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Situational Awareness

Factory Floor 
Are the operations carried out according to the schedule? 

Food Supply Chain 
Are goods delivered within 3 hours and stored below 25℃? 
Why is the truck late? 
What is the expected quality (shelf life) of the goods? 

Data Cleansing 
Does the database have complete, correct and relevant data?
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What’s the problem?
• The domain model needs to cover multiple aspects: 

Temporal/causal/structural/physical/… 

• Events happened ≠ events reported (errors, incomplete, late …) 

• Can only hope for multiple plausible explanations 

≈ comprehending system state as it evolves over time
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Example

T T+1 T+2

?
T+3

No information at T+3
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Example

T

OR

T+1 T+2 T+3

T+3: What if truck is on the road? At Canberra warehouse?
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➙ We use logic programming



Logic Programming
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Chained by inference engine
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Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
“innocent :- not guilty”

Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)

Purpose

Query answering (who drinks milk?), planning (get Tom some milk),  
abduction (why did we go to Coles?), model computation (what do we know about Tom?)

Integrity constraints fail :- cat(x), mouse(x)
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an answer setM ′ for P such that HP(M ′) < c. From Lemma 4.9, this task is feasible in
NP, and thus the checking problem is in co-NP.
Hardness. Recall that, given a DLV[vh] program P and an atom q, deciding whether

q /∈ M for each answer set of P is co-NP-complete, cf. [Eiter et al. 1998b]. From Lemma
4.13, this problem can be reduced to answer set checking for DLV[vh, w] programs.
Moreover, it is well-known that, for each DLV[vh] program P , we can construct in

polynomial time a DLV[not] program having the same answer sets as P , by replacing
disjunction by unstratified negation [Ben-Eliyahu and Dechter 1994]. The same reduction
clearly allows us to reduce answer set checking for DLV[vh, w] programs to answer set
checking for DLV[not, w] programs. Thus, the latter problem is co-NP-hard, as well.
3). Membership. Let P be a program in DLV[v, not, w], and M be a set of ground

literals. We show that the complementary problem of checking that M is not an answer
set for P is in ΣP

2 . First we decide in co-NP whether M is an answer set for Rules(P)
or not. If this is not the case, we stop. Otherwise, we compute its cost c = HP(M) and
then decide whether there exists an answer set M ′ for P such that HP(M ′) < c. This is
feasible in ΣP

2 , according to Lemma 4.6.
Hardness. Deciding whether a given literal is not contained in any answer set of a

DLV[v] program is ΠP
2 -complete [Eiter et al. 1997b]. From Lemma 4.13 it follows that

this problem can be reduced to answer set checking for DLV[v, w] programs.

4.5 Summary of Results and Discussion

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P
2

{vh} NP ∆P
2 NP ∆P

2 NP ∆P
2

{v} ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Table I. The Complexity of Brave Reasoning in fragments of the DLV Language

{} {w} {nots} {nots, w} {not} {not,w}

{} P P P P co-NP ∆P
2

{vh} co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

{v} co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Table II. The Complexity of Cautious Reasoning in fragments of the DLV Language

The complexity of Brave Reasoning and Cautious Reasoning from ground DLV pro-
grams are summarized in Table I and Table II, respectively. In Table III, we report both
well-known (for the weak constraint-free case) and new results on the complexity of An-
swer Set Checking.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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well-known (for the weak constraint-free case) and new results on the complexity of An-
swer Set Checking.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.
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 fail(+win(now-1)) :- happy(now)
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“Not known now” -> “never known”
Makes default negation possible
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(a) ? ) ?1, . . . , ?: by Ext and {?1, . . . , ?: } * )8 ,
(b) ? ) @1, . . . , @< by Restart and {?1, . . . , ?: } = {? 2 {@1, . . . , @<} | ? is new wrt. )8},
(c) ? ) by Fail and : = 0, or
(d) ? ) ?1 by Jump and : = 1.

In addition, the inference rules must be prioritized in this order. That is, if)8+1 is obtained
from )8 by, say, case (c) , then there is no tableau that can be obtained from )8 by case
(a) or case (b) with the same selected path ?; analogously for the other cases.

The derivation ⇡ is exhausted if it is finite and no inference rule is applicable to
its final tableau )=, for no ? 2 )=. In this case the computed models of ⇡ is the set
M(⇡) = {(⇢ , �) | (⇢ , �, C) 2 )= for some C 2 N}.

Figure 2 is a graphical illustration of a derivation and its computed models.
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0 �1

0

fail( Æ40
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1

�1
1 fail( Æ40

2)

⇢2
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2 �1

2 fail()fail()

fail( Æ41
0)

. . .

Fig. 2. Illustration of a hypothetical derivation. The root of each sub-tableau is labeled with the
EDB in that sub-derivation. The first sub-tableau has two Restart inferences, leading to the second
and third sub-tableau, where ⇢1 = upd(⇢init, Æ4

0
0), ⇢2 = upd(⇢init, Æ4

1
0). The isolated fail()s do not

cause a Restart, they cause Fail. The computed models are (⇢init, �
0
0 ), (⇢init, �

1
0 ), (⇢1, �

0
1 ), etc.

Theorem 1 (Soundness and completeness). Assume a signature ⌃without :-ary func-
tion symbol, for : > 0. Let % be a stratified program and ⇢init an EDB. Assume an
exhausted derivation ⇡ from ⇢init and %. Then M(⇡) = mods% (⇢init).

Proof. (Sketch) Let )= be the final tableau of ⇡. For soundness, assume M(⇡) < ;

and chose any (⇢ , �) 2 M(⇡) arbitrary. That is, (⇢ , �, C) 2 )=, for some C. We have to
show (⇢ , �) 2 mods% (⇢init), equivalently (⇢init, ⇢ , �) |= %.

The EDB ⇢ is either ⇢init or derived from ⇢init through, say, : > 0 intermediate
EDBs by Restarts. By induction on : one can show that, on the semantic side, ⇢ is a
restart induced by % and ⇢init, i.e., ⇢ 2 E in Def. 5. This follows from the definition
of derivations. In particular, the earliest-time requirement in Definition 5 is matched by
prioritizing Restart over Fail and Jump.

With the EDB ⇢ traced down in E, it remains to prove (⇢ , �) |= %. With the
stratification of % (Def. 1) this is rather straightforward. Range-restrictedness makes
sure that only ground heads are derivable. The Ext inference rule achieves on-the-fly
splitting and only for those variable-free instances of rules whose body is satisfied, which

for a given EDB E 
for time t = 0,1,2, …, now 

compute { I0, I1, …  all IDBs for time ≤ t } 
for I = I0, I1, …   

let F = { fail(…) heads derivable from E∪I }  
if F is non-empty then 
    obtain new EDBs E1, E2, … as per F and 
    abandon model candidate I

Operational

Principles
- Fail as early as possibly

- Collect all possible fails
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user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

A (usually) decidable fragment of first-order logic 
Semantic web ontologies (“is-a” and “has-a” relations) 
Reasoning on concepts and  concept instances

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp

Concepts 
“TBox”

Instances  
“ABox”
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later action. The actions are:3
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1. If there is no unloaded box with known high temperature then the status is OK.
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broken (because a broken cooling a�ects all boxes).
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the more likely explanation).
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user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox
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The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.
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ontology and if-then rules for diagnosing high temperatures. The concrete objects are
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actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:
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2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered
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3. If some unloaded box has a known low temperature then the truck cooling is not
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the more likely explanation).
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user with plausible explanations for that. The modelling in the example supports that
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crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
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The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered
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3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
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the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:
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later action. The actions are:3
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2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered
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3. If some unloaded box has a known low temperature then the truck cooling is not
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user with plausible explanations for that. The modelling in the example supports that
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ontology and if-then rules for diagnosing high temperatures. The concrete objects are
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user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.
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Examples 1 and 2 demonstrate how rules can help distinguish between unknown and
known attribute values, respectively. Using default negation it is easy to write a rule that
identifies the remaining case, when an individual does not have an attribute value at all.

Related work. Rules that allow extra variables in DL calls and that may have heads with
DL atoms are called weakly DL-safe rules in DL+log [36]. DL+log is among the most
expressive languages that combines rules with ontologies. Unlike DL+log, Fusemate
allows DL calls within default negation, for example:

1 ColdBox(time, box) :–
2 IsAAt(time, x, Box),
3 NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

According to this rule, a box is a ColdBox at a given time if it never provably had a High
temperature in the past.

Most other hybrid languages, like the one in [30] and dl+Programs [18] do not allow
DL atoms in the head. Others do not allow extra variables in DL calls. See [17] for an
in-depth overview of rule/DL combinations.

5 Event Calculus Embedding

The event calculus (EC) is a logical language for representing and reasoning about
actions and their e�ects [22,40]. At its core, e�ects are fluents, i.e., statements whose
truth value can change over time, and the event calculus provides a framework for
specifying the e�ects of actions in terms of initiating or terminating fluents to hold.

Many versions of the EC exists, see [29] for a start. The approach below makes do
with a basic version that is inspired by the discrete event calculus in [32] with integer
time. The event calculus of [32] is operationalized by translation to propositional SAT.
Its implementation in the “decreasoner” is geared for e�ciency and can be used to solve
planning and diagnosis tasks, among others. The version below is tailored for the model
computation tasks mentioned in the introduction, where a fixed sequence of events at
given timepoints can be supposed.6

With Fusemate implementing a minimal model semantics and with default negation
available, there is no need for circumscription. For instance, frame axioms are stratified
(by time) automatically and they work as intended without further ado. This is not a
new invention and related answer set programming encodings of the event calculus have
been proposed before, e.g. [23]. But, as said earlier, the main focus here is the integration
with DL, which has not been done before.

Domain independent axioms. These are the domain-independent EC axioms here:

1 // DL assertions are �uents:
2 case class IsA(x: Individual, c: Concept) extends Fluent
3 case class HasA(x: Individual, r: Role, y: Individual) extends Fluent

6 Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the
model computation from there. The paper [11] already has a “supply-chain” example for that.

[DL]: Box2 is “High temp box” at t=20

[EC rules]: … and temp stays at 10° at t=30, 40, 50

|= means “provably” (not “consistently”)
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user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.
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high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.
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Examples 1 and 2 demonstrate how rules can help distinguish between unknown and
known attribute values, respectively. Using default negation it is easy to write a rule that
identifies the remaining case, when an individual does not have an attribute value at all.

Related work. Rules that allow extra variables in DL calls and that may have heads with
DL atoms are called weakly DL-safe rules in DL+log [36]. DL+log is among the most
expressive languages that combines rules with ontologies. Unlike DL+log, Fusemate
allows DL calls within default negation, for example:

1 ColdBox(time, box) :–
2 IsAAt(time, x, Box),
3 NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

According to this rule, a box is a ColdBox at a given time if it never provably had a High
temperature in the past.

Most other hybrid languages, like the one in [30] and dl+Programs [18] do not allow
DL atoms in the head. Others do not allow extra variables in DL calls. See [17] for an
in-depth overview of rule/DL combinations.

5 Event Calculus Embedding

The event calculus (EC) is a logical language for representing and reasoning about
actions and their e�ects [22,40]. At its core, e�ects are fluents, i.e., statements whose
truth value can change over time, and the event calculus provides a framework for
specifying the e�ects of actions in terms of initiating or terminating fluents to hold.

Many versions of the EC exists, see [29] for a start. The approach below makes do
with a basic version that is inspired by the discrete event calculus in [32] with integer
time. The event calculus of [32] is operationalized by translation to propositional SAT.
Its implementation in the “decreasoner” is geared for e�ciency and can be used to solve
planning and diagnosis tasks, among others. The version below is tailored for the model
computation tasks mentioned in the introduction, where a fixed sequence of events at
given timepoints can be supposed.6

With Fusemate implementing a minimal model semantics and with default negation
available, there is no need for circumscription. For instance, frame axioms are stratified
(by time) automatically and they work as intended without further ado. This is not a
new invention and related answer set programming encodings of the event calculus have
been proposed before, e.g. [23]. But, as said earlier, the main focus here is the integration
with DL, which has not been done before.

Domain independent axioms. These are the domain-independent EC axioms here:

1 // DL assertions are �uents:
2 case class IsA(x: Individual, c: Concept) extends Fluent
3 case class HasA(x: Individual, r: Role, y: Individual) extends Fluent

6 Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the
model computation from there. The paper [11] already has a “supply-chain” example for that.
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user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.
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type Time = Int 

case class Load(time: Time, obj: String, cont: String) extends Atom 
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type Time = Int 
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case class In(time: Time, obj: String, cont: String) extends Atom 

@rules 
val rules = List( In(time, obj, cont) :− (In(time, obj, c), In(time, c, cont) )

Macro annotation

   case List(In(time, obj, c), In(time0, c1, cont))  
        if c == c1 && time == time0  
     => In(time, obj, cont)

Macro expansion

into partial

function

(In reality the macro expansion is more complicated because of default negation)

+ given-clause loop operating on such rules-as-partial-functions

Input program ≈ Scala source code

Logic      Scala 
Pred/Fun signature  Class 
Interpretation   Set of class instances  
Variable     Variable 
Rule      Partial function 
Matching subst   Pattern matching



Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …) 

// Compute alternative “fixes” and extract their Load/Unload events a CSV again 
eventsCSV map { line => 
  line.split(",") match { 
    case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont) 
    … 
  } 
} saturate { @rules …  
  fail(…) :— 

… 
      (b ∋ obj) && (b ∋ o), 
      where { val b = sameBatch(t) } 
} map { I => 
  I.toList.sortBy(_.time) flatMap { 
    case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont") 
    … 
  } 
} 

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet) 
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet) 
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
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Two-way calling interface  
• Scala -> Rules calls trivial  
• Rules -> Scala calls trivial

Data structures integration is trivial  
• Use any Scala data structure in rules  
• Logic data structures (models) are Scala data structures 
• Unmatched aggregation and introspection capabilities  

Disadvantage 
• Must rely on Scala pattern matching implementation  
• Difficult to implement efficiently 
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• Scala -> Rules calls trivial  
• Rules -> Scala calls trivial

Data structures integration is trivial  
• Use any Scala data structure in rules  
• Logic data structures (models) are Scala data structures 
• Unmatched aggregation and introspection capabilities  

- Tighter coupling than in every other system (I know of)

- Adds “interpretations” as a container data structure to functional/OO programming 

  with “logic programming” as an operator

Disadvantage 
• Must rely on Scala pattern matching implementation  
• Difficult to implement efficiently 
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Process Step 4 - Animals arrive at Mountain River Processors’ stun box 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

        Figure 5.7 - Stun Box                                    Figure 5.8 - RFID reader at Stun Box 
 
Figure 5.7 illustrates animals in the location of the stun box. Note the RFID ear tags in the ears of the 
animals. Figure 5.8 illustrates the RFID antenna setup at the stun box. 
 
 
 
 
 
 
Process Step 5 - Cartons of finished Venison cuts packed into cartons at Mountain River 
processor and moved from the boning room into chiller room 

 

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the affixing of EPC UHF RFID tags on the cartons 
in the boning room and moving of cartons of finished venison cuts into the chiller room in preparation 
for loading the shipping container. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.9 - UHF RFID tags 
used on cartons 

Figure 5.10 - UHF RFID 
        tags positioned on cartons                            

Figure 5.11 – Tagged cartons  
moving from boning room to  

chiller room 
 

Events: from farm (NZ) to retailer (DE) encoded in EPCIS
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Table 6.3 - Commissioning event - tagging of animals 

 
Table 6.3 outlines a commissioning event, i.e. the tagging of the animals. Table 6.3 depicts twenty 
(20) animals being tagged in one ‘go’. The BizStep is commissioning where the tags and animals 
are considered to be active from this point on. Note that the values for business step and disposition 
are standardised values established by EPCglobal in the Common Business Vocabulary (hence 
urn:epcglobal:cbv prefix). The GLN extensions (DEER_CRUSH and ON_FARM) give more specific 
location details. The reading event occurred at the DEER_CRUSH location where the animals are 
considered to be ON_FARM from this point on. 
 
 
 
 
 
 
 

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

What? 
Where? 
When? 
Why?
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Table 6.13 - Delivery of consignment to Hamburg retailer 
 
Table 6.13 illustrates delivery of five (5) cartons to a retailer in Hamburg identified by their global 
location identifier urn:epc:id:sgln:4023339.00000.RECEIVING_BAY. The BizStep is a receiving 
event). This stage in the process is considered a DELETE event as the shipment has now been 
delivered and the items are in the custody of the retailer. (Note: The sGLN for the retailer was 
provided by GS1 Germany for purposes of this pilot). 
 
 
 
 
Conclusion 
 
In this research, all tag data (live animals, cartons of venison cuts and physical locations) was 
successfully read, identified and captured from all designated read points and successfully 
transmitted and populated into the EPCIS. Because each EPC identifier used in the research (ie: 
sGTIN for animals and cartons of venison cuts, sGLN for read locations) was able to be identified, 
recorded and reported on in the EPCIS, chain traceability demonstrating history, application, 
location and record throughout the entire supply chain was demonstrated; one step up, one step 
down – thereby achieving the stated traceability performance objectives. The EPCIS provides robust 
query and analysis capability based on EPC identifiers.  
 
The researchers include an important caveat to the conclusion. In the live animal to venison cuts 
conversion process, it is difficult to determine the exact association or relationship between 
individual venison pieces (or constituent pieces in the case of an aggregation process) and the 
entire animal (a live animal or carcass) without recording and tracking the boning process in detail at 
every each step. This should not be considered a technological shortcoming but a fundamental 
aspect of all meat related processing; most cartons will usually always contain cuts from multiple 
animals and tracking the contents of one particular carton upstream will nearly always point to 
multiple animals. It is only for specific (larger) cuts of venison that a 1-to-1 link could (theoretically) 
be established. It is not technically impossible however but will be determined by a supportive 
business case. Within the context of chain traceability as defined, the research demonstrates chain 
traceability at batch level. As there is a demonstrable and reliable association between the finished 
cartons (venison cuts) and a batch of animals as recorded in the EPCIS, the researchers consider 
the result compliant with the chain traceability as defined. 
 

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

What? 
Where? 
When? 
Why?
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Deer-1
DownlandsDeer/NewZealand/DEER_CRUSH
DownlandsDeer/NewZealand/ON_FARM

commissioning - active
Add

2012-10-16T11:54:38+13:00

Deer-1
DownlandsDeer/NewZealand/LOADING_RAMP

shipping - in_transit
Observe

2012-10-24T08:02:32+13:00

Deer-2
DownlandsDeer/NewZealand/DEER_CRUSH
DownlandsDeer/NewZealand/ON_FARM

commissioning - active
Add

2012-10-16T11:54:38+13:00

Deer-2
DownlandsDeer/NewZealand/LOADING_RAMP

shipping - in_transit
Observe

2012-10-24T08:02:32+13:00

Deer-1
MountainRiverProcessors/NewZealand/UNLOADING_RAMP
MountainRiverProcessors/NewZealand/HOLDING_PEN_2

receiving - in_progress
Observe

2012-10-24T10:42:03+13:00

Deer-2
MountainRiverProcessors/NewZealand/UNLOADING_RAMP
MountainRiverProcessors/NewZealand/HOLDING_PEN_2

receiving - in_progress
Observe

2012-10-24T10:42:03+13:00

Deer-1
MountainRiverProcessors/NewZealand/STUN_BOX

MountainRiverProcessors/NewZealand/BONING_ROOM
transforming - in_progress

Delete
2012-10-24T12:21:24+13:00

Carton-1
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-2
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-3
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-4
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-5
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-6
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-7
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-8
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-9
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

ShippingContainer-1
MountainRiverProcessors/NewZealand/EXIT_POINT

shipping - in_transit
Observe

2012-10-26T07:53+13:00

ShippingContainer-1
PortOfLyttleton/NewZealand/ENTRY_GATE

shipping - in_transit
Observe

2012-10-26T09:13+13:00

Carton-11
PrimeMeat/Germany/DOCK_DOOR

shipping - in_transit
Observe

2012-12-11T22:40:28+13:00

Carton-18
PrimeMeat/Germany/DOCK_DOOR

shipping - in_transit
Observe

2012-12-11T22:40:28+13:00

Carton-2
PrimeMeat/Germany/DOCK_DOOR

shipping - in_transit
Observe

2012-12-11T22:40:28+13:00

Carton-11
Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE
receiving - sellable_accessible

Delete
2012-12-12T01:58:34+13:00

Carton-18
Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE
receiving - sellable_accessible

Delete
2012-12-12T01:58:34+13:00

Carton-2
Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE
receiving - sellable_accessible

Delete
2012-12-12T01:58:34+13:00

WWWW

Association
Aggregation

Of Interest

• Handling structured XML data

• Speculating whereabout of missing item 
- A box enters supply chain but does not arrive at destination 

- Track same batch boxes as proxies

Disaggregation

From Farm to Supermarket
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Case Study 2 - D61 Project “Supply Chain Awareness”

   
 

CSIRO Australia’s National Science Agency  23 

We validated our approach with three synthetic test cases (real BeefLedger data were not yet 
available): 

  
Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to 
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to 
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The 
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again 
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are 
put in the freezer as well. At some point in time the sensors are disabled and the line ends. 

 
Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long 
before being put into the freezer room. The temperature raises further to an unacceptable value. 

 
Figure: Cabin box scenario: In contrast  to the normal scenario, box #11 is not cooled properly on the way to Annerley.  Its 
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the 
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall 
again towards -20ºC. 

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and 
confirmed the normal scenario as unproblematic: 
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- Partner company BeefLedger ships boxed meat products 
- Stringent cooling requirements ensure quality of products 
- D61 sensors measure box temperatures  

(S. Khalifa / K. v. Richter) 
- Task: Pricing model, anomaly detection
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temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the 
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall 
again towards -20ºC. 

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and 
confirmed the normal scenario as unproblematic: 
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Anomaly
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- Partner company BeefLedger ships boxed meat products 
- Stringent cooling requirements ensure quality of products 
- D61 sensors measure box temperatures  

(S. Khalifa / K. v. Richter) 
- Task: Pricing model, anomaly detection
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We validated our approach with three synthetic test cases (real BeefLedger data were not yet 
available): 

  
Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to 
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to 
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The 
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again 
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are 
put in the freezer as well. At some point in time the sensors are disabled and the line ends. 

 
Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long 
before being put into the freezer room. The temperature raises further to an unacceptable value. 

 
Figure: Cabin box scenario: In contrast  to the normal scenario, box #11 is not cooled properly on the way to Annerley.  Its 
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the 
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall 
again towards -20ºC. 

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and 
confirmed the normal scenario as unproblematic: 
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Cooling OK? vs

1

Point of Origin Delivery 
Destination #1

Delivery 
Destination #2

Product Type Product Status 
(Frozen / Chilled)

Route Normal 
(Destination 1)

Route Normal 
(Destination 1-2)

Delivery Time 
Normal (to 

Destination #1)

Product Condition 
Normal (A)

Product Condition 
Normal (A)

Case 1 Morningside Woolloongabba Annerley Consumer Ready Frozen <12km <3km <120 minutes <10 degrees C

Case 2 Morningside Woolloongabba Gold Coast Consumer Ready Frozen <12km <90km <120 minutes <10 degrees C

Case 3 Morningside Annerley - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 4 Morningside Coorparoo - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 5 Morningside Woolloongabba Annerley Consumer Ready Chilled <12km <3km <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 6 Morningside Woolloongabba Gold Coast Consumer Ready Chilled <12km <90km <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 7 Morningside Annerley - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 8 Morningside Coorparoo - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 9 Morningside Emerald - Bulk Boxed Beef Chilled <900km - <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 10 Morningside Emerald Emerald #2 Portioned (restaurant 
destination)

Chilled <900km <5km <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Alternative 
Destinations 

Sherwood

Tennyson

Forest Lake

Margate

Redcliffe

Carindale

BeefLedger | Data61 Sensor Test Project Scope (for discussion)

Pricing?
Actual Expected

“Is different” 
Anomaly

?
Worth checking? Clustering based on similarity 

measure for feature vector 
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We validated our approach with three synthetic test cases (real BeefLedger data were not yet 
available): 

  
Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to 
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to 
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The 
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again 
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are 
put in the freezer as well. At some point in time the sensors are disabled and the line ends. 

 
Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long 
before being put into the freezer room. The temperature raises further to an unacceptable value. 

 
Figure: Cabin box scenario: In contrast  to the normal scenario, box #11 is not cooled properly on the way to Annerley.  Its 
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the 
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall 
again towards -20ºC. 

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and 
confirmed the normal scenario as unproblematic: 
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Cooling OK? vs

1

Point of Origin Delivery 
Destination #1

Delivery 
Destination #2

Product Type Product Status 
(Frozen / Chilled)

Route Normal 
(Destination 1)

Route Normal 
(Destination 1-2)

Delivery Time 
Normal (to 

Destination #1)

Product Condition 
Normal (A)

Product Condition 
Normal (A)

Case 1 Morningside Woolloongabba Annerley Consumer Ready Frozen <12km <3km <120 minutes <10 degrees C

Case 2 Morningside Woolloongabba Gold Coast Consumer Ready Frozen <12km <90km <120 minutes <10 degrees C

Case 3 Morningside Annerley - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 4 Morningside Coorparoo - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 5 Morningside Woolloongabba Annerley Consumer Ready Chilled <12km <3km <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 6 Morningside Woolloongabba Gold Coast Consumer Ready Chilled <12km <90km <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 7 Morningside Annerley - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 8 Morningside Coorparoo - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 9 Morningside Emerald - Bulk Boxed Beef Chilled <900km - <120 minutes <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Case 10 Morningside Emerald Emerald #2 Portioned (restaurant 
destination)

Chilled <900km <5km <1 degrees C >1 degrees C no 
greater than 1 

cumulative hour

Alternative 
Destinations 

Sherwood

Tennyson

Forest Lake

Margate

Redcliffe

Carindale

BeefLedger | Data61 Sensor Test Project Scope (for discussion)

Pricing?
Actual Expected

“Is different” 
Anomaly

?
Worth checking?

Concrete scenarios:

normal, latecool,  

missingbox, cabinbox 

Clustering based on similarity 

measure for feature vector 
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Rule for recovering sensor dropout

10Time

2℃

20

10℃

15

?
6℃

• Similar rule for truck  

location recovery 

• 25 rules altogether

Loc A B C

➋
➊

➍

➌

➎

➏
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Of Interest

• GPS -> Symbolic Loc

• Integrating  

information sources 

• Noisy sensor data

• Robust anomaly  

detection



Case Study 3 - Taxi Rides Anomalies

2 Million taxi rides in New York City            
Ride(taxi,license,from,to,start,end,fare)

Fusemate 
(1) Rules for hotspot clustering and concave hull 
(2) Rules for anomaly detection  

Ride
Gap (between rides)

38

Pickup/dropoff 
clusters
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Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back  

Functional + Logic programming

Declarative and concise :)

39

Fusemate invocation
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Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

Of Interest

• Reasoning with non-trivially sized data sets

• Deploying Logic Programming as a method for data analysis 

(as a Jupyter notebook) 

• Interaction Fusemate with host programming language Scala 

40
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41

Example: Employments Database

Company Employee Since Full-time 
ABM Alice 1/3/18 No 
BBM Bob 5/3/18 No 
ABM Alice 1/6/19 Yes                                                

Problem: More than a

full-time contract at the 

same time

How to explain and fix this inconsistency?

Approach 
• There is a fixed set of contract operators: cessation, conversion, new contract 
• Try them out as “fixes” for the problem 
• Or was it Bob? Or someone else?



Conclusions

Summary 

 “Situational awareness = time-stratified logic programming + belief revision” 

 -> Good balance between expressivity and declarativity 

The implementation is meant to be practical (workflow integration, ease of use) 

Current and Future Work 

Classical negation 

Proper belief revision (ramification problem) 

Timed LTL constraints 

Probabilities and combination with machine learning 

• Probabilistic EDBs a la ProbLog       Load(10, “tomatoes”, “pallet”) : 0.3 

• ML as a subroutine for anomaly detection? 

Context may help to favoid false positives  

42

□ t . 𝗌𝗁𝗂𝗉𝗉𝖾𝖽(B) → ◊s . s ≤ t + 5 ∧ 𝗋𝖾𝖼𝖾𝗂𝗏𝖾𝖽(B)

Implementation at https://bitbucket.csiro.au/users/bau050/repos/fusemate/


