
Peter Baumgartner
Data61|CSIRO and ANU, Canberra, Australia

The Fusemate Logic Programming System

Fusemate - Language and Model Computation Overview

2

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Application:

Situational awareness
= model computation

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Application:

Situational awareness
= model computation

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Disjunctions: possible model semantics [Sakama 90]
Thirsty(time) or Hungry(time) :- GoodSleep(time)

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Disjunctions: possible model semantics [Sakama 90]
Thirsty(time) or Hungry(time) :- GoodSleep(time)

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Inclusive reading of “or”

 : : :
Thirsty(10) Hungry(10) Hungry(10)
 Thirsty(10)

Models

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Disjunctions: possible model semantics [Sakama 90]
Thirsty(time) or Hungry(time) :- GoodSleep(time)

Belief revision
fail(+ GoToBed(time - 8)) :-

WakeUp(time),
not (GoToBed(t), t <= time - 8)

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Inclusive reading of “or”

 : : :
Thirsty(10) Hungry(10) Hungry(10)
 Thirsty(10)

Models

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Disjunctions: possible model semantics [Sakama 90]
Thirsty(time) or Hungry(time) :- GoodSleep(time)

Belief revision
fail(+ GoToBed(time - 8)) :-

WakeUp(time),
not (GoToBed(t), t <= time - 8)

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Inclusive reading of “or”

 : : :
Thirsty(10) Hungry(10) Hungry(10)
 Thirsty(10)

Models

[IJCAR 2020]

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

Fusemate - Language and Model Computation Overview

2

R(a,b)
R(X,Y) :- R(Y,X)
R(X,Z) :- R(X,Y), r(Y,Z)

Input language: Prolog-like rules

Default negation: stratification “by time”
GoodSleep(time) :-

WakeUp(time),
GoToBed(t), t <= time - 8,
not (s < time, t < s, WakeUp(s))

Disjunctions: possible model semantics [Sakama 90]
Thirsty(time) or Hungry(time) :- GoodSleep(time)

Belief revision
fail(+ GoToBed(time - 8)) :-

WakeUp(time),
not (GoToBed(t), t <= time - 8)

Botton-up model generation
(Hyper tableau, Hyper resolution, SATCHMO, …)

R(a,b)
R(b,a)

Models

Inclusive reading of “or”

 : : :
Thirsty(10) Hungry(10) Hungry(10)
 Thirsty(10)

Models

[IJCAR 2020]

What’s special?

What’s new?

unhappy(time) :- Now(time), not winLottery(time+7)

Application:

Situational awareness
= model computation

“not” subgoals must be strictly earlier “<“ than current time

What’s Special?

• Scala combines object-oriented and functional programming
def qsort(l: List[Int]): List[Int] =

 l match {
 case Nil => Nil
 case pivot :: tail => qsort(tail filter {_ < pivot}) ::: pivot ::
 qsort(tail filter {_ >= pivot})
 }

• Access to huge ecosystem of libraries

• Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

3

Implementation language: Scala

What’s Special?

• Scala combines object-oriented and functional programming
def qsort(l: List[Int]): List[Int] =

 l match {
 case Nil => Nil
 case pivot :: tail => qsort(tail filter {_ < pivot}) ::: pivot ::
 qsort(tail filter {_ >= pivot})
 }

• Access to huge ecosystem of libraries

• Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

3

Implementation language: Scala

Pattern matching

What’s Special?

• Scala combines object-oriented and functional programming
def qsort(l: List[Int]): List[Int] =

 l match {
 case Nil => Nil
 case pivot :: tail => qsort(tail filter {_ < pivot}) ::: pivot ::
 qsort(tail filter {_ >= pivot})
 }

• Access to huge ecosystem of libraries

• Runs on JVM; compiled or in data-analysis style interactive workbooks (Jupyter)

3

Implementation language: Scala

Implementation technique: shallow embedding

• Logic program translated into Scala program that is executed for model computation

• AFAIK Fusemate is the only logic programming system implemented that way

• Q: what are the advantages/disadvantages of this approach?
 E.g. in terms of capitalizing on / integrating the above features of Scala

Pattern matching

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

• User writes Scala program with rules embedded into it

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

• User writes Scala program with rules embedded into it

Σ

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

• User writes Scala program with rules embedded into it

Σ

Rules

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

(I: Interpretation) => {
 case WakeUp(time) => {
 case GoToBed(t) if t <= time - 8 && I.failsOn(“body of not”) => GoodSleep(time)
 }
 }

• The rules are macro expanded into Scala curried partial functions

• User writes Scala program with rules embedded into it

Σ

Rules

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

(I: Interpretation) => {
 case WakeUp(time) => {
 case GoToBed(t) if t <= time - 8 && I.failsOn(“body of not”) => GoodSleep(time)
 }
 }

• The rules are macro expanded into Scala curried partial functions

• User writes Scala program with rules embedded into it

Function application mimics rule evaluation

Σ

Rules

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

(I: Interpretation) => {
 case WakeUp(time) => {
 case GoToBed(t) if t <= time - 8 && I.failsOn(“body of not”) => GoodSleep(time)
 }
 }

• The rules are macro expanded into Scala curried partial functions

• User writes Scala program with rules embedded into it

Recursive call of model computation

Function application mimics rule evaluation

Σ

Rules

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

(I: Interpretation) => {
 case WakeUp(time) => {
 case GoToBed(t) if t <= time - 8 && I.failsOn(“body of not”) => GoodSleep(time)
 }
 }

• The rules are macro expanded into Scala curried partial functions

• Given-clause loop operating on rules-as-partial-functions and interpretations (tableaux)

• User writes Scala program with rules embedded into it

Recursive call of model computation

Function application mimics rule evaluation

Σ

Rules

Shallow Embedding Into Scala

4

type Time = Int

case class GoodSleep(time: Time) extends Atom

@rules
 …
 GoodSleep(time) :-

 WakeUp(time),
 GoToBed(t), t <= time - 8,
 not (s < time, t < s, WakeUp(s))

(I: Interpretation) => {
 case WakeUp(time) => {
 case GoToBed(t) if t <= time - 8 && I.failsOn(“body of not”) => GoodSleep(time)
 }
 }

• The rules are macro expanded into Scala curried partial functions

• Given-clause loop operating on rules-as-partial-functions and interpretations (tableaux)

Logic Scala
Pred/Fun signature Class declaration
Atom/Term Class instance
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

All logic notions are Scala

• “Interpretation” available as term

• Trivial interface to/from Scala

• Type checking/inference for free

Every Scala term is a term of the logic

• User writes Scala program with rules embedded into it

Recursive call of model computation

Function application mimics rule evaluation

Σ

Rules

What’s New? (1)

5

What’s New? (1)
General aggregation operator

5

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

5

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

• Fusemate implements a more general stratified collect operator

 collect(gsTimes, time sth GoodSleep(time))

 Semantics: gsTimes = { time | I ⊨ GoodSleep(time) }

5

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

• Fusemate implements a more general stratified collect operator

 collect(gsTimes, time sth GoodSleep(time))

 Semantics: gsTimes = { time | I ⊨ GoodSleep(time) }

5

“Logic term = Scala term”

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

• Fusemate implements a more general stratified collect operator

 collect(gsTimes, time sth GoodSleep(time))

 Semantics: gsTimes = { time | I ⊨ GoodSleep(time) }

• Recover standard aggregation functionality #… with Scala operator

 2 < gsTimes.size

5

“Logic term = Scala term”

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

• Fusemate implements a more general stratified collect operator

 collect(gsTimes, time sth GoodSleep(time))

 Semantics: gsTimes = { time | I ⊨ GoodSleep(time) }

• Recover standard aggregation functionality #… with Scala operator

 2 < gsTimes.size

• But is more expressive

 (gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

5

“Logic term = Scala term”

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

• Fusemate implements a more general stratified collect operator

 collect(gsTimes, time sth GoodSleep(time))

 Semantics: gsTimes = { time | I ⊨ GoodSleep(time) }

• Recover standard aggregation functionality #… with Scala operator

 2 < gsTimes.size

• But is more expressive

 (gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

5

Comprehension operator
 choose(t < time sth GoodSleep(t))

 “The most recent t before time such that GoodSleep(t)”
• Useful for analysing “current state” in situational awareness application

“Logic term = Scala term”

What’s New? (1)
General aggregation operator

• Many LP systems (DLV, IDP, Gringo, …) support aggregation ops #count #sum #times #min #max

 2 < #count { time : GoodSleep(time) }

• Fusemate implements a more general stratified collect operator

 collect(gsTimes, time sth GoodSleep(time))

 Semantics: gsTimes = { time | I ⊨ GoodSleep(time) }

• Recover standard aggregation functionality #… with Scala operator

 2 < gsTimes.size

• But is more expressive

 (gsTimes map { _ % 24 } foldLeft(0) { _ + _ }) / gsTimes.size

5

Comprehension operator
 choose(t < time sth GoodSleep(t))

 “The most recent t before time such that GoodSleep(t)”
• Useful for analysing “current state” in situational awareness application

“Logic term = Scala term”

These operators are user-definable

What’s New? (2)

Stratification by predicates and by time (SBTP)

• Stratification disallows definitorial loop through “not <body>” literal

• Stratification renders “not <body>” evaluation monotonic

6

p(time) :- q(time), not r(time-1)
r(time) :- p(time)

✗ Stratified by predicates

✓ Stratified by time

✓ SBTP

q(time) :- p(time), not s(time) ✓ Stratified by predicates

✗ Stratified by time

✓ SBTP

SBTP = lexicographic combination of “by time” and “by predicates”

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

7

8 P. Baumgartner

For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF

father is functional

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

7

8 P. Baumgartner

For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF
Iterative algorithm

Uses SBTP

Uses aggregation
Paper has details

father is functional

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

7

8 P. Baumgartner

For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF
Iterative algorithm

Uses SBTP

Uses aggregation
Paper has details

father is functional

As a logic program

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

7

8 P. Baumgartner

For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF

ALCIF satisfiability = LP satisfiability”

• LP encodes standard tableau construction [Baader et al 2017]

• “Time” is quantifier expansion depth

• TBox -> rules, ABox -> facts

• Some general library rules

• Requires model inspection for “double blocking”

Iterative algorithm

Uses SBTP

Uses aggregation
Paper has details

father is functional

As a logic program

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

7

8 P. Baumgartner

For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF

ALCIF satisfiability = LP satisfiability”

• LP encodes standard tableau construction [Baader et al 2017]

• “Time” is quantifier expansion depth

• TBox -> rules, ABox -> facts

• Some general library rules

• Requires model inspection for “double blocking”

Iterative algorithm

Uses SBTP

Uses aggregation
Paper has details

father is functional

As a logic program

What’s New (1) - (2) Showcase - Fusemate as Description Logic Reasoner

7

8 P. Baumgartner

For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF

ALCIF satisfiability = LP satisfiability”

• LP encodes standard tableau construction [Baader et al 2017]

• “Time” is quantifier expansion depth

• TBox -> rules, ABox -> facts

• Some general library rules

• Requires model inspection for “double blocking”

Iterative algorithm

Uses SBTP

Uses aggregation
Paper has details

father is functional

As a logic program

Textbook 1-to-1

What’s New (3) - Usability and Workflow

2 Million taxi rides in New York City
Ride(taxi,license,from,to,start,end,fare)

(1) Rules for gaps, pickup/dropoff clustering and concave hull
(2) Rules for anomaly detection

Ride
Gap (between rides)

8

Pickup/dropoff
clusters

Case study for combined Scala / logic programming workflow

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Fusemate invocation

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Fusemate invocation

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

9

Fusemate invocation

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Functional + Logic programming

(in a new way?)
9

Fusemate invocation

Scala is both extension language and scripting language

What’s New (3) - Usability an Workflow

From Scala to logic program and back

Functional + Logic programming

(in a new way?)
9

Fusemate invocation

Defined as a Scala function

Scala is both extension language and scripting language

Conclusions

Fusemate is implemented by shallow embedding into Scala

• New operators for aggregation and comprehension

• Atoms and interpretations are first-class citizens

• Light-weight interface logic programming <-> Scala

Workflow: logic programming = operator on collections of objects (case classes)

Efficiency

• SAT problem for propositional possible models of stratified DLPs is NP-complete

• Atoms indexed by time then indexed by predicate symbols

Helps a lot, in particular “comprehension”

• OK for slow-running processes

Bigger data sets currently need combined workflow (taxi example)

Availability
https://bitbucket.csiro.au/users/bau050/repos/fusemate/

10

