definitorial loop through “not <body>" literal

o Stratification renders “not <body>" evaluation monotonic

X Stratified by predicates

—_— \

p(time) :- g(time), not r(time-1) V' Stratified by time
r(time) :- p(time) v/ SBTP

_/V

— \ o[.
q(time) :- p(time), not s(time) V' Stratified by predicates

X Stratified by time
v/ SBTP

SBTP = lexicographic combination of “by time” and “by predicates”

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

Description logic ALCIF

Person C Rich LI Poor Anne : Person I Poor
Person C dfather.Person (Anne, Fred) : father
Rich C Vfather !.Rich Bob : Person

Rich m Poor C L (Bob, Fred) : father

father is functional

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

Description logic ALCIF Iterative algorithm

Person C Rich LI Poor Anne : Person M Poor Uses SBTP

Person C dfather.Person (Anne, Fred) : father
Rich C Vfather™!.Rich Bob : Person

Rich m Poor C L (Bob, Fred) : father

Uses aggregation
Paper has details

father is functional

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

Description logic ALCIF Iterative algorithm

Person C Rich LI Poor Anne : Person "M Poor Uses SBTP
Person C dfather.Person (Anne, Fred) : father .
. 1 - Uses aggregation
Rich C Vfather " .Rich Bob : Person

Paper has details

Rich m Poor C L (Bob, Fred) : father

father is functional

As a logic program

IsA(x, Exists(RN("father"), CN("Person")), time) :-
IsA(x, CN("Person"), time)

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

Description logic ALCIF Iterative algorithm

Person C Rich LI Poor Anne : Person M Poor Uses SBTP

Person C dfather.Person (Anne, Fred) : father
Rich C Vfather™!.Rich Bob : Person

Rich m Poor C L (Bob, Fred) : father

Uses aggregation
Paper has details

father is functional
As a logic program
IsA(x, Exists(RN("father"), CN("Person")), time) :-

IsA(x, CN("Person"), time)

ALCIF satisfiability = LP satisfiability”

« LP encodes standard tableau construction [Baader et al 2017]
« “Time” is quantifier expansion depth
« TBox ->rules, ABox -> facts
« Some general library rules

« Requires model inspection for “double blocking”

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

Description logic ALCIF Iterative algorithm

Person C Rich LI Poor Anne : Person I Poor Uses SBTP
Person C dfather.Person (Anne, Fred) : father .
. 1 Uses aggregation
Rich C Vfather™ " .Rich Bob : Person ,
: Paper has details
Rich 1 Poor C L . . (Bob, Fred) : father
father is functional
As a logic program Label(x, cs, time) :-
IsA(x, _, time),
IsA(x, Exists(RN("father"), CN("Person")), time) :- COLLECT(cs, ¢ STH IsA(x, ¢, time))

IsA(x, CN("Person"), time)

// Pairwise blocking

// y is blocked by x if ...
ALCIF satisfiability = LP satisfiability” pockedly, o Hme) 1T ;
Anc(x, y, time),

« LP encodes standard tableau construction [Baader et al 2017] // ... the labels of y and x are the same
Label(y, yIsAs, time),

« “Time” is quantifier expansion depth Label(x, xIsAs, time),
yIsAs = xIsAs,
e TBOX-> rules, ABox -> facts // ...y and x are r-successors of some yl and x1, for s
HasA(yl1, r, y, time),
« Some general library rules HasA(x1, r, x, time),
// ... the labels of yl and x1 are the same
« Requires model inspection for “double blocking” Label(yl, ylIsAs, time),

Label(x1, x1IsAs, time),
y1IsAs = x1ISAs

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

Description logic ALCIF Iterative algorithm

Person C Rich LI Poor Anne : Person N1 Poor Uses SBTP
Person C dfather.Person (Anne, Fred) : father ,
. 1 Uses aggregation
Rich C Vfather " .Rich Bob : Person .
: Paper has details
Rich m Poor C L . . (Bob, Fred) : father
father is functional
As a logic program Label(x, cs, time) :-
IsA(x, _, time),
IsA(x, Exists(RN("father"), CN("Person")), time) :- COLLECT(cs, ¢ STH IsA(x, ¢, time))
IsA(x, CN("Person®), time) // Pairwise blocking
// y is blocked by x if ... Tex*bOOk l"l'O'l
ALCIF satisfiability = LP satisfiability” Blocked(y, x, time) :-
// ... X is an ancestor of vy,

Anc(x, y, time),

« LP encodes standard tableau construction [Baader et al 2017] // ... the labels of y and x are the same
Label(y, yIsAs, time),

« “Time” is quantifier expansion depth Label(x, xIsAs, time),
yIsAs = XxIsAs,
e TBOX-> rules, ABox -> facts // ...y and x are r-successors of some yl and x1, for s
HasA(yl1, r, y, time),
« Some general library rules HasA(x1, r, x, time),
// ... the labels of yl and x1 are the same
« Requires model inspection for “double blocking” Label(yl, ylIsAs, time),

Label(x1, x1IsAs, time),
y1IsAs = x1ISAs

What’s New (3) - Usability and Workflow
Case study for combined Scala / logic programming workflow

2 Million taxi rides in New York City

Ride(taxi, license,from,to,start,end,fare)

Iijﬁjzzzzzl83
el 19,&3%4£3£340 Ozm “5
Ride # R N 1?24{1:;2“%2;“,;?‘ & 88 Pickup/dropoff
4 V6) ITNS 204 S & 4
g et clusters
Gap (between rides)
‘%%%7%223?1 ?903) 379 - g
3 “‘.1 1#3 175 1;_6 ////}2\\§\\
(1) Rules for gaps, pickup/dropoff clustering and concave hull
(2) Rules for anomaly detection
driver license-3568
taxi-3568 license-3568 2013-01-01T22:10 2013-01-01T22:38 28m 5.7km
pickup anomaly from: hotspot-15
hour: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
pickups: 16 34 35 30 26 20 7 20 8 5 9 25 36 36 31 55 50 44 24 64 69 38 21

dropoffs: (16 40 70 73 48 22 33 17 22 28 44 43 116 76 76 83 57 74 70 76 36 13 | 34| 18

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, Ffrom, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

}

}

_.license = "42"

saturateFirst {

Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

}

}

_.license = "42"

saturateFirst {

Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, from, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

.license = "42" : .
, saturateFirst(fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~y, _, From, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

.license = "42" : .
, saturateFirst(fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~y, _, From, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),

(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

.license = "42" : .
, saturateFirst(fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~y, _, From, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherEnd, _, _, _, _, _, _),

(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

.license = "42" : .
, saturateFirst(fusemate Invocation
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~y, _, From, _, s),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case (g:Gap = ¢
functional + Logic programming
(in a new way?)

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

.license = "42" ¥ ‘ ‘

= usemate Invocation

} saturateFirstﬂ/

Gap(taxi, license, preveEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, Yy _, from, _,)y
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
Star'z 1sAfter prevend, e Defined as a Scala function
NOT

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case (g:Gap = ¢
functional + Logic programming
(in a new way?)

Conclusions

Fusemate is implemented by shallow embedding into Scala
« New operators for aggregation and comprehension
« Atoms and interpretations are first-class citizens
« Light-weight interface logic programming <-> Scala
Workflow: logic programming = operator on collections of objects (case classes)
Efficiency
 SAT problem for propositional possible models of stratified DLPs is NP-complete
« Atoms indexed by time then indexed by predicate symbols
Helps a lot, in particular “comprehension”
« OK for slow-running processes
Bigger data sets currently need combined workflow (taxi example)

Availability
https://bitbucket.csiro.au/users/bau®050/repos/fusemate/

10

