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PLP can do much more!
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Semantic	Nets:	Example
Lets	have	a	look	at	ostriches

Notice	that	they	can’t	fly
This	contradicts	the	
information	inherited	from	
birds,	stating	that	they	can	fly.
When	processing	semantic	
nets,	the	convention	is	that	
information	of	the	node	
overrides	inherited	
information.
This	is	similar	to	Java’s	
inheritance	scheme	for	
procedures.
Image	source:	Quillian,	M.	R.	"Semantic	Memory."	In	Semantic	Information	Processing.	Edited	by	M.	Minsky.	
Cambridge,	MA:	MIT	Press,1968,	pp.	216-270.	

Semantic	Nets
A	popular	semantic	net	is	WordNet:	https://wordnet.princeton.edu/
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Probabilistic Logic Programs

7

Operational 
Top-Down Inference 
Bottom-Up Inference 
Exact inference/sampling 
Parameter Learning 
Structure Learning

7

0.8 :: cat(tom). 

0.5 :: drinks(X, milk) :- cat(X).
Probabilities

nr_siblings(X) ~ [[0, 0.05], [1, 0.10], … [5, 0.10]] 

:- cat(X).
Distributions 
(Fusemate)

cat(tom). 

drinks(X, milk) :- cat(X).
Facts 
Rules

Tom is a cat 
If X is a cat then X drinks milk

innocent(X) :- cat(X), not guilty(X). 

flies(X) :- bird(X), not abnormal(X).
Default Negation If X is a cat and X is not guilty 

then X is innocent 

thirsty(X) @ T+1 :-  

thirsty(X) @ T, 

not drink(X, _) @ T.

… @ Time 
(Fusemate)

If X is thirsty at time T and 
X does not drink at time T 
then X is thirsty at time T+1 

?- thirsty(tom) @ T |  

          thirsty(tom) @ 2, drink(tom, milk) @ 5.
Queries
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Drawing without replacement

Queries

sched(working_at(wb(1)), assemble�, "5.�m") @ �.

sched(deliver_to(wb(2)), assemble�, "�.7m") @ 1.

sched(move_to(wb(1)), assemble�, "�.5m") @ 2.

sched(move_to(break_area), break1, "1.�m") @ 3.

behaviour ~ [assemble, break ...]. %% Distribution

worker ~ [1,2,3,4,5]. %% Distribution

action = working_at(wb(W)) @ � :-

behaviour = assemble,

worker = W.

action = deliver_to(wb(W+1)) @ 1 :-

behaviour = assemble,

worker = W.

loc = L @ T :- action = working_at(L) @ T.

dur ~ [1..1�] @ T :- action = working_at(_) @ T.

assemble

break

urn([r(1), r(2), g(1)]) @ �. %% Initially two red and one green distinguishable balls

draw ~ Balls @ T :- urn(Balls) @ T, Balls \= []. %% Draw a ball uniformly if urn is not empty

urn(Balls -- [B]) @ T+1 :- urn(Balls) @ T, draw = B @ T. %% Drawing a ball removes it from urn

some(red) @ T :- draw=r(_) @ T. %% Abstract from ball id, color only

some(green) @ T :- draw=g(_) @ T.

?- some(green) @ �.

% �.333333

?- some(green) @ 1 | some(red) @ �.

% �.5 conditional query

?- some(C1) @ 1, some(C2) @ 2 | some(red) @ �. % Non-ground conditional query, two solutions:

% �.5 :: [C1 = red, C2 = green]

% �.5 :: [C1 = green, C2 = red]

1

sched(working_at(wb(1)), assemble�, "5.�m") @ �.

sched(deliver_to(wb(2)), assemble�, "�.7m") @ 1.

sched(move_to(wb(1)), assemble�, "�.5m") @ 2.

sched(move_to(break_area), break1, "1.�m") @ 3.
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worker ~ [1,2,3,4,5]. %% Distribution

action = working_at(wb(W)) @ � :-

behaviour = assemble,
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action = deliver_to(wb(W+1)) @ 1 :-
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worker = W.

loc = L @ T :- action = working_at(L) @ T.

dur ~ [1..1�] @ T :- action = working_at(_) @ T.

assemble

break

urn([r(1), r(2), g(1)]) @ �. %% Initially two red and one green distinguishable balls

draw ~ Balls @ T :- %% Draw a ball uniformly if urn is not empty

urn(Balls) @ T,

Balls \= [].

urn(Balls -- [B]) @ T+1 :- %% Drawing a ball removes it from urn

urn(Balls) @ T,

draw = B @ T.

some(red) @ T :- draw=r(_) @ T. %% Abstract from ball id, color only

some(green) @ T :- draw=g(_) @ T.

?- some(green) @ �.

% �.333333

?- some(green) @ 1 | some(red) @ �.

% �.5 conditional query

?- some(C1) @ 1, some(C2) @ 2 | some(red) @ �. % Non-ground conditional query, two solutions:

% �.5 :: [C1 = red, C2 = green]

% �.5 :: [C1 = green, C2 = red]

1
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Bayes Network
Algorithms

Probabilistic A*

Time 

Hidden  

Markov Models

??

Simulation  

by Sampling

NP-Complete Search Problems

Logical variables X  for domain objects  

Probabilistic Logic Programming (Fusemate)

Expressivity: full history (non-Markovian); random variables are first-class citizens



Fusemate Probabilistic Logic Programming System

10

Implementation in Python 
(From earlier versions in Scala) 
Two-way interface Python <-> Fusemate 
Python data structures available in Fusemate 
Logic program can be written as Python functions 

Efficient probablistic inference 
Default negation via well-founded model 
Rules cannot change past states 
Two-phase inference algorithm 

• Phase 1 “grounding” 
Removal of first-order variables  
-> Bayes-net like program (may contain cycles) 

• Pase 2 inference/sampling 
Top-down variable elimination with caching of results 

Peter Baumgartner and Elena Tartaglia. Bottom-Up Stratified Probabilistic Logic Programming with Fusemate. ICLP 2023

Strong Python integration
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• Phase 1 “grounding” 
Removal of first-order variables  
-> Bayes-net like program (may contain cycles) 

• Pase 2 inference/sampling 
Top-down variable elimination with caching of results 

Contribution:

“Inconsistency Pruning”

for better efficiency

Peter Baumgartner and Elena Tartaglia. Bottom-Up Stratified Probabilistic Logic Programming with Fusemate. ICLP 2023

Strong Python integration
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0.6

+ [3..30]

+ [0..5]

state ~ [[rainy, 0.6], [sunny, 0.4]] @ 0. 

state ~ [[rainy, 0.7], [sunny, 0.3]] @ T+1 :-  
state=rainy @ T. 

obs ~ [R+3..R+30] @ T :-  
state=rainy @ T, T > 0, obs=R @ T-1. 

?- obs=0 @ 0, obs=4 @ 1, obs=20 @ 2.

0.000119
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how the weather has been. For simplicity, this example assumes no evaporation, so the observations of
water in the bowl are non-decreasing. The logic program was described in Section 1.

We timed three kinds of filtering queries for estimating the current state based on past observations
trending around slightly rainy, sunny, and mixed, scenarios, respectively. In the slightly rainy scenario
each timepoint increased the amount of water observed by four, a value that can occur from either the
sunny or the rainy distributions. In the sunny scenario, each observation was of zero precipitation, so the
observations must have come from the sunny distribution. In the mixed weather scenario, a variety of
observations were included in this query, which meant there was a mixture of observations from both the
sunny and rainy distributions. For each scenario, the query complexity N was increased by increasing
the number of observations and the timepoint at which the final state is predicted. The results and sample
queries are described in Figure 2.

%% See Introduction for program

%% Queries for N=3
%% Sunny
?-state=X @ 3 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3.

%% Rainy
?-state=X @ 3 | obs=4 @ 1, obs=8 @ 2, obs=12 @ 3.

%% Mixed
state=X @ 3 | obs=0 @ 1, obs=4 @ 2, obs=24 @ 3.
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Figure 2: Timings for three kinds of queries to the hidden Markov model precipitation example: Fuse-
mate without query-guidance (green), Fusemate with query-guidance (red), and ProbLog (blue).

For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
the evidence of a slightly modifed “sunny” scenario by leaving out observations. For a query size N = 4,
for instance, we obtained the following runtime results (in seconds):

Inconsistency pruning
Query Off On
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3, obs=10 @ 4 7.5 7.5
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=10 @ 4 44.5 13.5
?- state=S @ 4 | obs=0 @ 1, obs=10 @ 4 >2000 30.0
?- state=S @ 4 | obs=10 @ 4 >2000 180.75

Rainy/sunny example from above
Smallest domain

Largest domain

Runtime Results Fusemate vs ProbLog
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For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
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In addition to overall solution times we were also interested in comparing groundings. For ProbLog we
observed unusual high grounding times, and for Fusemate with unguided grounding we observed large
but quickly computed groundings (which become unmanageable for inference quickly). For the mixed
weather problem, we observed:

Fusemate #ground rules ProbLog
N query-guided unguided total time grounding time #ground rules
2 2200 6500 9.0 8.3 53
3 2270 12900 30 19 276
4 2300 21400 119 33 499
5 2400 32000 50 682
6 2470 45000 65 839
7 2500 60000 95 1068

Grounding sizes between Fusemate and ProbLog are only roughly comparable. Fusemate outputs ground
normal rules, where ProbLog outputs ground rules with annotated disjunctions, where head probabilities
are left in place. The Fusemate total times are between 1 and 7 seconds and not listed in the table. For
ProbLog, grounding time is still well below solving time but well above Fusemate total times.

6 Conclusion

In this paper, we proposed a bottom-up grounding approach for an expressive probabilistic logic pro-
gramming language (expressive form of stratification, expressive default negation, dynamic distribu-
tions). We defined the semantics of the input languages as an extension of the standard Distribution
semantics via a standard fixpoint construction after grounding and transforming away default negation.
As the main contribution of this paper, we integrated and proved correct a novel technique for avoiding
ground instances that are irrelevant for proving a given query. Grounding, transforming away default
negation, and query-guided pruning are tightly integrated and carried out incrementally along the pro-
gram’s stratification order. They rest on a built-in semantics for equations as right-unique relations,
which is appropriate, e.g., for representing (finite) distributions.

We showed the effectiveness of query-guided pruning experimentally. The rationale is to tackle combi-
natorial explosion during grounding instead of attempting optimizations afterwards. Without guidance,
example problems tend to grow to unmanageable size quite quickly. Our system outperformed ProbLog
on hidden Markov model filtering problems with a high branching rate. (On other domains not reported
here we found that ProbLog often performs better than Fusemate.) We also showed that the performance
of our top-down variable elimination algorithm benefits from building-in inconsistency pruning. While
the result are somewhat limited in scope, we suggest that the research direction begun in this paper looks
promising for further exploration. We will consider optimized off-the-shelf backends for weighted infer-
ence as a possibly better alternative to our variable elimination algorithm in such cases. We also plan to
integrate a magic set transformation, which is complementary to our query-guided grounding.

We conjecture that query-guided grounding enables Fusemate to solve filtering queries in linear time.
This would be the same complexity as the dedicated forward-backward algorithm. The proof hinges on
an analysis of the solution caching mechanism in Fusemate’s variable elimination inference algorithm.

Acknowledgements. We thank the reviewers for their valuable comments.
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12 Bottom-Up Grounding in the Probabilistic Logic Programming System Fusemate

how the weather has been. For simplicity, this example assumes no evaporation, so the observations of
water in the bowl are non-decreasing. The logic program was described in Section 1.

We timed three kinds of filtering queries for estimating the current state based on past observations
trending around slightly rainy, sunny, and mixed, scenarios, respectively. In the slightly rainy scenario
each timepoint increased the amount of water observed by four, a value that can occur from either the
sunny or the rainy distributions. In the sunny scenario, each observation was of zero precipitation, so the
observations must have come from the sunny distribution. In the mixed weather scenario, a variety of
observations were included in this query, which meant there was a mixture of observations from both the
sunny and rainy distributions. For each scenario, the query complexity N was increased by increasing
the number of observations and the timepoint at which the final state is predicted. The results and sample
queries are described in Figure 2.

%% See Introduction for program

%% Queries for N=3
%% Sunny
?-state=X @ 3 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3.

%% Rainy
?-state=X @ 3 | obs=4 @ 1, obs=8 @ 2, obs=12 @ 3.

%% Mixed
state=X @ 3 | obs=0 @ 1, obs=4 @ 2, obs=24 @ 3.
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Figure 2: Timings for three kinds of queries to the hidden Markov model precipitation example: Fuse-
mate without query-guidance (green), Fusemate with query-guidance (red), and ProbLog (blue).

For all problems, Fusemate with unguided grounding was the slowest, but Fusemate with query-guided
grounding consistently outperformed ProbLog. What sets this example apart from the Markov Chain
example is its high branching rate (30 support values in a rain state, vs. two or three Markov Chain) , and
the implicit dependence of each state on its history via the accumulated rainfall up to that state.

Inconsistency pruning did not play a role in Fusemate’s good performance in the problem above. We
tested this by disabling the test on line 7 in the VE procedure. With less constraining queries, however,
inconsistency pruning can lead to drastic performance improvements. We experimented with relaxing
the evidence of a slightly modifed “sunny” scenario by leaving out observations. For a query size N = 4,
for instance, we obtained the following runtime results (in seconds):

Inconsistency pruning
Query Off On
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=0 @ 3, obs=10 @ 4 7.5 7.5
?- state=S @ 4 | obs=0 @ 1, obs=0 @ 2, obs=10 @ 4 44.5 13.5
?- state=S @ 4 | obs=0 @ 1, obs=10 @ 4 >2000 30.0
?- state=S @ 4 | obs=10 @ 4 >2000 180.75

Rainy/sunny example from above
Smallest domain

Largest domain
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In addition to overall solution times we were also interested in comparing groundings. For ProbLog we
observed unusual high grounding times, and for Fusemate with unguided grounding we observed large
but quickly computed groundings (which become unmanageable for inference quickly). For the mixed
weather problem, we observed:

Fusemate #ground rules ProbLog
N query-guided unguided total time grounding time #ground rules
2 2200 6500 9.0 8.3 53
3 2270 12900 30 19 276
4 2300 21400 119 33 499
5 2400 32000 50 682
6 2470 45000 65 839
7 2500 60000 95 1068

Grounding sizes between Fusemate and ProbLog are only roughly comparable. Fusemate outputs ground
normal rules, where ProbLog outputs ground rules with annotated disjunctions, where head probabilities
are left in place. The Fusemate total times are between 1 and 7 seconds and not listed in the table. For
ProbLog, grounding time is still well below solving time but well above Fusemate total times.

6 Conclusion

In this paper, we proposed a bottom-up grounding approach for an expressive probabilistic logic pro-
gramming language (expressive form of stratification, expressive default negation, dynamic distribu-
tions). We defined the semantics of the input languages as an extension of the standard Distribution
semantics via a standard fixpoint construction after grounding and transforming away default negation.
As the main contribution of this paper, we integrated and proved correct a novel technique for avoiding
ground instances that are irrelevant for proving a given query. Grounding, transforming away default
negation, and query-guided pruning are tightly integrated and carried out incrementally along the pro-
gram’s stratification order. They rest on a built-in semantics for equations as right-unique relations,
which is appropriate, e.g., for representing (finite) distributions.

We showed the effectiveness of query-guided pruning experimentally. The rationale is to tackle combi-
natorial explosion during grounding instead of attempting optimizations afterwards. Without guidance,
example problems tend to grow to unmanageable size quite quickly. Our system outperformed ProbLog
on hidden Markov model filtering problems with a high branching rate. (On other domains not reported
here we found that ProbLog often performs better than Fusemate.) We also showed that the performance
of our top-down variable elimination algorithm benefits from building-in inconsistency pruning. While
the result are somewhat limited in scope, we suggest that the research direction begun in this paper looks
promising for further exploration. We will consider optimized off-the-shelf backends for weighted infer-
ence as a possibly better alternative to our variable elimination algorithm in such cases. We also plan to
integrate a magic set transformation, which is complementary to our query-guided grounding.

We conjecture that query-guided grounding enables Fusemate to solve filtering queries in linear time.
This would be the same complexity as the dedicated forward-backward algorithm. The proof hinges on
an analysis of the solution caching mechanism in Fusemate’s variable elimination inference algorithm.

Acknowledgements. We thank the reviewers for their valuable comments.
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we compared timings in Fusemate and ProbLog by running several sets of queries for increasing com-
plexity in the query. We only summarize our findings here. More details on the ProbLog and Fusemate
encodings are in the Appendix.

Markov model. This problem is from the ProbLog tutorial Markov chain example. 6 The code models
the movement in time between three locations a, b and c, where the probability of moving to the next
location depends only on the current location. We timed three kinds of queries which we refer to as
timesteps, specificity and timepoint. The timesteps query asks for the probability of being at position a
during a whole period of N = 0, . . . ,80 timesteps. The specificity query asks for the probability of being
in a certain location across nine timesteps, where complexity N is increased by decreasing the specificity
of those locations. We do that by replacing fixed location a with a variable, so the program has to repeat
the calculation for all possible locations, increasing the branching. The timepoint query asks for the
probability of being at location a at a final time point N. The logic program, sample queries and runtime
performance are in Figure 1.

%% Markov Model
in ~ [a, b, c] @ 0.
in ~ [[a, 0.9],[b, 0.05],

[c, 0.05]] @ T+1 :- in=a @ T.
in ~ [[a, 0.7],[c, 0.3]] @ T+1 :- in=b @ T.
in ~ [[a, 0.8],[c, 0.2]] @ T+1 :- in=c @ T.

%% Time steps N = 20
?- in=a@0, in=a@1,.., in=a@20.

%% Specificity, N = 7
?- in=a@0, in=a@1, in=L2@2,..,in=L8 @ 8.

%% Timepoint, N = 20
?- in=a@23.
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Figure 1: Timings for three kinds of queries to the Markov chain in Fusemate (red) and ProbLog (blue).

Results in Figure 1 indicate that Fusemate performs better than ProbLog for increasing problem com-
plexity. The Fusemate times are measured with query-guided grounding on. However, Fusemate can
also solve the problems without it. Runtimes and number of ground rules generated raise by a factor
of 2-3 without guidance. It seems that Fusemate’s variable elimination procedure is better suited to this
example than the ProbLog inference engine. Inconsistency pruning (line 7 in VE) did not have an impact
on these problems.

Hidden Markov model. This example is based on the example from the Wikipedia page for hidden
Markov models7. It models the situation where a prediction of the weather (sunny/rainy) is determined
by observations of how much water due to precipitation has been collected in a bowl that is placed
outside. The idea is that more water will be collected when it rains more, which is the measurement of

6https://dtai.cs.kuleuven.be/problog/tutorial/various/08_bayesian_dataflow.html
7https://en.wikipedia.org/wiki/Hidden_Markov_model

(ProbLog code from ProbLog tutorial web page)

Runtime Results Fusemate vs ProbLog
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From Statistical Relational to Neural Symbolic
Artificial Intelligence: a Survey.

Giuseppe Marraa, Sebastijan Dumančićc, Robin Manhaevea, Luc De Raedta,b

aKU Leuven, Department of Computer Science and Leuven.AI
bÖrebro University, Center for Applied Autonomous Sensor Systems
cDelft University of Technology, Department of Software Technology

Abstract

Neural-symbolic and statistical relational artificial intelligence both integrate
frameworks for learning with logical reasoning. This survey identifies several
parallels across seven different dimensions between these two fields. These cannot
only be used to characterize and position neural-symbolic artificial intelligence
approaches but also to identify a number of directions for further research.

1. Introduction

The integration of learning and reasoning is one of the key challenges in
artificial intelligence and machine learning today, and various communities have
been addressing it. That is especially true for the field of neural-symbolic
computation (NeSy) [11, 23], where the goal is to integrate symbolic reasoning
and neural networks. NeSy already has a long tradition, and it has recently
attracted a lot of attention from various communities (cf. the keynotes of Y.
Bengio and H. Kautz on this topic at AAAI 2020, the AI Debate [10] between
Y. Bengio and G. Marcus ).

Another domain that has a rich tradition in integrating learning and reason-
ing is that of statistical relational learning and artificial intelligence (StarAI)
[41, 89]. But rather than focusing on integrating logic and neural networks, it
is centred around the question of integrating logic with probabilistic reasoning,
more specifically probabilistic graphical models. Despite the common interest in
combining symbolic reasoning with a basic paradigm for learning, i.e., proba-
bilistic graphical models or neural networks, it is surprising that there are not
more interactions between these two fields.

This discrepancy is the key motivation behind this survey: it aims at pointing
out the similarities between these two endeavours and in this way it wants to
stimulate cross-fertilization. In doing so, we start from the literature on StarAI,

Email addresses: giuseppe.marra@kuleuven.be (Giuseppe Marra), s.dumancic@tudelft.nl
(Sebastijan Dumančić), robin.manhaeve@kuleuven.be (Robin Manhaeve),
luc.deraedt@kuleuven.be (Luc De Raedt)

Preprint submitted to Elsevier March 24, 2022
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Position: LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks

Subbarao Kambhampati 1 Karthik Valmeekam 1 Lin Guan 1 Mudit Verma 1 Kaya Stechly 1

Siddhant Bhambri 1 Lucas Saldyt 1 Anil Murthy 1

Abstract
We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
to play in planning/reasoning tasks beyond sim-
ple front-end/back-end format translators. We
present a vision of LLM-Modulo Frameworks
that combines the strengths of LLMs with external
model-based verifiers in a tighter bi-directional
interaction regime. We will show how the models
driving the external verifiers themselves can be ac-
quired with the help of LLMs. We will also argue
that rather than simply pipelining LLMs and sym-
bolic components, this LLM-Modulo Framework
provides a better neuro-symbolic approach that
offers tighter integration between LLMs and sym-
bolic components, extending the scope of model-
based planning/reasoning regimes towards more
flexible knowledge, problem and preference spec-
ifications.

1. Introduction
Large Language Models (LLMs), essentially n-gram models
on steroids which have been pre-trained on web-scale lan-
guage corpora (or, effectively, our collective consciousness),
have caught the imagination of the AI research community
with linguistic capabilities that no one expected text com-
pletion systems to possess. Their seeming versatility has
led many researchers to wonder whether they can also do
well on planning and reasoning tasks typically associated

1School of Computing and AI, Arizona State University,
Tempe, AZ, USA. Correspondence to: Subbarao Kambhampati
<rao@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with System 2 competency. On the face of it, this doesn’t
seem to ring true, as both by training and operation, LLMs
are best seen as a giant pseudo System 1 (Kahneman, 2011)
(see Figure 1). Even from a pure engineering perspective,
a system that takes constant time to produce the next token
cannot possibly be doing principled reasoning on its own.1
Not surprisingly, initial excitement based on anecdotal per-
formance of LLMs on reasoning tasks (Bubeck et al., 2023)
has been dissipated to some extent by the recent spate of
studies, including our own, questioning the robustness of
such behaviors–be they planning (Valmeekam et al., 2023c;
Kambhampati, 2024), simple arithmetic and logic (Dziri
et al., 2023), theory of mind (Ullman, 2023; Verma et al.,
2024b), or general mathematical and abstract benchmarks
(McCoy et al., 2023; Gendron et al., 2023). Despite this, a
steady stream of claims continue to be made in the litera-
ture about the planning and reasoning capabilities of LLMs.
In light of questions about their planning capabilities, the
head-long rush into agentic LLMs should be particularly
concerning. After all, acting without the ability to plan is
surely a recipe for unpleasant consequences!

In an ironic juxtaposition to this unwarranted optimism
about the planning and reasoning abilities of LLMs, there
is also unwarranted pessimism about the roles LLMs can
play in planning/reasoning tasks. Several efforts (e.g. (Liu
et al., 2023; Pan et al., 2023; Xie et al., 2023)) advocate
using LLMs only as glorified translators–converting rea-
soning problems embedded in textual format to symbolic
representations, and pawning them off to external classical
symbolic solvers (with all their attendant expressivity and
search complexity challenges (Doyle & Patil, 1991)).2

In truth, LLMs can be a whole lot more than machine trans-
1Think of asking an LLM an yes/no question–is this theorem

logically entailed by this first-order logic knowledge-base. This
is well-known to be a semi-decidable problem. Ask yourself if
the LLM will take longer in answering the question. (If you are
thinking Chain-of-thought prompts or training with step-by-step
data, consider that you are essentially changing the nature of the
original prompt/training).

2In some circles, this unidirectional pipeline has been given the
undeserved badge of neuro-symbolic architecture.
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Abstract

The study and understanding of human behaviour is relevant to computer science,
artificial intelligence, neural computation, cognitive science, philosophy, psychology, and
several other areas. Presupposing cognition as basis of behaviour, among the most promi-
nent tools in the modelling of behaviour are computational-logic systems, connectionist
models of cognition, and models of uncertainty. Recent studies in cognitive science, artifi-
cial intelligence, and psychology have produced a number of cognitive models of reasoning,
learning, and language that are underpinned by computation. In addition, e↵orts in com-
puter science research have led to the development of cognitive computational systems
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Abstract

This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially complex
task into simpler subtasks while the latter consists in calling external modules such as a
code interpreter. LMs can leverage these augmentations separately or in combination via
heuristics, or learn to do so from demonstrations. While adhering to a standard missing
tokens prediction objective, such augmented LMs can use various, possibly non-parametric
external modules to expand their context processing ability, thus departing from the pure
language modeling paradigm. We therefore refer to them as Augmented Language Models
(ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even
act, while still performing standard natural language tasks and even outperforming most
regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs,
we conclude that this new research direction has the potential to address common limitations
of traditional LMs such as interpretability, consistency, and scalability issues.

1 Introduction: motivation for the survey and definitions

1.1 Motivation and Definitions

Large Language Models (LLMs) (Devlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022) have fueled
dramatic progress in Natural Language Processing (NLP) and are already core in several products with
millions of users, such as the coding assistant Copilot (Chen et al., 2021), Google search engine1 or more
recently ChatGPT2. Memorization (Tirumala et al., 2022) combined with compositionality (Zhou et al., 2022)
capabilities made LLMs able to execute various tasks such as language understanding or conditional and

1
See e.g. https://blog.google/products/search/search-language-understanding-bert/

2https://openai.com/blog/chatgpt/
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Abstract

Neural-symbolic and statistical relational artificial intelligence both integrate
frameworks for learning with logical reasoning. This survey identifies several
parallels across seven different dimensions between these two fields. These cannot
only be used to characterize and position neural-symbolic artificial intelligence
approaches but also to identify a number of directions for further research.

1. Introduction

The integration of learning and reasoning is one of the key challenges in
artificial intelligence and machine learning today, and various communities have
been addressing it. That is especially true for the field of neural-symbolic
computation (NeSy) [11, 23], where the goal is to integrate symbolic reasoning
and neural networks. NeSy already has a long tradition, and it has recently
attracted a lot of attention from various communities (cf. the keynotes of Y.
Bengio and H. Kautz on this topic at AAAI 2020, the AI Debate [10] between
Y. Bengio and G. Marcus ).

Another domain that has a rich tradition in integrating learning and reason-
ing is that of statistical relational learning and artificial intelligence (StarAI)
[41, 89]. But rather than focusing on integrating logic and neural networks, it
is centred around the question of integrating logic with probabilistic reasoning,
more specifically probabilistic graphical models. Despite the common interest in
combining symbolic reasoning with a basic paradigm for learning, i.e., proba-
bilistic graphical models or neural networks, it is surprising that there are not
more interactions between these two fields.

This discrepancy is the key motivation behind this survey: it aims at pointing
out the similarities between these two endeavours and in this way it wants to
stimulate cross-fertilization. In doing so, we start from the literature on StarAI,

Email addresses: giuseppe.marra@kuleuven.be (Giuseppe Marra), s.dumancic@tudelft.nl
(Sebastijan Dumančić), robin.manhaeve@kuleuven.be (Robin Manhaeve),
luc.deraedt@kuleuven.be (Luc De Raedt)
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Abstract
We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
to play in planning/reasoning tasks beyond sim-
ple front-end/back-end format translators. We
present a vision of LLM-Modulo Frameworks
that combines the strengths of LLMs with external
model-based verifiers in a tighter bi-directional
interaction regime. We will show how the models
driving the external verifiers themselves can be ac-
quired with the help of LLMs. We will also argue
that rather than simply pipelining LLMs and sym-
bolic components, this LLM-Modulo Framework
provides a better neuro-symbolic approach that
offers tighter integration between LLMs and sym-
bolic components, extending the scope of model-
based planning/reasoning regimes towards more
flexible knowledge, problem and preference spec-
ifications.

1. Introduction
Large Language Models (LLMs), essentially n-gram models
on steroids which have been pre-trained on web-scale lan-
guage corpora (or, effectively, our collective consciousness),
have caught the imagination of the AI research community
with linguistic capabilities that no one expected text com-
pletion systems to possess. Their seeming versatility has
led many researchers to wonder whether they can also do
well on planning and reasoning tasks typically associated

1School of Computing and AI, Arizona State University,
Tempe, AZ, USA. Correspondence to: Subbarao Kambhampati
<rao@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with System 2 competency. On the face of it, this doesn’t
seem to ring true, as both by training and operation, LLMs
are best seen as a giant pseudo System 1 (Kahneman, 2011)
(see Figure 1). Even from a pure engineering perspective,
a system that takes constant time to produce the next token
cannot possibly be doing principled reasoning on its own.1
Not surprisingly, initial excitement based on anecdotal per-
formance of LLMs on reasoning tasks (Bubeck et al., 2023)
has been dissipated to some extent by the recent spate of
studies, including our own, questioning the robustness of
such behaviors–be they planning (Valmeekam et al., 2023c;
Kambhampati, 2024), simple arithmetic and logic (Dziri
et al., 2023), theory of mind (Ullman, 2023; Verma et al.,
2024b), or general mathematical and abstract benchmarks
(McCoy et al., 2023; Gendron et al., 2023). Despite this, a
steady stream of claims continue to be made in the litera-
ture about the planning and reasoning capabilities of LLMs.
In light of questions about their planning capabilities, the
head-long rush into agentic LLMs should be particularly
concerning. After all, acting without the ability to plan is
surely a recipe for unpleasant consequences!

In an ironic juxtaposition to this unwarranted optimism
about the planning and reasoning abilities of LLMs, there
is also unwarranted pessimism about the roles LLMs can
play in planning/reasoning tasks. Several efforts (e.g. (Liu
et al., 2023; Pan et al., 2023; Xie et al., 2023)) advocate
using LLMs only as glorified translators–converting rea-
soning problems embedded in textual format to symbolic
representations, and pawning them off to external classical
symbolic solvers (with all their attendant expressivity and
search complexity challenges (Doyle & Patil, 1991)).2

In truth, LLMs can be a whole lot more than machine trans-
1Think of asking an LLM an yes/no question–is this theorem

logically entailed by this first-order logic knowledge-base. This
is well-known to be a semi-decidable problem. Ask yourself if
the LLM will take longer in answering the question. (If you are
thinking Chain-of-thought prompts or training with step-by-step
data, consider that you are essentially changing the nature of the
original prompt/training).

2In some circles, this unidirectional pipeline has been given the
undeserved badge of neuro-symbolic architecture.
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Abstract

The study and understanding of human behaviour is relevant to computer science,
artificial intelligence, neural computation, cognitive science, philosophy, psychology, and
several other areas. Presupposing cognition as basis of behaviour, among the most promi-
nent tools in the modelling of behaviour are computational-logic systems, connectionist
models of cognition, and models of uncertainty. Recent studies in cognitive science, artifi-
cial intelligence, and psychology have produced a number of cognitive models of reasoning,
learning, and language that are underpinned by computation. In addition, e↵orts in com-
puter science research have led to the development of cognitive computational systems
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Abstract

This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially complex
task into simpler subtasks while the latter consists in calling external modules such as a
code interpreter. LMs can leverage these augmentations separately or in combination via
heuristics, or learn to do so from demonstrations. While adhering to a standard missing
tokens prediction objective, such augmented LMs can use various, possibly non-parametric
external modules to expand their context processing ability, thus departing from the pure
language modeling paradigm. We therefore refer to them as Augmented Language Models
(ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even
act, while still performing standard natural language tasks and even outperforming most
regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs,
we conclude that this new research direction has the potential to address common limitations
of traditional LMs such as interpretability, consistency, and scalability issues.

1 Introduction: motivation for the survey and definitions

1.1 Motivation and Definitions

Large Language Models (LLMs) (Devlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022) have fueled
dramatic progress in Natural Language Processing (NLP) and are already core in several products with
millions of users, such as the coding assistant Copilot (Chen et al., 2021), Google search engine1 or more
recently ChatGPT2. Memorization (Tirumala et al., 2022) combined with compositionality (Zhou et al., 2022)
capabilities made LLMs able to execute various tasks such as language understanding or conditional and

1
See e.g. https://blog.google/products/search/search-language-understanding-bert/

2https://openai.com/blog/chatgpt/
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Abstract

Neural-symbolic and statistical relational artificial intelligence both integrate
frameworks for learning with logical reasoning. This survey identifies several
parallels across seven different dimensions between these two fields. These cannot
only be used to characterize and position neural-symbolic artificial intelligence
approaches but also to identify a number of directions for further research.

1. Introduction

The integration of learning and reasoning is one of the key challenges in
artificial intelligence and machine learning today, and various communities have
been addressing it. That is especially true for the field of neural-symbolic
computation (NeSy) [11, 23], where the goal is to integrate symbolic reasoning
and neural networks. NeSy already has a long tradition, and it has recently
attracted a lot of attention from various communities (cf. the keynotes of Y.
Bengio and H. Kautz on this topic at AAAI 2020, the AI Debate [10] between
Y. Bengio and G. Marcus ).

Another domain that has a rich tradition in integrating learning and reason-
ing is that of statistical relational learning and artificial intelligence (StarAI)
[41, 89]. But rather than focusing on integrating logic and neural networks, it
is centred around the question of integrating logic with probabilistic reasoning,
more specifically probabilistic graphical models. Despite the common interest in
combining symbolic reasoning with a basic paradigm for learning, i.e., proba-
bilistic graphical models or neural networks, it is surprising that there are not
more interactions between these two fields.

This discrepancy is the key motivation behind this survey: it aims at pointing
out the similarities between these two endeavours and in this way it wants to
stimulate cross-fertilization. In doing so, we start from the literature on StarAI,
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Abstract
We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
to play in planning/reasoning tasks beyond sim-
ple front-end/back-end format translators. We
present a vision of LLM-Modulo Frameworks
that combines the strengths of LLMs with external
model-based verifiers in a tighter bi-directional
interaction regime. We will show how the models
driving the external verifiers themselves can be ac-
quired with the help of LLMs. We will also argue
that rather than simply pipelining LLMs and sym-
bolic components, this LLM-Modulo Framework
provides a better neuro-symbolic approach that
offers tighter integration between LLMs and sym-
bolic components, extending the scope of model-
based planning/reasoning regimes towards more
flexible knowledge, problem and preference spec-
ifications.

1. Introduction
Large Language Models (LLMs), essentially n-gram models
on steroids which have been pre-trained on web-scale lan-
guage corpora (or, effectively, our collective consciousness),
have caught the imagination of the AI research community
with linguistic capabilities that no one expected text com-
pletion systems to possess. Their seeming versatility has
led many researchers to wonder whether they can also do
well on planning and reasoning tasks typically associated

1School of Computing and AI, Arizona State University,
Tempe, AZ, USA. Correspondence to: Subbarao Kambhampati
<rao@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with System 2 competency. On the face of it, this doesn’t
seem to ring true, as both by training and operation, LLMs
are best seen as a giant pseudo System 1 (Kahneman, 2011)
(see Figure 1). Even from a pure engineering perspective,
a system that takes constant time to produce the next token
cannot possibly be doing principled reasoning on its own.1
Not surprisingly, initial excitement based on anecdotal per-
formance of LLMs on reasoning tasks (Bubeck et al., 2023)
has been dissipated to some extent by the recent spate of
studies, including our own, questioning the robustness of
such behaviors–be they planning (Valmeekam et al., 2023c;
Kambhampati, 2024), simple arithmetic and logic (Dziri
et al., 2023), theory of mind (Ullman, 2023; Verma et al.,
2024b), or general mathematical and abstract benchmarks
(McCoy et al., 2023; Gendron et al., 2023). Despite this, a
steady stream of claims continue to be made in the litera-
ture about the planning and reasoning capabilities of LLMs.
In light of questions about their planning capabilities, the
head-long rush into agentic LLMs should be particularly
concerning. After all, acting without the ability to plan is
surely a recipe for unpleasant consequences!

In an ironic juxtaposition to this unwarranted optimism
about the planning and reasoning abilities of LLMs, there
is also unwarranted pessimism about the roles LLMs can
play in planning/reasoning tasks. Several efforts (e.g. (Liu
et al., 2023; Pan et al., 2023; Xie et al., 2023)) advocate
using LLMs only as glorified translators–converting rea-
soning problems embedded in textual format to symbolic
representations, and pawning them off to external classical
symbolic solvers (with all their attendant expressivity and
search complexity challenges (Doyle & Patil, 1991)).2

In truth, LLMs can be a whole lot more than machine trans-
1Think of asking an LLM an yes/no question–is this theorem

logically entailed by this first-order logic knowledge-base. This
is well-known to be a semi-decidable problem. Ask yourself if
the LLM will take longer in answering the question. (If you are
thinking Chain-of-thought prompts or training with step-by-step
data, consider that you are essentially changing the nature of the
original prompt/training).

2In some circles, this unidirectional pipeline has been given the
undeserved badge of neuro-symbolic architecture.
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Abstract

The study and understanding of human behaviour is relevant to computer science,
artificial intelligence, neural computation, cognitive science, philosophy, psychology, and
several other areas. Presupposing cognition as basis of behaviour, among the most promi-
nent tools in the modelling of behaviour are computational-logic systems, connectionist
models of cognition, and models of uncertainty. Recent studies in cognitive science, artifi-
cial intelligence, and psychology have produced a number of cognitive models of reasoning,
learning, and language that are underpinned by computation. In addition, e↵orts in com-
puter science research have led to the development of cognitive computational systems
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Abstract

This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially complex
task into simpler subtasks while the latter consists in calling external modules such as a
code interpreter. LMs can leverage these augmentations separately or in combination via
heuristics, or learn to do so from demonstrations. While adhering to a standard missing
tokens prediction objective, such augmented LMs can use various, possibly non-parametric
external modules to expand their context processing ability, thus departing from the pure
language modeling paradigm. We therefore refer to them as Augmented Language Models
(ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even
act, while still performing standard natural language tasks and even outperforming most
regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs,
we conclude that this new research direction has the potential to address common limitations
of traditional LMs such as interpretability, consistency, and scalability issues.

1 Introduction: motivation for the survey and definitions

1.1 Motivation and Definitions

Large Language Models (LLMs) (Devlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022) have fueled
dramatic progress in Natural Language Processing (NLP) and are already core in several products with
millions of users, such as the coding assistant Copilot (Chen et al., 2021), Google search engine1 or more
recently ChatGPT2. Memorization (Tirumala et al., 2022) combined with compositionality (Zhou et al., 2022)
capabilities made LLMs able to execute various tasks such as language understanding or conditional and

1
See e.g. https://blog.google/products/search/search-language-understanding-bert/

2https://openai.com/blog/chatgpt/

1

et al

NeSy + StarAI ? 



Statistics/NN/LLM+ Logic Combinations

18

From Statistical Relational to Neural Symbolic
Artificial Intelligence: a Survey.

Giuseppe Marraa, Sebastijan Dumančićc, Robin Manhaevea, Luc De Raedta,b

aKU Leuven, Department of Computer Science and Leuven.AI
bÖrebro University, Center for Applied Autonomous Sensor Systems
cDelft University of Technology, Department of Software Technology

Abstract

Neural-symbolic and statistical relational artificial intelligence both integrate
frameworks for learning with logical reasoning. This survey identifies several
parallels across seven different dimensions between these two fields. These cannot
only be used to characterize and position neural-symbolic artificial intelligence
approaches but also to identify a number of directions for further research.

1. Introduction

The integration of learning and reasoning is one of the key challenges in
artificial intelligence and machine learning today, and various communities have
been addressing it. That is especially true for the field of neural-symbolic
computation (NeSy) [11, 23], where the goal is to integrate symbolic reasoning
and neural networks. NeSy already has a long tradition, and it has recently
attracted a lot of attention from various communities (cf. the keynotes of Y.
Bengio and H. Kautz on this topic at AAAI 2020, the AI Debate [10] between
Y. Bengio and G. Marcus ).

Another domain that has a rich tradition in integrating learning and reason-
ing is that of statistical relational learning and artificial intelligence (StarAI)
[41, 89]. But rather than focusing on integrating logic and neural networks, it
is centred around the question of integrating logic with probabilistic reasoning,
more specifically probabilistic graphical models. Despite the common interest in
combining symbolic reasoning with a basic paradigm for learning, i.e., proba-
bilistic graphical models or neural networks, it is surprising that there are not
more interactions between these two fields.

This discrepancy is the key motivation behind this survey: it aims at pointing
out the similarities between these two endeavours and in this way it wants to
stimulate cross-fertilization. In doing so, we start from the literature on StarAI,
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Abstract
We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
to play in planning/reasoning tasks beyond sim-
ple front-end/back-end format translators. We
present a vision of LLM-Modulo Frameworks
that combines the strengths of LLMs with external
model-based verifiers in a tighter bi-directional
interaction regime. We will show how the models
driving the external verifiers themselves can be ac-
quired with the help of LLMs. We will also argue
that rather than simply pipelining LLMs and sym-
bolic components, this LLM-Modulo Framework
provides a better neuro-symbolic approach that
offers tighter integration between LLMs and sym-
bolic components, extending the scope of model-
based planning/reasoning regimes towards more
flexible knowledge, problem and preference spec-
ifications.

1. Introduction
Large Language Models (LLMs), essentially n-gram models
on steroids which have been pre-trained on web-scale lan-
guage corpora (or, effectively, our collective consciousness),
have caught the imagination of the AI research community
with linguistic capabilities that no one expected text com-
pletion systems to possess. Their seeming versatility has
led many researchers to wonder whether they can also do
well on planning and reasoning tasks typically associated

1School of Computing and AI, Arizona State University,
Tempe, AZ, USA. Correspondence to: Subbarao Kambhampati
<rao@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with System 2 competency. On the face of it, this doesn’t
seem to ring true, as both by training and operation, LLMs
are best seen as a giant pseudo System 1 (Kahneman, 2011)
(see Figure 1). Even from a pure engineering perspective,
a system that takes constant time to produce the next token
cannot possibly be doing principled reasoning on its own.1
Not surprisingly, initial excitement based on anecdotal per-
formance of LLMs on reasoning tasks (Bubeck et al., 2023)
has been dissipated to some extent by the recent spate of
studies, including our own, questioning the robustness of
such behaviors–be they planning (Valmeekam et al., 2023c;
Kambhampati, 2024), simple arithmetic and logic (Dziri
et al., 2023), theory of mind (Ullman, 2023; Verma et al.,
2024b), or general mathematical and abstract benchmarks
(McCoy et al., 2023; Gendron et al., 2023). Despite this, a
steady stream of claims continue to be made in the litera-
ture about the planning and reasoning capabilities of LLMs.
In light of questions about their planning capabilities, the
head-long rush into agentic LLMs should be particularly
concerning. After all, acting without the ability to plan is
surely a recipe for unpleasant consequences!

In an ironic juxtaposition to this unwarranted optimism
about the planning and reasoning abilities of LLMs, there
is also unwarranted pessimism about the roles LLMs can
play in planning/reasoning tasks. Several efforts (e.g. (Liu
et al., 2023; Pan et al., 2023; Xie et al., 2023)) advocate
using LLMs only as glorified translators–converting rea-
soning problems embedded in textual format to symbolic
representations, and pawning them off to external classical
symbolic solvers (with all their attendant expressivity and
search complexity challenges (Doyle & Patil, 1991)).2

In truth, LLMs can be a whole lot more than machine trans-
1Think of asking an LLM an yes/no question–is this theorem

logically entailed by this first-order logic knowledge-base. This
is well-known to be a semi-decidable problem. Ask yourself if
the LLM will take longer in answering the question. (If you are
thinking Chain-of-thought prompts or training with step-by-step
data, consider that you are essentially changing the nature of the
original prompt/training).

2In some circles, this unidirectional pipeline has been given the
undeserved badge of neuro-symbolic architecture.
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Abstract

The study and understanding of human behaviour is relevant to computer science,
artificial intelligence, neural computation, cognitive science, philosophy, psychology, and
several other areas. Presupposing cognition as basis of behaviour, among the most promi-
nent tools in the modelling of behaviour are computational-logic systems, connectionist
models of cognition, and models of uncertainty. Recent studies in cognitive science, artifi-
cial intelligence, and psychology have produced a number of cognitive models of reasoning,
learning, and language that are underpinned by computation. In addition, e↵orts in com-
puter science research have led to the development of cognitive computational systems
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Abstract

This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially complex
task into simpler subtasks while the latter consists in calling external modules such as a
code interpreter. LMs can leverage these augmentations separately or in combination via
heuristics, or learn to do so from demonstrations. While adhering to a standard missing
tokens prediction objective, such augmented LMs can use various, possibly non-parametric
external modules to expand their context processing ability, thus departing from the pure
language modeling paradigm. We therefore refer to them as Augmented Language Models
(ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even
act, while still performing standard natural language tasks and even outperforming most
regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs,
we conclude that this new research direction has the potential to address common limitations
of traditional LMs such as interpretability, consistency, and scalability issues.

1 Introduction: motivation for the survey and definitions

1.1 Motivation and Definitions

Large Language Models (LLMs) (Devlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022) have fueled
dramatic progress in Natural Language Processing (NLP) and are already core in several products with
millions of users, such as the coding assistant Copilot (Chen et al., 2021), Google search engine1 or more
recently ChatGPT2. Memorization (Tirumala et al., 2022) combined with compositionality (Zhou et al., 2022)
capabilities made LLMs able to execute various tasks such as language understanding or conditional and

1
See e.g. https://blog.google/products/search/search-language-understanding-bert/

2https://openai.com/blog/chatgpt/
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Abstract

Neural-symbolic and statistical relational artificial intelligence both integrate
frameworks for learning with logical reasoning. This survey identifies several
parallels across seven different dimensions between these two fields. These cannot
only be used to characterize and position neural-symbolic artificial intelligence
approaches but also to identify a number of directions for further research.

1. Introduction

The integration of learning and reasoning is one of the key challenges in
artificial intelligence and machine learning today, and various communities have
been addressing it. That is especially true for the field of neural-symbolic
computation (NeSy) [11, 23], where the goal is to integrate symbolic reasoning
and neural networks. NeSy already has a long tradition, and it has recently
attracted a lot of attention from various communities (cf. the keynotes of Y.
Bengio and H. Kautz on this topic at AAAI 2020, the AI Debate [10] between
Y. Bengio and G. Marcus ).

Another domain that has a rich tradition in integrating learning and reason-
ing is that of statistical relational learning and artificial intelligence (StarAI)
[41, 89]. But rather than focusing on integrating logic and neural networks, it
is centred around the question of integrating logic with probabilistic reasoning,
more specifically probabilistic graphical models. Despite the common interest in
combining symbolic reasoning with a basic paradigm for learning, i.e., proba-
bilistic graphical models or neural networks, it is surprising that there are not
more interactions between these two fields.

This discrepancy is the key motivation behind this survey: it aims at pointing
out the similarities between these two endeavours and in this way it wants to
stimulate cross-fertilization. In doing so, we start from the literature on StarAI,

Email addresses: giuseppe.marra@kuleuven.be (Giuseppe Marra), s.dumancic@tudelft.nl
(Sebastijan Dumančić), robin.manhaeve@kuleuven.be (Robin Manhaeve),
luc.deraedt@kuleuven.be (Luc De Raedt)

Preprint submitted to Elsevier March 24, 2022
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Position: LLMs Can’t Plan,
But Can Help Planning in LLM-Modulo Frameworks
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Abstract
We argue that auto-regressive LLMs cannot,
by themselves, do planning or self-verification
(which is after all a form of reasoning), and shed
some light on the reasons for misunderstandings
in the literature. We also argue that LLMs should
be viewed as universal approximate knowledge
sources that have much more meaningful roles
to play in planning/reasoning tasks beyond sim-
ple front-end/back-end format translators. We
present a vision of LLM-Modulo Frameworks
that combines the strengths of LLMs with external
model-based verifiers in a tighter bi-directional
interaction regime. We will show how the models
driving the external verifiers themselves can be ac-
quired with the help of LLMs. We will also argue
that rather than simply pipelining LLMs and sym-
bolic components, this LLM-Modulo Framework
provides a better neuro-symbolic approach that
offers tighter integration between LLMs and sym-
bolic components, extending the scope of model-
based planning/reasoning regimes towards more
flexible knowledge, problem and preference spec-
ifications.

1. Introduction
Large Language Models (LLMs), essentially n-gram models
on steroids which have been pre-trained on web-scale lan-
guage corpora (or, effectively, our collective consciousness),
have caught the imagination of the AI research community
with linguistic capabilities that no one expected text com-
pletion systems to possess. Their seeming versatility has
led many researchers to wonder whether they can also do
well on planning and reasoning tasks typically associated

1School of Computing and AI, Arizona State University,
Tempe, AZ, USA. Correspondence to: Subbarao Kambhampati
<rao@asu.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

with System 2 competency. On the face of it, this doesn’t
seem to ring true, as both by training and operation, LLMs
are best seen as a giant pseudo System 1 (Kahneman, 2011)
(see Figure 1). Even from a pure engineering perspective,
a system that takes constant time to produce the next token
cannot possibly be doing principled reasoning on its own.1
Not surprisingly, initial excitement based on anecdotal per-
formance of LLMs on reasoning tasks (Bubeck et al., 2023)
has been dissipated to some extent by the recent spate of
studies, including our own, questioning the robustness of
such behaviors–be they planning (Valmeekam et al., 2023c;
Kambhampati, 2024), simple arithmetic and logic (Dziri
et al., 2023), theory of mind (Ullman, 2023; Verma et al.,
2024b), or general mathematical and abstract benchmarks
(McCoy et al., 2023; Gendron et al., 2023). Despite this, a
steady stream of claims continue to be made in the litera-
ture about the planning and reasoning capabilities of LLMs.
In light of questions about their planning capabilities, the
head-long rush into agentic LLMs should be particularly
concerning. After all, acting without the ability to plan is
surely a recipe for unpleasant consequences!

In an ironic juxtaposition to this unwarranted optimism
about the planning and reasoning abilities of LLMs, there
is also unwarranted pessimism about the roles LLMs can
play in planning/reasoning tasks. Several efforts (e.g. (Liu
et al., 2023; Pan et al., 2023; Xie et al., 2023)) advocate
using LLMs only as glorified translators–converting rea-
soning problems embedded in textual format to symbolic
representations, and pawning them off to external classical
symbolic solvers (with all their attendant expressivity and
search complexity challenges (Doyle & Patil, 1991)).2

In truth, LLMs can be a whole lot more than machine trans-
1Think of asking an LLM an yes/no question–is this theorem

logically entailed by this first-order logic knowledge-base. This
is well-known to be a semi-decidable problem. Ask yourself if
the LLM will take longer in answering the question. (If you are
thinking Chain-of-thought prompts or training with step-by-step
data, consider that you are essentially changing the nature of the
original prompt/training).

2In some circles, this unidirectional pipeline has been given the
undeserved badge of neuro-symbolic architecture.
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Abstract

The study and understanding of human behaviour is relevant to computer science,
artificial intelligence, neural computation, cognitive science, philosophy, psychology, and
several other areas. Presupposing cognition as basis of behaviour, among the most promi-
nent tools in the modelling of behaviour are computational-logic systems, connectionist
models of cognition, and models of uncertainty. Recent studies in cognitive science, artifi-
cial intelligence, and psychology have produced a number of cognitive models of reasoning,
learning, and language that are underpinned by computation. In addition, e↵orts in com-
puter science research have led to the development of cognitive computational systems
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Abstract

This survey reviews works in which language models (LMs) are augmented with reasoning
skills and the ability to use tools. The former is defined as decomposing a potentially complex
task into simpler subtasks while the latter consists in calling external modules such as a
code interpreter. LMs can leverage these augmentations separately or in combination via
heuristics, or learn to do so from demonstrations. While adhering to a standard missing
tokens prediction objective, such augmented LMs can use various, possibly non-parametric
external modules to expand their context processing ability, thus departing from the pure
language modeling paradigm. We therefore refer to them as Augmented Language Models
(ALMs). The missing token objective allows ALMs to learn to reason, use tools, and even
act, while still performing standard natural language tasks and even outperforming most
regular LMs on several benchmarks. In this work, after reviewing current advance in ALMs,
we conclude that this new research direction has the potential to address common limitations
of traditional LMs such as interpretability, consistency, and scalability issues.

1 Introduction: motivation for the survey and definitions

1.1 Motivation and Definitions

Large Language Models (LLMs) (Devlin et al., 2019; Brown et al., 2020; Chowdhery et al., 2022) have fueled
dramatic progress in Natural Language Processing (NLP) and are already core in several products with
millions of users, such as the coding assistant Copilot (Chen et al., 2021), Google search engine1 or more
recently ChatGPT2. Memorization (Tirumala et al., 2022) combined with compositionality (Zhou et al., 2022)
capabilities made LLMs able to execute various tasks such as language understanding or conditional and

1
See e.g. https://blog.google/products/search/search-language-understanding-bert/

2https://openai.com/blog/chatgpt/
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Task LLM with Reasoning 
ProntoQa [Saparov and He, 2023] 
Synthetic Data 
Varying redundancy (distractors) 
Varying length of reasoning chains 

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

A Comparison with Existing Error Classification Systems

Xu et al. [33] have two major error categories for determining LLM reasoning capability; evi-
dence selection errors and reasoning process errors. The evidence selection process category is
divided into two sub categories which are defined as [33]:

• Wrong Selection - ‘LLMs select the wrong facts or ignore the necessary facts from the
beginning of the reasoning.’

• Hallucination - ‘LLMs select the evidence which contradicts the given context or cannot
be verified from the context.’

Note that these categories combined roughly correspond to Knowledge Errors and Deep Se-
mantic Errors.

Furthermore the reasoning process errors are divided into three sub-categories; no reasoning,
perspective mistake and process mistake. In our context the model is not required to reason
per se, instead it is required to translate natural language to a logic program. This best
approximates the Shallow Semantic Errors as these clearly indicate a failure in logical reasoning.
The communication, symbol and natural language errors have no equivalent error in the system
proposed by Xu et al. As the two systems of errors only have rough corresponding categories,
any comparison of the frequency error categories should only be a rough approximation. This
breakdown would give the results displayed in Table 3.

Table 3: This table compares the relative frequency of error categories found by this experiment
and those reported by Xu et al. [33]. Note no uncertainty values were reported for the relative
frequency of the corresponding error categories. Note that only the GPT3 results were included
in this comparison as they most accurate reflection of the models in the review.

Literature Error Relative Frequency Corresponding Average Relative
Categories Error Types Frequency for GPT-3

Hallucination and
60.7%

Knowledge Errors and
73± 15%Wong Selection Deep Semantic Errors

Perspective Mistake 44.5% Shallow Semantic Errors 52± 6%

Note that the results reported by Xu et al. would not consider syntactic errors types (except
for knowledge and other syntactic errors) as they do not indicate any error in reasoning, only
interfacing with an external tool [33]. Their study found that the total number of types of
errors per failure was 1.61; our result for this value is comparable at 1.55± 0.06.

B Example LLM Prompt

One of the PRONTOQA steamroller problems reads as follows:5

Each composite number is not liquid. Every composite number is a fraction. Every com-
posite number is a number. Negative numbers are not large. Every fraction is large. Each
fraction is a real number. Fractions are integers. Integers are temperate. Each number
is slow. Each even number is loud. Even numbers are natural numbers. Alex is an even
number. Alex is a composite number.

5GPT3Fusemate_hops_2.txt, Iteration: 50

67

Automated Theorem Provers Help Improve LLM Reasoning McGinness and Baumgartner

True or false: Alex is large.

The correct answer is “True”. This can be seen from two modus ponens inferences. Several
irrelevant utterances can be ignored.

The following instructions are given to the LLMs:

Convert the given English statements into a Prolog program.
Use the format and rules below, including an example for guidance.
**Format and Rules:**
- Specific statements become facts: 'Whiskers is a cat' -> 'cat(whiskers).'
- General 'is a' statements become rules: 'All cats are birds' -> 'bird(X) :- cat(X).'
- Use '\+' for negations: 'No bird swims' -> '\+swims(X) :- bird(X).'
- Frame queries with '?-': 'Does Whiskers swim?' -> '?- swims(whiskers).'

**Example:**
English: 'All cats are birds. No bird swims. Whiskers is a cat. Does Whiskers swim?'
Problog: cat(whiskers).
bird(X) :- cat(X).
\+swims(X) :- bird(X).
?- swims(whiskers).
Now, convert the following statements into a Prolog program:
Question: 'Each composite number is not liquid. ...'
Problog Program:

(The concrete problem is given in full and only listed in abbreviated form above.)

For example, GPT3 answers with the lines:

composite(X) :- number(X), \+prime(X).
liquid(X) :- \+composite(X).
fraction(X) :- composite(X).
number(X).
large(X) :- \+negative(X), fraction(X).
real_number(X) :- fraction(X).
integer(X) :- fraction(X).
temperate(X) :- integer(X).
slow(X) :- number(X).
loud(X) :- even(X).
even(X) :- number(X), X mod 2 =:= 0.
natural_number(X) :- even(X).
alex is large.

Notice the question is translated incorrectly in the last line, it should be a prolog query
?- large(alex). Also the rule for even is unexpected and considered a syntax error.

C Correlation Matrix

Figure 6 shows the correlation between error types for our experiments. Note that most of the
examples that contained errors came from experiments using GPT3 and Gemini, so GPT4 is
underrepresented. The correlation between Natural Language Errors and Symbol Errors can
be explained by the experimental conditions. In zero-shot examples the model is more likely to
make both natural language errors and symbol errors as shown in Figure 4, while the models

68

Prompt Engineering 
In-prompt training one/view shot 
Chain-of-thought “explain your reasoning” 
Instruct LLM to use strategies 
(backward/forward/SOS - own work) 
Self-critique 

Explainability?

LLM explanation can be nonsense

Correctness and Scalability?

More complex logic, e.g. quantifiers

Planning task, see Subbarao Kambhampati

Reasoning at all?

Or lookup?
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Reliable Natural Language Understanding with Large Language  
Models and Answer Set Programming  [Rajasekharan et al, ICLP 2023] 

Reliable NLU 5

is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel
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dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.

(2) Logic programming system answers query modulo background knowledge
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel
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dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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(2) Logic programming system answers query modulo background knowledge

Automated Theorem Provers Help Improve Large Language Model Reasoning L. McGinness and P. Baumgartner

Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel

(1) LLM w/ fine tuning translates problem into logic programming query 

Approach
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dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),
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In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
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possible scenarios can be encoded in logic using the following rules:
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positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.

(2) Logic programming system answers query modulo background knowledge
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
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is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel

(1) LLM w/ fine tuning translates problem into logic programming query 

Approach

6 Rajasekharan et al.

dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
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1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
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The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.
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SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel

(1) LLM w/ fine tuning translates problem into logic programming query 

Approach

6 Rajasekharan et al.

dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.

(2) Logic programming system answers query modulo background knowledge
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
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was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
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of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
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lp 1 even(X) :- integer(X), � is X mod 2.
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The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel

(1) LLM w/ fine tuning translates problem into logic programming query 

Approach

6 Rajasekharan et al.

dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.

(2) Logic programming system answers query modulo background knowledge
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Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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is also possible to detect inconsistencies or biases in the text by reasoning over the predicates
extracted. Justification for each response can also be given, as the s(CASP) system can generate
justifications as proof trees (Arias et al. (2020)).

3 Qualitative Reasoning

Qualitative reasoning tests a model’s ability to reason about properties of objects and events in the
World. Tafjord et al. (2019) introduced the QuaRel dataset in order to test question answering
about qualitative relationships of a set of physical properties, which forms a perfect test-bed
for our approach. Our experimental results show that our effort based on the STAR framework
advance the state-of-the-art for the Quarel dataset (Tafjord et al. (2019)). We show that the STAR
framework also results in significant performance improvement compared to the case where the
LLMs are applied directly to question answering.

3.1 The QuaRel Dataset

The QuaRel dataset consists of 2771 questions designed around 19 different properties such as
‘friction’, ‘heat’, ‘speed’, ‘time’, etc. In order to answer these questions, one must account for
the correlation between these properties. Each question has a certain observation made about the
two worlds where a property has a higher (or lower) value in one world compared to the other.
Based on this observation, a (commonsense) inference needs to be drawn about other related
properties described in the two worlds. This inference helps pick one of the two choices as the
answer for the given question Tafjord et al. (2019).

A question from the dataset is given in example 3.1. In this example, the two worlds are
’Carpet’ and ’Floor’. The observation made is that the distance traveled by a toy car is more in
world1 (floor). From this, the model needs to infer that the resistance or friction would be higher
in world2 (carpet), which should lead to picking option A as the answer.

Example 3.1:
Question: Alan noticed that his toy car rolls further on a wood
floor than on a thick carpet. This suggests that:
(world1: wood floor, world2: thick carpet)

(A) The carpet has more resistance (Solution)
(B) The floor has more resistance

Along with each question, Tafjord et al. (2019) provides a logical form that captures the seman-
tics of the question and we use it to extract the predicates needed for our method. For the above
question (example 3.1), the logical form given is as follows:

qrel(distance,higher,world1)! qrel( f riction,higher,world2) ; qrel( f riction,higher,world1) (1)

The predicate qrel(distance,higher,world1) refers to the observation that the distance is higher
in world1, while qrel( f riction,higher,world2) and qrel( f riction,higher,world1) refer to the
conclusions drawn in the two answer options, respectively.

3.2 Predicate Generation Step

We use GPT-3 to convert the Quarel dataset’s natural language question (including the two an-
swers) into appropriate predicates. Since we have a training dataset available, we fine-tune the
two GPT-3 model variants, namely, Davinci and Curie, (Brown et al. (2020)) for the QuaRel
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dataset, instead of just using in-context learning1. Our input prompt consists of the question (in-
cluding answer options), followed by the world descriptions. The world descriptions are included
to enable the model to link the two worlds to the ones in the predicates (obs and conc) that are
generated in the output. The prompt and completion formats for fine-tuning are given below:
Prompt format:
<Question-Answers>\n world1:<world1>\n world2:<world2>\n\n##\n\n

Completion format:
obs(<p>, <h/l>, <w1/w2>)! conc(<p>, <h/l>, <w1/w2>) ;

conc(<p>, <h/l>, <w1/w2>) <EOS>

where p is a property, h/l is either higher or lower and w1/w2 is either world1 or world2. After
fine-tuning on the training set using the prompt and completion pairs, we use the prompt to
generate the completion during testing. The <EOS> token helps cut off the generation when apt,
avoiding completions that are either too long or too short. The extracted obs and conc predicates
are then used by the logic program to determine the correct answer.

3.3 Commonsense Reasoning Step

The commonsense knowledge required to answer the questions is encoded in ASP as facts and
rules. First, we ground the 19 properties using facts such as,

property(friction). property(heat). property(speed).

Next, we define the relationships between the properties, noting their positive and negative cor-
relations and also the symmetry,

qplus(friction, heat). qminus(friction, speed).
qplus(speed, distance). qminus(distance, loudness).
positive(X, Y) :- qplus(X, Y). negative(X, Y) :- qminus(X, Y).
positive(X, Y) :- qplus(Y, X). negative(X, Y) :- qminus(Y, X).

In the QuaRel dataset, we are only dealing with two worlds. Hence, if a property P is higher
in world1, it must be lower in world2 and vice versa. We capture this logic using the opposite
predicates and the rules below:

opposite_w(world1,world2). opposite_v(higher,lower).
opposite_w(world2,world1). opposite_v(lower,higher).
conc(P, V, W) :- obs(P, Vr, Wr), property(P),

opposite_w(W,Wr), opposite_v(V,Vr).

In order to capture the relationship between each pair of properties, we need to account for 4
different cases that may arise. If properties P and Pr are positively correlated, then (i) if P is
higher in world W, Pr must also be higher in W, and (ii) if P is higher in world W, Pr must be
lower in the other world Wr. Similarly, if P and Pr are negatively correlated, then (i) if P is higher
in world W, Pr must be lower in W, and (ii) if P is higher in world W, Pr must be higher in the
other world Wr. Note that the higher/lower relations may be swapped in all cases above. These 4
possible scenarios can be encoded in logic using the following rules:

conc(P,V,W) :- obs(Pr,V,W), property(P), property(Pr),
positive(P,Pr).

conc(P,V,W) :- obs(Pr,Vr,Wr), property(P), property(Pr),

1 Fine-tuning an LLM involves using additional training data to refine the LLM for the task at hand; in-context learning
refers to giving some examples from the training data, along with the question posed, to the LLM as a part of its input.
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(2) Logic programming system answers query modulo background knowledge

Translation errors?

Automated Theorem Provers Help Improve Large Language Model Reasoning L. McGinness and P. Baumgartner

Reasoning Complexity and Partial SEDAC. In our highly controlled and closed PRONTOQA envi-
ronment with its simple formula structure, full error detection poses no problem. The FOL fragment is
Bernays-Schönfinkel logic which is decided by our ATP Beagle [2]. Each entailment proof obligation
was decided in very short time(< 1sec). The sets nl_ax and lp_ax have at most 20 formulas each for a
given problem. In the worst case, four candidate fixes are proposed per rule or fact, yielding a maximum
of 20 + 4*20 = 100 ATP calls. We investigated 440 problems with Full-SDEDAC which took 12h. This
time could be shortened considerably by avoiding file-based ATP interface and with a faster ATP.

More realistic settings have open-world character where the problem statement does not contain full
domain information and “ground truth oracles” may not be available. This let us chose first-order logic
semantics for the soundness tests; a closed world semantics seems too credulous for entailments (let
alone having a highly undecidable entailment problem). As a trivial example, a formula with a syntactic
error is always dropped and, this way, could support an unintended entailment with a default negation
inference. While the “tool” could, say, employ logic programming for query answering, deep error fixes
should be proposed cautiously and only if deductively valid.

These considerations motivated us to evaluate two versions of SEDAC: the full version defined above,
and a partial version for shallow error corrrection. More precisely, partial-SEDAC differs from Full-

SEDAC in that it receives the lp only (no nl) and then immediately calls propose restricted to rewriting-
rule error correction only. The result of the partial-SEDAC call is the result of the propose call if not
empty (i.e., propose was effective), otherwise it is the given lp. (We do not provide pseudo-code here.)
These two version allowed us to assess the tradeoffs in effectiveness and expressivity. We report on the
results in Section 3 below.

Example. We demonstrate Partial-SEDAC and Full-SEDAC with a small example that we compiled
from actual PRONTOQA problems and LLM translations. The example consists of the sets nl and lp

shown on the left of the following table, which are converted to nl_ax and lp_ax shown on the right,
respectively, in the first steps of (Full-)SEDAC. Here and below, FOL formulas are written in TPTP FOF
syntax [26].

_ax

nl 1 Each integer is not fruity.
2 Negative numbers are brown.
3 Wren is an integer.
4 True or false: Wren is not fruity.

1 ! [A] : (integer(A) => ~ fruity(A))
2 ! [A] : (negative_number(A) => brown(A))
3 integer(wren)
4 % Query ~ fruity(wren) ignored

lp 1 even(X) :- integer(X), � is X mod 2.
2 integer(X) :- fruity(X).
3 integer(wren).
4 integer(X).
5 brown(negative).
6 ?- \+ fruity(wren).

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X)))
3 integer(wren)
4 ! [X] : integer(X)
5 brown(negative)
6 % Query ~ fruity(wren) ignored

The FOL versions nl_ax of nl should be obvious. We note that our parser connects adjectives/noun
pairs into single-name predicates, e.g., as in negative_number(X). Shallow error correction is designed
to align logic programs with this convention. Notice the attempt to bring in “background knowledge”
� is X mod 2 by the LLM on line 1 of lp_ax without instructing to doing so; we classify this into the
sub-category of Knowledge Error.

The FOL resulting from the SEDAC runs are as follows:
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Partial-SEDAC(lp) Full-SEDAC(nl, lp)

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => integer(X))
3 integer(wren)
4 ! [X] : integer(X))
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

1 % Syntax error line ignored
2 ! [X] : (fruity(X) => ~ integer(X))
3 integer(wren)
4 % ! [X] : integer(X) is an NonFixableError
5 ! [I] : (negative_number(I) => brown(I))
6 % Query ~ fruity(wren) ignored

It is instructive to compare the results of partial and full SEDAC. Partial-SEDAC(lp) differs from lp_ax

only on line 5 by noun and adjective corrections. Full-SEDAC(nl, lp) includes this fix as well. In addi-
tion, it fixes the formula f = ! [X] : fruity(X) => integer(X) on line 2 of pl_ax by negating its con-
clusion. This happens in three steps. First, the entailment check on line 5 in Full-SEDAC finds nl_ax 6|=
f . Then, propose( f ) returns four variants of f but only f

0 = ! [X] : fruity(X) => ~ integer(X) sat-
isfies nl_ax |= f

0. Scoring is irrelevant in this case. The status for f , hence, is FixableError. As a
further difference, the formula f = ! [X] : integer(X) on line 4 of lp_ax has status NonFixableError

as nl_ax 6|= f and no fix is proposed.

Now consider the query True or false: Wren is not fruity. The correct answer is True as nl_ax |= q

where q = ~ fruity(wren). The LLM translation cannot show that (lp_ax 6|= q), neither can the partial
fix (Partial-SEDAC(lp) 6|= q) but the full fix can (Full-SEDAC(nl, lp) |= q).

3 Results

Table 1 shows the overall accuracy of all three models with each experimental condition described in
Section 2. The results show that the use of the LP system, Fusemate, increased the accuracy of each
LLM by between 10% and 25% of the possible total.

Prompt Strategy GPT3 GPT4 Gemini-Pro
Normal 0.48±0.06 0.83±0.12 0.47±0.04

Chain of Thought + one-shot 0.65±0.15 0.94±0.04 0.74±0.12
Fusemate 0.66±0.05 0.94±0.015 0.57±0.03

Fusemate + one-Shot 0.76±0.06 0.94±0.015 0.67±0.03
Fusemate + one-shot + syntax fix 0.83±0.06 0.95±0.02 0.74±0.02
Fusemate + one-shot + partial fix 0.87±0.05 0.983±0.005 0.77±0.04

Fusemate + one-shot + full fix 0.98±0.01 0.995±0.005 0.96±0.04

Table 1: Accuracy for each technique for each model type. Random guessing would be expected to
achieve an accuracy of 0.5±0.05. The error values given are half the range across three trials.

The SEDAC auto-correction successfully reduced errors in all cases. The syntactic fix alone reduced the
number of errors of each model by 15� 30%. The partial and full semantic fixes reduced the number
of model errors by 45� 72% and 88� 92% respectively. In addition to error correction, the SEDAC

algorithm also classifies the types of errors.

For each of the Fusemate methods, the types of errors were determined as described in the Sections 2.1
and 2.2. Table 2 shows the average frequency of each error type across n = 100 test examples. For each
of the three models the most common error type is the Shallow Semantic Errors. Communication Errors,
Symbol Errors, Natural Language Errors and Other Syntax Errors were decreased by introducing the
example prompt. The one-shot case did not reduce the number of semantic errors for the GPT4 model,
however it did reduce semantic errors by approximately 30% for GPT3 and Gemini.
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Fig. 6. MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation set during training for different training set sizes.

Table 1
The accuracy on the test set for T1.

Model Number of training examples

30 000 3 000 300

Baseline 93.46 ± 0.49 78.32 ± 2.14 23.64 ± 1.75
DeepProbLog 97.20 ± 0.45 92.18 ± 1.57 67.19 ± 25.05

Results Fig. 6 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the single-digit addition. 
We evaluated on 3 levels of data availability: 30 000 examples, 3 000 and 300 examples. As can be seen in the figures, 
DeepProbLog converges faster and achieves a higher accuracy than the baseline. In the case for N = 30 000 (Fig. 6a), the 
difference between the baseline and DeepProbLog is significant, but not immense. However, for N = 3000 and especially 
N = 300, the difference becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making a decision for the combined input digits 
(and there are a 100 different sums possible), whereas the DeepProbLog’s neural predicate only needs to recognize 
individual digits (with only 10 possibilities). Table 1 shows the average accuracy on the test set for the different models 
for different training set sizes.

T2: addition([ , ], [ , ],63)
The input consists of two lists of images, each element being a digit. Each list represents a multi-digit number. The 
label is the sum of the two numbers. The neural predicate remains the same. Learning the new predicate requires only 
a small change in the logic program. Because the CNN baseline cannot handle numbers of varying size, we fixed the 
size of the input to two-digit numbers.

Results First, we perform an experiment where we take the neural network trained in T1 and use it in this model 
without any further training. Evaluating it on the same test set, we achieve an accuracy that is not significantly different 
from training on the full dataset of T2. This demonstrates that the approach used in DeepProbLog causes it to generalize 
well beyond training data. Fig. 7 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the 
multi-digit addition. DeepProbLog achieves a somewhat lower accuracy compared to the single digit problem due to 
the compounding effect of the classification error on the individual digits, but the model generalizes well. The baseline 
fails to learn from few examples (150 and 1 500). It is able to learn with 15 000 examples, but converges very slowly. 
Table 2 shows the average accuracy on the test set for the different models for different training set sizes.

T3: addition( , , )
The input consists of 3 MNIST images such that the last is the sum of the first two. This task demonstrates potential 
pitfalls of only providing supervision on the logic level. Namely, without any regularization, the neural network quickly 
learns to predict 0 for all digits, i.e., the model collapses to always predicting 0 +0 = 0, as it is a valid logical solution. To 
avoid this, we add a regularization term based on entropy maximization (Equation 18, Section 6.5). The intuition behind 
this regularization term is that it penalizes mode collapse by requiring the entropy of the average output distribution 
per batch to be high. As such, this term encourages exploration, but is only necessary to start the training of the neural 
networks. If they are sufficiently trained, this term can be dropped. This additional regularization loss is multiplied by 
a factor λ and added to the cross-entropy loss. We run the experiment for different values of λ.

Results Fig. 8 shows the accuracy of the neural predicate on classifying single digits for different levels of the regu-
larization parameter. As can be seen, for λ = 2, the neural predicate converges on the trivial solution. For λ = 4, the 
neural predicate sometimes converges on the correct solution, but can also converge on the wrong solution. For λ = 8, 
the neural network consistently converges on the correct solution.
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)

Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(b) The ground DeepProbLog program.

0.8 :: digit( ,0); 0.1 :: digit( ,1).

0.2 :: digit( ,0); 0.6 :: digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(c) The ground ProbLog program.

(d) The AC for query addition( , ,1).

Fig. 2. Inference in DeepProbLog (Example 3).

Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:

arg min
!

1
|Q|

∑

(q,X ,p)∈Q
L(P (q|X ,!), p)

In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
tion 5 reduces to:

9
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)
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[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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Fig. 6. MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation set during training for different training set sizes.

Table 1
The accuracy on the test set for T1.

Model Number of training examples

30 000 3 000 300

Baseline 93.46 ± 0.49 78.32 ± 2.14 23.64 ± 1.75
DeepProbLog 97.20 ± 0.45 92.18 ± 1.57 67.19 ± 25.05

Results Fig. 6 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the single-digit addition. 
We evaluated on 3 levels of data availability: 30 000 examples, 3 000 and 300 examples. As can be seen in the figures, 
DeepProbLog converges faster and achieves a higher accuracy than the baseline. In the case for N = 30 000 (Fig. 6a), the 
difference between the baseline and DeepProbLog is significant, but not immense. However, for N = 3000 and especially 
N = 300, the difference becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making a decision for the combined input digits 
(and there are a 100 different sums possible), whereas the DeepProbLog’s neural predicate only needs to recognize 
individual digits (with only 10 possibilities). Table 1 shows the average accuracy on the test set for the different models 
for different training set sizes.

T2: addition([ , ], [ , ],63)
The input consists of two lists of images, each element being a digit. Each list represents a multi-digit number. The 
label is the sum of the two numbers. The neural predicate remains the same. Learning the new predicate requires only 
a small change in the logic program. Because the CNN baseline cannot handle numbers of varying size, we fixed the 
size of the input to two-digit numbers.

Results First, we perform an experiment where we take the neural network trained in T1 and use it in this model 
without any further training. Evaluating it on the same test set, we achieve an accuracy that is not significantly different 
from training on the full dataset of T2. This demonstrates that the approach used in DeepProbLog causes it to generalize 
well beyond training data. Fig. 7 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the 
multi-digit addition. DeepProbLog achieves a somewhat lower accuracy compared to the single digit problem due to 
the compounding effect of the classification error on the individual digits, but the model generalizes well. The baseline 
fails to learn from few examples (150 and 1 500). It is able to learn with 15 000 examples, but converges very slowly. 
Table 2 shows the average accuracy on the test set for the different models for different training set sizes.

T3: addition( , , )
The input consists of 3 MNIST images such that the last is the sum of the first two. This task demonstrates potential 
pitfalls of only providing supervision on the logic level. Namely, without any regularization, the neural network quickly 
learns to predict 0 for all digits, i.e., the model collapses to always predicting 0 +0 = 0, as it is a valid logical solution. To 
avoid this, we add a regularization term based on entropy maximization (Equation 18, Section 6.5). The intuition behind 
this regularization term is that it penalizes mode collapse by requiring the entropy of the average output distribution 
per batch to be high. As such, this term encourages exploration, but is only necessary to start the training of the neural 
networks. If they are sufficiently trained, this term can be dropped. This additional regularization loss is multiplied by 
a factor λ and added to the cross-entropy loss. We run the experiment for different values of λ.

Results Fig. 8 shows the accuracy of the neural predicate on classifying single digits for different levels of the regu-
larization parameter. As can be seen, for λ = 2, the neural predicate converges on the trivial solution. For λ = 4, the 
neural predicate sometimes converges on the correct solution, but can also converge on the wrong solution. For λ = 8, 
the neural network consistently converges on the correct solution.
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Fig. 5. The learning pipeline.
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derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
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6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
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reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.
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To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.
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nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(b) The ground DeepProbLog program.

0.8 :: digit( ,0); 0.1 :: digit( ,1).

0.2 :: digit( ,0); 0.6 :: digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(c) The ground ProbLog program.

(d) The AC for query addition( , ,1).

Fig. 2. Inference in DeepProbLog (Example 3).

Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:

arg min
!

1
|Q|

∑

(q,X ,p)∈Q
L(P (q|X ,!), p)

In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
tion 5 reduces to:
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)

Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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Fig. 6. MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation set during training for different training set sizes.

Table 1
The accuracy on the test set for T1.

Model Number of training examples

30 000 3 000 300

Baseline 93.46 ± 0.49 78.32 ± 2.14 23.64 ± 1.75
DeepProbLog 97.20 ± 0.45 92.18 ± 1.57 67.19 ± 25.05

Results Fig. 6 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the single-digit addition. 
We evaluated on 3 levels of data availability: 30 000 examples, 3 000 and 300 examples. As can be seen in the figures, 
DeepProbLog converges faster and achieves a higher accuracy than the baseline. In the case for N = 30 000 (Fig. 6a), the 
difference between the baseline and DeepProbLog is significant, but not immense. However, for N = 3000 and especially 
N = 300, the difference becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making a decision for the combined input digits 
(and there are a 100 different sums possible), whereas the DeepProbLog’s neural predicate only needs to recognize 
individual digits (with only 10 possibilities). Table 1 shows the average accuracy on the test set for the different models 
for different training set sizes.

T2: addition([ , ], [ , ],63)
The input consists of two lists of images, each element being a digit. Each list represents a multi-digit number. The 
label is the sum of the two numbers. The neural predicate remains the same. Learning the new predicate requires only 
a small change in the logic program. Because the CNN baseline cannot handle numbers of varying size, we fixed the 
size of the input to two-digit numbers.

Results First, we perform an experiment where we take the neural network trained in T1 and use it in this model 
without any further training. Evaluating it on the same test set, we achieve an accuracy that is not significantly different 
from training on the full dataset of T2. This demonstrates that the approach used in DeepProbLog causes it to generalize 
well beyond training data. Fig. 7 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the 
multi-digit addition. DeepProbLog achieves a somewhat lower accuracy compared to the single digit problem due to 
the compounding effect of the classification error on the individual digits, but the model generalizes well. The baseline 
fails to learn from few examples (150 and 1 500). It is able to learn with 15 000 examples, but converges very slowly. 
Table 2 shows the average accuracy on the test set for the different models for different training set sizes.

T3: addition( , , )
The input consists of 3 MNIST images such that the last is the sum of the first two. This task demonstrates potential 
pitfalls of only providing supervision on the logic level. Namely, without any regularization, the neural network quickly 
learns to predict 0 for all digits, i.e., the model collapses to always predicting 0 +0 = 0, as it is a valid logical solution. To 
avoid this, we add a regularization term based on entropy maximization (Equation 18, Section 6.5). The intuition behind 
this regularization term is that it penalizes mode collapse by requiring the entropy of the average output distribution 
per batch to be high. As such, this term encourages exploration, but is only necessary to start the training of the neural 
networks. If they are sufficiently trained, this term can be dropped. This additional regularization loss is multiplied by 
a factor λ and added to the cross-entropy loss. We run the experiment for different values of λ.

Results Fig. 8 shows the accuracy of the neural predicate on classifying single digits for different levels of the regu-
larization parameter. As can be seen, for λ = 2, the neural predicate converges on the trivial solution. For λ = 4, the 
neural predicate sometimes converges on the correct solution, but can also converge on the wrong solution. For λ = 8, 
the neural network consistently converges on the correct solution.
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Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:

arg min
!

1
|Q|

∑

(q,X ,p)∈Q
L(P (q|X ,!), p)

In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
tion 5 reduces to:
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)

Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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R. Manhaeve, S. Dumančić, A. Kimmig et al. Artificial Intelligence 298 (2021) 103504

Fig. 6. MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation set during training for different training set sizes.

Table 1
The accuracy on the test set for T1.

Model Number of training examples

30 000 3 000 300

Baseline 93.46 ± 0.49 78.32 ± 2.14 23.64 ± 1.75
DeepProbLog 97.20 ± 0.45 92.18 ± 1.57 67.19 ± 25.05

Results Fig. 6 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the single-digit addition. 
We evaluated on 3 levels of data availability: 30 000 examples, 3 000 and 300 examples. As can be seen in the figures, 
DeepProbLog converges faster and achieves a higher accuracy than the baseline. In the case for N = 30 000 (Fig. 6a), the 
difference between the baseline and DeepProbLog is significant, but not immense. However, for N = 3000 and especially 
N = 300, the difference becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making a decision for the combined input digits 
(and there are a 100 different sums possible), whereas the DeepProbLog’s neural predicate only needs to recognize 
individual digits (with only 10 possibilities). Table 1 shows the average accuracy on the test set for the different models 
for different training set sizes.

T2: addition([ , ], [ , ],63)
The input consists of two lists of images, each element being a digit. Each list represents a multi-digit number. The 
label is the sum of the two numbers. The neural predicate remains the same. Learning the new predicate requires only 
a small change in the logic program. Because the CNN baseline cannot handle numbers of varying size, we fixed the 
size of the input to two-digit numbers.

Results First, we perform an experiment where we take the neural network trained in T1 and use it in this model 
without any further training. Evaluating it on the same test set, we achieve an accuracy that is not significantly different 
from training on the full dataset of T2. This demonstrates that the approach used in DeepProbLog causes it to generalize 
well beyond training data. Fig. 7 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the 
multi-digit addition. DeepProbLog achieves a somewhat lower accuracy compared to the single digit problem due to 
the compounding effect of the classification error on the individual digits, but the model generalizes well. The baseline 
fails to learn from few examples (150 and 1 500). It is able to learn with 15 000 examples, but converges very slowly. 
Table 2 shows the average accuracy on the test set for the different models for different training set sizes.

T3: addition( , , )
The input consists of 3 MNIST images such that the last is the sum of the first two. This task demonstrates potential 
pitfalls of only providing supervision on the logic level. Namely, without any regularization, the neural network quickly 
learns to predict 0 for all digits, i.e., the model collapses to always predicting 0 +0 = 0, as it is a valid logical solution. To 
avoid this, we add a regularization term based on entropy maximization (Equation 18, Section 6.5). The intuition behind 
this regularization term is that it penalizes mode collapse by requiring the entropy of the average output distribution 
per batch to be high. As such, this term encourages exploration, but is only necessary to start the training of the neural 
networks. If they are sufficiently trained, this term can be dropped. This additional regularization loss is multiplied by 
a factor λ and added to the cross-entropy loss. We run the experiment for different values of λ.

Results Fig. 8 shows the accuracy of the neural predicate on classifying single digits for different levels of the regu-
larization parameter. As can be seen, for λ = 2, the neural predicate converges on the trivial solution. For λ = 4, the 
neural predicate sometimes converges on the correct solution, but can also converge on the wrong solution. For λ = 8, 
the neural network consistently converges on the correct solution.
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Fig. 5. The learning pipeline.
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nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(b) The ground DeepProbLog program.

0.8 :: digit( ,0); 0.1 :: digit( ,1).

0.2 :: digit( ,0); 0.6 :: digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(c) The ground ProbLog program.

(d) The AC for query addition( , ,1).

Fig. 2. Inference in DeepProbLog (Example 3).

Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:

arg min
!

1
|Q|

∑

(q,X ,p)∈Q
L(P (q|X ,!), p)

In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
tion 5 reduces to:
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Fig. 5. The learning pipeline.
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is defined as:
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Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
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where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.
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We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
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Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2
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Fig. 6. MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation set during training for different training set sizes.

Table 1
The accuracy on the test set for T1.

Model Number of training examples

30 000 3 000 300

Baseline 93.46 ± 0.49 78.32 ± 2.14 23.64 ± 1.75
DeepProbLog 97.20 ± 0.45 92.18 ± 1.57 67.19 ± 25.05

Results Fig. 6 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the single-digit addition. 
We evaluated on 3 levels of data availability: 30 000 examples, 3 000 and 300 examples. As can be seen in the figures, 
DeepProbLog converges faster and achieves a higher accuracy than the baseline. In the case for N = 30 000 (Fig. 6a), the 
difference between the baseline and DeepProbLog is significant, but not immense. However, for N = 3000 and especially 
N = 300, the difference becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making a decision for the combined input digits 
(and there are a 100 different sums possible), whereas the DeepProbLog’s neural predicate only needs to recognize 
individual digits (with only 10 possibilities). Table 1 shows the average accuracy on the test set for the different models 
for different training set sizes.

T2: addition([ , ], [ , ],63)
The input consists of two lists of images, each element being a digit. Each list represents a multi-digit number. The 
label is the sum of the two numbers. The neural predicate remains the same. Learning the new predicate requires only 
a small change in the logic program. Because the CNN baseline cannot handle numbers of varying size, we fixed the 
size of the input to two-digit numbers.

Results First, we perform an experiment where we take the neural network trained in T1 and use it in this model 
without any further training. Evaluating it on the same test set, we achieve an accuracy that is not significantly different 
from training on the full dataset of T2. This demonstrates that the approach used in DeepProbLog causes it to generalize 
well beyond training data. Fig. 7 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the 
multi-digit addition. DeepProbLog achieves a somewhat lower accuracy compared to the single digit problem due to 
the compounding effect of the classification error on the individual digits, but the model generalizes well. The baseline 
fails to learn from few examples (150 and 1 500). It is able to learn with 15 000 examples, but converges very slowly. 
Table 2 shows the average accuracy on the test set for the different models for different training set sizes.

T3: addition( , , )
The input consists of 3 MNIST images such that the last is the sum of the first two. This task demonstrates potential 
pitfalls of only providing supervision on the logic level. Namely, without any regularization, the neural network quickly 
learns to predict 0 for all digits, i.e., the model collapses to always predicting 0 +0 = 0, as it is a valid logical solution. To 
avoid this, we add a regularization term based on entropy maximization (Equation 18, Section 6.5). The intuition behind 
this regularization term is that it penalizes mode collapse by requiring the entropy of the average output distribution 
per batch to be high. As such, this term encourages exploration, but is only necessary to start the training of the neural 
networks. If they are sufficiently trained, this term can be dropped. This additional regularization loss is multiplied by 
a factor λ and added to the cross-entropy loss. We run the experiment for different values of λ.

Results Fig. 8 shows the accuracy of the neural predicate on classifying single digits for different levels of the regu-
larization parameter. As can be seen, for λ = 2, the neural predicate converges on the trivial solution. For λ = 4, the 
neural predicate sometimes converges on the correct solution, but can also converge on the wrong solution. For λ = 8, 
the neural network consistently converges on the correct solution.
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nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(b) The ground DeepProbLog program.

0.8 :: digit( ,0); 0.1 :: digit( ,1).

0.2 :: digit( ,0); 0.6 :: digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(c) The ground ProbLog program.

(d) The AC for query addition( , ,1).

Fig. 2. Inference in DeepProbLog (Example 3).

Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:

arg min
!

1
|Q|

∑

(q,X ,p)∈Q
L(P (q|X ,!), p)

In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
tion 5 reduces to:
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)

Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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DeepProbLog 

 Neural probabilistic logic programming in DeepProbLog 

[Manhaeve et al, AIJ, 2021]
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Fig. 6. MNIST Single-Digit Addition (T1). The graphs show the accuracy on the validation set during training for different training set sizes.

Table 1
The accuracy on the test set for T1.

Model Number of training examples

30 000 3 000 300

Baseline 93.46 ± 0.49 78.32 ± 2.14 23.64 ± 1.75
DeepProbLog 97.20 ± 0.45 92.18 ± 1.57 67.19 ± 25.05

Results Fig. 6 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the single-digit addition. 
We evaluated on 3 levels of data availability: 30 000 examples, 3 000 and 300 examples. As can be seen in the figures, 
DeepProbLog converges faster and achieves a higher accuracy than the baseline. In the case for N = 30 000 (Fig. 6a), the 
difference between the baseline and DeepProbLog is significant, but not immense. However, for N = 3000 and especially 
N = 300, the difference becomes more apparent.
The reason behind this disparity is that the baseline needs to learn making a decision for the combined input digits 
(and there are a 100 different sums possible), whereas the DeepProbLog’s neural predicate only needs to recognize 
individual digits (with only 10 possibilities). Table 1 shows the average accuracy on the test set for the different models 
for different training set sizes.

T2: addition([ , ], [ , ],63)
The input consists of two lists of images, each element being a digit. Each list represents a multi-digit number. The 
label is the sum of the two numbers. The neural predicate remains the same. Learning the new predicate requires only 
a small change in the logic program. Because the CNN baseline cannot handle numbers of varying size, we fixed the 
size of the input to two-digit numbers.

Results First, we perform an experiment where we take the neural network trained in T1 and use it in this model 
without any further training. Evaluating it on the same test set, we achieve an accuracy that is not significantly different 
from training on the full dataset of T2. This demonstrates that the approach used in DeepProbLog causes it to generalize 
well beyond training data. Fig. 7 shows the learning curves for the baseline (orange) and DeepProbLog (blue) on the 
multi-digit addition. DeepProbLog achieves a somewhat lower accuracy compared to the single digit problem due to 
the compounding effect of the classification error on the individual digits, but the model generalizes well. The baseline 
fails to learn from few examples (150 and 1 500). It is able to learn with 15 000 examples, but converges very slowly. 
Table 2 shows the average accuracy on the test set for the different models for different training set sizes.

T3: addition( , , )
The input consists of 3 MNIST images such that the last is the sum of the first two. This task demonstrates potential 
pitfalls of only providing supervision on the logic level. Namely, without any regularization, the neural network quickly 
learns to predict 0 for all digits, i.e., the model collapses to always predicting 0 +0 = 0, as it is a valid logical solution. To 
avoid this, we add a regularization term based on entropy maximization (Equation 18, Section 6.5). The intuition behind 
this regularization term is that it penalizes mode collapse by requiring the entropy of the average output distribution 
per batch to be high. As such, this term encourages exploration, but is only necessary to start the training of the neural 
networks. If they are sufficiently trained, this term can be dropped. This additional regularization loss is multiplied by 
a factor λ and added to the cross-entropy loss. We run the experiment for different values of λ.

Results Fig. 8 shows the accuracy of the neural predicate on classifying single digits for different levels of the regu-
larization parameter. As can be seen, for λ = 2, the neural predicate converges on the trivial solution. For λ = 4, the 
neural predicate sometimes converges on the correct solution, but can also converge on the wrong solution. For λ = 8, 
the neural network consistently converges on the correct solution.
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)

Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(b) The ground DeepProbLog program.

0.8 :: digit( ,0); 0.1 :: digit( ,1).

0.2 :: digit( ,0); 0.6 :: digit( ,1).

addition( , ,1) :- digit( ,0), digit( ,1).

addition( , ,1) :- digit( ,1), digit( ,0).

(c) The ground ProbLog program.

(d) The AC for query addition( , ,1).

Fig. 2. Inference in DeepProbLog (Example 3).

Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:

arg min
!

1
|Q|

∑

(q,X ,p)∈Q
L(P (q|X ,!), p)

In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
tion 5 reduces to:
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R. Manhaeve, S. Dumančić, A. Kimmig et al. Artificial Intelligence 298 (2021) 103504

nn(m_digit, [X], Y, [0...9]) :: digit(X,Y).
addition(X,Y,Z) :- digit(X,N1), digit(Y,N2), Z is N1+N2.

(a) The DeepProbLog program.

nn(m_digit,[ ],0)::digit( ,0);nn(m_digit,[ ], 1)::digit( ,1).
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Definition 5 (Learning from entailment). Given a DeepProbLog program with parameters !, a set Q of tuples (q, X , p) with 
q a query, X the neural input for this query and p its desired success probability, and a loss function L, compute:
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In most of the experiments, unless mentioned otherwise, we only use positive examples for training (i.e., with desired 
success probability p = 1). The model then needs to adjust the weights to maximize query probabilities P!(q|X ) for all 
training examples. This can be expressed by minimizing the average negative log likelihood of the query, whereby Defini-
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Fig. 5. The learning pipeline.

To extend the gradient semiring to DeepProbLog programs, we define it for nADs and neural facts. The label for the nAD 
is defined as:

L( f i) = (p̂ j,e j) for nn(m, [x1, .., xk], y j) :: r(x1, .., xk, y j) a ground nAD head (16)

Where y j is the j-th domain element, p̂ j , is the j-th element of the output of the neural network m evaluated on input 
[x1, .., xk]. The label for a neural fact is defined as:

L( f i) = (p̂,e j) for nn(m, [x1, .., xk]) :: r(x1, .., xk) a ground neural fact (17)

where p̂ is the output of the neural network m evaluated on input [x1, .., xk]. Since the first element of the tuple for nADs 
and neural facts is the evaluation of the neural networks as in Section 4.2, this change remains semantically equivalent.

Example 5. To demonstrate the learning pipeline (Fig. 5), we will apply it on the MNIST addition example show in Sec-
tion 4.2 with a small extension: some of the labels have been corrupted and are picked randomly from a uniform 
distribution over [0, 18]. The goal is to also learn the fraction of noisy examples. The DeepProbLog program is given in 
Fig. 4a. Grounding on the query addition( , ,1) results in the ground DeepProbLog program shown in Fig. 4b. The 
arithmetic circuit corresponding to the ground program is shown in Fig. 4c. As can be seen, the neural networks already 
have a confident prediction for both images (being 0 and 1 respectively). The top right shows how the different partial 
derivatives that are calculated: one with respect to the noisy parameter, ten for the evaluation of the neural network on 
input a and ten for the evaluation on input b.

6. Experimental evaluation

We perform four sets of experiments to demonstrate that DeepProbLog supports (i) logical reasoning and deep learning; 
(ii) program induction; (iii) probabilistic inference and combined probabilistic and deep learning; and (iv) natural language 
reasoning and embeddings.

We provide implementation details at the end of this section and list all programs in Appendix A.

6.1. Logical reasoning and deep learning

To show that DeepProbLog supports both logical reasoning and deep learning, we extend the classic learning task on the 
MNIST dataset [29] to four more complex problems that require reasoning:

T1: addition( , ,8)

Instead of using labeled single digits, we train on pairs of images, labeled with the sum of the individual labels. This is 
the same as Example 3. The DeepProbLog program consists of the clause

addition(X,Y,Z):−digit(X,X2),digit(Y,Y2),Z is X2+ Y2

and a neural AD for the digit/2 predicate, which classifies an MNIST image. We compare to a CNN baseline3 classi-
fying the two images into the 19 possible sums.

3 We’d like to thank Paolo Frasconi for the interesting discussion and idea for a new baseline.
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Many More Architectures 
- Differentiable Theorem Proving [Rocktäschel] 

- Semantic Probabilistic Layers for Neuro-Symbolic Learning [Ahmed et al NeurIPS, 2022] 
Logic constraints at the output layer, e.g. exclusivity constraints for classification 

- FFNSL: Feed-Forward Neural-Symbolic Learner [Cunnington, Law, Lobo, Russo 2023] 
- Encodings of logic within NNs 
- Logic Tensor Networks 
- Neural Datalog over time 

Symbolic Representations

Symbols (constants and predicates) do not share any information:
grandpaOf 6= grandfatherOf

No notion of similarity:
apple ⇠ orange, professorAt ⇠ lecturerAt

No generalization beyond what can be symbolically inferred:
isFruit(apple), apple ⇠ organge, isFruit(orange)?

But... leads to powerful inference mechanisms and proofs for
predictions: fatherOf(abe,homer). parentOf(homer, lisa).
parentOf(homer,bart).
grandfatherOf(X,Y) :– fatherOf(X,Z), parentOf(Z,Y).
grandfatherOf(abe,Q)? {Q/lisa}, {Q/bart}

Fairly easy to debug and trivial to incorporate domain knowledge:
just change/add rules

Hard to work with language, vision and other modalities
‘‘is a film based on the novel of the same name by’’(X, Y)

Tim Rocktäschel Deep Prolog: End-to-end Di↵erentiable Proving in Knowledge Bases 10/37

Neural Unification

Soft-matching: ⌧A,B = e�kvA�vBk2 2 [0, 1]

1 def unify(A, B,  , ⌧):
2 if  = failure then return failure, 0;
3 else if A is variable then
4 return unifyvar(A, B,  ), ⌧

5 else if B is variable then
6 return unifyvar(B, A,  ), ⌧

7 else if A = [a1, . . . , aN ] and B = [b1, . . . , bN ] are atoms then
8  0, ⌧ 0  unify([a2, . . . , aN ], [b2, . . . , bN ],  , ⌧)

9 return unify(a1, b1,  0, ⌧ 0)

10 else if A and B are symbol representations then return  , min(⌧, ⌧A,B);

11 else return failure, 0;

Example: unify vgrandfatherOf(X, vbart) with vgrandpaOf(vabe, vbart)

 = {X/vabe}, ⌧ = min(e�kvgrandfatherOf�vgrandpaOfk2 , e�kvbart�vbartk2)

Tim Rocktäschel Deep Prolog: End-to-end Di↵erentiable Proving in Knowledge Bases 20/37

Reasoning in embedding space:



Conclusions

Fusemate 
- Probabilistic Logic Programming system 
- Good  

Expressivity, good Python interface, reasonably optimized for intended use case (HMM-ish) 
- Needs work 

Documentation, efficiency 

LMM + Logic 
- Current focus of research and D61 applications for “Explainability” 

ML/LLM -> generate solution candidates 
Probabilistic logic -> validate/complete solution candidates 
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