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language. Scala's static types help avoid bugs in complex applications, and its JVM and
JavaScript runtimes let you build high-performance systems with easy access to huge

Implementation language: Scala

 Scala combines object-oriented and functional programming
def gsort(l: List[Int]): List[Int] =

L match {
case Nil => Nil
case pivot :: tail => gsort(tail filter {_ < pivot}) ::: pivot

qsort(tail filter {_ >= pivot})

. Pattern matching
o Access to huge ecosystem of libraries

« Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

Implementation technique: shallow embedding

» Logic program translated into Scala program that is executed for model computation

AFAIK Fusemate is the only logic programming system implemented that way

Q: what are the advantages/disadvantages of this approach?

E.g. in terms of capitalizing on / integrating the above features of Scala
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Shallow Embedding Into Scala Logic Scala

Pred/Fun signature Class declaration
» User writes Scala program with rules embedded into it Atom/Term Class instance
Interpretation Set of class instances
type Time = Int Variable Variable
Rule Partial function
case class GOOdSleep(time: Time) extends Atom Matching subst Pattern matching

@rules
All logic notions are Scala

GoodSleep(time) :- e “Interpretation” available as term
WakeUp(time), e Trivial interface to/from Scala
GoToBed(t), t <= time - 8, e Type checking/inference for free
not (s < time, t < s, WakeUp(s)) . .

Every Scala term is a term of the logic

« The rules are macro expanded into Scala curried partial functions

(I: Interpretation) => { ‘!ix
case WakeUp(time) => {

Rules

function application mimics rule evaluation

case GoToBed(t) if t <= time - 8 && I.failsOn(“bodyofnot”) => GoodSleep(time)

} ..

) Recursive call of model computation

« Given-clause loop operating on rules-as-partial-functions and interpretations (tableaux)
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« Many LP systems (DLV, IDP, Gringo, ...) support aggregation ops #count #sum #times #min #max
2 < #count { time : GoodSleep(time) }

« Fusemate implements a more general stratified collect operator  “Logic term = Scala term”
collect(gsTimes, time sth GoodSleep(time))

Semantics: gsTimes = { time | I = GoodSleep(time) }

« Recover standard aggregation functionality #... with Scala operator
2 < gsTimes.size
« Butis more expressive

(gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

Comprehension operator
choose(t < time sth GoodSleep(t))
“The most recent t before time such that GoodSleep(t)”

These operators are user-definable

 Useful for analysing “current state” in situational awareness application



What’s New? (2)

Stratification by predicates and by time (SBTP)
« Stratification disallows definitorial loop through “not <body>" literal

o Stratification renders “not <body>" evaluation monotonic

X Stratified by predicates

—_— \

p(time) :- g(time), not r(time-1) V' Stratified by time
r(time) :- p(time) v/ SBTP

\_/V

— \ o[ .
q(time) :- p(time), not s(time) V' Stratified by predicates

X Stratified by time
v/ SBTP

SBTP = lexicographic combination of “by time” and “by predicates”
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yIsAs = XxIsAs,
e TBOX-> rules, ABox -> facts // ...y and x are r-successors of some yl and x1, for s
HasA(yl1, r, y, time),
« Some general library rules HasA(x1, r, x, time),
// ... the labels of yl and x1 are the same
« Requires model inspection for “double blocking” Label(yl, ylIsAs, time),

Label(x1, x1IsAs, time),
y1IsAs = x1ISAs



What’s New (3) - Usability and Workflow
Case study for combined Scala / logic programming workflow

2 Million taxi rides in New York City

Ride(taxi, license,from,to,start,end,fare)

Iijﬁjzzzzzl83
el 19,&3%4£3£340 Ozm “5
Ride # R N 1?24{1:;2“%2;“,;?‘ & 88 Pickup/dropoff
4 V6) ITNS 204 S & 4
g et clusters
Gap (between rides)
‘%%%7%223?1 ?903) 379 - g
3 “‘.1 1#3 175 1;_6 ////}2\\§\\
(1) Rules for gaps, pickup/dropoff clustering and concave hull
(2) Rules for anomaly detection
driver license-3568
taxi-3568 license-3568 2013-01-01T22:10 2013-01-01T22:38 28m 5.7km
pickup anomaly from: hotspot-15
hour: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
pickups: 16 34 35 30 26 20 7 20 8 5 9 25 36 36 31 55 50 44 24 64 69 38 21

dropoffs: ( 16 40 70 73 48 22 33 17 22 28 44 43 116 76 76 83 57 74 70 76 36 13 | 34| 18



What’s New (3) - Usability an Workflow

From Scala to logic program and back

Scala is both extension language and scripting language

val gaps42 = rides filter {

_.license = "42"
} saturateFirst {
Gap(taxi, license, prevEnd, start, prevTo, from) :- (
Ride(taxi, license, start, end, ~, _, Ffrom, _, s ),
Ride(taxi, license, _, prevend, _, _, _, prevTo, _, _),
start isAfter prevEnd,
NOT (

Ride(taxi, license, otherStart, otherend, _, _, _, _, _, _),
(start isAfter otherStart) A (otherStart isAfter prevEnd)

)
) } collect {

case g:Gap = ¢

}
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Conclusions

Fusemate is implemented by shallow embedding into Scala
« New operators for aggregation and comprehension
« Atoms and interpretations are first-class citizens
« Light-weight interface logic programming <-> Scala
Workflow: logic programming = operator on collections of objects (case classes)
Efficiency
 SAT problem for propositional possible models of stratified DLPs is NP-complete
« Atoms indexed by time then indexed by predicate symbols
Helps a lot, in particular “comprehension”
« OK for slow-running processes
Bigger data sets currently need combined workflow (taxi example)

Availability
https://bitbucket.csiro.au/users/bau®050/repos/fusemate/
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