Finite Quantification in Hierarchic Theorem Proving

Peter Baumgartner
Joshua Bax

Uwe Waldmann

\therefore Australian

Overall Goal

Theorem Proving in Hierarchic Combinations of Specifications

Foreground Specification (FG)

Axioms: Lists, Arrays
Definitions: Length, isSorted
extends

Conjecture

Background Specification (BG)

- Linear integer arithmetic

Main issue
Quantifiers: complete theorem proving is theoretically impossible Problem: incompleteness: "no refutation" \neq "countersatisfiable"

Calculi for Hierarchic Reasoning

SMT: DPLL(T) + instantiation heuristics (CVC4, Z3,...)

Model evolution with LIA constraints

Sequent calculus

Theory instantiation

LASCA

Hierarchic superposition

[Bachmair Ganzinger Waldmann 1994, Althaus Weidenbach Kruglov 2009, Weidenbach Kruglov 2012, B Waldmann 2013]

This work
Recover completeness for finitely quantified fragment Can be used on top of hierarchic superposition and SMT

Hierarchic Specifications

Background (BG) specification consists of
Sorts, e.g. \{ int \}
Operators, e.g. $\{0,1,-1,2,-2, \ldots,-,+,>, \geq\}$ Parameters e.g. $\{\mathbf{m}, \mathbf{n}, \boldsymbol{\alpha}\}$
Models, e.g. linear integer arithmetic
Foreground (FG) specification extends BG specification by
New sorts, e.g. \{ array \}
New operators, e.g.
$\{$ read: array \times int \mapsto int,
write: array \times int \times int \mapsto array,
a: array \}
First-order clauses, e.g. array axiom
$\{\operatorname{read}(\operatorname{write}(a, i, x), i) \approx x$,

Finite saturation by superposition

$$
\operatorname{read}(\operatorname{write}(a, i, x), j) \approx \operatorname{read}(a, j) \vee i \approx j\}
$$

Hierarchic Specifications

Array axioms from above
(1) $\operatorname{read}(\operatorname{write}(a, i, x), i) \approx x$
(2) $\operatorname{read}(\operatorname{write}(a, i, x), j) \approx \operatorname{read}(a, j) \vee i \approx j$

Additional clauses

(3) $\operatorname{read}(\mathrm{a}, i) \leq \operatorname{read}(\mathrm{a}, j) \vee \neg(i<j) \vee i \notin[1 . .1000] \vee j \notin[1 . .1000]$ // Array a is sorted in the range [1..1000]
(4) $1 \leq m \wedge m<1000$
(5) $\operatorname{read}(a, m)<\operatorname{read}(a, m+1)$

Contributions of this paper

Can't we directly use superposition?

A general method for model computation on top of HSP/SMT, e.g.

$\mathbf{a} \mapsto$| 5 | 5 | 5 | \ldots | 5 | 6 | \ldots | 6 | 6 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 1 |
| :---: |\quad| 3 |
| :---: |

Hierarchic Specifications

Models of hierarchic specifications
Must satisfy the FG clauses, and
must leave the interpretation of the BG sorts and operators unchanged (conservative extension):

- distinct BG elements may not be identified (no confusion), and
- no new elements may be added to BG sorts (no junk)

Hierarchic superposition calculus (HSP)

Extension of the superposition calculus for hierarchic specifications
Calls BG-solver to decide BG-unsatisfiability of BG clauses
Complete under assumptions: sufficient completeness, compactness

> The clause set $(1)-(5)$ is not sufficiently complete
> Finite saturation does not mean "satisfiable (wrt hierarchic interpretations)"

Sufficient Completeness

Sufficient Completeness

In every model of the FG clauses, every ground FG term that has a BG sort must be equal to some BG term

Example

(3) $\operatorname{read}(a, i) \leq \operatorname{read}(a, j) \vee \neg(i<j) \vee i \notin[1 . .1000] \vee j \notin[1 . .1000]$
(5) $\operatorname{read}(a, m)<\operatorname{read}(a, m+1)$
is not sufficiently complete, admits junk:
Domain: $\quad\{0,-1,1,-2,2, \ldots, N a N\}$
Interpret: read(a, i) $\mapsto \mathrm{NaN}(\mathrm{NaN}<\mathrm{NaN}) \mapsto$ true $(\mathrm{NaN} \leq \mathrm{NaN}) \mapsto$ true
Consequence
Finite saturation of (1) - (5) under HSP does not mean anything

Next goal: recover sufficient completeness for finitely quantified clauses

Finitely Quantified Clauses

Definition

A clause C is finitely quantified if for every $B G$ variable x occurring under a BG sorted FG operator, C contains a domain declaration of the form $x \notin[1 . . u]$, where I and u are concrete integers.

Examples

(3) $\operatorname{read}(a, i) \leq \operatorname{read}(a, j) \vee \neg(i<j) \vee i \notin[1 . .1000] \vee j \notin[1 . .1000]$
(5) $\operatorname{read}(a, m)<\operatorname{read}(a, m+1)$
$f(i+1, f(j, 2)+1)>\alpha+y \vee y>0 \vee i \notin[1 . .1000] \vee j \notin[10 . .100]$
(Rationale: using "large" domains is useful enough in practice)
Observation: only finitely many ground instances wrt BG sorted FG terms

Sufficient Completeness for Finitely Quantified Clauses

(3) $\operatorname{read}(\mathrm{a}, i) \leq \operatorname{read}(\mathrm{a}, j) \vee \neg(i<j) \vee i \notin[1 . .1000] \vee j \notin[1 . .1000]$

Alternative 1
Force mapping of relevant read-terms to integers by adding unit clauses

```
read(a, 1) \approx 3
read(a, 2) \approx 5
```

$\operatorname{read}(\mathrm{a}, 999) \approx 4$
$\operatorname{read}(\mathrm{a}, 1000) \approx 7$

Properties
Recovers sufficient completeness
Soundness and completeness by exhaustive search through mappings
Practically useless

Sufficient Completeness for Finitely Quantified Clauses

(3) $\operatorname{read}(\mathrm{a}, i) \leq \operatorname{read}(\mathrm{a}, j) \vee \neg(i<j) \vee i \notin[1 . .1000] \vee j \notin[1 . .1000]$

Alternative 2

Force mapping of relevant read-terms to integers by adding unit clauses $\operatorname{read}(\mathrm{a}, 1) \approx \alpha_{1}$
$\operatorname{read}(\mathrm{a}, 2) \approx \alpha_{2}$
$\operatorname{read}(\mathrm{a}, 999) \approx \alpha_{999}$
$\operatorname{read}(\mathrm{a}, 1000) \approx \alpha_{1000}$
where α_{i} is a fresh parameter

Properties
Recovers sufficient completeness
Supplants outer loop by BG constraint satisfaction problem
Still practically useless

Sufficient Completeness for Finitely Quantified Clauses

(3) $\operatorname{read}(\mathrm{a}, i) \leq \operatorname{read}(\mathrm{a}, j) \vee \neg(i<j) \vee i \notin[1 . .1000] \vee j \notin[1 . .1000]$

Alternative 3 (taken)

Add unit clauses to express default interpretation with exceptions $\operatorname{read}(\mathrm{a}, i) \approx \alpha_{0} \vee i \notin[1 . .1000] \backslash\{50,60\}$
$\operatorname{read}(\mathrm{a}, 50) \approx \alpha_{50}$
$\operatorname{read}(\mathrm{a}, 60) \approx \alpha_{60}$
where α_{i} is a fresh parameter

Properties

Recovers sufficient completeness
Basis for procedure in paper

- Start with a default interpretation read $(\mathrm{a}, i) \approx \alpha_{0} \vee i \notin[1 . .1000]$
- Modify by adding exceptions like 50, 60 in a conflict-driven way until model found or unsatisfiable

Next: idea of this method

Our Method - First Round

Given clause set $N\left[\Delta_{x}\right]$, where $\Delta_{x}=[1 . .1000]$
(1) $\mathrm{f}(x) \not \approx x \vee x \notin[1 . .1000]$
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Current set of exceptions $\Pi_{x} \subseteq \Delta_{x}$
Initially $\Pi_{x}=\{ \}$

Finite Domain Transformation $M=\operatorname{FD}\left(N\left[\Delta_{x}\right], \Pi_{x}\right)$
(f) $f(x) \approx \boldsymbol{\alpha}_{0} \vee x \notin[1 . .1000] \quad$ default interpretation for $f(x)$ in (1)
(1f) $\boldsymbol{\alpha}_{0} \not \neq x \vee x \notin[1 . .1000] \quad$ (f) applied to (1)
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Now use HSP to check satisfiability

Our Method - First Round

Finite Domain Transformation $M=\operatorname{FD}\left(N\left[\Delta_{x}\right], \Pi_{x}\right)$
(f) $\quad \mathrm{f}(x) \approx \alpha_{0} \vee x \notin[1 . .1000]$
(1f) $\boldsymbol{\alpha}_{0} \not \not x \vee \vee \notin[1 . .1000]$
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$
M is unsatisfiable, take $\left\{f(5) \approx \boldsymbol{\alpha}_{0}, f(8) \approx \boldsymbol{\alpha}_{0},(2),(3)\right\}$, HSP detects this Maximal sub-domain $\Gamma_{x}=[1 . .7] \subseteq \Delta_{x}$ recovers satisfiability $\left(\alpha_{0} \mapsto 8\right)$
(f) $\mathrm{f}(x) \approx \alpha_{0} \vee x \notin[1 . .7]$
(1f) $\alpha_{0} \not \approx x \vee x \notin[1 . .7]$
(2) $f(5) \approx 8$
(3) $\quad f(8) \approx 5 \quad$ Satisfiable

Sub-domain [1..7] and critical point 8 can be found by binary search

Repair with 8 as next exception

Our Method - Second Round

Given clause set $\mathrm{N}\left[\Delta_{x}\right]$
(1) $\mathrm{f}(x) \not \approx x \vee x \notin[1 . .1000]$
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Current set of exception points $\Pi_{x} \subseteq \Delta_{x}$
$\Pi_{x}=\{8\}$

Finite Domain Transformation $M=\operatorname{FD}\left(N\left[\Delta_{x}\right], \Pi_{x}\right)$
(f) $f(x) \approx \alpha_{0} \vee x \notin[1 . .1000] \backslash\{8\} \quad$ default interpretation for $f(x)$ in (1)
(f8) $\quad f(8) \approx \alpha_{8}$ f at exception point 8
(1f) $\quad \alpha_{0} \not \approx x \vee x \notin[1 . .1000] \backslash\{8\}$
(f) applied to (1)
(1f8) $\boldsymbol{\alpha}_{8} \neq 8$
(f8) applied to (1)
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Satisfiable with $\boldsymbol{\alpha}_{0} \mapsto 8, \boldsymbol{\alpha}_{8} \mapsto 5$. Done

General Method: checkSAT/find

1 algorithm checkSAT($\left.N\left[\Delta_{\mathbf{x}}\right]\right)$
2 // returns "satisfiable" or "unsatisfiable"
$3 \operatorname{var} \Pi_{\mathbf{x}}:=\emptyset_{\mathbf{x}} / /$ The current set of exceptions while true \{

$$
\text { let } M=\mathrm{FD}\left(N, \Pi_{\mathrm{x}}\right)
$$

if M is satisfiable return "satisfiable"
if $M\left[\emptyset_{\mathrm{x}}\right]$ is unsatisfiable return "unsatisfiable"

Tacitly assume these checks are effective

Line 7 example, $\Pi_{x}=\{8\}$
(1) $\mathrm{f}(x)>x \vee x \notin \Delta_{x}$
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

$\mathrm{M} \quad \mathrm{M}\left[\phi_{x}\right]$

$f(5) \approx 8$
$f(8) \approx 5$

General Method: checkSat/find

1 algorithm find $\left(M\left[\Delta_{\mathbf{x}}\right]\right)$
2 // returns a pair (x, d) such that $x \in \mathbf{x}$ and $d \in \Delta_{x} \backslash \Pi_{x}$
let $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}$
for $i=1$ to $n\{$
if $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i}\right)} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable $\{$
let $\Gamma \subseteq \Delta_{x_{i}}$ and $d \in \Gamma$ such that
$M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot \Gamma_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is unsatisfiable and
$M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot(\Gamma \backslash\{d\})_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable return $\left(x_{i}, d\right)$
\}
\}
We know:

$$
\begin{array}{ccccccc}
\boxed{\Delta} & \boxed{\Delta} & & \boxed{\Delta} & \boxed{\Delta} & & \boxed{\Delta}
\end{array} \quad \text { unsatisfiable }
$$

General Method: checkSat/find

1 algorithm find $\left(M\left[\Delta_{\mathbf{x}}\right]\right)$
2 // returns a pair (x, d) such that $x \in \mathbf{x}$ and $d \in \Delta_{x} \backslash \Pi_{x}$
let $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}$
for $i=1$ to $n\{$
if $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i}\right)} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable $\{$ let $\Gamma \subseteq \Delta_{x_{i}}$ and $d \in \Gamma$ such that $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot \Gamma_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is unsatisfiable and $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot(\Gamma \backslash\{d\})_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable return $\left(x_{i}, d\right)$ \}
\}
We know:

General Method: checkSat/find

1 algorithm find $\left(M\left[\Delta_{\mathbf{x}}\right]\right)$
${ }_{2} \quad / /$ returns a pair (x, d) such that $x \in \mathbf{x}$ and $d \in \Delta_{x} \backslash \Pi_{x}$
3 let $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}$
for $i=1$ to $n\{$
if $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i}\right)} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable $\{$
let $\Gamma \subseteq \Delta_{x_{i}}$ and $d \in \Gamma$ such that
$M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot \Gamma_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is unsatisfiable and
$M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot(\Gamma \backslash\{d\})_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable
return $\left(x_{i}, d\right)$
\}
\}

Search:

$$
\begin{array}{ccccccc}
& \begin{array}{ccccc}
\Delta & & \Delta & \boxed{\Delta} & \\
x_{0} & x_{1} & \cdots & x_{i} & x_{i+1}
\end{array} \cdots & \begin{array}{|c}
\Delta \\
\hline
\end{array} & \text { satisfiable? }
\end{array}
$$

General Method: checkSat/find

1 algorithm find $\left(M\left[\Delta_{\mathbf{x}}\right]\right)$
${ }_{2} \quad / /$ returns a pair (x, d) such that $x \in \mathbf{x}$ and $d \in \Delta_{x} \backslash \Pi_{x}$
3 let $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}$
for $i=1$ to $n\{$
if $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i}\right)} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable $\{$
let $\Gamma \subseteq \Delta_{x_{i}}$ and $d \in \Gamma$ such that
$M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot \Gamma_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is unsatisfiable and
$M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot(\Gamma \backslash\{d\})_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable
return $\left(x_{i}, d\right)$
\}
\}

Search:

$$
\begin{array}{llllllll}
& x_{0} & x_{1} & \ldots & x_{i} & x_{i+1} & \ldots & x_{n}
\end{array} \quad \text { satisfiable }
$$

General Method: checkSat/find

1 algorithm find($\left.M\left[\Delta_{\mathbf{x}}\right]\right)$
${ }_{2} \quad / /$ returns a pair (x, d) such that $x \in \mathbf{x}$ and $d \in \Delta_{x} \backslash \Pi_{x}$
3 let $\left(x_{1}, \ldots, x_{n}\right)=\mathbf{x}$
$4 \quad$ for $i=1$ to $n\{$
5 if $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i}\right)} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable $\{$
$6 \quad$ let $\Gamma \subseteq \Delta_{x_{i}}$ and $d \in \Gamma$ such that $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot \Gamma_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is unsatisfiable and $M\left[\emptyset_{\left(x_{1}, \ldots, x_{i-1}\right)} \cdot(\Gamma \backslash\{d\})_{x_{i}} \cdot \Delta_{\left(x_{i+1}, \ldots, x_{n}\right)}\right]$ is satisfiable

Use binary
search on Δ_{x}
return $\left(x_{i}, d\right)$
\}
\}

Search:

$$
\varlimsup_{x_{0}} \quad \varlimsup_{x_{1}} \quad \ldots \quad x_{x_{i}} \quad x_{i+1} \quad \ldots \quad \begin{array}{lll|l}
x_{n} & \Delta & & \\
\end{array}
$$

Main Result

Assume that HSP decides satisfiability of clause sets $M=F D\left(N\left[\Delta_{x}\right], \Pi_{x}\right)$

Theorem

For any set N of finitely quantified clauses, checkSAT(N) terminates with the correct result "satisfiable" or "unsatisfiable" for N.

Moreover, if the result is "unsatisfiable" then the non-domain restricted version of N is unsatisfiable, which is obtained from N by removing from all clauses in N all domain declarations $x \notin \Delta_{x}$.
(1) $\mathrm{f}(x)>x \forall x \not \Delta_{x}$
(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Some Experiments

Array Example

$$
\begin{aligned}
& \operatorname{read}(\text { write }(a, i, x), i) \approx x \\
& \operatorname{read}(\operatorname{write}(a, i, x), j) \approx \operatorname{read}(a, j) \vee i \approx j \\
& \operatorname{read}(a, i) \leq \operatorname{read}(a, j) \vee \neg(i<j) \vee \\
& \quad i \notin[1 . .1000] \vee j \notin[1 . .1000] \\
& 1 \leq \mathrm{m} \wedge \mathrm{~m}<1000 \\
& \operatorname{read}(\mathrm{a}, \mathrm{~m})<\operatorname{read}(\mathrm{a}, \mathrm{~m}+1)
\end{aligned}
$$

$\|\Delta\|$	\#Iter	\#TP	Time
10	3	15	2.3
20	3	17	2.6
50	3	19	2.8
100	3	21	2.8
200	3	23	2.8
500	3	25	2.9
1000	3	27	3.0
2000	3	29	3.0
5000	3	33	3.5

$m=2$ variable occurrences
$\mathrm{n}=1000$ size of (largest) domain
Each iteration requires about $m+\operatorname{ld}(n)=2+10$ prover calls in find
By contrast, ground instantiation gives $\mathrm{n}^{\mathrm{m}}=10^{6}$ instances

Some Experiments

Running Example

$$
\begin{aligned}
& \mathrm{f}(x) \neq x \vee x \notin \Delta \\
& \mathrm{f}(5) \approx 8 \\
& \mathrm{f}(8) \approx 5
\end{aligned}
$$

$\|\Delta\|$	\#Iter	\#TP	Time
10	2	5	<1
20	2	6	<1
50	2	8	<1
100	2	9	<1
200	2	10	<1
500	2	11	<1
1000	2	12	<1
2000	2	13	<1
5000	2	15	<1

Some Experiments

$\#$	Problem	$\|\Delta\|$	\#Iter	\#TP	Time
1	$\mathrm{f}(x)>1+y \vee y<0 \vee x \notin \Delta$	any	1	1	<1
2	$\mathrm{~g}(x) \approx x \vee \mathrm{~g}(x) \approx x+1 \vee \neg(x \geq 0)$	10	9	32	5.5
	$\mathrm{~g}(x) \approx-x \vee \neg(x<0)$	20	20	86	55
	$\mathrm{f}(x)<\mathrm{g}(x) \vee x \notin \Delta$				
3	$\mathrm{f}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)>x_{1}+x_{2}+x_{3}+x_{4} \vee$	any	1	1	<1
	$x_{1} \notin \Delta \vee x_{2} \notin \Delta \vee x_{3} \notin \Delta \vee x_{4} \notin \Delta$				

Problem 1: default interpretation enough
Problem 2: have sufficient completeness wrt. g, need to treat only f
Problem 3: default interpretation enough

Z3: does not solve problems 1 and 2, solves problem 3 up to $|\Delta|=60$
Z3: solves running examples above

Conclusions

Presented a method on top of HSP for theorem (dis)proving under finitely quantified variables

Main idea: conflict-driven repair of default interpretation
Requires BG reasoner for EA-fragment
Meant to scale well with domain size
However worst case needs exceptions "everywhere"

Can (sometimes) be used on top of SMT
Eliminate first non-ground definitions by exhaustive superposition

Generalizes instantiation heuristics known from SMT
Return "unsatisfiable" or "satisfiable (over finite domain)"
(Supposing underlying prover terminates)

Future work
Instantiation-based methods as special case of the method here?

