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Implementation language: Scala

Implementation technique: shallow embedding

• Logic program translated into Scala program that is executed for model computation 

• AFAIK Fusemate is the only logic programming system implemented that way 

• Q: what are the advantages/disadvantages of this approach? 
 E.g. in terms of capitalizing on / integrating the above features of Scala 

Pattern matching
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These operators are user-definable



What’s New? (2)

Stratification by predicates and by time (SBTP) 

• Stratification disallows definitorial loop through “not <body>” literal  

• Stratification renders “not <body>” evaluation monotonic

6

p(time) :- q(time), not r(time-1) 
r(time) :- p(time) 

✗   Stratified by predicates 

✓  Stratified by time 

✓   SBTP

q(time) :- p(time), not s(time) ✓   Stratified by predicates 

✗   Stratified by time 

✓   SBTP

SBTP = lexicographic combination of “by time” and “by predicates”
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For a more realistically sized experiment I tried a combined Fusemate/Scala work-
flow for analysing the data of the DEBS 2015 Grand Challenge.5 The data comprises 2
million taxi rides in New York City in terms of start/end times, start/end coordinates,
fares etc. The problem considered was to detect anomalies where a taxi driver drivers
away from a busy hotspot without a passenger.Solving the problem required clustering
locations by pickup/dropo� activity for determining hotspots, and then analysing driver
behavior given their pickups/dropo�s at these hotspots.

2 million data points were too much for Fusemate alone and required Scala pre-
processing, e.g., for filling a grid abstraction of New York coordinates. Fusemate was
used for computing clusters with rules similar to transitive closure computation. Input to
Fusemate calls were Scala precomputed point clouds. The computed clusters were used
to analyze Scala pre-filtered taxi rides for anomaly detection based on the clusters. This
involved three moderately complex rules, for first identifying gaps and then analysing
them. The comprehension operator was useful to find “the most recent ride predating a
given start”, among others. The longest Fusemate run was 0.31sec for 64 rides (with 39
clusters fixed), most other runs took less than 0.15sec.

In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.

This is our example knowledge base, TBox on the left, ABox on the right:

Person v Rich t Poor Anne : Person u Poor

Person v 9father.Person (Anne, Fred) : father

Rich v 8father
�1
.Rich Bob : Person

Rich u Poor v ? (Bob, Fred) : father

The father role is declared as functional, i.e., as a right-unique relation, and father
�1

denotes its inverse “child” relation. The third GCI says that all children of a rich father
are rich as well. The knowledge base has two distinct models. In both models Fred is
Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
see e.g. [18,16,14,11]. An obvious starting point is taking the FOL version of a given
knowledge base. Concept names become unary predicates, role names become binary
predicates, and GCIs (general concept inclusions) are translated into implications. By
polynomial transformations, the implications can be turned into clausal form (if-then
rules over literals), except for existential quantification in a positive context, which

5 http://www.debs2015.org/call-grand-challenge.html

Description logic ALCIF

father is functional
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Description logic ALCIF
Iterative algorithm

Uses SBTP

Uses aggregation
Paper has details

father is functional
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In conclusion, Fusemate’s performance was perfectly acceptable in this experiment
thanks to a combined workflow.

5 Embedding Description Logic ALCIF

ALCIF is the well-known description logic ALC extended with inverse roles and
functional roles. (See [3] for background on description logics.) This section describes
how to translate an ALCIF knowledge base to Fusemate rules and facts for satisfia-
bility checking.
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Poor. This follows from the given fact that his child Anne is poor and functionality of
father. In one model Bob is Rich and in the other Bob is Poor.

Translating description logic into rule-based languages has been done in many ways,
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What’s New (3) - Usability and Workflow

2 Million taxi rides in New York City             
Ride(taxi,license,from,to,start,end,fare)

(1) Rules for gaps, pickup/dropoff clustering and concave hull 
(2) Rules for anomaly detection  

Ride
Gap (between rides)

8

Pickup/dropoff 
clusters

Case study for combined Scala / logic programming workflow
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From Scala to logic program and back  

Functional + Logic programming

(in a new way?)
9

Fusemate invocation

Defined as a Scala function

Scala is both extension language and scripting language



Conclusions

Fusemate is implemented by shallow embedding into Scala 

• New operators for aggregation and comprehension 

• Atoms and interpretations are first-class citizens 

• Light-weight interface logic programming  <-> Scala  

Workflow: logic programming = operator on collections of objects (case classes) 

Efficiency 

• SAT problem for propositional possible models of stratified DLPs is NP-complete  

• Atoms indexed by time then indexed by predicate symbols  

Helps a lot, in particular “comprehension” 

• OK for slow-running processes  

Bigger data sets currently need combined workflow (taxi example) 

Availability 
https://bitbucket.csiro.au/users/bau050/repos/fusemate/
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