Finite Quantification in Hierarchic Theorem Proving

Peter Baumgartner Joshua Bax

Uwe Waldmann

Overall Goal

Theorem Proving in Hierarchic Combinations of Specifications

Main issue

Quantifiers: complete theorem proving is theoretically impossible Problem: incompleteness: "no refutation" \neq "countersatisfiable"

Calculi for Hierarchic Reasoning

SMT: DPLL(T) + instantiation heuristics (CVC4, Z3,...)

Model evolution with LIA constraints [B Tinelli 2008, 2011]

Sequent calculus

Theory instantiation

LASCA

[Korovin 2006]

[Rümmer 2008]

[Korovin Voronkov 2007]

Hierarchic superposition

[Bachmair Ganzinger Waldmann 1994, Althaus Weidenbach Kruglov 2009, Weidenbach Kruglov 2012, B Waldmann 2013]

This work

Recover completeness for finitely quantified fragment Can be used on top of hierarchic superposition and SMT

Hierarchic Specifications

Background (BG) specification consists of

Sorts, e.g. { int } Operators, e.g. { 0, 1, -1, 2, -2, ..., -, +, >, \geq } Parameters e.g. { m, n, α } Models, e.g. linear integer arithmetic

Foreground (FG) specification extends BG specification by

```
New sorts, e.g. { array }

New operators, e.g.

{ read: array × int \mapsto int,

write: array × int × int \mapsto array,

a: array }

First-order clauses, e.g. array axiom

{ read(write(a, i, x), i) \approx x,

read(write(a, i, x), j) \approx read(a, j) \lor i \approx j }
```

Hierarchic Specifications

Array axioms from above

- (1) read(write(a, i, x), i) $\approx x$
- (2) read(write(a, i, x), j) \approx read(a, j) \lor $i \approx j$

Additional clauses

(3) read(a, *i*) \leq read(a, *j*) $\vee \neg$ (*i* < *j*) \vee *i* \notin [1..1000] \vee *j* \notin [1..1000]

// Array a is sorted in the range [1..1000]

- (4) $1 \le m \land m < 1000$
- (5) read(a, m) < read(a, m+1)

Contributions of this paper

Can't we directly use superposition?

A general method for model computation on top of HSP/SMT, e.g.

Hierarchic Specifications

Models of hierarchic specifications

Must satisfy the FG clauses, and must leave the interpretation of the BG sorts and operators unchanged (*conservative extension*):

- distinct BG elements may not be identified (no confusion), and
- no new elements may be added to BG sorts (*no junk*)

Hierarchic superposition calculus (HSP)

Extension of the superposition calculus for hierarchic specifications

Calls BG-solver to decide BG-unsatisfiability of BG clauses

Complete under assumptions: **sufficient completeness**, compactness

The clause set (1)-(5) is not sufficiently complete

Finite saturation does not mean "satisfiable (wrt hierarchic interpretations)"

Sufficient Completeness

Sufficient Completeness

In every model of the FG clauses, every ground FG term that has a BG sort must be equal to some BG term

Example

- (3) read(a, i) \leq read(a, j) $\vee \neg (i < j) \vee i \notin [1..1000] \vee j \notin [1..1000]$
- (5) read(a, m) < read(a, m+1)

is not sufficiently complete, admits junk:

Domain: { 0, -1, 1, -2, 2, ..., NaN }

Interpret: read(a, i) \mapsto NaN (NaN < NaN) \mapsto true (NaN \leq NaN) \mapsto true

Consequence

Finite saturation of (1) - (5) under HSP does not mean anything

Next goal: recover sufficient completeness for finitely quantified clauses

Finitely Quantified Clauses

Definition

A clause *C* is *finitely quantified* if for every BG variable x occurring under a BG sorted FG operator, *C* contains a domain declaration of the form $x \notin [1...u]$, where I and u are concrete integers.

Examples

(3) read(a, *i*)
$$\leq$$
 read(a, *j*) $\vee \neg(i < j) \vee i \notin [1..1000] \vee j \notin [1..1000]$
(5) read(a, m) < read(a, m+1)
f(*i*+1, f(j, 2) + 1) > α + y \vee y > 0 $\vee i \notin [1..1000] \vee j \notin [10..100]$

(Rationale: using "large" domains is useful enough in practice) Observation: only finitely many ground instances wrt BG sorted FG terms

Sufficient Completeness for Finitely Quantified Clauses

(3) read(a, i) \leq read(a, j) $\vee \neg (i < j) \vee i \notin [1..1000] \vee j \notin [1..1000]$

Alternative 1

Force mapping of relevant read-terms to integers by adding unit clauses

```
read(a, 1) \approx 3
read(a, 2) \approx 5
...
read(a, 999) \approx 4
read(a, 1000) \approx 7
```

Properties

Recovers sufficient completeness

Soundness and completeness by exhaustive search through mappings

Practically useless

Sufficient Completeness for Finitely Quantified Clauses

(3) read(a, i) \leq read(a, j) $\vee \neg (i < j) \vee i \notin [1..1000] \vee j \notin [1..1000]$

Alternative 2

Force mapping of relevant read-terms to integers by adding unit clauses

```
read(a, 1) \approx \alpha_1

read(a, 2) \approx \alpha_2

...

read(a, 999) \approx \alpha_{999}

read(a, 1000) \approx \alpha_{1000}

where \alpha_i is a fresh parameter
```

Properties

Recovers sufficient completeness

```
Supplants outer loop by BG constraint satisfaction problem
```

Still practically useless

Sufficient Completeness for Finitely Quantified Clauses

(3) read(a, i) \leq read(a, j) $\vee \neg (i < j) \vee i \notin [1..1000] \vee j \notin [1..1000]$

Alternative 3 (taken)

Add unit clauses to express default interpretation with exceptions

 $\label{eq:read} \begin{array}{l} \mbox{read}(a, \mbox{ i}) \approx \alpha_0 \lor \mbox{ i} \not\in [1..1000] \backslash \{50, \mbox{ 60}\} \\ \mbox{read}(a, \mbox{ 50}) \approx \alpha_{50} \\ \mbox{read}(a, \mbox{ 60}) \approx \alpha_{60} \\ \mbox{where } \alpha_i \mbox{ i a fresh parameter} \end{array}$

Properties

Recovers sufficient completeness

Basis for procedure in paper

- Start with a default interpretation read(a, i) $\approx \alpha_0 \lor i \notin [1..1000]$
- Modify by adding exceptions like 50, 60 in a conflict-driven way until model found or unsatisfiable
 Next: idea of this method

Our Method - First Round

Given clause set N[Δ_x], where $\Delta_x = [1..1000]$

- (1) $f(x) \approx x \lor x \notin [1..1000]$
- (2) $f(5) \approx 8$
- (3) $f(8) \approx 5$

Current set of exceptions $\Pi_x \subseteq \Delta_x$ Initially $\Pi_x = \{\}$

Finite Domain Transformation $M = FD(N[\Delta_x], \Pi_x)$

- (f) $f(x) \approx \alpha_0 \lor x \notin [1..1000]$ default interpretation for f(x) in (1) (1f) $\alpha_0 \approx x \lor x \notin [1..1000]$ (f) applied to (1) $(2) \quad f(5) \approx 8$
 - $(3) \quad f(8) \approx 5$

Now use HSP to check satisfiability

Our Method - First Round

Finite Domain Transformation $M = FD(N[\Delta_x], \Pi_x)$

- (f) $f(x) \approx \alpha_0 \lor x \notin [1..1000]$
- (1f) $\alpha_0 \approx x \lor x \notin [1..1000]$
- (2) $f(5) \approx 8$
- (3) $f(8) \approx 5$

M is unsatisfiable, take { $f(5) \approx \alpha_0$, $f(8) \approx \alpha_0$, (2), (3) }, HSP detects this

Maximal sub-domain $\Gamma_x = [1..7] \subseteq \Delta_x$ recovers satisfiability ($\alpha_0 \mapsto 8$)

(f)	$f(x) \approx \alpha_0 \vee x$	κ∉ [17]	(f)	$f(x) \approx \alpha_0 \vee$	′ <i>x</i> ∉ [18]	
(1f)	$\boldsymbol{\alpha}_0 \not\approx x \lor x \notin [17]$		(1f)	$\boldsymbol{\alpha}_{0} \not\approx x \lor x \not\in [18]$		
(2)	$f(5) \approx 8$		(2)	$f(5) \approx 8$		
(3)	$f(8) \approx 5$	Satisfiable	(3)	$f(8) \approx 5$	Unsatisfiable	

Sub-domain [1..7] and critical point 8 can be found by binary search

Repair with 8 as next exception

Our Method - Second Round

Given clause set $N[\Delta_x]$

- (1) $f(x) \approx x \lor x \notin [1..1000]$
- (2) $f(5) \approx 8$
- (3) $f(8) \approx 5$

Current set of exception points $\Pi_x \subseteq \Delta_x$

 $\Pi_x = \{8\}$

Finite Domain Transformation $M = FD(N[\Delta_x], \Pi_x)$

(f)	$f(x) \approx \boldsymbol{\alpha}_0 \lor x \not\in \boldsymbol{[11000]} \setminus \{8\}$
(f8)	$f(8) \approx \alpha_8$
(1f)	$\alpha_{0} \neq x_{1} \neq x \neq [1 \ 1000] \setminus [9]$

(1f)
$$\boldsymbol{\alpha}_0 \not\approx x \lor x \notin [1..1000] \setminus \{8\}$$

- (1f8) **α**₈ ≉ 8
- $(2) \quad f(5) \approx 8$
- (3) **f(8)** ≈ 5

default interpretation for f(x) in (1)

- f at exception point 8
- (f) applied to (1)
- (f8) applied to (1)

Satisfiable with $\alpha_0 \mapsto 8$, $\alpha_8 \mapsto 5$. Done

- algorithm checkSAT($N[\varDelta_x]$)
- 2 // returns "satisfiable" or "unsatisfiable"
- ³ var $\Pi_{\mathbf{x}} := \emptyset_{\mathbf{x}} //$ The current set of exceptions
- 4 while true $\{$
- 5 let $M = \mathsf{FD}(N, \Pi_{\mathbf{x}})$
- ⁶ if *M* is satisfiable return "satisfiable"
- ⁷ if $M[\emptyset_x]$ is unsatisfiable return "unsatisfiable"

8 **let**
$$(x, d) = find(M)$$

9
$$\Pi_{\mathbf{x}} := \Pi_{\mathbf{x}}[x \mapsto \Pi_x \cup \{d\}]$$

10 }

Line 7 example, $\Pi_x = \{8\}$

(1)
$$f(x) > x \lor x \notin \Delta_x$$

(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Tacitly assume these checks are effective

$$-\mathbf{M} = \mathbf{M}[\varnothing_X]$$

$$\frac{f(x) \approx \alpha_0 \lor x \not\in \Delta_X \setminus \{8\}}{f(8) \approx \alpha_0} \qquad f(5) \approx 8$$

$$\frac{\alpha_0 > x \lor x \notin \Delta_x \setminus \{8\}}{\alpha_8 > 8}$$

algorithm find($M[\Delta_x]$)

```
// returns a pair (x, d) such that x \in \mathbf{x} and d \in \Delta_x \setminus \Pi_x
 2
       let (x_1, ..., x_n) = x
 3
      for i = 1 to n {
 4
        if M[\emptyset_{(x_1,...,x_i)} \cdot \varDelta_{(x_{i+1},...,x_n)}] is satisfiable {
 5
               let \Gamma \subseteq \Delta_{x_i} and d \in \Gamma such that
 6
                    M[\emptyset_{(x_1,...,x_{i-1})} \cdot \Gamma_{x_i} \cdot \varDelta_{(x_{i+1},...,x_n)}] is unsatisfiable and
 7
                    M[\emptyset_{(x_1,\dots,x_{i-1})} \cdot (\Gamma \setminus \{d\})_{x_i} \cdot \varDelta_{(x_{i+1},\dots,x_n)}] is satisfiable
 8
             return (x_i, d)
 9
                }
10
        ł
11
```

We know:

1

algorithm find($M[\Delta_x]$)

```
// returns a pair (x, d) such that x \in \mathbf{x} and d \in \Delta_x \setminus \Pi_x
 2
       let (x_1, ..., x_n) = x
 3
      for i = 1 to n {
 4
         if M[\emptyset_{(x_1,...,x_i)} \cdot \varDelta_{(x_{i+1},...,x_n)}] is satisfiable {
 5
               let \Gamma \subseteq \Delta_{x_i} and d \in \Gamma such that
 6
                    M[\emptyset_{(x_1,...,x_{i-1})} \cdot \Gamma_{x_i} \cdot \varDelta_{(x_{i+1},...,x_n)}] is unsatisfiable and
 7
                    M[\emptyset_{(x_1,\dots,x_{i-1})} \cdot (\Gamma \setminus \{d\})_{x_i} \cdot \varDelta_{(x_{i+1},\dots,x_n)}] is satisfiable
 8
             return (x_i, d)
 9
                }
10
        ł
11
```

We know:

1


```
algorithm find(M[\Delta_x])
 1
       // returns a pair (x, d) such that x \in \mathbf{x} and d \in \Delta_x \setminus \Pi_x
 2
       let (x_1, ..., x_n) = x
 3
      for i = 1 to n {
 4
      if M[\emptyset_{(x_1,\dots,x_i)} \cdot \varDelta_{(x_{i+1},\dots,x_n)}] is satisfiable {
 5
               let \Gamma \subseteq \Delta_{x_i} and d \in \Gamma such that
 6
                   M[\emptyset_{(x_1,...,x_{i-1})} \cdot \Gamma_{x_i} \cdot \varDelta_{(x_{i+1},...,x_n)}] is unsatisfiable and
 7
                   M[\emptyset_{(x_1,\dots,x_{i-1})} \cdot (\Gamma \setminus \{d\})_{x_i} \cdot \varDelta_{(x_{i+1},\dots,x_n)}] is satisfiable
 8
             return (x_i, d)
 9
10
               }
        ł
11
```

Search:


```
algorithm find(M[\Delta_x])
 1
       // returns a pair (x, d) such that x \in \mathbf{x} and d \in \Delta_x \setminus \Pi_x
 2
       let (x_1, ..., x_n) = x
 3
      for i = 1 to n {
4
      if M[\emptyset_{(x_1,...,x_i)} \cdot \varDelta_{(x_{i+1},...,x_n)}] is satisfiable {
 5
              let \Gamma \subseteq \Delta_{x_i} and d \in \Gamma such that
 6
                   M[\emptyset_{(x_1,...,x_{i-1})} \cdot \Gamma_{x_i} \cdot \varDelta_{(x_{i+1},...,x_n)}] is unsatisfiable and
 7
                   M[\emptyset_{(x_1,\dots,x_{i-1})} \cdot (\Gamma \setminus \{d\})_{x_i} \cdot \varDelta_{(x_{i+1},\dots,x_n)}] is satisfiable
 8
             return (x_i, d)
 9
               }
10
        ł
11
```

Search:

Main Result

Assume that HSP decides satisfiability of clause sets $M = FD(N[\Delta_x], \Pi_x)$

Theorem

For any set N of finitely quantified clauses, checkSAT(N) terminates with the correct result "satisfiable" or "unsatisfiable" for N.

Moreover, if the result is "unsatisfiable" then the non-domain restricted version of N is unsatisfiable, which is obtained from N by removing from all clauses in N all domain declarations $x \notin \Delta_{x_{\perp}}$

(1)
$$f(x) > x \forall x \notin \Delta_x$$

(2) $f(5) \approx 8$
(3) $f(8) \approx 5$

Some Experiments				
Some Experiments		#Iter	#TP	Time
	10	3	15	2.3
Array Example	20	3	17	2.6
	50	3	19	2.8
read(write(a, i, x), i) $\approx x$	100	3	21	2.8
read(write(a, i, x), j) \approx read(a, j) \lor i \approx j	200	3	23	2.8
read(a, i) \leq read(a, j) $\vee \neg$ (i < j) \vee	500	3	25	2.9
<i>i</i> ∉ [11000] ∨ <i>j</i> ∉ [11000]	1000	3	27	3.0
	2000	3	29	3.0
$1 \leq m \wedge m < 1000$	5000	3	33	3.5
read(a, m) < read(a, m+1)				

m = 2 variable occurrences

n = 1000 size of (largest) domain

Each iteration requires about m + Id(n) = 2 + 10 prover calls in find

By contrast, ground instantiation gives $n^m = 10^6$ instances

Some Experiments

Running Example

f (<i>x</i>)	≉	<i>x</i> ∨	X	¢	Δ
f(5)	≈	8			
f(8)	≈	5			

		•
#Iter	#TP	Time
2	5	<1
2	6	<1
2	8	<1
2	9	<1
2	10	<1
2	11	<1
2	12	<1
2	13	<1
2	15	<1
	2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Some Experiments

#	Problem	$ \varDelta $	#Iter	#TP	Time
1	$f(x) > 1 + y \lor y < 0 \lor x \notin \Delta$	any	1	1	<1
2	$g(x) \approx x \lor g(x) \approx x + 1 \lor \neg (x \ge 0)$	10	9	32	5.5
	$g(x) \approx -x \lor \neg (x < 0)$	20	20	86	55
	$f(x) < g(x) \lor x \notin \Delta$				
3	$f(x_1, x_2, x_3, x_4) > x_1 + x_2 + x_3 + x_4 \lor$	any	1	1	<1
	$x_1 \notin \varDelta \lor x_2 \notin \varDelta \lor x_3 \notin \varDelta \lor x_4 \notin \varDelta$				

Problem 1: default interpretation enough Problem 2: have sufficient completeness wrt. g, need to treat only f Problem 3: default interpretation enough

Z3: does not solve problems 1 and 2, solves problem 3 up to $|\Delta| = 60$ Z3: solves running examples above

Conclusions

Presented a method on top of HSP for theorem (dis)proving under finitely quantified variables

Main idea: conflict-driven repair of default interpretation Requires BG reasoner for EA-fragment Meant to scale well with domain size However worst case needs exceptions "everywhere"

Can (sometimes) be used on top of SMT

Eliminate first non-ground definitions by exhaustive superposition

Generalizes instantiation heuristics known from SMT

Return "unsatisfiable" or "satisfiable (over finite domain)" (Supposing underlying prover terminates)

Future work

Instantiation-based methods as special case of the method here?