
Peter Baumgartner
Data61 | CSIRO
The Australian National University

The Fusemate Logic Programming System for
Situational Awareness

Situational Awareness

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25℃?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

2

What’s the problem?
• The domain model needs to cover multiple aspects: 

Temporal/causal/structural/physical/…

• Events happened ≠ events reported (errors, incomplete, late …)

• Can only hope for multiple plausible explanations

≈ comprehending system state as it evolves over time

Situational Awareness

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25℃?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

2

What’s the problem?
• The domain model needs to cover multiple aspects: 

Temporal/causal/structural/physical/…

• Events happened ≠ events reported (errors, incomplete, late …)

• Can only hope for multiple plausible explanations

Logic program

+ ontologies/event calculus

≈ comprehending system state as it evolves over time

Situational Awareness

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25℃?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

2

What’s the problem?
• The domain model needs to cover multiple aspects: 

Temporal/causal/structural/physical/…

• Events happened ≠ events reported (errors, incomplete, late …)

• Can only hope for multiple plausible explanations

Belief revision

Logic program

+ ontologies/event calculus

≈ comprehending system state as it evolves over time

Situational Awareness

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25℃?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

2

What’s the problem?
• The domain model needs to cover multiple aspects: 

Temporal/causal/structural/physical/…

• Events happened ≠ events reported (errors, incomplete, late …)

• Can only hope for multiple plausible explanations

Belief revision

Logic program

+ ontologies/event calculus

Models

≈ comprehending system state as it evolves over time

Example

T

Observation: truck is in Sydney at the warehouse

3

Example

T

Observation: truck is in Sydney at the warehouse

3

Example

T

Observation: tomatoes are loaded

4

Example

T

Observation: tomatoes are loaded

4

Example

T

Assumption as per schedule: truck is on the road

5

Example

T T+1

Assumption as per schedule: truck is on the road

5

Example

T T+1

Report: truck is on the road

6

Example

T T+1 T+2

Report: truck is on the road

6

Example

T T+1 T+2

Conclusion: truck is on the road for too long - tomatoes are no longer fresh

7

Example

T T+1 T+2

Conclusion: truck is on the road for too long - tomatoes are no longer fresh

7

Example

T T+1 T+2

Report: actually, at T+1 truck was still in Sydney warehouse

8

Example

T T+1 T+2

Report: actually, at T+1 truck was still in Sydney warehouse

8

Example

T T+1 T+2

Conclusion: tomatoes are still fresh at T+2

9

Example

T T+1 T+2

Conclusion: tomatoes are still fresh at T+2

9

Example

T T+1 T+2

?
T+3

No information at T+3

10

Example

T T+1 T+2 T+3

T+3: What if truck is on the road?

11

Example

T T+1 T+2 T+3

T+3: What if truck is on the road?

11

Example

T

OR

T+1 T+2 T+3

T+3: What if truck is on the road? At Canberra warehouse?

11

Example

T T+1 T+2 T+3

Report: truck at Canberra warehouse

12

Example

T T+1 T+2 T+3

Report: truck at Canberra warehouse

12

Example

T T+1 T+2 T+3

Report: truck at Canberra warehouse

12

➙ We use logic programming

Logic Programming

13

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Tom is a cat
Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Tom is a cat

Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Tom is a cat
Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat
Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules

Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts cat(Tom)
inFridge(5, Milk)

Tom is thirsty

14

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts cat(Tom)
inFridge(5, Milk)

Tom is thirsty

14

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts cat(Tom)
inFridge(5, Milk)

Tom is thirsty

14

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
“innocent :- not guilty”

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts cat(Tom)
inFridge(5, Milk)

Tom is thirsty

14

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
“innocent :- not guilty”

Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts cat(Tom)
inFridge(5, Milk)

Tom is thirsty

14

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
“innocent :- not guilty”

Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)

Integrity constraints fail :- cat(x), mouse(x)

Logic Programming

Algorithm = Logic + Control (Kowalski)
Pieces of reusable domain knowledge
Chained by inference engine

Cats drink milk
Milk is in the fridge

Coles sells milk

Tom is a cat

Logic Programs

if cat(x) then drinks(x, Milk)drinks(x, Milk) :- cat(x)If-then rules
inBowl(time+1, Milk) :- inFridge(time, Milk)

Facts cat(Tom)
inFridge(5, Milk)

Tom is thirsty

14

Default negation inFridge(time, Milk) :- not inBowl(time, Milk)
“innocent :- not guilty”

Disjunctions drinks(x, Milk) or drinks(x, Water) :- cat(x), thirsty(x)

Purpose

Query answering (who drinks milk?), planning (get Tom some milk),
abduction (why did we go to Coles?), model computation (what do we know about Tom?)

Integrity constraints fail :- cat(x), mouse(x)

Logic Programming

15

Prolog - “top down query answering” Answer Set Programming - “model computation”

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

Answer Set Programming - “model computation”

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

a :- not a

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

a :- not a No model

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

a :- not a

a :- not b
b :- not a

No model

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

a :- not a

a :- not b
b :- not a

No model

Model 1: {a}
Model 2: {b}

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

a :- not a

a :- not b
b :- not a

No model

Model 1: {a}
Model 2: {b}

unhappy(now) :- not win(now+1)
[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

a :- not a

a :- not b
b :- not a

No model

Model 1: {a}
Model 2: {b}

unhappy(now) :- not win(now+1)

24 ·

an answer setM ′ for P such that HP(M ′) < c. From Lemma 4.9, this task is feasible in
NP, and thus the checking problem is in co-NP.
Hardness. Recall that, given a DLV[vh] program P and an atom q, deciding whether

q /∈ M for each answer set of P is co-NP-complete, cf. [Eiter et al. 1998b]. From Lemma
4.13, this problem can be reduced to answer set checking for DLV[vh, w] programs.
Moreover, it is well-known that, for each DLV[vh] program P , we can construct in

polynomial time a DLV[not] program having the same answer sets as P , by replacing
disjunction by unstratified negation [Ben-Eliyahu and Dechter 1994]. The same reduction
clearly allows us to reduce answer set checking for DLV[vh, w] programs to answer set
checking for DLV[not, w] programs. Thus, the latter problem is co-NP-hard, as well.
3). Membership. Let P be a program in DLV[v, not, w], and M be a set of ground

literals. We show that the complementary problem of checking that M is not an answer
set for P is in ΣP

2 . First we decide in co-NP whether M is an answer set for Rules(P)
or not. If this is not the case, we stop. Otherwise, we compute its cost c = HP(M) and
then decide whether there exists an answer set M ′ for P such that HP(M ′) < c. This is
feasible in ΣP

2 , according to Lemma 4.6.
Hardness. Deciding whether a given literal is not contained in any answer set of a

DLV[v] program is ΠP
2 -complete [Eiter et al. 1997b]. From Lemma 4.13 it follows that

this problem can be reduced to answer set checking for DLV[v, w] programs.

4.5 Summary of Results and Discussion

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P
2

{vh} NP ∆P
2 NP ∆P

2 NP ∆P
2

{v} ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Table I. The Complexity of Brave Reasoning in fragments of the DLV Language

{} {w} {nots} {nots, w} {not} {not,w}

{} P P P P co-NP ∆P
2

{vh} co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

{v} co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Table II. The Complexity of Cautious Reasoning in fragments of the DLV Language

The complexity of Brave Reasoning and Cautious Reasoning from ground DLV pro-
grams are summarized in Table I and Table II, respectively. In Table III, we report both
well-known (for the weak constraint-free case) and new results on the complexity of An-
swer Set Checking.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

“More operational”

General purpose PL

Unification/DFBS

“More declarative”

NP-complete (or harder) search problems

Grounding (SAT solving)

a :- not a

a :- not b
b :- not a

No model

Model 1: {a}
Model 2: {b}

unhappy(now) :- not win(now+1)

24 ·

an answer setM ′ for P such that HP(M ′) < c. From Lemma 4.9, this task is feasible in
NP, and thus the checking problem is in co-NP.
Hardness. Recall that, given a DLV[vh] program P and an atom q, deciding whether

q /∈ M for each answer set of P is co-NP-complete, cf. [Eiter et al. 1998b]. From Lemma
4.13, this problem can be reduced to answer set checking for DLV[vh, w] programs.
Moreover, it is well-known that, for each DLV[vh] program P , we can construct in

polynomial time a DLV[not] program having the same answer sets as P , by replacing
disjunction by unstratified negation [Ben-Eliyahu and Dechter 1994]. The same reduction
clearly allows us to reduce answer set checking for DLV[vh, w] programs to answer set
checking for DLV[not, w] programs. Thus, the latter problem is co-NP-hard, as well.
3). Membership. Let P be a program in DLV[v, not, w], and M be a set of ground

literals. We show that the complementary problem of checking that M is not an answer
set for P is in ΣP

2 . First we decide in co-NP whether M is an answer set for Rules(P)
or not. If this is not the case, we stop. Otherwise, we compute its cost c = HP(M) and
then decide whether there exists an answer set M ′ for P such that HP(M ′) < c. This is
feasible in ΣP

2 , according to Lemma 4.6.
Hardness. Deciding whether a given literal is not contained in any answer set of a

DLV[v] program is ΠP
2 -complete [Eiter et al. 1997b]. From Lemma 4.13 it follows that

this problem can be reduced to answer set checking for DLV[v, w] programs.

4.5 Summary of Results and Discussion

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P
2

{vh} NP ∆P
2 NP ∆P

2 NP ∆P
2

{v} ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Table I. The Complexity of Brave Reasoning in fragments of the DLV Language

{} {w} {nots} {nots, w} {not} {not,w}

{} P P P P co-NP ∆P
2

{vh} co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

{v} co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Table II. The Complexity of Cautious Reasoning in fragments of the DLV Language

The complexity of Brave Reasoning and Cautious Reasoning from ground DLV pro-
grams are summarized in Table I and Table II, respectively. In Table III, we report both
well-known (for the weak constraint-free case) and new results on the complexity of An-
swer Set Checking.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

[X,Y] ++ L = [X,Y|L] …

Logic Programming

15

Prolog - “top down query answering”

append([], L, L)
append([H|T], L, [H|R]) :-
 append(T, L, R)

?- append([1,2], [3,4], L)
?- append([1,2], L, [1,2,3,4])
?- append(K, L, [1,2,3,4])
?- append(K, L, M)

Answer Set Programming - “model computation”

r(X,X) r(a,b)
r(X,Y) :- r(Y,X) r(c,b)
r(X,Z) :- r(X,Y), r(Y,Z)

“More operational”

General purpose PL

Unification/DFBS

“More declarative”

NP-complete (or harder) search problems

Grounding (SAT solving)

a :- not a

a :- not b
b :- not a

No model

Model 1: {a}
Model 2: {b}

unhappy(now) :- not win(now+1)

24 ·

an answer setM ′ for P such that HP(M ′) < c. From Lemma 4.9, this task is feasible in
NP, and thus the checking problem is in co-NP.
Hardness. Recall that, given a DLV[vh] program P and an atom q, deciding whether

q /∈ M for each answer set of P is co-NP-complete, cf. [Eiter et al. 1998b]. From Lemma
4.13, this problem can be reduced to answer set checking for DLV[vh, w] programs.
Moreover, it is well-known that, for each DLV[vh] program P , we can construct in

polynomial time a DLV[not] program having the same answer sets as P , by replacing
disjunction by unstratified negation [Ben-Eliyahu and Dechter 1994]. The same reduction
clearly allows us to reduce answer set checking for DLV[vh, w] programs to answer set
checking for DLV[not, w] programs. Thus, the latter problem is co-NP-hard, as well.
3). Membership. Let P be a program in DLV[v, not, w], and M be a set of ground

literals. We show that the complementary problem of checking that M is not an answer
set for P is in ΣP

2 . First we decide in co-NP whether M is an answer set for Rules(P)
or not. If this is not the case, we stop. Otherwise, we compute its cost c = HP(M) and
then decide whether there exists an answer set M ′ for P such that HP(M ′) < c. This is
feasible in ΣP

2 , according to Lemma 4.6.
Hardness. Deciding whether a given literal is not contained in any answer set of a

DLV[v] program is ΠP
2 -complete [Eiter et al. 1997b]. From Lemma 4.13 it follows that

this problem can be reduced to answer set checking for DLV[v, w] programs.

4.5 Summary of Results and Discussion

{} {w} {nots} {nots,w} {not} {not,w}

{} P P P P NP ∆P
2

{vh} NP ∆P
2 NP ∆P

2 NP ∆P
2

{v} ΣP
2 ∆P

3 ΣP
2 ∆P

3 ΣP
2 ∆P

3

Table I. The Complexity of Brave Reasoning in fragments of the DLV Language

{} {w} {nots} {nots, w} {not} {not,w}

{} P P P P co-NP ∆P
2

{vh} co-NP ∆P
2 co-NP ∆P

2 co-NP ∆P
2

{v} co-NP ∆P
3 ΠP

2 ∆P
3 ΠP

2 ∆P
3

Table II. The Complexity of Cautious Reasoning in fragments of the DLV Language

The complexity of Brave Reasoning and Cautious Reasoning from ground DLV pro-
grams are summarized in Table I and Table II, respectively. In Table III, we report both
well-known (for the weak constraint-free case) and new results on the complexity of An-
swer Set Checking.
ACM Transactions on Computational Logic, Vol. TBD, No. TBD, TBD 20TBD.

Fusemate
 Model computation
 Functions/data structures
 Stratified (negation) by time
 Belief revision:
 fail(+win(now-1)) :- happy(now)

[X,Y] ++ L = [X,Y|L] …

Sokoban Answer Set Solver Program [DLV]

16

Fusemate Logic Programs

17

Recap: Issues

18

Domain Modelling
Multiple aspects  
(temporal/causal/physical/epistemic/legal/…)
Incomplete

Events
Events happened ≠ events reported (errors, incomplete, late …)

Explanations
Multiple plausible explanations

Fusemate:

Recap: Issues

18

Logic program

+ ontologies/event calculus

Domain Modelling
Multiple aspects  
(temporal/causal/physical/epistemic/legal/…)
Incomplete

Events
Events happened ≠ events reported (errors, incomplete, late …)

Explanations
Multiple plausible explanations

Fusemate:

Recap: Issues

18

Belief revision

Logic program

+ ontologies/event calculus

Domain Modelling
Multiple aspects  
(temporal/causal/physical/epistemic/legal/…)
Incomplete

Events
Events happened ≠ events reported (errors, incomplete, late …)

Explanations
Multiple plausible explanations

Fusemate:

Recap: Issues

18

Belief revision

Logic program

+ ontologies/event calculus

Models of logic program

Domain Modelling
Multiple aspects  
(temporal/causal/physical/epistemic/legal/…)
Incomplete

Events
Events happened ≠ events reported (errors, incomplete, late …)

Explanations
Multiple plausible explanations

Fusemate:

Events happened ≠ events reported

19

“Fixing the event stream”

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

?

Events happened ≠ events reported

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)

Unload(50, pallet, container)

Unload(60, tomatoes, pallet)

Happened

?

Events happened ≠ events reported

Fixed

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)

Unload(50, pallet, container)

Unload(60, tomatoes, pallet)

Happened

?

Events happened ≠ events reported

Fixed

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)

Unload(50, pallet, container)

Unload(60, tomatoes, pallet)

Happened

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened?

Events happened ≠ events reported

Fixed

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)

Unload(50, pallet, container)

Unload(60, tomatoes, pallet)

Happened

Load(10, tomatoes, pallet)

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened?

Events happened ≠ events reported

Fixed

19

“Fixing the event stream”

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)

Unload(50, pallet, container)

Unload(60, tomatoes, pallet)

Happened

Load(10, tomatoes, pallet)

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened

Next:

logic program

expressing this

?

Logic Program for the Supply Chain Example

20

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

Default negation

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

// No Unload without earlier Load

fail :-
Unload(time, obj, cont),

 not (Load(t, obj, cont),
 t < time))

Default negation

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

// No Unload without earlier Load

fail :-
Unload(time, obj, cont),

 not (Load(t, obj, cont),
 t < time))

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont),
 t < time,
 SameBatch(t, b),
 ((b contains obj) && (b contains o))

Default negation

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

// No Unload without earlier Load

fail :-
Unload(time, obj, cont),

 not (Load(t, obj, cont),
 t < time))

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont),
 t < time,
 SameBatch(t, b),
 ((b contains obj) && (b contains o))

Default negation

“fail” heads for fixing
the event stream

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

// No Unload without earlier Load

fail :-
Unload(time, obj, cont),

 not (Load(t, obj, cont),
 t < time))

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont),
 t < time,
 SameBatch(t, b),
 ((b contains obj) && (b contains o))

+ 4 more rulesDefault negation

“fail” heads for fixing
the event stream

Derived “In” relation Integrity constraints and revision

Logic Program for the Supply Chain Example

20

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(time, obj, cont) :-
In(prev, obj, cont),
Step(time, prev),
not Unload(time, obj, cont),
not (In(prev, obj, c),

 Unload(time, c, cont))

// No Unload without earlier Load

fail :-
Unload(time, obj, cont),

 not (Load(t, obj, cont),
 t < time))

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont),
 t < time,
 SameBatch(t, b),
 ((b contains obj) && (b contains o))

+ 4 more rulesDefault negation

“fail” heads for fixing
the event stream

Derived “In” relation Integrity constraints and revision

(Frame axioms now via Event Calculus)

Situational Awareness = Stratified Model Computation

21

“Situational awareness” task is naturally stratified

Situational Awareness = Stratified Model Computation

21

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

Situational Awareness = Stratified Model Computation

21

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E0EDBs E0,1,2,…

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E1E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E1

I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E2E1

I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E2E1

I2I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E2E1

I2I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E2E1

I2I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

(*) Cannot change past state

(*)

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Situational Awareness = Stratified Model Computation

21

E2E1

I2I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

(*) Cannot change past state

(*)

Next: Stratified logic programs for computing models (E∪I)0, (E∪I)1, (E∪I)2, …

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Stratified Logic Programs

22

head :- body, …, not body, …

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.
Range restriction

↝ Simple model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.
Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.
Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(t, y), t ≤ time

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(t, y), t ≤ time

I(time, x) :- J(time, x, y), not (I(t, y), t < time)

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(t, y), t ≤ time

I(time, x) :- J(time, x, y), not (I(t, y), t < time)

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Closed world assumption

E∪I ⊨ not body[x] iff

not exists a s.th. body[a] ⊆ E∪I

http://s.th

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(t, y), t ≤ time

I(time, x) :- J(time, x, y), not (I(t, y), t < time)

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

I(time, x) :- J(time, x, y), not (I(t, y), t ≤ time) No!

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Closed world assumption

E∪I ⊨ not body[x] iff

not exists a s.th. body[a] ⊆ E∪I

http://s.th

Stratified Logic Programs

22

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(t, y), t ≤ time

I(time, x) :- J(time, x, y), not (I(t, y), t < time)

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

I(time, x) :- J(time, x, y), not (I(t, y), t ≤ time) No!
I(time, x) :- J(time, x, y), not (E(t, y), t ≤ time)

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Closed world assumption

E∪I ⊨ not body[x] iff

not exists a s.th. body[a] ⊆ E∪I

http://s.th

Integrity Constraints and Belief Revision [IJCAR 2020]

23

fail :- body, …, not body, …

Usual integrity constraints

Generalized for revision of EDB literals

fail(-e, …, +f, …) :- body, …, not body, …

• “conditions for body as for ordinary rules”
• EDB lits e and f have time ≤ time

s. th.

Integrity Constraints and Belief Revision [IJCAR 2020]

23

fail :- body, …, not body, …

Usual integrity constraints

Generalized for revision of EDB literals

fail(-e, …, +f, …) :- body, …, not body, …

• “conditions for body as for ordinary rules”
• EDB lits e and f have time ≤ time

s. th.

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont), t < time,
 …

Example

Integrity Constraints and Belief Revision [IJCAR 2020]

23

fail :- body, …, not body, …

Usual integrity constraints

Generalized for revision of EDB literals

fail(-e, …, +f, …) :- body, …, not body, …

• “conditions for body as for ordinary rules”
• EDB lits e and f have time ≤ time

s. th.

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont), t < time,
 …

Example …
Unload(60, apples, pallet)

…

Unload(60, tomatoes, pallet)

-

+

Integrity Constraints and Belief Revision [IJCAR 2020]

23

fail :- body, …, not body, …

Usual integrity constraints

Generalized for revision of EDB literals

fail(-e, …, +f, …) :- body, …, not body, …

• “conditions for body as for ordinary rules”
• EDB lits e and f have time ≤ time

s. th.

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont), t < time,
 …

Example

Semantics
E∪I

(E \ eσ) ∪ fσ

if E∪I ⊨ (body, …,
 not body, …)σ

…
Unload(60, apples, pallet)

…

Unload(60, tomatoes, pallet)

-

+

Semantics of Programs With Fail Rules

24

12 P. Baumgartner

(a) ?) ?1, . . . , ?: by Ext and {?1, . . . , ?: } *)8 ,
(b) ?) @1, . . . , @< by Restart and {?1, . . . , ?: } = {? 2 {@1, . . . , @<} | ? is new wrt.)8},
(c) ?) by Fail and : = 0, or
(d) ?) ?1 by Jump and : = 1.

In addition, the inference rules must be prioritized in this order. That is, if)8+1 is obtained
from)8 by, say, case (c) , then there is no tableau that can be obtained from)8 by case
(a) or case (b) with the same selected path ?; analogously for the other cases.

The derivation ⇡ is exhausted if it is finite and no inference rule is applicable to
its final tableau)=, for no ? 2)=. In this case the computed models of ⇡ is the set
M(⇡) = {(⇢ , �) | (⇢ , �, C) 2)= for some C 2 N}.

Figure 2 is a graphical illustration of a derivation and its computed models.

⇢init

fail() �0
0 �1

0

fail(Æ40
0)

⇢1

�0
1

�1
1 fail(Æ40

2)

⇢2

�0
2 �1

2 fail()fail()

fail(Æ41
0)

. . .

Fig. 2. Illustration of a hypothetical derivation. The root of each sub-tableau is labeled with the
EDB in that sub-derivation. The first sub-tableau has two Restart inferences, leading to the second
and third sub-tableau, where ⇢1 = upd(⇢init, Æ4

0
0), ⇢2 = upd(⇢init, Æ4

1
0). The isolated fail()s do not

cause a Restart, they cause Fail. The computed models are (⇢init, �
0
0), (⇢init, �

1
0), (⇢1, �

0
1), etc.

Theorem 1 (Soundness and completeness). Assume a signature ⌃without :-ary func-
tion symbol, for : > 0. Let % be a stratified program and ⇢init an EDB. Assume an
exhausted derivation ⇡ from ⇢init and %. Then M(⇡) = mods% (⇢init).

Proof. (Sketch) Let)= be the final tableau of ⇡. For soundness, assume M(⇡) < ;

and chose any (⇢ , �) 2 M(⇡) arbitrary. That is, (⇢ , �, C) 2)=, for some C. We have to
show (⇢ , �) 2 mods% (⇢init), equivalently (⇢init, ⇢ , �) |= %.

The EDB ⇢ is either ⇢init or derived from ⇢init through, say, : > 0 intermediate
EDBs by Restarts. By induction on : one can show that, on the semantic side, ⇢ is a
restart induced by % and ⇢init, i.e., ⇢ 2 E in Def. 5. This follows from the definition
of derivations. In particular, the earliest-time requirement in Definition 5 is matched by
prioritizing Restart over Fail and Jump.

With the EDB ⇢ traced down in E, it remains to prove (⇢ , �) |= %. With the
stratification of % (Def. 1) this is rather straightforward. Range-restrictedness makes
sure that only ground heads are derivable. The Ext inference rule achieves on-the-fly
splitting and only for those variable-free instances of rules whose body is satisfied, which

for a given EDB E
for time t = 0,1,2, …, now

compute { I0, I1, … all IDBs for time ≤ t }
for I = I0, I1, …

let F = { fail(…) heads derivable from E∪I }
if F is non-empty then
 obtain new EDBs E1, E2, … as per F and
 abandon model candidate I

Operational

Principles
- Fail as early as possibly

- Collect all possible fails

Semantics of Programs With Fail Rules

24

12 P. Baumgartner

(a) ?) ?1, . . . , ?: by Ext and {?1, . . . , ?: } *)8 ,
(b) ?) @1, . . . , @< by Restart and {?1, . . . , ?: } = {? 2 {@1, . . . , @<} | ? is new wrt.)8},
(c) ?) by Fail and : = 0, or
(d) ?) ?1 by Jump and : = 1.

In addition, the inference rules must be prioritized in this order. That is, if)8+1 is obtained
from)8 by, say, case (c) , then there is no tableau that can be obtained from)8 by case
(a) or case (b) with the same selected path ?; analogously for the other cases.

The derivation ⇡ is exhausted if it is finite and no inference rule is applicable to
its final tableau)=, for no ? 2)=. In this case the computed models of ⇡ is the set
M(⇡) = {(⇢ , �) | (⇢ , �, C) 2)= for some C 2 N}.

Figure 2 is a graphical illustration of a derivation and its computed models.

⇢init

fail() �0
0 �1

0

fail(Æ40
0)

⇢1

�0
1

�1
1 fail(Æ40

2)

⇢2

�0
2 �1

2 fail()fail()

fail(Æ41
0)

. . .

Fig. 2. Illustration of a hypothetical derivation. The root of each sub-tableau is labeled with the
EDB in that sub-derivation. The first sub-tableau has two Restart inferences, leading to the second
and third sub-tableau, where ⇢1 = upd(⇢init, Æ4

0
0), ⇢2 = upd(⇢init, Æ4

1
0). The isolated fail()s do not

cause a Restart, they cause Fail. The computed models are (⇢init, �
0
0), (⇢init, �

1
0), (⇢1, �

0
1), etc.

Theorem 1 (Soundness and completeness). Assume a signature ⌃without :-ary func-
tion symbol, for : > 0. Let % be a stratified program and ⇢init an EDB. Assume an
exhausted derivation ⇡ from ⇢init and %. Then M(⇡) = mods% (⇢init).

Proof. (Sketch) Let)= be the final tableau of ⇡. For soundness, assume M(⇡) < ;

and chose any (⇢ , �) 2 M(⇡) arbitrary. That is, (⇢ , �, C) 2)=, for some C. We have to
show (⇢ , �) 2 mods% (⇢init), equivalently (⇢init, ⇢ , �) |= %.

The EDB ⇢ is either ⇢init or derived from ⇢init through, say, : > 0 intermediate
EDBs by Restarts. By induction on : one can show that, on the semantic side, ⇢ is a
restart induced by % and ⇢init, i.e., ⇢ 2 E in Def. 5. This follows from the definition
of derivations. In particular, the earliest-time requirement in Definition 5 is matched by
prioritizing Restart over Fail and Jump.

With the EDB ⇢ traced down in E, it remains to prove (⇢ , �) |= %. With the
stratification of % (Def. 1) this is rather straightforward. Range-restrictedness makes
sure that only ground heads are derivable. The Ext inference rule achieves on-the-fly
splitting and only for those variable-free instances of rules whose body is satisfied, which

for a given EDB E
for time t = 0,1,2, …, now

compute { I0, I1, … all IDBs for time ≤ t }
for I = I0, I1, …

let F = { fail(…) heads derivable from E∪I }
if F is non-empty then
 obtain new EDBs E1, E2, … as per F and
 abandon model candidate I

Can branch out because of disjunctive heads

Operational

Principles
- Fail as early as possibly

- Collect all possible fails

Semantics of Programs With Fail Rules

24

12 P. Baumgartner

(a) ?) ?1, . . . , ?: by Ext and {?1, . . . , ?: } *)8 ,
(b) ?) @1, . . . , @< by Restart and {?1, . . . , ?: } = {? 2 {@1, . . . , @<} | ? is new wrt.)8},
(c) ?) by Fail and : = 0, or
(d) ?) ?1 by Jump and : = 1.

In addition, the inference rules must be prioritized in this order. That is, if)8+1 is obtained
from)8 by, say, case (c) , then there is no tableau that can be obtained from)8 by case
(a) or case (b) with the same selected path ?; analogously for the other cases.

The derivation ⇡ is exhausted if it is finite and no inference rule is applicable to
its final tableau)=, for no ? 2)=. In this case the computed models of ⇡ is the set
M(⇡) = {(⇢ , �) | (⇢ , �, C) 2)= for some C 2 N}.

Figure 2 is a graphical illustration of a derivation and its computed models.

⇢init

fail() �0
0 �1

0

fail(Æ40
0)

⇢1

�0
1

�1
1 fail(Æ40

2)

⇢2

�0
2 �1

2 fail()fail()

fail(Æ41
0)

. . .

Fig. 2. Illustration of a hypothetical derivation. The root of each sub-tableau is labeled with the
EDB in that sub-derivation. The first sub-tableau has two Restart inferences, leading to the second
and third sub-tableau, where ⇢1 = upd(⇢init, Æ4

0
0), ⇢2 = upd(⇢init, Æ4

1
0). The isolated fail()s do not

cause a Restart, they cause Fail. The computed models are (⇢init, �
0
0), (⇢init, �

1
0), (⇢1, �

0
1), etc.

Theorem 1 (Soundness and completeness). Assume a signature ⌃without :-ary func-
tion symbol, for : > 0. Let % be a stratified program and ⇢init an EDB. Assume an
exhausted derivation ⇡ from ⇢init and %. Then M(⇡) = mods% (⇢init).

Proof. (Sketch) Let)= be the final tableau of ⇡. For soundness, assume M(⇡) < ;

and chose any (⇢ , �) 2 M(⇡) arbitrary. That is, (⇢ , �, C) 2)=, for some C. We have to
show (⇢ , �) 2 mods% (⇢init), equivalently (⇢init, ⇢ , �) |= %.

The EDB ⇢ is either ⇢init or derived from ⇢init through, say, : > 0 intermediate
EDBs by Restarts. By induction on : one can show that, on the semantic side, ⇢ is a
restart induced by % and ⇢init, i.e., ⇢ 2 E in Def. 5. This follows from the definition
of derivations. In particular, the earliest-time requirement in Definition 5 is matched by
prioritizing Restart over Fail and Jump.

With the EDB ⇢ traced down in E, it remains to prove (⇢ , �) |= %. With the
stratification of % (Def. 1) this is rather straightforward. Range-restrictedness makes
sure that only ground heads are derivable. The Ext inference rule achieves on-the-fly
splitting and only for those variable-free instances of rules whose body is satisfied, which

for a given EDB E
for time t = 0,1,2, …, now

compute { I0, I1, … all IDBs for time ≤ t }
for I = I0, I1, …

let F = { fail(…) heads derivable from E∪I }
if F is non-empty then
 obtain new EDBs E1, E2, … as per F and
 abandon model candidate I

Can branch out because of disjunctive heads

Operational

Declarative semantics: see paper

Principles
- Fail as early as possibly

- Collect all possible fails

Description Logics

25

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

A (usually) decidable fragment of first-order logic
Semantic web ontologies (“is-a” and “has-a” relations)
Reasoning on concepts and concept instances

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp

Concepts
“TBox”

Instances
“ABox”

Description Logics

25

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

A (usually) decidable fragment of first-order logic
Semantic web ontologies (“is-a” and “has-a” relations)
Reasoning on concepts and concept instances

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp

Concepts
“TBox”

Instances
“ABox”

Low High

Description Logics

25

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

A (usually) decidable fragment of first-order logic
Semantic web ontologies (“is-a” and “has-a” relations)
Reasoning on concepts and concept instances

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp

Concepts
“TBox”

Instances
“ABox”

Low High

Description Logics

25

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

A (usually) decidable fragment of first-order logic
Semantic web ontologies (“is-a” and “has-a” relations)
Reasoning on concepts and concept instances

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp

Concepts
“TBox”

Reasoning

Is Box4 a FruitBox?
Is Box5 a FruitBox?
Are FruitBox and ToyBox disjoint?

Instances
“ABox”

Low High

Description Logics

25

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

A (usually) decidable fragment of first-order logic
Semantic web ontologies (“is-a” and “has-a” relations)
Reasoning on concepts and concept instances

ToyBox FruitBox

Box [0..1] temp TempClass

[1] te
mp

[0] temp

Concepts
“TBox”

Reasoning

Is Box4 a FruitBox?
Is Box5 a FruitBox?
Are FruitBox and ToyBox disjoint?

[CADE-2021]: map to Fusemate disjunctive logic program + loop check

Instances
“ABox”

Low High

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Timed ABoxes

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

Fusemate + DL integration
Rules can call description logic reasoner
Rules can extend current ABox / fix past ABox

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Timed ABoxes

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

Fusemate + DL integration
Rules can call description logic reasoner
Rules can extend current ABox / fix past ABox

[DL]: Box2 is “High temp box” at t=20

[EC rules]: … and temp stays at 10° at t=30, 40, 50

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Timed ABoxes

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

Fusemate + DL integration
Rules can call description logic reasoner
Rules can extend current ABox / fix past ABox

[DL]: Box2 is “High temp box” at t=20

[EC rules]: … and temp stays at 10° at t=30, 40, 50

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Timed ABoxes Box0 (High)

Box1 (?)

Box2 (High)

Box3 (N/A)

Box4 (N/A)

Cooling broken?

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

Fusemate + DL integration
Rules can call description logic reasoner
Rules can extend current ABox / fix past ABox

10 P. Baumgartner

Examples 1 and 2 demonstrate how rules can help distinguish between unknown and
known attribute values, respectively. Using default negation it is easy to write a rule that
identifies the remaining case, when an individual does not have an attribute value at all.

Related work. Rules that allow extra variables in DL calls and that may have heads with
DL atoms are called weakly DL-safe rules in DL+log [36]. DL+log is among the most
expressive languages that combines rules with ontologies. Unlike DL+log, Fusemate
allows DL calls within default negation, for example:

1 ColdBox(time, box) :–
2 IsAAt(time, x, Box),
3 NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

According to this rule, a box is a ColdBox at a given time if it never provably had a High
temperature in the past.

Most other hybrid languages, like the one in [30] and dl+Programs [18] do not allow
DL atoms in the head. Others do not allow extra variables in DL calls. See [17] for an
in-depth overview of rule/DL combinations.

5 Event Calculus Embedding

The event calculus (EC) is a logical language for representing and reasoning about
actions and their e�ects [22,40]. At its core, e�ects are fluents, i.e., statements whose
truth value can change over time, and the event calculus provides a framework for
specifying the e�ects of actions in terms of initiating or terminating fluents to hold.

Many versions of the EC exists, see [29] for a start. The approach below makes do
with a basic version that is inspired by the discrete event calculus in [32] with integer
time. The event calculus of [32] is operationalized by translation to propositional SAT.
Its implementation in the “decreasoner” is geared for e�ciency and can be used to solve
planning and diagnosis tasks, among others. The version below is tailored for the model
computation tasks mentioned in the introduction, where a fixed sequence of events at
given timepoints can be supposed.6

With Fusemate implementing a minimal model semantics and with default negation
available, there is no need for circumscription. For instance, frame axioms are stratified
(by time) automatically and they work as intended without further ado. This is not a
new invention and related answer set programming encodings of the event calculus have
been proposed before, e.g. [23]. But, as said earlier, the main focus here is the integration
with DL, which has not been done before.

Domain independent axioms. These are the domain-independent EC axioms here:

1 // DL assertions are �uents:
2 case class IsA(x: Individual, c: Concept) extends Fluent
3 case class HasA(x: Individual, r: Role, y: Individual) extends Fluent

6 Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the
model computation from there. The paper [11] already has a “supply-chain” example for that.

[DL]: Box2 is “High temp box” at t=20

[EC rules]: … and temp stays at 10° at t=30, 40, 50

|= means “provably” (not “consistently”)

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Timed ABoxes Box0 (High)

Box1 (?)

Box2 (High)

Box3 (N/A)

Box4 (N/A)

Cooling broken?

Description Logics, Event Calculus and Rules
Description logics and logic programming are “very different” 
Open world vs closed world, Entailment vs Models, Infinite models vs finite models
Attractive to integrate for modelling complementary aspects

Fusemate + DL integration
Rules can call description logic reasoner
Rules can extend current ABox / fix past ABox

10 P. Baumgartner

Examples 1 and 2 demonstrate how rules can help distinguish between unknown and
known attribute values, respectively. Using default negation it is easy to write a rule that
identifies the remaining case, when an individual does not have an attribute value at all.

Related work. Rules that allow extra variables in DL calls and that may have heads with
DL atoms are called weakly DL-safe rules in DL+log [36]. DL+log is among the most
expressive languages that combines rules with ontologies. Unlike DL+log, Fusemate
allows DL calls within default negation, for example:

1 ColdBox(time, box) :–
2 IsAAt(time, x, Box),
3 NOT (t < time, (I.aboxAt(t), tbox) |= IsA(x, Box), HasA(x, Temp, High))

According to this rule, a box is a ColdBox at a given time if it never provably had a High
temperature in the past.

Most other hybrid languages, like the one in [30] and dl+Programs [18] do not allow
DL atoms in the head. Others do not allow extra variables in DL calls. See [17] for an
in-depth overview of rule/DL combinations.

5 Event Calculus Embedding

The event calculus (EC) is a logical language for representing and reasoning about
actions and their e�ects [22,40]. At its core, e�ects are fluents, i.e., statements whose
truth value can change over time, and the event calculus provides a framework for
specifying the e�ects of actions in terms of initiating or terminating fluents to hold.

Many versions of the EC exists, see [29] for a start. The approach below makes do
with a basic version that is inspired by the discrete event calculus in [32] with integer
time. The event calculus of [32] is operationalized by translation to propositional SAT.
Its implementation in the “decreasoner” is geared for e�ciency and can be used to solve
planning and diagnosis tasks, among others. The version below is tailored for the model
computation tasks mentioned in the introduction, where a fixed sequence of events at
given timepoints can be supposed.6

With Fusemate implementing a minimal model semantics and with default negation
available, there is no need for circumscription. For instance, frame axioms are stratified
(by time) automatically and they work as intended without further ado. This is not a
new invention and related answer set programming encodings of the event calculus have
been proposed before, e.g. [23]. But, as said earlier, the main focus here is the integration
with DL, which has not been done before.

Domain independent axioms. These are the domain-independent EC axioms here:

1 // DL assertions are �uents:
2 case class IsA(x: Individual, c: Concept) extends Fluent
3 case class HasA(x: Individual, r: Role, y: Individual) extends Fluent

6 Actually, events can be inserted in retrospect using Fusemate’s revision operator, restarting the
model computation from there. The paper [11] already has a “supply-chain” example for that.

[DL]: Box2 is “High temp box” at t=20

[EC rules]: … and temp stays at 10° at t=30, 40, 50

|= means “provably” (not “consistently”)

Ra
mi
fic
ati
on

pro
ble

m

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

6 P. Baumgartner

user with plausible explanations for that. The modelling in the example supports that
“the box has been tampered with” or “the cooling of the truck broke down”.

The explanations will computed as (logical) models of the domain model, the con-
crete objects in the scenario, and the given events. The domain model consists of an
ontology and if-then rules for diagnosing high temperatures. The concrete objects are
boxes, and events are timestamped loading/unloading actions and temperature sensor
readings. The ontology is given as a TBox in the description logic ALC extended with
functional roles (left); the ABox consists of individuals for temperature classes (middle)
and box individuals of varying attributes (right):

Box v 8 temp.TempClass Low : TempClass Box0 : FruitBox

FruitBox v 9 temp.TempClass High : TempClass Box1 : FruitBox

ToyBox v ¬9 temp.TempClass Box2 : Box

FruitBox v Box Box3 : ToyBox

ToyBox v Box Box4 : Box u 8 temp.¬TempClass

temp is a functional role Box5 : Box u 9 temp.TempClass

The domain model also includes actions and their e�ects, event calculus style. The
actions are “loading”, “unloading”, and the only e�ect is “on”. As an event calculus,
e�ects are fluents that are “initiated” by an action and will hold until “terminated” by a
later action. The actions are:3

1. A box loading action initiates the box to be on the truck.
2. An unloading action terminates every box to be on the truck.

The diagnosis rules for explanations can be stated informally as follows. Suppose a
given subset of the boxes {Box0, . . . , Box5} have been unloaded at the destination.

1. If there is no unloaded box with known high temperature then the status is OK.
2. If some unloaded box has a known high temperature then this box has been tampered

with or the truck cooling is broken.
3. If some unloaded box has a known low temperature then the truck cooling is not

broken (because a broken cooling a�ects all boxes).
4. Suppose that all unloaded known fruit boxes can consistently be assumed to have

high temperature. Then box tampering can be excluded (because broken cooling is
the more likely explanation).

The formalization of these rules below distinguishes between absent, unknown and
known box temperature attributes. This yields di�erent explanations depending on the
actual events and what is known about the unloaded boxes at unloading time.

One scenario, for instance, unfold as follows:

Time 10 20 30 40 50
Action Load Box0

Load Box1
Load Box2 Load Box3

Load Box4
Unload

Sensor Box0 : �10° Box2 : 10° Box0 : 2° Box0 : 20°

The diagnosis is “the cooling is broken”. The rest of the paper explains the underlying
modelling.

3 I use the term “action” where usual event calculus terminology is “event”. Here the term “event”
is wider and means anything happening, e.g., also temperature sensor readings.

Timed ABoxes Box0 (High)

Box1 (?)

Box2 (High)

Box3 (N/A)

Box4 (N/A)

Cooling broken?

Implementation Aspects

27

Embedding Into Scala: Translation

28

Input program ≈ Scala source code

Logic Scala
Pred/Fun signature Class
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

Embedding Into Scala: Translation

28

type Time = Int

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List(In(time, obj, cont) :− (In(time, obj, c), In(time, c, cont))

Input program ≈ Scala source code

Logic Scala
Pred/Fun signature Class
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

Embedding Into Scala: Translation

28

type Time = Int

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List(In(time, obj, cont) :− (In(time, obj, c), In(time, c, cont))

Macro annotation

Input program ≈ Scala source code

Logic Scala
Pred/Fun signature Class
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

Embedding Into Scala: Translation

28

type Time = Int

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List(In(time, obj, cont) :− (In(time, obj, c), In(time, c, cont))

Macro annotation

 case List(In(time, obj, c), In(time0, c1, cont))
 if c == c1 && time == time0
 => In(time, obj, cont)

Macro expansion

into partial

function

Input program ≈ Scala source code

Logic Scala
Pred/Fun signature Class
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

Embedding Into Scala: Translation

28

type Time = Int

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List(In(time, obj, cont) :− (In(time, obj, c), In(time, c, cont))

Macro annotation

 case List(In(time, obj, c), In(time0, c1, cont))
 if c == c1 && time == time0
 => In(time, obj, cont)

Macro expansion

into partial

function

(In reality the macro expansion is more complicated because of default negation)

+ given-clause loop operating on such rules-as-partial-functions

Input program ≈ Scala source code

Logic Scala
Pred/Fun signature Class
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Method

29

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

def sameBatch(time: Time) =
 if (time == 10) Set("tomatoes", "apples") else Set.∅[String]

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Embedding into Scala: Discussion

30

Two-way calling interface
• Scala -> Rules calls trivial
• Rules -> Scala calls trivial

Data structures integration is trivial
• Use any Scala data structure in rules
• Logic data structures (models) are Scala data structures
• Unmatched aggregation and introspection capabilities

Disadvantage
• Must rely on Scala pattern matching implementation
• Difficult to implement efficiently

Embedding into Scala: Discussion

30

Two-way calling interface
• Scala -> Rules calls trivial
• Rules -> Scala calls trivial

Data structures integration is trivial
• Use any Scala data structure in rules
• Logic data structures (models) are Scala data structures
• Unmatched aggregation and introspection capabilities

- Tighter coupling than in every other system (I know of)

- Adds “interpretations” as a container data structure to functional/OO programming

 with “logic programming” as an operator

Disadvantage
• Must rely on Scala pattern matching implementation
• Difficult to implement efficiently

Three and a Half  
Case Studies

31

Case Study 1 - Deer Supply Chain

2013

Gary Hartley

New Zealand RFID Pathfinder Group

January 2013

The Use of EPC RFID Standards for
Livestock and Meat Traceability

32

Case Study 1 - Deer Supply Chain

2013

Gary Hartley

New Zealand RFID Pathfinder Group

January 2013

The Use of EPC RFID Standards for
Livestock and Meat Traceability

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

32

Case Study 1 - Deer Supply Chain

2013

Gary Hartley

New Zealand RFID Pathfinder Group

January 2013

The Use of EPC RFID Standards for
Livestock and Meat Traceability

7

Process Step 4 - Animals arrive at Mountain River Processors’ stun box

 Figure 5.7 - Stun Box Figure 5.8 - RFID reader at Stun Box

Figure 5.7 illustrates animals in the location of the stun box. Note the RFID ear tags in the ears of the
animals. Figure 5.8 illustrates the RFID antenna setup at the stun box.

Process Step 5 - Cartons of finished Venison cuts packed into cartons at Mountain River
processor and moved from the boning room into chiller room

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the affixing of EPC UHF RFID tags on the cartons
in the boning room and moving of cartons of finished venison cuts into the chiller room in preparation
for loading the shipping container.

Figure 5.9 - UHF RFID tags
used on cartons

Figure 5.10 - UHF RFID
 tags positioned on cartons

Figure 5.11 – Tagged cartons
moving from boning room to

chiller room

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

32

Case Study 1 - Deer Supply Chain

2013

Gary Hartley

New Zealand RFID Pathfinder Group

January 2013

The Use of EPC RFID Standards for
Livestock and Meat Traceability

7

Process Step 4 - Animals arrive at Mountain River Processors’ stun box

 Figure 5.7 - Stun Box Figure 5.8 - RFID reader at Stun Box

Figure 5.7 illustrates animals in the location of the stun box. Note the RFID ear tags in the ears of the
animals. Figure 5.8 illustrates the RFID antenna setup at the stun box.

Process Step 5 - Cartons of finished Venison cuts packed into cartons at Mountain River
processor and moved from the boning room into chiller room

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the affixing of EPC UHF RFID tags on the cartons
in the boning room and moving of cartons of finished venison cuts into the chiller room in preparation
for loading the shipping container.

Figure 5.9 - UHF RFID tags
used on cartons

Figure 5.10 - UHF RFID
 tags positioned on cartons

Figure 5.11 – Tagged cartons
moving from boning room to

chiller room

13

Table 6.3 - Commissioning event - tagging of animals

Table 6.3 outlines a commissioning event, i.e. the tagging of the animals. Table 6.3 depicts twenty
(20) animals being tagged in one ‘go’. The BizStep is commissioning where the tags and animals
are considered to be active from this point on. Note that the values for business step and disposition
are standardised values established by EPCglobal in the Common Business Vocabulary (hence
urn:epcglobal:cbv prefix). The GLN extensions (DEER_CRUSH and ON_FARM) give more specific
location details. The reading event occurred at the DEER_CRUSH location where the animals are
considered to be ON_FARM from this point on.

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

What?
Where?
When?
Why?

32

Case Study 1 - Deer Supply Chain

2013

Gary Hartley

New Zealand RFID Pathfinder Group

January 2013

The Use of EPC RFID Standards for
Livestock and Meat Traceability

7

Process Step 4 - Animals arrive at Mountain River Processors’ stun box

 Figure 5.7 - Stun Box Figure 5.8 - RFID reader at Stun Box

Figure 5.7 illustrates animals in the location of the stun box. Note the RFID ear tags in the ears of the
animals. Figure 5.8 illustrates the RFID antenna setup at the stun box.

Process Step 5 - Cartons of finished Venison cuts packed into cartons at Mountain River
processor and moved from the boning room into chiller room

Figure 5.9, Figure 5.10 and Figure 5.11 illustrate the affixing of EPC UHF RFID tags on the cartons
in the boning room and moving of cartons of finished venison cuts into the chiller room in preparation
for loading the shipping container.

Figure 5.9 - UHF RFID tags
used on cartons

Figure 5.10 - UHF RFID
 tags positioned on cartons

Figure 5.11 – Tagged cartons
moving from boning room to

chiller room

13

Table 6.3 - Commissioning event - tagging of animals

Table 6.3 outlines a commissioning event, i.e. the tagging of the animals. Table 6.3 depicts twenty
(20) animals being tagged in one ‘go’. The BizStep is commissioning where the tags and animals
are considered to be active from this point on. Note that the values for business step and disposition
are standardised values established by EPCglobal in the Common Business Vocabulary (hence
urn:epcglobal:cbv prefix). The GLN extensions (DEER_CRUSH and ON_FARM) give more specific
location details. The reading event occurred at the DEER_CRUSH location where the animals are
considered to be ON_FARM from this point on.

23

Table 6.13 - Delivery of consignment to Hamburg retailer

Table 6.13 illustrates delivery of five (5) cartons to a retailer in Hamburg identified by their global
location identifier urn:epc:id:sgln:4023339.00000.RECEIVING_BAY. The BizStep is a receiving
event). This stage in the process is considered a DELETE event as the shipment has now been
delivered and the items are in the custody of the retailer. (Note: The sGLN for the retailer was
provided by GS1 Germany for purposes of this pilot).

Conclusion

In this research, all tag data (live animals, cartons of venison cuts and physical locations) was
successfully read, identified and captured from all designated read points and successfully
transmitted and populated into the EPCIS. Because each EPC identifier used in the research (ie:
sGTIN for animals and cartons of venison cuts, sGLN for read locations) was able to be identified,
recorded and reported on in the EPCIS, chain traceability demonstrating history, application,
location and record throughout the entire supply chain was demonstrated; one step up, one step
down – thereby achieving the stated traceability performance objectives. The EPCIS provides robust
query and analysis capability based on EPC identifiers.

The researchers include an important caveat to the conclusion. In the live animal to venison cuts
conversion process, it is difficult to determine the exact association or relationship between
individual venison pieces (or constituent pieces in the case of an aggregation process) and the
entire animal (a live animal or carcass) without recording and tracking the boning process in detail at
every each step. This should not be considered a technological shortcoming but a fundamental
aspect of all meat related processing; most cartons will usually always contain cuts from multiple
animals and tracking the contents of one particular carton upstream will nearly always point to
multiple animals. It is only for specific (larger) cuts of venison that a 1-to-1 link could (theoretically)
be established. It is not technically impossible however but will be determined by a supportive
business case. Within the context of chain traceability as defined, the research demonstrates chain
traceability at batch level. As there is a demonstrable and reliable association between the finished
cartons (venison cuts) and a batch of animals as recorded in the EPCIS, the researchers consider
the result compliant with the chain traceability as defined.

Events: from farm (NZ) to retailer (DE) encoded in EPCIS

What?
Where?
When?
Why?

32

Case Study 1 - Deer Supply Chain

Deer-1
DownlandsDeer/NewZealand/DEER_CRUSH
DownlandsDeer/NewZealand/ON_FARM

commissioning - active
Add

2012-10-16T11:54:38+13:00

Deer-1
DownlandsDeer/NewZealand/LOADING_RAMP

shipping - in_transit
Observe

2012-10-24T08:02:32+13:00

Deer-2
DownlandsDeer/NewZealand/DEER_CRUSH
DownlandsDeer/NewZealand/ON_FARM

commissioning - active
Add

2012-10-16T11:54:38+13:00

Deer-2
DownlandsDeer/NewZealand/LOADING_RAMP

shipping - in_transit
Observe

2012-10-24T08:02:32+13:00

Deer-1
MountainRiverProcessors/NewZealand/UNLOADING_RAMP
MountainRiverProcessors/NewZealand/HOLDING_PEN_2

receiving - in_progress
Observe

2012-10-24T10:42:03+13:00

Deer-2
MountainRiverProcessors/NewZealand/UNLOADING_RAMP
MountainRiverProcessors/NewZealand/HOLDING_PEN_2

receiving - in_progress
Observe

2012-10-24T10:42:03+13:00

Deer-1
MountainRiverProcessors/NewZealand/STUN_BOX

MountainRiverProcessors/NewZealand/BONING_ROOM
transforming - in_progress

Delete
2012-10-24T12:21:24+13:00

Carton-1
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-2
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-3
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-4
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-5
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-6
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-7
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-8
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

Carton-9
MountainRiverProcessors/NewZealand/BONING_ROOM_EXIT
MountainRiverProcessors/NewZealand/CHILLER_ROOM

commissioning - active
Add

2012-10-25T11:25:53+13:00

ShippingContainer-1
MountainRiverProcessors/NewZealand/EXIT_POINT

shipping - in_transit
Observe

2012-10-26T07:53+13:00

ShippingContainer-1
PortOfLyttleton/NewZealand/ENTRY_GATE

shipping - in_transit
Observe

2012-10-26T09:13+13:00

Carton-11
PrimeMeat/Germany/DOCK_DOOR

shipping - in_transit
Observe

2012-12-11T22:40:28+13:00

Carton-18
PrimeMeat/Germany/DOCK_DOOR

shipping - in_transit
Observe

2012-12-11T22:40:28+13:00

Carton-2
PrimeMeat/Germany/DOCK_DOOR

shipping - in_transit
Observe

2012-12-11T22:40:28+13:00

Carton-11
Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE
receiving - sellable_accessible

Delete
2012-12-12T01:58:34+13:00

Carton-18
Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE
receiving - sellable_accessible

Delete
2012-12-12T01:58:34+13:00

Carton-2
Retailer-1/Germany/RECEIVING_BAY

Retailer-1/Germany/IN_STORE
receiving - sellable_accessible

Delete
2012-12-12T01:58:34+13:00

WWWW

Association
Aggregation

Of Interest

• Handling structured XML data

• Speculating whereabout of missing item
- A box enters supply chain but does not arrive at destination

- Track same batch boxes as proxies

Disaggregation

From Farm to Supermarket

33

Case Study 2 - D61 Project “Supply Chain Awareness”

CSIRO Australia’s National Science Agency 23

We validated our approach with three synthetic test cases (real BeefLedger data were not yet
available):

Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are
put in the freezer as well. At some point in time the sensors are disabled and the line ends.

Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long
before being put into the freezer room. The temperature raises further to an unacceptable value.

Figure: Cabin box scenario: In contrast to the normal scenario, box #11 is not cooled properly on the way to Annerley. Its
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall
again towards -20ºC.

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and
confirmed the normal scenario as unproblematic:

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

34

- Partner company BeefLedger ships boxed meat products
- Stringent cooling requirements ensure quality of products
- D61 sensors measure box temperatures  

(S. Khalifa / K. v. Richter)
- Task: Pricing model, anomaly detection

Case Study 2 - D61 Project “Supply Chain Awareness”

CSIRO Australia’s National Science Agency 23

We validated our approach with three synthetic test cases (real BeefLedger data were not yet
available):

Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are
put in the freezer as well. At some point in time the sensors are disabled and the line ends.

Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long
before being put into the freezer room. The temperature raises further to an unacceptable value.

Figure: Cabin box scenario: In contrast to the normal scenario, box #11 is not cooled properly on the way to Annerley. Its
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall
again towards -20ºC.

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and
confirmed the normal scenario as unproblematic:

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Anomaly

34

- Partner company BeefLedger ships boxed meat products
- Stringent cooling requirements ensure quality of products
- D61 sensors measure box temperatures  

(S. Khalifa / K. v. Richter)
- Task: Pricing model, anomaly detection

Case Study 2 - D61 Project “Supply Chain Awareness”

35

Case Study 2 - D61 Project “Supply Chain Awareness”

35

Fix GPS dropouts

10:05

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

Fix GPS dropouts

10:05

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06 10:07

Fix GPS dropouts

10:05

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ?

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

“Is different”
Anomaly

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

“Is different”
Anomaly

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

“Is different”
Anomaly

?
Worth checking?

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

“Is different”
Anomaly

?
Worth checking? Clustering based on similarity

measure for feature vector

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

CSIRO Australia’s National Science Agency 23

We validated our approach with three synthetic test cases (real BeefLedger data were not yet
available):

Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are
put in the freezer as well. At some point in time the sensors are disabled and the line ends.

Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long
before being put into the freezer room. The temperature raises further to an unacceptable value.

Figure: Cabin box scenario: In contrast to the normal scenario, box #11 is not cooled properly on the way to Annerley. Its
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall
again towards -20ºC.

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and
confirmed the normal scenario as unproblematic:

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Cooling OK? vs

1

Point of Origin Delivery
Destination #1

Delivery
Destination #2

Product Type Product Status
(Frozen / Chilled)

Route Normal
(Destination 1)

Route Normal
(Destination 1-2)

Delivery Time
Normal (to

Destination #1)

Product Condition
Normal (A)

Product Condition
Normal (A)

Case 1 Morningside Woolloongabba Annerley Consumer Ready Frozen <12km <3km <120 minutes <10 degrees C

Case 2 Morningside Woolloongabba Gold Coast Consumer Ready Frozen <12km <90km <120 minutes <10 degrees C

Case 3 Morningside Annerley - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 4 Morningside Coorparoo - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 5 Morningside Woolloongabba Annerley Consumer Ready Chilled <12km <3km <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 6 Morningside Woolloongabba Gold Coast Consumer Ready Chilled <12km <90km <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 7 Morningside Annerley - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 8 Morningside Coorparoo - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 9 Morningside Emerald - Bulk Boxed Beef Chilled <900km - <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 10 Morningside Emerald Emerald #2 Portioned (restaurant
destination)

Chilled <900km <5km <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Alternative
Destinations

Sherwood

Tennyson

Forest Lake

Margate

Redcliffe

Carindale

BeefLedger | Data61 Sensor Test Project Scope (for discussion)

Pricing?
Actual Expected

“Is different”
Anomaly

?
Worth checking? Clustering based on similarity

measure for feature vector

Case Study 2 - D61 Project “Supply Chain Awareness”

35

10:06

?
10:07

Fix GPS dropouts

10:05
10:06

Fix:

“Behaves differently”
Anomaly ? Box moved to cabin?

Fix sensor dropouts, anomalies

CSIRO Australia’s National Science Agency 23

We validated our approach with three synthetic test cases (real BeefLedger data were not yet
available):

Figure: Normal scenario: This chart shows the temperature changes of two boxes over time. Line 1 in green represents boxes 1 to
10, which are moved from Morningside to Woolloongabba, Line 20, in orange, shows the boxes 11 to 20, which are continued on to
Annerley. Once the truck arrives in Woolloongabba, the truck doors are opened and boxes one to 10 are taken out of the truck. The
temperature rises slightly in the truck and faster for the boxes out on the trolley. Soon thereafter, the truck doors are closed again
and the temperature slowly sinks to -15ºC on the truck. Boxes 1 – 10 are put into the freezer room and the temperature sinks to -
20ºC. When the truck stops at Annerley, boxes 11 – 20 are taken out of the truck and the temperature rises again, until they are
put in the freezer as well. At some point in time the sensors are disabled and the line ends.

Figure: Late cooling scenario: This example is identical to the normal case, except that the boxes are staying out in the sun too long
before being put into the freezer room. The temperature raises further to an unacceptable value.

Figure: Cabin box scenario: In contrast to the normal scenario, box #11 is not cooled properly on the way to Annerley. Its
temperature raises to 15ºC, which may indicate that the box travelled in the driver cabin of the truck. Once the truck arrives at the
destination it’s temperature climbs up as it is now outside with the rest of the boxes. Once in the freezer room all temperatures fall
again towards -20ºC.

Our Fusemate analysis produced the anomalies in the late cooling and the cabin box scenario and
confirmed the normal scenario as unproblematic:

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Formatted: Font: 9 pt, Complex Script Font: 9 pt

Cooling OK? vs

1

Point of Origin Delivery
Destination #1

Delivery
Destination #2

Product Type Product Status
(Frozen / Chilled)

Route Normal
(Destination 1)

Route Normal
(Destination 1-2)

Delivery Time
Normal (to

Destination #1)

Product Condition
Normal (A)

Product Condition
Normal (A)

Case 1 Morningside Woolloongabba Annerley Consumer Ready Frozen <12km <3km <120 minutes <10 degrees C

Case 2 Morningside Woolloongabba Gold Coast Consumer Ready Frozen <12km <90km <120 minutes <10 degrees C

Case 3 Morningside Annerley - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 4 Morningside Coorparoo - Consumer Ready Frozen <12km - <120 minutes <10 degrees C

Case 5 Morningside Woolloongabba Annerley Consumer Ready Chilled <12km <3km <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 6 Morningside Woolloongabba Gold Coast Consumer Ready Chilled <12km <90km <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 7 Morningside Annerley - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 8 Morningside Coorparoo - Consumer Ready Chilled <12km - <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 9 Morningside Emerald - Bulk Boxed Beef Chilled <900km - <120 minutes <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Case 10 Morningside Emerald Emerald #2 Portioned (restaurant
destination)

Chilled <900km <5km <1 degrees C >1 degrees C no
greater than 1

cumulative hour

Alternative
Destinations

Sherwood

Tennyson

Forest Lake

Margate

Redcliffe

Carindale

BeefLedger | Data61 Sensor Test Project Scope (for discussion)

Pricing?
Actual Expected

“Is different”
Anomaly

?
Worth checking?

Concrete scenarios:

normal, latecool,

missingbox, cabinbox

Clustering based on similarity

measure for feature vector

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

Time
Loc

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

Loc A

➊

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃

Loc A C

➋
➊

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃?
Loc A C

➋
➊

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃?
Loc A C

➋
➊

➌

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃?
Loc A C

➋
➊

➍

➌

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃

15

?
Loc A B C

➋
➊

➍

➌

➎

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃

15

?
Loc A B C

➋
➊

➍

➌

➎

➏

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃

15

?
6℃

Loc A B C

➋
➊

➍

➌

➎

➏

➐

36

Case Study 2 - D61 Project “Supply Chain Awareness”

Rule for recovering sensor dropout

10Time

2℃

20

10℃

15

?
6℃

• Similar rule for truck

location recovery

• 25 rules altogether

Loc A B C

➋
➊

➍

➌

➎

➏

➐

36

Fusemate System Demo

37

Fusemate System Demo

37

Fusemate System Demo

37

Of Interest

• GPS -> Symbolic Loc

• Integrating

information sources

• Noisy sensor data

• Robust anomaly

detection

Case Study 3 - Taxi Rides Anomalies

2 Million taxi rides in New York City
Ride(taxi,license,from,to,start,end,fare)

Fusemate
(1) Rules for hotspot clustering and concave hull
(2) Rules for anomaly detection

Ride
Gap (between rides)

38

Pickup/dropoff
clusters

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Fusemate invocation

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Fusemate invocation

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

39

Fusemate invocation

Case Study 3 - Taxi Rides Anomalies

From Scala to Fusemate and back

Functional + Logic programming

Declarative and concise :)

39

Fusemate invocation

Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

40

Case Study 3 - Taxi Rides Anomalies

Anomaly: gap at a busy pickup hotspot

Of Interest

• Reasoning with non-trivially sized data sets

• Deploying Logic Programming as a method for data analysis

(as a Jupyter notebook)

• Interaction Fusemate with host programming language Scala

40

Data Cleansing as Situational Awareness

41

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 No
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Data Cleansing as Situational Awareness

41

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 No
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Problem: More than a

full-time contract at the

same time

Data Cleansing as Situational Awareness

41

Example: Employments Database

Company Employee Since Full-time
ABM Alice 1/3/18 No
BBM Bob 5/3/18 No
ABM Alice 1/6/19 Yes

Problem: More than a

full-time contract at the

same time

How to explain and fix this inconsistency?

Approach
• There is a fixed set of contract operators: cessation, conversion, new contract
• Try them out as “fixes” for the problem
• Or was it Bob? Or someone else?

Conclusions

Summary

 “Situational awareness = time-stratified logic programming + belief revision” 

 -> Good balance between expressivity and declarativity

The implementation is meant to be practical (workflow integration, ease of use)

Current and Future Work

Classical negation

Proper belief revision (ramification problem)

Timed LTL constraints

Probabilities and combination with machine learning

• Probabilistic EDBs a la ProbLog Load(10, “tomatoes”, “pallet”) : 0.3

• ML as a subroutine for anomaly detection? 

Context may help to favoid false positives

42

□ t . 𝗌𝗁𝗂𝗉𝗉𝖾𝖽(B) → ◊s . s ≤ t + 5 ∧ 𝗋𝖾𝖼𝖾𝗂𝗏𝖾𝖽(B)

Implementation at https://bitbucket.csiro.au/users/bau050/repos/fusemate/

