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Computer . i Fo— Ery— Trajectory | (t0,x0,y0)  (t1,x1,yl) eee
: - we3 | 1 wea ~ o
Factory
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Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?
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TLDR; Computer Factory Example (FDMF)
Ccasing >

Computer

Factory

Assemble _
WB 1 ""‘\\\

Assemble o
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-

Packing
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J

Software Inst. 1
[ wB3 |

_( Quality Check
17 WB 4
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—— Standard Workflow “----- + Rework Workflow

Behavior

Actions

Trajectory

( N

assemble0 breakO assemblel eee

\ e Y,

( )

working_at deliver_ to move to

\ -~ y,
N

(t0, x0, y0)  (t1,x1,yl) eee
\ y,

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

—

Given trajectory

dur ~ [1..10] @ T

behaviour ~ [assemble, break ...].
worker ~ [1,2,3,4,5].

action = working_at(wb(W))

behaviour = assemble,
worker = W.

behaviour = assemble,
worker = W.

=L @T

:- action

Probabilistic logic program

%% Distribution

%% Distribution

@O0 :-

action = deliver_to(wb(W+1)) @ 1 :-

:- action = working_at(L) @ T.
working_at(_) @ T.
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Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

Given trajectory ﬁ> Probabilistic logic program ﬁ> Most likely behaviour seq.

assemble -> break -> ...

.36:450 ; . . .
10:13:36:4 behaviour ~ [assemble, break ...]. %% Distribution
10:08:08:5% worker ~ [1,2,3,4,5]. %% Distribution

o-.01-.4‘5"°97
g:108 action = working_at(wb(W)) @o0 :-
57} .
v e behaviour = assemble,
tiggest e worker = W.
gA()'.'bQ" .
Q .QF

09.»“01'&11 action = deliver_to(wb(W+1)) @ 1 :-

. '.A*’"QQQ . behaviour = assemble,

ey 53 worker = W.

" B .5

- 5-: X
e . > loc = L @T :- action = working_at(L) @ T.
y ® 87'5 dur ~ [1..10] @ T :- action = working_at(_) @ T.

3
Daniel Smith et al. Activity Recognition within a Manufacturing System: A Comparison of Logic Programming, Machine Learning, and Combinatorial Optimization Based Methods. 2023



TLDR; Computer Factory Example (FDMF)
Ccasing > . )

Assemble } [ Packing } Behavior |assemble0 breakO assemblel eee
WB 1 WB 5
G T e ’
A 4 \\\\\ (- \
Mother- Assemble . \\\ Actions working_at delive r to move_to

board wB2 | TTTT---. . | L P |
70 - - eI ~:\\\ \‘\ )

Computer . i Fo— Ery— Trajectory | (t0,x0,y0)  (t1,x1,yl) eee
) - we3 | 1 WB 4 - o

Factory
—— Standard Workflow “---—-- + Rework Workflow

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

Given trajectory ﬁ> Probabilistic logic program ﬁ> Most likely behaviour seq.

assemble -> break -> ...

.13:36:450 4 ; I . . .
10:13:36 § behaviour ~ [assemble, break ...]. W% Distribution
08:08:55° wygorker ~ [1,2,3,4,5]. %% Distribution
o.,ol._A.S'-°97 e SR
o:308 action = working_at(wb(W)) @o0 :-
57} .
v e behaviour = assemble,
tiggest e worker = W.
gA()."bQ'. ;
Q .ot . .
el | action = deliver_to(wb(W+1)) @ 1 :-
o3 '.A"'QQQ . behaviour = assemble,
T . worker = W.
Qq’. D B 6.5
6.5 X ; .
e . > loc = L @T :- action = working_at(L) @ T.
y > 87'5 dur ~ [1..10] @ T :- action = working_at(_) @ T.

3
Daniel Smith et al. Activity Recognition within a Manufacturing System: A Comparison of Logic Programming, Machine Learning, and Combinatorial Optimization Based Methods. 2023



TLDR; Computer Factory Example (FDMF)
Ccasing > . )

Assemble } [ Packing } Behavior |assemble0 breakO assemblel eee
WB 1 WB 5
G T e ’
A 4 \\\\\ (- \
Mother- Assemble . \\\ Actions working_at delive r to move_to

board wB2 | TTTT---. . | L P |
70 - - eI ~:\\\ \‘\ )

Computer . i Fo— Ery— Trajectory | (t0,x0,y0)  (t1,x1,yl) eee
) - we3 | 1 WB 4 - o

Factory
—— Standard Workflow “---—-- + Rework Workflow

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

Given trajectory ﬁ> Probabilistic logic program ﬁ> Most likely behaviour seq.

assemble -> break -> ...

.13:36:450 4 ; I . . .
1000 § behaviour ~ [assemble, break ...]. W% Distribution
08:08:55° wygorker ~ [1,2,3,4,5]. %% Distribution
o.,ol._A.S'-°97 e RS
o:308 action = working_at(wb(W))
.5’1‘-X .
v e behaviour = assemble,
tiggest e worker = W.
gA()-.3°" .
> oF . )
el | action = deliver_to(wb(W+1)}
o3 '.A"'QQQ . behaviour = assemble,
. s . worker = W.
o> '
5 6
6.5 X . .
e . > loc = L @T :- action = working_at(L) @ T.
y ® 87'5 dur ~ [1..10] @ T :- action = working_at(_) @ T.

3
Daniel Smith et al. Activity Recognition within a Manufacturing System: A Comparison of Logic Programming, Machine Learning, and Combinatorial Optimization Based Methods. 2023



TLDR; Computer Factory Example (FDMF)
Ccasing >

Assemble _ Packing
m WB 1 WB 5
Mother- Assemble . \\\\
board wB2 | TTTT---. . |
Com pUter E = Software Inst. 1 f Quality Check
WB 3 J L WB 4
Factory

—— Standard Workflow “----- + Rework Workflow

Behavior

Actions

Trajectory

( N
assemble0 breakO assemblel eee
\ e Y,
( )

working_at deliver_ to move to
\ -~ y,
N
(t0, x0, y0)  (t1,x1,yl) eee
\ y,

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

—

Given trajectory

—

Probabilistic logic program

.13:36:450 < . T3 . . .
0 § behaviour ~ [assemble, break ...]. W% Distribution
08:08:55° wygorker ~ [1,2,3,4,5]. %% Distribution
0.01.‘45:097 e
o:308 action = working_at(wb(W))
573" .
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Q-
26"
o .Q’Lo
09.‘»'91'&11 action = deliver_to(wb(W+1)}
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99:5 .600 4.5
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Most likely behaviour seq.

assemble -> break -> ...
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TLDR; Computer Factory Example (FDMF)
Ccasing >

Mother-
board

Assemble
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Assemble
WB 2

Packing
WB 5

J

I Quality Check

CompUter EE = [Software Inst. |
WB 3 J

Factory
—— Standard Workflow «

L WB 4

]

+ Rework Workflow

( N
Behavior |assemble0 breakO assemblel eee
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\ -~ y,
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Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

—

Given trajectory

10:13 36:450
08:08:55°
0 07-'-"'5"097 pa—— -~ - T P
o:308 action = working_at(wb(W))
51 :
i e behaviour = assemble,
R | worker = W.
A()"’bw.
0% o
el | action = deliver_to(wb(W+1)}
R L behaviour = assemble,
= 30.90‘9 55'
" [ 5
5 6 .
o 6.5 X TN .
. > ¥ action
b 3 :
y o .1 4 action

Probabilistic logic program

—

Most likely behaviour seq.

assemble -> break -> ...

.1. %% Distribution
%% Distribution

Hidden Markov Model

= working_at(L) @ T.
= working_at(_) @ T.
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TLDR; Computer Factory Example (FDMF)

Computer

Factory

w ( N
Assemble } [ Packing } Behavior |assemble0 breakO assemblel eee
WB 1 -l WB 5
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A 4 \\\\\ (- \

Mother- Assemble } ______ \\\ Actions working_at delive r to move_to
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—— Standard Workflow “----- + Rework Workflow

Problem: Trajectory classification: what actions/behaviours exhibited by a trajectory?

—

Given trajectory

—

Probabilistic logic program

assemble -> break -> ...

.1.%% Distribution
%% Distribution
action = working_at(wb(W))
behaviour = assemble,
worker = W.

Hidden Markov Model

action = deliver_to(wb(W+1)!\
behaviour = assemble,

PLP can do much more!

“‘fx action = working_at(L) @ T.
: & action = working_at( ) @ T.
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Most likely behaviour seq.
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Logic

“Algorithm = Logic + Control”

- Model the problem at hand with “logic”

- Feed into automated reasoning system

- Push button and get solution

Logic

Classical
Non-monotonic
Modal

Probabilistic
Temporal

Graphs (Ontologies)
Relational (Tables)

Built-in Theories

Reasoning Tasks

Proving
Disproving
Query answering

Model computation

Knowledge Completion

Diagnosis

flight(toronto, london).

flight(london, rome).

flight(chicago, london).
flight(X,Y) :— flight(X, Z) , flight(Z,Y).

Can Fly

Ostriché—=I|s Tall

‘ Fish
\ms Feathers '

Breathes

~Has Fing

Z__Can Swim
~Has Gills

Has Long i Is Pink
Can Bite $
/- Can Sing l/"m' 0 snarkL< Salmone<T—js Edible

~ls Sswims

LY L]
Is Yellow Can't Aly Dangerous Upstream
To Lay
Eggs
A simple problem AlphaGeometry Solution
A A
i [ % Language model } j]i
B C Adda Not B D C
construct .-....... . | solved

Theorem premises:

Let ABC be any triangle with AB=AC

Prove that angle (£) ABC= «BCA

-=-==-----3 « Construct D: midpoint BC

, , Solved | -+ AB=AC, BD=DC, AD=AD = ~ABD= ZDCA
= o 2 B . ,
L £ symbolic engine . ZABD= £DCA, B C D collinear -

‘ L ZABC=ZBCA

AlphaGeometry, AlphaProof, LLM-modulo, ...

Relational

Ontology

Neuro-Symbolic
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Logic

“Algorithm = Logic + Control”

- Model the problem at hand with “logic”
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- Push button and get solution
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Proving
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“Logic” vs “Logic Programming”?

flight(toronto, london).
flight(london, rome).
flight(chicago, london).
flight(X,Y) :— flight(X, Z) , flight(Z,Y).

Can Fly

\ms Feathers '
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Can Sing /rh‘ﬂ Legs /Clﬂ Bite / s h
- i Shark Salmon <5 Edible
Ostrichd—=Is Ta ="~ —_— \swims
LY L]
Is Yellow Can't Fly Dangerous Upstream
To Lay
Eqgs
. ) .
A simple problem AlphaGeometry \ Solution
A A
i [% Language model } j]i
B C Adda Not B D C
construct ......... .| solved
Theorem premises: :~-; ~~~~~~~~~~~~~~~~~~~~ Construct D: midpoint BC
Let ABC be any triangle with AB=AC . . Solved | « AB=AC, BD=DC, AD=AD = ZABD= £DCA
Prove that angle (£) ABC= £BCA a Symbolic engine  |———— | ZABD= #/DCA, B C D collinear =
L ‘ L ZABC=ZBCA

AlphaGeometry, AlphaProof, LLM-modulo, ...
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Classical Logic and Logic Programming Semantics
TR - 2

Has Skin If X is a bird

Can Move Around

Eats then X is an animal

Breathes

If Xis a bird and

X is not an ostrich

then X can fly

] ' Is Pink
Can Sing gs L/Can Bit g !
a , Shark Salmon —|s Edible
Canarys” Ostrich \-‘“ \Swims
Is Yellow Dangerous Usstream | |
togs ) Tweety is a bird

(Tweety is an ostrich)

_ Y,




Classical Logic and Logic Programming Semantics
e ( w

Has Skin If X is a bird

Can Move Around

Eats then X is an animal

Breathes

< _Can Swim If Xis a bird and

~Has Gills

X is not an ostrich

then X can fly

/ls Pink

i [ ean Si"omlch ML<(::" B almod _\tls‘witr:i:“
Is Yellow Dangerous Upstream . .
togs ) Tweety is a bird
(Tweety is an ostrich)
_ J
Classical (Open-World) Entailment Non-Monotonic (Closed-World)
“Constraint” view “Provability” view

Logic Programming
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v Tweety is an animal v Tweety is an animal
X Tweety can fly v'  Tweety can fly
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Probabilistic Logic Programs

Facts

Rules

cat(tom).
drinks(X, milk) :— cat(X).

Tom is a cat
If X is a cat then X drinks milk

Default Negation

innocent(X) :— cat(X), not guilty(X).
flies(X) :—= bird(X), not abnormal(X).

If X is a cat and X is not guilty

then X is innocent

... @ Time thirsty(X) @ T+1 :- If X is thirsty at time T and
(Fusemate) thirsty(X) @ T, X does not drink at time T
not drink(X, _) @ T. then X is thirsty at time T+1
Probabilities 0.8 :: cat(tom).

0.5 :: drinks(X, milk) :— cat(X).

Distributions

(Fusemate)

nr_siblings(X) ~ [[0, 0.05], [1, 0.10@], ... [5, 0.10]]
:— cat(X).

Queries

?— thirsty(tom) @ T |
thirsty(tom) @ 2, drink(tom, milk) @ 5.

. :

Operational

Top-Down Inference
Bottom-Up Inference
Exact inference/sampling
Parameter Learning

Structure Learning j
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Dynamic Data Structures and Distributions

Drawing without replacement

urn([r(1), r(2), g(1)]) @ 0. %% Initially two red and one green distinguishable balls
draw ~ Balls @ T :- %% Draw a ball uniformly if urn is not empty
urn(Balls) @ T,
Balls \= [].
urn(Balls -- [B]) @ T+1 :- %% Drawing a ball removes it from urn
urn(Balls) @ T,
draw = B @ T.
some(red) @ T :- draw=r(_) @ T. %% Abstract from ball id, color only

some(green) @ T :- draw=g(_) @ T.

Queries

7- some(green) @ O.
% 0.333333

7- some(green) @ 1 | some(red) @ O.
% 0.5 conditional query

7- some(Cl) @ 1, some(C2) @ 2 | some(red) @ 0. % Non-ground conditional query, two solutions:
% 0.5 :: [Cl = red, C2 = green]
% 0.5 :: [Cl = green, C2 = red]



Dynamic Data Structures and Distributions

Drawing without replacement

urn([r(1), r(2), g(1)]) @ 0.
draw ~ Balls @ T :-
urn(Balls) @ T,
Balls \= [].
urn(Balls -- [B]) @ T+1 :-
urn(Balls) @ T,
draw = B @ T.
some(red) @ T :- draw=r(_) @ T.
some(green) @ T :- draw=g(_) @ T.

Queries

7- some(green) @ O.
% 0.333333

7- some(green) @ 1 | some(red) @ O.
% 0.5 conditional query

?7- some(Cl) @ 1, some(C2) @ 2 | some(red)
% 0.5 :: [Cl = red, C2 = green]
% 0.5 :: [Cl = green, C2 = red]
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Probabilistic Logic Programming (Fusemate)

SPRINKLER RAIN

Bayes Network wn T ¥

F 0.4 0.6 @ » 0.2 0.8
T 0.01 0.99

0.2 :: rain. @
0.01 :: sprinkler :- rain. GRASS WET
0.4 :: sprinkler :- -rain. smmeRRMN|T F
0.99 :: grasswet - sprinkler, rain. F F o0 10
0.9 :: grasswet - sprinkler, -rain. ; I Eﬁ &i
0.8 :: grasswet :- -sprinkler, rain. T T 0% oo
hetwork with conditional probability tables &

?- rain | grasswet.




Probabilistic Logic Programming (Fusemate)

SPRINKLER RAIN

Bayes Network wn T ¥

F 04 0.6 @ » 0.2 0.8
T 0.01 0.99

0.2 :: rain. @
0.01 :: sprinkler :- rain. GRASS WET
0.4 :: sprinkler :- -rain. SWWKERRNN|T F
0.99 :: grasswet - sprinkler, rain. F F o0 10
0.9 :: grasswet - sprinkler, -rain. ; I Zﬁ &i
0.8 :: grasswet :- -sprinkler, rain. T T o oo
ﬁetwork with conditional probability tables &

?- rain | grasswet.

NP-Complete Search Problems

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
noncol :- color(X)=g, color(Y)=g, edge(X,Y).
noncol :- color(X)=b, color(Y)=b, edge(X,Y).
edge(1,2). edge(2,3). edge(3,1).

edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring
?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects




Probabilistic Logic Programming (Fusemate)

@'¢

Bayes Network wn T r

F 0.4 0.6
T 0.01 0.99

0.2 :: rain.

0.01 :: sprinkler :- rain.

0.4 :: sprinkler :- -rain.

0.99 .. grasswet - sprinkler, rain.
0.9 :: grasswet - sprinkler, -rain.
0.8 .. grasswet - -sprinkler, rain.

GRASS WET
SPRINKLER RAIN| T

F

F F

F T
T F
T T

0.0
0.8
0.9
0.99

1.0
0.2
0.1
0.01

network with conditional probability tables

?- rain | grasswet.

NP-Complete Search Problems

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
:- color(X)=g, color(Y)=g, edge(X,Y).
noncol :- color(X)=b, color(Y)=b, edge(X,Y).
edge(1,2). edge(2,3). edge(3,1).

noncol

edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring

?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects

Time

N

%% Some '"random" blockagﬁf
block(1) @ 2.
block(2) @ 3.

prob(0).

(0.5 :: prob(K+1) + prob(K)) @ N+1 :-
prob(K) @ N,
\+ bl(K) @ N.

%% ?- prob(K) @ 4.

prob(K) @ N+1 :- 0.0625 :: prob(0) @ 4
prob(K) @ N, 0.3750 :: prob(1) @ 4
bl(K) @ N. 0.43750 :: prob(2) @ 4

0.0625 :: prob(3) @ 4
0.0625 :: prob(4) @ 4




Probabilistic Logic Programming (Fusemate)

Bayes Network wn T r

F 0.4 0.6
T 0.01 0.99

?- rain | grasswet.

0.2 :: rain.

0.01 :: sprinkler :- rain.

0.4 :: sprinkler :- -rain.

0.99 :: grasswet - sprinkler, rain.
0. :: grasswet - sprinkler, -rain.
0.8 :: grasswet - -sprinkler, rain.

@'¢

GRASS WET
SPRINKLER RAIN‘ T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

network with conditional probability tables

NP-Complete Search Problems

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
noncol :- color(X)=g, color(Y)=g, edge(X,Y).
noncol :- color(X)=b, color(Y)=b, edge(X,Y).

edge(1,2). edge(2,3). edge(3,1).
edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring

?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects

Time

\\\\\\

%% Some "random" blockagh
block(1) @ 2.
block(2) @ 3.

M X»'J!: ‘ s
N

-m,,f~ jzfif
.,!.

1 .EE ' j
prob(@).

(0.5 :: prob(K+1) + prob(K)) @ N+1 :-
prob(K) @ N,
\+ bl(K) @ N.

%% ?- prob(K) @ 4.

prob(K) @ N+1 : - 0.0625 :: prob(0) @ 4
prob(K) @ N, 0.3750 :: prob(1) @ 4
bl(K) @ N. 0.43750 :: prob(2) @ 4

0.0625 :: prob(3) @ 4
0.0625 :: prob(4) @ 4

Observation (Er)

Hidden




Probabilistic Logic Programming (Fusemate) AT

Time | Algorithms
Bayes Network wn T r e - R
F | 04 06 @ @ 02 0.8 - . . : _I—D%(LI X X I—u—u—u—
T | 0.01 0.99 %% Some "random" blockag -\Q; ‘ X X X X X X X X X
e s *; = X X X X X x
0.2 . rain. @ blOCk(l) @ 2. ii"lg‘ “"“ 4'gl(i« 0y x X x x X x
. ; . : block(2 3. 1l X X_ X X X x
0.01 :: sprinkler :- rain. CRASS WET (2) @ | kl l' NS . . o o
0.4 :: sprinkler :- -rain. smmxmknmﬂ TF ! 13 | x x + x x x  x
0.99 :: grasswet :- sprinkler, rain. F o F o0 1o l‘ *l212]0]® '.'l x xox x o} ox x
F T 0.8 0.2 X X X p 4 Ig X X
0. :: grasswet :- sprinkler, -rain. T F o9 o1 prob(0). X x x X X X x x x
©0.8 :: grasswet :- -sprinkler, rain. TooT e ot (0.5 :: prob(K+1) + prob(K)) @ N+1 :- x X x x k X x x X
network with conditional probability tables = prob(K) @ N, xoxooxooxoox XX X X
?- rain | grasswet. \+ b1(K) @ N. %% ?- prob(K) @ 4. S 1
prob(K) @ N+1 : - 0.0625 :: prob(0) @ 4 X e e X XX
prob(K) @ N, 0.3750 :: prob(1) @ 4 Probabilistic A*

bl(K) @ N. 0.43750 :: prob(2) @ 4

0.0625 :: prob(3) @ 4

NP-Complete Search Problems 0.0625 :: prob(4) @ 4

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
noncol :- color(X)=g, color(Y)=g, edge(X,Y). Hidden Observation (Ey)
noncol :- color(X)=b, color(Y)=b, edge(X,Y).
edge(1,2). edge(2,3). edge(3,1).

edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring
?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects
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Bayes Network wn T r

T 0.01 0.99

?- rain | grasswet.

0.2 :: rain.

0.01 :: sprinkler :- rain.

0.4 :: sprinkler :- -rain.

0.99 :: grasswet - sprinkler, rain.
0. 1. grasswet - sprinkler, -rain.
0.8 :: grasswet - -sprinkler, rain.

@'¢

GRASS WET
SPRINKLER RAIN‘ T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

network with conditional probability tables

NP-Complete Search Problems

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
noncol :- color(X)=g, color(Y)=g, edge(X,Y).
noncol :- color(X)=b, color(Y)=b, edge(X,Y).

edge(1,2). edge(2,3). edge(3,1).
edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring

?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects

Time

%% Some "random" blockagh

block(1) @ 2.
block(2) @ 3.

prob(@).

(0.5 ::
prob(K) @ N,
\+ bl(K) @ N.

prob(K) @ N+1 : -
prob(K) @ N,
bl(K) @ N.

\\\\\\

prob(K+1) + prob(K)) @ N+1 :-

%% ?- prob(K) @ 4.

0.0625 :: prob(0) @ 4
0.3750 :: prob(1) @ 4
0.43750 :: prob(2) @ 4
0.0625 :: prob(3) @ 4
0.0625 :: prob(4) @ 4

Hidden

Observation (Ey)

Algorithms

X X
X X X X X X X X X
X X X X X X
X X X X X Rig 1 X
X X X X X X
X X X X X X X X X
X X X X X X X X X
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X X X X X X X X X
X X X X X )kig§ X X
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X X X X X X X X X

Probabilistic A*

Simulation

by Sampling

09:37:07:177
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Probabilistic Logic Programming (Fusemate)

SPRINKLER

Bayes Network wn T

F 0.4 0.6
T 0.01 0.99

?- rain | grasswet.

0.2 :: rain.

0.01 :: sprinkler :- rain.

0.4 :: sprinkler :- -rain.

0.99 :: grasswet - sprinkler, rain.
0. 1. grasswet - sprinkler, -rain.
0.8 :: grasswet - -sprinkler, rain.

GRASS WET
SPRINKLER RAIN‘ T F
F F 0.0 1.0
F T 0.8 0.2
T F 0.9 0.1
T T 0.99 0.01

network with conditional probability tables

NP-Complete Search Problems

color(X) in [r, g, b] :- node(X).

node(1). node(2). node(3). node(4).

noncol :- color(X)=r, color(Y)=r, edge(X,Y).
noncol :- color(X)=g, color(Y)=g, edge(X,Y).
noncol :- color(X)=b, color(Y)=b, edge(X,Y).
edge(1,2). edge(2,3). edge(3,1).

edge(4,1).
edge(4,2).
%edge(4,3).

%% \+ noncol is true iff there is a coloring

?- -noncol, color(1)=C1, color(2)=C2, color(3)=C3, color(4)=C4.

Logical variables X for domain objects

Expressivity: full history

(non-Markovian);

Time

block(1) @ 2.
block(2) @ 3.

prob(@).

> prob(K) @ N,
\+ bl(K) @ N.

prob(K) @ N+1 : -
prob(K) @ N,
bl(K) @ N.

%% Some "random" blockagh

(0.5 :: prob(K+1) + prob(K)) @ N+1 :-

%% ?- prob(K) @ 4.

0.0625 :: prob(0) @ 4
0.3750 :: prob(1) @ 4
0.43750 :: prob(2) @ 4
0.0625 :: prob(3) @ 4
0.0625 :: prob(4) @ 4

Hidden

Observation (Ey)

Algorithms
oo ]

I K
|
K

X X
X X X X X X X X X
X X X X X X
X X X X X Rig 1 X
X X X X X X
X X X X X X X X X
X X X X X X X X X
X X X X X X X
X X X X ng 2 X X
X X X X X X X X X
X X X X X, X X X X
X X X X X X X X X
X X X X X )ilig ¥ | x X
X X X X X X X X X
X X X X X X X X X

Probabilistic A*

Simulation

by Sampling

09:37:07:177

09._35»_53:958
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random variables are first-class citizens o




Fusemate Probabilistic Logic Programming System

Implementation in Python Strong Python integration

(From earlier versions in Scala)
def weather_0():

Two-way interface Python <-> Fusemate return {'rainy': 0.5, 'sunny': 0.5}

Python data structures available in Fusemate

_ . . def weather_Tpl(weather_T):
Logic program can be written as Python functions . $'rainy': §'rainy': 0.8, 'sunny': 0.2},
‘sunny': {'rainy': 0.2, 'sunny': 0.8%}\

ther_T
Efficient probablistic inference [weather_T]

Default negation via well-founded model def obs_T(weather_T):

return {'rainy': {'shop': 0.8, 'clean': 0.2%,
‘sunny': $'shop': 0.2, 'walk': 0.8%}%\

Two-phase inference algorithm [weather_T]

Rules cannot change past states

- Phase 1 “grounding”

Removal of first-order variables

-> Bayes-net like program (may contain cycles)
- Pase 2 inference/sampling

Top-down variable elimination with caching of results

10
Peter Baumgartner and Elena Tartaglia. Bottom-Up Stratified Probabilistic Logic Programming with Fusemate. ICLP 2023



Fusemate Probabilistic Logic Programming System

Implementation in Python Strong Python integration

(From earlier versions in Scala)
def weather_0():

Two-way interface Python <-> Fusemate return {'rainy': 0.5, 'sunny': 0.5}

Python data structures available in Fusemate
def weather_Tpl(weather_T):

return {'rainy': {'rainy': 0.8, 'sunny': 0.2%,
‘sunny': {'rainy': 0.2, 'sunny': 0.8%%\
[weather_T]

Logic program can be written as Python functions

Efficient probablistic inference

Default negation via well-founded model def obs_T(weather_T):

return {'rainy': {'shop': 0.8, 'clean': 0.2%,
‘sunny': {'shop': 0.2, 'walk': 0.8%}%\

Two-phase inference algorithm [weather_T]

Rules cannot change past states

- Phase 1 “grounding”

Removal of first-order variables

Contribution:

»

-> Bayes-net like program (may contain cycles) “Inconsistency Pruning’

for better efficiency

- Pase 2 inference/sampling
Top-down variable elimination with caching of results

10
Peter Baumgartner and Elena Tartaglia. Bottom-Up Stratified Probabilistic Logic Programming with Fusemate. ICLP 2023



Fusemate Inconsistency Pruning
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Fusemate Inconsistency Pruning

0.7

0.6 ' > '
i$y 0.3 ‘i
[3..30] * + [3..30]¢
[0..5] T +[0..5] T
0.4
0-4 - 0.6 g N—

2

P( o2

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.

state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :-
state=rainy @ T.

obs ~[R+3..R+30] @ T :-
state=rainy @ T, T > 0, obs=R @ T-1.

?— 0bs=0 @ 0, obs=4 @ 1, obs=20 @ 2.

20 )

0.000119

11



Fusemate Inconsistency Pruning

06 , 07 Distribution Semantics
€444 0.3 44 0.6/\0.4
....... '
[3..30] +[3. 30]¢ 444
[0..5] [0..5] \’
1 AN . ;o
| X v
0.4 P>
—~— 0.6 S— P(query) = % P(v))

0.000119

N
s O
S
1

P( o2

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.

state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :-
state=rainy @ T.

obs ~[R+3..R+30] @ T :-
state=rainy @ T, T > 0, obs=R @ T-1.

?— 0bs=0 @ 0, obs=4 @ 1, obs=20 @ 2. 1



Fusemate Inconsistency Pruning

,4 Distribution Semantics
0.7 > | '
....... -
+[3..30]¢ i -
5 <016/ \0.16
: . 0 5
+10..5] o
b ;o
X v
>
0.6 N— P(query) = 2 P(v)
- 0 1 2

0.000119

P )

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.

C t' T |t
state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :- omputing query success probabilities

state=rainy @ T.

obs ~[R+3..R+30] @ T :-
state=rainy @ T, T > 0, obs=R @ T-1.

?— 0bs=0 @ 0, obs=4 @ 1, obs=20 @ 2. 11

(1) Program grounding (= Bayes net)
(2) Query probability (marginal probability by var. elim.)



Fusemate Inconsistency Pruning

Distribution Semantics
07 '
....... -
+[3. 30]¢ i
.;' 01@/N)16
+[0..5] ‘~,
AN . F
X 4
>
0.6 - P(query) = % P(v)
- 0 1 2

0.000119

dc

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.

N
3 o
N
1

Computing query success probabilities
state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :- puting query P

state=rainy @ T.
obs ~[R+3..R+30] @ T :-
state=rainy @ T, T > 0, obs=R @ T-1. Naive (1): too many rules (quadratic in this case)
?— 0bs=0 @ 0, obs=4 @ 1, obs=20 @ 2. Solution: “Inconsistency Pruning” 1

(1) Program grounding (= Bayes net)
(2) Query probability (marginal probability by var. elim.)



Efficiency by Inconsistency Pruning

(Already grounded) programrules T=0

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.
obs ~ [3..30] @ O :- state=rainy @ 0.
obs ~ [0..5] @ O :— state=sunny @ 0.

?— 0obs=0 @ 0, obs=2 @ 1, obs=20 @ 2.

Distribution Semantics

0.6 /"\ 0.4

0y -
7 1.\0.16
)

<016

0
X

P(query) = 2 P(v)

12



Efficiency by Inconsistency Pruning

Distribution Semantics

0.6 /"\ 0.4

D) —
7 1.\0.16
5

016
- Query regression, Inconsistency pruning .0

[0..5]T . Extend current domain with U heads f; ; >
0.4
— P(query) = X P(v)

(Already grounded) programrules T=0

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.
obs ~ [3..30] @ 0 :- state=rainy @ 0.
obs ~ [0..5] @ 0 :- state=sunny @ 0.

?— 0obs=0 @ 0, obs=2 @ 1, obs=20 @ 2. 12



Efficiency by Inconsistency Pruning

Distribution Semantics

0.6 /"\ 0.4

D) —
7 1.\0.16
5

016
- Query regression, Inconsistency pruning .0

[0..5]T . Extend current domain with U heads f; ; >
0.4
— P(query) = X P(v)

(Already grounded) programrules T=0

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.
obs ~ [3..30] @ 0 :- state=rainy @ 0.
obs ~ [0..5] @ 0 :- state=sunny @ 0.

rS’rrengfhen query by regression sv

?— 0bs=0 @ 0, obs=2 @ 1, obs=20 @ 2, state=sunny @ 0. 12



Efficiency by Inconsistency Pruning

Distribution Semantics

0.6 /"\ 0.4

D) —
7 1.\0.16
5

016
- Query regression, Inconsistency pruning .0

[0..5]T . Extend current domain with U heads f; ; >
0.4
— P(query) = X P(v)

(Already grounded) programrules T=0

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.
obs ~[3..30] @ 0 :- state=rainy @ 0.
obs ~ [0..5] @ O :— state=sunny @ 0.

rS’rrengfhen query by regression nsv

7= 0bs=0 @ 0, obs=2 @ 1, obs=20 @ 2, state=sunny @ 0. 1




Efficiency by Inconsistency Pruning

Distribution Semantics

0.6 /"\ 0.4

0y —
7 1.\0.16
)

016
- Query regression, Inconsistency pruning .0

[0--5]T _. Extend current domain with U heads § ; s,‘*
0.4
' P(query) = 2 P(v)

(Already grounded) programrules T=0
state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0.

= B\ » - _ L " | © i _ . < = \ ’

DGt statespaimy«@-8ws 1P pruning
obs ~ [0..5] @ 0 :- state=sunny @ 0.

rS’rrengfhen query by regression nsv

7= 0bs=0 @ 0, obs=2 @ 1, obs=20 @ 2, state=sunny @ 0. 1




Efficiency by Inconsistency Pruning

| Distribution Semantics
L

0.6 /"\ 0.4

0y —
7 1.\0.16
)

016
- Query regression, Inconsistency pruning .0

051 4 _ Extend current domain with U heads 7; ; ",
0.4
—— P(query) = 2 P(v)

(Already grounded) programrules T=0 — Domain after T =0
state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0. state =rainy @ 0.
SBGecd DG pBeurnatatomraiy@gus 1P pruning state = sunny @ 0.
obs ~[0..5] @ 0 :- state=sunny @ 0. obs =0 @ 0.

j obs=1 @ 0.

rS’rrengfhen query by regression sv obs=5 @ 0.

7= 0bs=0 @ 0, obs=2 @ 1, obs=20 @ 2, state=sunny @ 0. 1




Efficiency by Inconsistency Pruning

Distribution Semantics

0.6 /"\ 0.4

0y —
7 1.\0.16
5

0.7

§ In increasing stratification order: ‘
- Ground out program over current domain ‘§

- Query regression, inconsistency pruning
domain with U

<5016
\‘: Os

heads §

Extend current

i ', S
4 "
’

X v

P(query) = 2 P(v)

DomainT =1

obs =0 @ 0. obs ~[R+3..R+30] @ T :-
obs=1 @ 0. state=rainy @ T,
T>0,
obs=R @ T-1.
obs=5 @ 0.

state =rainy @ 1.
state = sunny @ 1.

?— 0obs=0 @ 0, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.
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Efficiency by Inconsistency Pruning

Distribution Semantics
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——
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0.4 >
JE— 0.6 —— P(query) = 2 P(v)
Domain T =1 —> Grounded programrules T =1
obs=0 @ 0. obs ~[3..30] @ 1 :- state=rainy @ 1, obs=0 @ 0. obs ~[R+3..R+30] @ T :-
obs=1 @ O. obs ~[4..31] @ 1 :- state=rainy @ 1, obs=1 @ 0. state=rainy @ T,
: : T>0,
' ~ - _ _ obs=R @ T-1.
obs=5@ 0. obs ~ [0..5] @ 1 :- state=sunny @ 1, obs=0 @ 0.

_ obs ~[1..6] @ 1 :- state=sunny @ 1, obs=1 @ 0.
state =rainy @ 1. _

state = sunny @ 1.

?— 0obs=0 @ 0, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.
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Distribution Semantics
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obs=1 @ O. obs ~[4..31] @ 1 :- state=rainy @ 1, obs=1 @ 0. state=rainy @ T,
| : o < >0,
' ~ - _ _ obs=R @ T-1.
obs=5@ 0. obs ~ [0..5] @ 1 :- state=sunny @ 1, obs=0 @ 0.

_ obs ~[1..6] @ 1 :- state=sunny @ 1, obs=1 @ 0.
state = rainy @ 1. _ e oo
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Efficiency by Inconsistency Pruning

| 0.7
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L 'O

Distribution Semantics

0.6 /"\ 0.4
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7 1.\0.16
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In increasing stratification order:

- Ground out program over current domain ‘§
- Query regression, inconsistency pruning

<016
Extend current domain with U heads ‘; Os

[0..5
X v
0.4 >
—— 0.6 JE— P(query) = 2 P(v)
Domain T =1 —> Grounded programrules T =1
obs=0 @ 0. obs ~[3..30] @ 1 :- state=rainy @ 1, obs=0 @ 0. obs ~ [R+3:'R+3@] @T:-
obs=1@ 0. obs ~ [4..31] @ 1 :- state=rainy @ 1, obs=1 @ 0. state=rainy @ T,
: S Ts>0
;)bs —5@0 obs ~ [0..5] @ 1 :- state=sunny @ 1, obs=0 @ 0. obs=R @ T-1.

_ obs ~[1..6] @ 1 :- state=sunny @ 1, obs=1 @ 0.
state = rainy @ 1. _ e

state = sunny @ 1.

7— Qbs;@w@“@, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.
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0.7 Distribution Semantics

) ——

9 ‘s 0.6 /\0_4
* (A IS 4
[3..30] + [3..30] b In increasing stratification order: '“

- Ground out program over current domain ‘§
- Query regression, inconsistency pruning

g .;' o1§/|\) 16
2 . Extend current domain with U heads

+[0..5]T A et S '. \’
’ o’
’ 'O

[0 S]T
X v
0.4 =
JE— 0.6 —— P(query) = 2 P(v)
Domain T =1 —> Grounded programrules T =1
obs =0 @ 0. obs ~[3..30] @ 1 :- state= ralny @ 1, obs 0 @ @ 2o =~ [[R2LReale] @3-
obs=1@ 0 | PEWETRRER T e e state=rainy @ T,
. T>0,
| obs=R @ T-1.
obs=5 @ 0.
state =rainy @ 1. [P samnes

state = sunny @ 1.

7— Qbs;@w@“@, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.
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6
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' 0.6 ' L 5}\5 P(query) = 2 P(v)
Domain T =1 —> Grounded programrules T =1 l“
obs =0 @ 0. obs ~[3..30] @ 1 :- state= ralny @ 1, obs 0 @ @ 2o =~ [[R2LReale] @3-
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| T>0,
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state =rainy @ 1. Ip e

state = sunny @ 1. Inconsistency pruning: 62 -> 2 rules

7— Qbs;@w@“@, obs=4 @ 1, obs=20 @ 2, state=sunny @ 0.

13




Experimental Evaluation 1 - Hidden Markov Model

Runtime Results Fusemate vs ProbLog 400- ey 200 - .
300 - 150 -
Rainy/sunny example from above 200~ 100~
— 100~ 50 - Smallest domain
%% Queries for N=3 °
%09 e O S ) el — 0- : S e et
%% Sunny = 2 4 6 2 4 6
?-state=X@3 | obs=0 @1, obs=0@ 2, obs=0@3. § Mixed weather Broblom sire
-]
o
%% Rainy i 100~
?-state=X@3 | obs=4 @1, obs=8@2, obs=12@3 75- —— Fusemate w/o Guidance
/0 . 50~ —~o— Fusemate w/ Guidance
%% Mixed 25 - Largestdomain
state=X@ 3 | obs=0 @1, obs=4 @2, obs=24 @ 3. rop-0g
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Experimental Evaluation 1 - Hidden Markov Model

Runtime Results Fusemate vs ProbLog

Rainy/sunny example from above

%% Queries for N=3
%% Sunny

?-state=X@3 | obs=0@1, obs=0@ 2, obs=0@ 3.

%% Rainy

400 -

300 -

200 -

—~ 100~

o
1

Execution time (s
o
o

7?7-state=X@3 | obs=4 @1, obs=8@2, obs=12@3 75-

%% Mixed

state=X@3 | obs=0@1, obs=4 @2, obs=24 @ 3.

50 -

Grounding vs Inference - Mixed Weather

Fusemate #ground rules
query-guided unguided

Slightly rainy

200 -

150 -

100 -

50 -

Mixed weather

25-/

2 4

#ground rules

Largest domain

QO DW=

2200
2270
2300
2400
2470
2500

6500
12900
21400
32000
45000
60000

ProbLog
total time grounding time
9.0 8.3
30 19
119 33
50
65
95

53
276
499
682
839

1068

Sunny

Smallest domain

Problem size

—&— Fusemate w/o Guidance
—eo— Fusemate w/ Guidance

—e— ProblLog

14



Experimental Evaluation 1 - Hidden Markov Model

Runtime Results Fusemate vs ProbLog 400 - Sionty e 200 - -
300 - 150 -

Rainy/sunny example from above 200~ 100~

— 100~ 50 - Smallest domain
%% Queries for N=3 °

E O- 1 1 1 O- 1 ?7 —_ ? L
%% Sunny = 2 4 6 2 4 6

C
?-state=X@3 | obs=0@1, obs=0@ 2, obs=0@ 3. S Mixed weather Problem size

S
%% Rainy i 100-

7?7-state=X@3 | obs=4 @1, obs=8@2, obs=12@3 75-
50 -

—&— Fusemate w/o Guidance

—eo— Fusemate w/ Guidance

%% Mixed i
25 - Largest domain
state=X @3 | obs=0 @1, obs=4 @2, obs=24@ 3. ] | ¢~ Problog
2 4 6
Grounding vs Inference - Mixed Weather
emate:
Fusemate #ground rules ProbLog Fus af
N query-guided unguided total time grounding time #ground rules Improv ed grounding pays Off
2 2200 6500 9.0 8.3 53 . .
3 2270 12900 30 19 276 Inference engine implements UNA
4 2300 21400 119 33 499
5 2400 32000 50 682 ProblLog:
6 2470 45000 65 839 :
7 2500 60000 95 1068 Grounding 0K?

Bottleneck inference component?
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Experimental Evaluation 2 - Markov Model

Runtime Results Fusemate vs ProbLog

Time steps

%% Markov Model T
in~[a, b, c]l@o0. 1007

in~[[a, 0.9],[b, 0.05],

[c, 0.05]] @T+1 :—-in=a@T.
in~[[a,0.7],[c,0.3]]@T+1 :—1in=b@T.
in~[[a, 0.8],[c, 0.2]]@T+1 :—1in=c@T.

~
(6)
1

%% Time steps N = 20
?—1n=a@0, in=a@l, .., 1n=a@20.

Execution time (s)
3

%% Specificity, N=7 25~
?-1n=a@o0, in=a@l, in=12@2,..,in=18 @ 8.

%% Timepoint, N =20 07
?7- in=a@23. 0 20

(ProbLog code from ProblLog tutorial web page)

300 -

200 -

100 -

Problem size

Specificity

Timepoint
30-
20 -
10-
./. @ .\.
1 O i 1 1 1 1
8 0 5 10 15

~o— Fusemate —e— ProblLog
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Probability parameters learning
MLE, EM

Learning the structure of logic programs
Inductive Logic Programming (1970s)
Probabilistic Version [Riguzzi 2015]

Logic programs from tabular data
Probabilistic version of CART
Probabilistic decision lists [2017]
FOLD-RM [Gupta et al, ICLP 2023]
CON-FOLD [McGinness and B, ICLP 2024]
= FOLD-RM with confidence values

Very short explanations

Passengerld Survived Pclass Title Sex

Age SibSp Parch

o

-t

A WO N

1 False 3 Mr  male
2 True 1 Mrs female
3 True 3 Miss female
4 True 1 Mrs female
5 False 3 Mr  male

survived(X) :— not perished(X).
perished(X) :— not sex(X, female).
perished(X) :-
sex(X, female), pclass(X, 3),
fare(X, N), not N <= 23.25.

38 1
26 0
35 1

0

NaN

16
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Learning (Largely TBD in

Probability parameters learning
MLE, EM

Learning the structure of logic programs
Inductive Logic Programming (1970s)
Probabilistic Version [Riguzzi 2015]

Logic programs from tabular data
Probabilistic version of CART
Probabilistic decision lists [2017]
FOLD-RM [Gupta et al, ICLP 2023]
CON-FOLD [McGinness and B, ICLP 2024]
= FOLD-RM with confidence values

Very short explanations

Conditions for

Survival?

Passengerld | Survived Pclass Title Sex Age SibSp Parch

0 1 3 Mr  male 22 1 0
1 2 1 Mrs female 38 1 0
2 3 3 Miss female 26 0 0
3 4 1 Mrs female 35 1 0
4 5 3 Mr  male NaN 0 0

survived(X) :— not perished(X).
perished(X) :— not sex(X, female).
perished(X) :—
sex(X, female), pclass(X, 3),
fare(X, N), not N <= 23.25.

16
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Probabilistic decision lists [2017]
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Very short explanations
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Learning (Largely TBD in

Probability parameters learning
MLE, EM

Learning the structure of logic programs
Inductive Logic Programming (1970s)
Probabilistic Version [Riguzzi 2015]

Logic programs from tabular data
Probabilistic version of CART
Probabilistic decision lists [2017]
FOLD-RM [Gupta et al, ICLP 2023]
CON-FOLD [McGinness and B, ICLP 2024]
= FOLD-RM with confidence values

Very short explanations

Conditions for

Survival?

Passengerld | Survived Pclass Title Sex Age SibSp Parch

0 1 3 Mr  male 22 1 0
1 2 1 Mrs female 38 1 0
2 3 3 Miss female 26 0 0
3 4 1 Mrs female 35 1 0
4 5 3 Mr  male NaN 0 0

0.97 survived(X) :— not perished(X).
perished(X) :— not sex(X, female).
perished(X) :—

sex(X, female), pclass(X, 3),
fare(X, N), not N <= 23.25.

16
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Learning (Largely TBD in

Probability parameters learning
MLE, EM

Learning the structure of logic programs
Inductive Logic Programming (1970s)
Probabilistic Version [Riguzzi 2015]

Logic programs from tabular data
Probabilistic version of CART
Probabilistic decision lists [2017]
FOLD-RM [Gupta et al, ICLP 2023]
CON-FOLD [McGinness and B, ICLP 2024]
= FOLD-RM with confidence values

Very short explanations

Conditions for

Survival?

Passengerld | Survived

Pclass Title Sex Age SibSp Parch

0 1 3 Mr  male 22 1
1 2 1 Mrs female 38 1
2 3 3 Miss female 26 0
3 4 1 Mrs female 35 1
4 5 3 Mr  male NaN 0

-0-97 survived(X) :— not perished(X).
0.9  perished(X) :- not sex(X, female).
perished(X) :-
sex(X, female), pclass(X, 3),

—farebc N RetN—<=2325—

16
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Part 2

= LLMs + Logic (Programming)

= Neural Networks + Logic (Programming)
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Statistics/NN/LLM+ Logic Combinations

&é: MORGAN &CLAYPOOL PUBLISHERS

Sta rAl = Statistical Relational
Artificial Intelligence
. - Logic, Probability,
RelationalAl/Logic + and Computation

Luc De Raedt

Learning + Statistics (1980s) e

David Poole

SYNTHESIS LECTURES ON ARTIFICIAL
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Position: LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks

Subbarao Kambhampati' Karthik Valmeekam ' Lin Guan' Mudit Verma! Kaya Stechly !
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AlphaZero -> AlphaGeometry, AlphaProof

A simple problem AlphaGeometry ‘ Solution
A A
i % Language model i i
8 C Add a Not 8 D c
construct ....... -, | solved
Theorem premises: ) --=> « Construct D: midpoint BC

Let ABC be any triangle with AB=AC . . Solved | « AB=AC, BD=DC, AD=AD = £ABD= ZDCA
Prove that angle (£) ABC= £BCA Q Symbolic engine « £LABD= £DCA, B C D collinear =
L ‘ t ZABC=£ZBCA

Lachlan’s PhD - “AlphaPhysics”
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LLM + Logic: LLMs Are Logic Reasoners?

Task LLM with Reasoning

ProntoQa [Saparov and He, 2023]
Synthetic Data
Varying redundancy (distractors)

Varying length of reasoning chains

Prompt Engineering

In-prompt training one/view shot

Each composite number is not liquid. Every composite number is a fraction. Every com-
posite number s a number. Negative numbers are not large. Every fraction is large. Each
fraction 1s a real number. Fractions are integers. Integers are temperate. FEach number
18 slow. Fach even number is loud. Even numbers are natural numbers. Alex is an even
number. Alex i1s a composite number.

True or false: Alex is large.
Explainability?

LLM explanation can be nonsense
Correctness and Scalability?

Chain-of-thought “explain your reasoning” More complex logic, e.g. quantifiers

Instruct LLM to use strategies
(backward/forward/SOS - own work)

Self-critique

Planning task, see Subbarao Kambhampati
Reasoning at all?
Or lookup?
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LLM + Logic: Hierarchical Combination

Reliable Natural Language Understanding with Large Language
Models and Answer Set Programming [Rajasekharan et al, ICLP 2023]

Autocorrecting Translation Errors

Example 3.1: Automated Theorem Provers Help Improve

Question: Alan noticed that his toy car rolls{ further Jon a wood Large Language Model Reasoning
floor than on a thick carpet. This suggests that: [McGinness, B., LPAR 2024]

(worldl: wood floor, world2: thick carpet)
(A) The carpet has— (Solution) Each integer is not fruity.
(B) The floor has more resistance .

Negative numbers are brown.

Wren 1s an integer.

Approach

LLM (wrong):
(1) LLM w/ fine tuning translates problem into logic programming query

' [X] : (fruity(X) => integer(X)))
(2) Logic programming system answers query modulo background knowledge integer (wren)
I [X] : integer(X)
o : s— brown(negative)

golus (friction, heat). gminus (friction, speed).
gplus (speed, distance). qm1nu§ distance, ouness) . Auto-corrected:
positive (X, Y) :— gplus(X, Y). negative (X, Y) :— gminus (X, Y).
positive (X, Y) :— gplus(Y, X). negative (X, Y) :— gminus (Y, X).

| . | I [X] : (fruity(X) => ~ integer(X))
opposllte_w (worldl,world?2) . OppOS:!_te_V (higher, }ower) . integer(wren)
opp051te_w(wor%dZ,worldl) . opposite_v (lower,higher). % | [X] : integer(X) is an NonFixableError
conc (P, V, W) :— obs(P, Vr, Wr), property(P), : : - B

opposite_w (W, Wr), opposite_v(V,Vr). I [I] : (negative_number(I) => brown(I))

property (friction) . property (heat) . property (speed) .
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LLM + Logic: Hierarchical Combination

Translation errors?

Reliable Natural Language Understanding with Large Language
Models and Answer Set Programming [Rajasekharan et al, ICLP 2023]

Example 3.1:
Question: Alan noticed that his toy car rolls{ further Jon a wood

floor than on a thick carpet. This suggests that:

(worldl: wood floor, world2: thick carpet)
(A) The carpet has (Solution)

(B) The floor has more resistance

Approach LLMs as intelligent parsers

(1) LLM w/ fine tuning translates problem into logic programming query

(2) Logic programming system answers query modulo background knowledge

gplus (friction, heat).
gplus (speed, distance).

gminus (friction, speed).

gminus (distance, loudness) .
positive (X, Y) :— gplus(X, Y). negative (X, Y) :— gminus (X, Y).
positive (X, Y) :— gplus(Y, X). negative (X, Y) :— gminus (Y, X).

opposite_w (worldl,world2). opposite_v (higher, lower) .
opposite_w (world2,worldl). opposite_v (lower, higher) .
conc (P, V, W) :— obs(P, Vr, Wr), property(P),

opposite_w (W, Wr), opposite_v (V,Vr).

property (friction) . property (heat) . property (speed) .

Autocorrecting Translation Errors

Automated Theorem Provers Help Improve
Large Language Model Reasoning

[McGinness, B., LPAR 2024]

Each integer is not fruity.
Negative numbers are brown.
Wren 1s an integer.

LLM (wrong):

' [X] : (fruity(X) => integer(X)))
integer(wren)

I [X] : integer(X)

brown(negative)

Auto-corrected:

I [X] : (fruity(X) => ~ integer(X))
integer (wren)

% ! [X] : integer(X) is an NonFixableError
I [I] : (negative_number(I) => brown(I))
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Neural Networks + Symbolic Reasoning

DeepProblLog

Neural probabilistic logic programming in DeepProbLog
[Manhaeve et al, AlJ, 2021]

Inference

Query - does the following hold true?

addit ion(, , 8)

addition([El . B E.¢3) 0.8 ::
: digit(“,O); 0.6 ::

Use backward chaining with

NN classifier for probabilistic facts
Returns query probability
Learning

End-to-end differentiable

-> back propagation modulo background knowledge

Backward Chaining

?- addition(, B s

-~

addition(X,Y, Z)

:- digit (X,N1), digit(Y,N2), Z is N1+N2.
Hard
/ constraint

digit (&), 1) .
digit (“, 1) .

digit (J&,0); 0.1 ::

Here: learns digit image classifier from addition examples
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Query - does the following hold true?

addit ion(, , 8)

addition([El . B E.¢3) 0.8 ::
: digit(“,O); 0.6 ::

Use backward chaining with

NN classifier for probabilistic facts
Returns query probability
Learning

End-to-end differentiable

-> back propagation modulo background knowledge

Backward Chaining

?- addition(, B s

-~

addition(X,Y, Z)

:- digit (X,N1), digit(Y,N2), Z is N1+N2.
Hard
/ constraint

digit (&), 1) .
digit (“, 1) .

digit (J&,0); 0.1 ::

Here: learns digit image classifier from addition examples
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Neural Networks + Symbolic Reasoning

DeepProblLog Backward Chaining

f?_ ] '
Neural probabilistic logic programming in DeepProbLog ] addition (’ ’ 8)

[Manhaeve et al, AlJ, 2021] /

addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.
Inference
. Hard
Query - does the following hold true? ,
constraint
addition(, , 8)
a‘dd_ition([, ],_[, ], 63) 0.8 :: digit (f8,0); 0.1 :: digit (). 1) .

0.2 :: digit(“,O); 0.6 :: digit(“,l).

Use backward chaining with
NN classifier for probabilistic facts

Returns query probability
Learning

End-to-end differentiable Strong” coupling

?
-> back propagation modulo background knowledge Counterpart LLM modulo?

Here: learns digit image classifier from addition examples
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Neural Networks + Smbolic Reasoning

Many More Architectures

- Differentiable Theorem Proving [Rocktaschell]

parent0f(HOMER, BART).
grandfather0f(X,Y) :— father0£f(X,Z), parent0£f(Z, Y).
grandfather0f(ABE, Q)? {Q/LisA}, {Q/BART}

Reasoning in embedding space:

Example: unify VegrandfatherOf (X, vgarr) with VgrandpaOf(VABE> Viarr)

y = {X/VABE}7 T = min(e_||VgrandfatherOf_VgrandpaOf||27 e_||VBART_VBART||2)

- Semantic Probabilistic Layers for Neuro-Symbolic Learning [Ahmed et al NeurlPS, 2022]
Logic constraints at the output layer, e.g. exclusivity constraints for classification

- FFNSL: Feed-Forward Neural-Symbolic Learner [Cunnington, Law, Lobo, Russo 2023]

- Encodings of logic within NNs

- Logic Tensor Networks

- Neural Datalog over time
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Conclusions

Fusemate
- Probabilistic Logic Programming system
- Good
Expressivity, good Python interface, reasonably optimized for intended use case (HMM-ish)
- Needs work

Documentation, efficiency

LMM + Logic
- Current focus of research and D61 applications for “Explainability”
ML/LLM -> generate solution candidates

Probabilistic logic -> validate/complete solution candidates
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