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Overall Goal

2

Background Specification (BG) 
- Linear integer arithmetic

Foreground Specification (FG) 
Axioms: Lists, Arrays 
Definitions: Length, isSorted 

⊨ Conjectureextends
?

Theorem Proving in Hierarchic Combinations of Specifications

Main issue 
  Quantifiers: complete theorem proving is theoretically impossible 
  Problem: incompleteness: “no refutation” ⇒ “countersatisfiable” 
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Calculi for Hierarchic Reasoning

3

SMT: DPLL(T) + instantiation heuristics (CVC4, Z3,...) 
!
Model evolution with LIA constraints      [B Tinelli 2008, 2011] 
!
Sequent calculus                        [Rümmer 2008] 
!
Theory instantiation                      [Korovin 2006] 
!
LASCA                         [Korovin Voronkov 2007] 
!
Hierarchic superposition  
    [Bachmair Ganzinger Waldmann 1994, Althaus Weidenbach Kruglov 
                            2009, Weidenbach Kruglov 2012, B Waldmann 2013]  
!
This work 
  Recover completeness for finitely quantified fragment 
  Can be used on top of hierarchic superposition and SMT 
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Hierarchic Specifications

Background (BG) specification consists of 

Sorts, e.g. { int } 
Operators, e.g. { 0, 1, -1, 2, -2, ..., -, +, >, ≥} Parameters e.g. { m, n, α }  
Models, e.g. linear integer arithmetic 

Foreground (FG) specification extends BG specification by 

New sorts, e.g. { array } 
New operators, e.g.  

{ read: array × int ↦ int,   
  write: array × int × int ↦ array,          
  a: array } 

First-order clauses, e.g. array axiom 

   { read(write(a, i, x), i) ≈ x,  
    read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j  }

4

Finite saturation  
by superposition
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Hierarchic Specifications

Array axioms from above 
(1)  read(write(a, i, x), i) ≈ x  
(2)  read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j  
!
Additional clauses 
(3)  read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i ∉ [1..1000] ∨ j ∉ [1..1000]          
        // Array a is sorted in the range [1..1000] 
(4)  1 ≤ m ∧ m < 1000 
(5)  read(a, m) < read(a, m+1) 
!
Contributions of this paper 
 A general method for model computation on top of HSP/SMT, e.g. 
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Can’t we directly  
use superposition? 

1 2 3 50 51
m

5 5 5 5 6 6 6 6

998 999 1000

a ↦ …

… …

…
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Hierarchic Specifications

Models of hierarchic specifications 
Must satisfy the FG clauses, and 
must leave the interpretation of the BG sorts and operators unchanged 
(conservative extension): 
- distinct BG elements may not be identified (no confusion), and 
- no new elements may be added to BG sorts (no junk) 

!
Hierarchic superposition calculus (HSP) 
  Extension of the superposition calculus for hierarchic specifications 
  Calls BG-solver to decide BG-unsatisfiability of BG clauses 
  Complete under assumptions: sufficient completeness, compactness 
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The clause set (1)-(5) is not sufficiently complete 
!
Finite saturation does not mean  
“satisfiable (wrt hierarchic interpretations)”
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Sufficient Completeness

Sufficient Completeness 
In every model of the FG clauses, every ground FG term that has a BG  
sort must be equal to some BG term 

Example 
!
!
is not sufficiently complete, admits junk: 
Domain:      { 0, -1, 1, -2, 2, …, NaN } 

Interpret:  read(a, i) ↦ NaN  (NaN < NaN) ↦ true (NaN ≤ NaN) ↦ true 
Consequence 
  Finite saturation of (1) - (5) under HSP does not mean anything 
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(3)  read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i ∉ [1..1000] ∨ j ∉ [1..1000]  
(5)  read(a, m) < read(a, m+1)

Next goal: recover sufficient completeness for finitely quantified clauses
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Finitely Quantified Clauses

Definition 
!
  A clause C is finitely quantified if for every BG variable x occurring  
  under a BG sorted FG operator, C contains a domain declaration of  
  the form x ∉ [l..u], where l and u are concrete integers. 
!
Examples 
!
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(3)  read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i ∉ [1..1000] ∨ j ∉ [1..1000]  
(5)  read(a, m) < read(a, m+1) 
f(i+1, f(j, 2) + 1) > α + y ∨ y > 0 ∨ i ∉ [1..1000] ∨ j ∉ [10..100]

(Rationale: using “large” domains is useful enough in practice) 
Observation: only finitely many ground instances wrt BG sorted FG terms
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Sufficient Completeness for Finitely Quantified Clauses

Alternative 1 
 Force mapping of relevant read-terms to integers by adding unit clauses

  read(a, 1) ≈ 3  

  read(a, 2) ≈ 5 
     … 
  read(a, 999) ≈ 4 
  read(a, 1000) ≈ 7 
!
Properties 
 Recovers sufficient completeness 
 Soundness and completeness by exhaustive search through mappings 
 Practically useless 
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(3)  read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i ∉ [1..1000] ∨ j ∉ [1..1000]
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Sufficient Completeness for Finitely Quantified Clauses

Alternative 2 
 Force mapping of relevant read-terms to integers by adding unit clauses 

  read(a, 1) ≈ α1  
  read(a, 2) ≈ α2 
     … 
  read(a, 999) ≈ α999 
  read(a, 1000) ≈ α1000 
 where αi is a fresh parameter 
!
Properties 
 Recovers sufficient completeness 
 Supplants outer loop by BG constraint satisfaction problem 
 Still practically useless 
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(3)  read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i ∉ [1..1000] ∨ j ∉ [1..1000]
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Sufficient Completeness for Finitely Quantified Clauses

Alternative 3 (taken) 
 Add unit clauses to express default interpretation with exceptions  

  read(a, i) ≈ α0 ∨ i ∉ [1..1000]\{50, 60}  
  read(a, 50) ≈ α50 
    read(a, 60) ≈ α60 
 where αi is a fresh parameter 
!
Properties 
 Recovers sufficient completeness 
 Basis for procedure in paper 

 - Start with a default interpretation read(a, i) ≈ α0 ∨ i ∉ [1..1000] 

 - Modify by adding exceptions like 50, 60 in a conflict-driven way 
  until model found or unsatisfiable 
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(3)  read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨ i ∉ [1..1000] ∨ j ∉ [1..1000]

Next: idea of this method
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Our Method - First Round

Given clause set N[Δx], where Δx  = [1..1000] 

 (1)  f(x) ≉ x ∨ x ∉ [1..1000]         
 (2)  f(5) ≈ 8 
 (3)  f(8) ≈ 5 
!
Current set of exceptions Πx ⊆ Δx  
 Initially Πx  = {} 

!
Finite Domain Transformation M = FD(N[Δx], Πx) 
 (f)   f(x) ≈ α0 ∨ x ∉ [1..1000]     default interpretation for f(x) in (1) 
 (1f)  α0  ≉ x ∨ x ∉ [1..1000]      (f) applied to (1) 
 (2)   f(5) ≈ 8 
 (3)   f(8) ≈ 5 
!
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Now use HSP to check satisfiability
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Our Method - First Round

Finite Domain Transformation M = FD(N[Δx], Πx) 
 (f)   f(x) ≈ α0 ∨ x ∉ [1..1000] 
 (1f)  α0  ≉ x ∨ x ∉ [1..1000]  
 (2)   f(5) ≈ 8 
 (3)   f(8) ≈ 5 
M is unsatisfiable, take { f(5) ≈ α0 , f(8) ≈ α0 , (2), (3) }, HSP detects this  

Maximal sub-domain Γx = [1..7] ⊆ Δx  recovers satisfiability (α0 ↦ 8) 
!
!
!
!
!
!
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Repair with 8 as next exception 

(f)   f(x) ≈ α0 ∨ x ∉ [1..7] 
(1f)  α0  ≉ x ∨ x ∉ [1..7] 
(2)  f(5) ≈ 8 
(3)  f(8) ≈ 5 Satisfiable

(f)   f(x) ≈ α0 ∨ x ∉ [1..8] 
(1f)  α0  ≉ x ∨ x ∉ [1..8] 
(2)  f(5) ≈ 8 
(3)  f(8) ≈ 5 Unsatisfiable

Sub-domain [1..7] and critical point 8 can be found by binary search 
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Our Method - Second Round

Given clause set N[Δx] 

 (1)  f(x) ≉ x ∨ x ∉ [1..1000] 
 (2)  f(5) ≈ 8 
 (3)  f(8) ≈ 5 
!
Current set of exception points Πx ⊆ Δx  
 Πx  = {8} 

!
Finite Domain Transformation M = FD(N[Δx], Πx) 
 (f)   f(x) ≈ α0 ∨ x ∉ [1..1000]\{8}   default interpretation for f(x) in (1) 
 (f8)  f(8) ≈ α8             f at exception point 8         
 (1f)  α0  ≉ x ∨ x ∉ [1..1000]\{8}    (f) applied to (1) 
 (1f8) α8  ≉ 8               (f8) applied to (1) 
 (2)   f(5) ≈ 8 
 (3)   f(8) ≈ 5
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Satisfiable with α0 ↦ 8, α8 ↦ 5 . Done 
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General Method: checkSAT/find
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Line 7 example, Πx = {8} 
 (1)  f(x) > x ∨ x ∉ Δx  
 (2)  f(5) ≈ 8 
 (3)  f(8) ≈ 5

1 algorithm checkSAT(N[�
x

])
2 // returns ”satisfiable” or ”unsatisfiable”

3 var ⇧
x

:= ;
x

// The current set of exceptions

4 while true {
5 let M = FD(N,⇧

x

)
6 if M is satisfiable return ”satisfiable”

7 if M[;
x

] is unsatisfiable return ”unsatisfiable”

8 let (x, d) = find(M)
9 ⇧

x

:= ⇧
x

[x 7! ⇧
x

[ {d}]
10 }

1 algorithm find(M[�
x

])
2 // returns a pair (x, d) such that x 2 x and d 2 �

x

\ ⇧
x

3 let (x1, . . . , xn

) = x

4 for i = 1 to n {
5 if M[;(x1 ,...,xi

) · �(x

i+1 ,...,xn

)] is satisfiable {
6 let � ✓ �

x

i

and d 2 � such that

7 M[;(x1 ,...,xi�1) · �x

i

· �(x

i+1 ,...,xn

)] is unsatisfiable and

8 M[;(x1 ,...,xi�1) · (� \ {d})x

i

· �(x

i+1 ,...,xn

)] is satisfiable

9 return (x

i

, d)
10 }
11 }

1

Tacitly assume these  
checks are effective 

f(x) ≈ α0 ∨ x ∉ Δx\{8}    f(5) ≈ 8 
f(8) ≈ α8           f(8) ≈ 5 
α0  > x ∨ x ∉ Δx\{8} 

α8  > 8

FD

M M[∅x]
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General Method: checkSat/find
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1 algorithm checkSAT(N[�
x

])
2 // returns ”satisfiable” or ”unsatisfiable”

3 var ⇧
x

:= ;
x

// The current set of exceptions

4 while true {
5 let M = FD(N,⇧

x

)
6 if M is satisfiable return ”satisfiable”

7 if M[;
x

] is unsatisfiable return ”unsatisfiable”

8 let (x, d) = find(M)
9 ⇧

x

:= ⇧
x

[x 7! ⇧
x

[ {d}]
10 }

1 algorithm find(M[�
x

])
2 // returns a pair (x, d) such that x 2 x and d 2 �

x

\ ⇧
x

3 let (x1, . . . , xn

) = x

4 for i = 1 to n {
5 if M[;(x1 ,...,xi

) · �(x

i+1 ,...,xn

)] is satisfiable {
6 let � ✓ �

x

i

and d 2 � such that

7 M[;(x1 ,...,xi�1) · �x

i

· �(x

i+1 ,...,xn

)] is unsatisfiable and

8 M[;(x1 ,...,xi�1) · (� \ {d})x

i

· �(x

i+1 ,...,xn

)] is satisfiable

9 return (x

i

, d)
10 }
11 }

1

x0 x1
…

xi xi+1
…

xn

unsatisfiableΔ Δ

We know:

ΔΔΔ
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General Method: checkSat/find
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1 algorithm checkSAT(N[�
x

])
2 // returns ”satisfiable” or ”unsatisfiable”

3 var ⇧
x

:= ;
x

// The current set of exceptions

4 while true {
5 let M = FD(N,⇧

x

)
6 if M is satisfiable return ”satisfiable”

7 if M[;
x

] is unsatisfiable return ”unsatisfiable”

8 let (x, d) = find(M)
9 ⇧

x

:= ⇧
x

[x 7! ⇧
x

[ {d}]
10 }

1 algorithm find(M[�
x

])
2 // returns a pair (x, d) such that x 2 x and d 2 �

x

\ ⇧
x

3 let (x1, . . . , xn

) = x

4 for i = 1 to n {
5 if M[;(x1 ,...,xi

) · �(x

i+1 ,...,xn

)] is satisfiable {
6 let � ✓ �

x

i

and d 2 � such that

7 M[;(x1 ,...,xi�1) · �x

i

· �(x

i+1 ,...,xn

)] is unsatisfiable and

8 M[;(x1 ,...,xi�1) · (� \ {d})x

i

· �(x

i+1 ,...,xn

)] is satisfiable

9 return (x

i

, d)
10 }
11 }

1

x0 x1
…

xi xi+1
…

xn

satisfiable

We know:
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General Method: checkSat/find
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1 algorithm checkSAT(N[�
x

])
2 // returns ”satisfiable” or ”unsatisfiable”

3 var ⇧
x

:= ;
x

// The current set of exceptions

4 while true {
5 let M = FD(N,⇧

x

)
6 if M is satisfiable return ”satisfiable”

7 if M[;
x

] is unsatisfiable return ”unsatisfiable”

8 let (x, d) = find(M)
9 ⇧

x

:= ⇧
x

[x 7! ⇧
x

[ {d}]
10 }

1 algorithm find(M[�
x

])
2 // returns a pair (x, d) such that x 2 x and d 2 �

x

\ ⇧
x

3 let (x1, . . . , xn

) = x

4 for i = 1 to n {
5 if M[;(x1 ,...,xi

) · �(x

i+1 ,...,xn

)] is satisfiable {
6 let � ✓ �

x

i

and d 2 � such that

7 M[;(x1 ,...,xi�1) · �x

i

· �(x

i+1 ,...,xn

)] is unsatisfiable and

8 M[;(x1 ,...,xi�1) · (� \ {d})x

i

· �(x

i+1 ,...,xn

)] is satisfiable

9 return (x

i

, d)
10 }
11 }

1

x0 x1
…

xi xi+1
…

xn

satisfiable?

Search:

Δ ΔΔΔ
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General Method: checkSat/find
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1 algorithm checkSAT(N[�
x

])
2 // returns ”satisfiable” or ”unsatisfiable”

3 var ⇧
x

:= ;
x

// The current set of exceptions

4 while true {
5 let M = FD(N,⇧

x

)
6 if M is satisfiable return ”satisfiable”

7 if M[;
x

] is unsatisfiable return ”unsatisfiable”

8 let (x, d) = find(M)
9 ⇧

x

:= ⇧
x

[x 7! ⇧
x

[ {d}]
10 }

1 algorithm find(M[�
x

])
2 // returns a pair (x, d) such that x 2 x and d 2 �

x

\ ⇧
x

3 let (x1, . . . , xn

) = x

4 for i = 1 to n {
5 if M[;(x1 ,...,xi

) · �(x

i+1 ,...,xn

)] is satisfiable {
6 let � ✓ �

x

i

and d 2 � such that

7 M[;(x1 ,...,xi�1) · �x

i

· �(x

i+1 ,...,xn

)] is unsatisfiable and

8 M[;(x1 ,...,xi�1) · (� \ {d})x

i

· �(x

i+1 ,...,xn

)] is satisfiable

9 return (x

i

, d)
10 }
11 }

1

x0 x1
…

xi xi+1
…

xn

satisfiable

Search:

Δ Δ
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General Method: checkSat/find
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1 algorithm checkSAT(N[�
x

])
2 // returns ”satisfiable” or ”unsatisfiable”

3 var ⇧
x

:= ;
x

// The current set of exceptions

4 while true {
5 let M = FD(N,⇧

x

)
6 if M is satisfiable return ”satisfiable”

7 if M[;
x

] is unsatisfiable return ”unsatisfiable”

8 let (x, d) = find(M)
9 ⇧

x

:= ⇧
x

[x 7! ⇧
x

[ {d}]
10 }

1 algorithm find(M[�
x

])
2 // returns a pair (x, d) such that x 2 x and d 2 �

x

\ ⇧
x

3 let (x1, . . . , xn

) = x

4 for i = 1 to n {
5 if M[;(x1 ,...,xi

) · �(x

i+1 ,...,xn

)] is satisfiable {
6 let � ✓ �

x

i

and d 2 � such that

7 M[;(x1 ,...,xi�1) · �x

i

· �(x

i+1 ,...,xn

)] is unsatisfiable and

8 M[;(x1 ,...,xi�1) · (� \ {d})x

i

· �(x

i+1 ,...,xn

)] is satisfiable

9 return (x

i

, d)
10 }
11 }

1

x0 x1
…

xi xi+1
…

xn

unsatisfiable (“just”)

Use binary  
search on Δx 

Search:

Δ ΔΓd
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Main Result

Assume that HSP decides satisfiability of clause sets M = FD(N[Δx], Πx)  
!
Theorem 
For any set N of finitely quantified clauses, checkSAT(N) terminates with 
the correct result “satisfiable” or “unsatisfiable” for N. 
!
Moreover, if the result is “unsatisfiable” then the non-domain restricted 
version of N is unsatisfiable, which is obtained from N by removing from 
all clauses in N all domain declarations x ∉ Δx .           
!

21

 (1)  f(x) > x ∨ x ∉ Δx  
 (2)  f(5) ≈ 8 
 (3)  f(8) ≈ 5
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Some Experiments
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Array Example

read(write(a, i, x), i) ≈ x  
read(write(a, i, x), j) ≈ read(a, j) ∨ i ≈ j  
read(a, i) ≤ read(a, j) ∨ ¬(i < j) ∨  
  i ∉ [1..1000] ∨ j ∉ [1..1000] 
1 ≤ m ∧ m < 1000 
read(a, m) < read(a, m+1) 

# Problem |�| #Iter #TP Time
1 f(x) > 1 + y _ y < 0 _ x < � any 1 1 <1

2 g(x) ⇡ x _ g(x) ⇡ x + 1 _ ¬(x � 0)
g(x) ⇡ �x _ ¬(x < 0)
f(x) < g(x) _ x < �

10 9 32 5.5
20 20 86 55

3 f(x1, x2, x3, x4) > x1 + x2 + x3 + x4 _
x1 < � _ x2 < � _ x3 < � _ x4 < �

any 1 1 <1

4- see caption 5- see Section 1 6- see Example 3.2 6alt- see text
|�| #Iter #TP Time #Iter #TP Time #Iter #TP Time #Iter #TP Time
10 2 5 <1 3 15 2.3 3 12 <1 5 25 1.5
20 2 6 <1 3 17 2.6 3 14 <1 15 87 4.4
50 2 8 <1 3 19 2.8 3 19 1.1 34 239 23

100 2 9 <1 3 21 2.8 3 21 1.1 59 456 181
200 2 10 <1 3 23 2.8 3 23 1.2
500 2 11 <1 3 25 2.9 3 24 1.2

1000 2 12 <1 3 27 3.0 3 26 1.3
2000 2 13 <1 3 29 3.0 3 28 1.4
5000 2 15 <1 3 33 3.5 3 32 1.5

Table 1. Experimental results. Problem 4 is {f(x) 0 x _ x < �, f(5) ⇡ 8, f(8) ⇡ 5}

the total CPU time needed to solve the problem. All experiments were carried out on a
Linux desktop with a quad-core Intel i7 cpu running at 2.8 GHz. For comparison, we
have also run Microsoft’s SMT-solver Z3 [17], version 4.1, on our examples, using the
obvious formula representation of the domains �.

Some comments on the individual problems. Problem (1) is trivially solved, for any
�. In fact, the default interpretation is su�cient for that. Notice that the variable y is not
finitely quantified (and does not need to be). Z3 reports “unknown” on problem (1), but,
surprisingly it solves the essentially same problem f(x) > y _ y < 0 quickly. Problem
(2) is meant to showcase our algorithm in conjunction with Beagle’s theorem proving
capabilities. The function symbol g is “su�ciently complete” defined by the first two
clauses, and only the third clause containing the function symbol f needs finite quantifi-
cation. Z3 could not solve this problem within three minutes. We devised problem (3)
to get some insight into Z3’s capabilities on the problems we are interested in. While
it is trivial for our approach, Z3 seems to instantiate the clause in problem (3). Clearly,
there is a scalability issue here, as for about |�| > 60 the problem becomes unsolvable
in reasonable time.

As a side note, we found Z3s performance impressive, and it could solve problems
(4)–(6) in very short time. Indeed, we plan to integrate Z3 in our approach and expect
much better performance on many problems (Beagle’s theory reasoning component is
a rather slow implementation of Cooper’s quantifier elimination algorithm.)

Problem (4) is a simple test of the default interpretation/exception mechanism. Prob-
lem (5) is the one in the Introduction, and problem (6) is our running example.

The problems (4), (5) and (6) scale very well, as expected. The first two are proven
satisfiable using the default interpretation and a fixed number of exception points. In
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# Problem |�| #Iter #TP Time
1 f(x) > 1 + y _ y < 0 _ x < � any 1 1 <1

2 g(x) ⇡ x _ g(x) ⇡ x + 1 _ ¬(x � 0)
g(x) ⇡ �x _ ¬(x < 0)
f(x) < g(x) _ x < �

10 9 32 5.5
20 20 86 55

3 f(x1, x2, x3, x4) > x1 + x2 + x3 + x4 _
x1 < � _ x2 < � _ x3 < � _ x4 < �

any 1 1 <1

4- see caption 5- see Section 1 6- see Example 3.2 6alt- see text
|�| #Iter #TP Time #Iter #TP Time #Iter #TP Time #Iter #TP Time
10 2 5 <1 3 15 2.3 3 12 <1 5 25 1.5
20 2 6 <1 3 17 2.6 3 14 <1 15 87 4.4
50 2 8 <1 3 19 2.8 3 19 1.1 34 239 23

100 2 9 <1 3 21 2.8 3 21 1.1 59 456 181
200 2 10 <1 3 23 2.8 3 23 1.2
500 2 11 <1 3 25 2.9 3 24 1.2

1000 2 12 <1 3 27 3.0 3 26 1.3
2000 2 13 <1 3 29 3.0 3 28 1.4
5000 2 15 <1 3 33 3.5 3 32 1.5

Table 1. Experimental results. Problem 4 is {f(x) 0 x _ x < �, f(5) ⇡ 8, f(8) ⇡ 5}

the total CPU time needed to solve the problem. All experiments were carried out on a
Linux desktop with a quad-core Intel i7 cpu running at 2.8 GHz. For comparison, we
have also run Microsoft’s SMT-solver Z3 [17], version 4.1, on our examples, using the
obvious formula representation of the domains �.

Some comments on the individual problems. Problem (1) is trivially solved, for any
�. In fact, the default interpretation is su�cient for that. Notice that the variable y is not
finitely quantified (and does not need to be). Z3 reports “unknown” on problem (1), but,
surprisingly it solves the essentially same problem f(x) > y _ y < 0 quickly. Problem
(2) is meant to showcase our algorithm in conjunction with Beagle’s theorem proving
capabilities. The function symbol g is “su�ciently complete” defined by the first two
clauses, and only the third clause containing the function symbol f needs finite quantifi-
cation. Z3 could not solve this problem within three minutes. We devised problem (3)
to get some insight into Z3’s capabilities on the problems we are interested in. While
it is trivial for our approach, Z3 seems to instantiate the clause in problem (3). Clearly,
there is a scalability issue here, as for about |�| > 60 the problem becomes unsolvable
in reasonable time.

As a side note, we found Z3s performance impressive, and it could solve problems
(4)–(6) in very short time. Indeed, we plan to integrate Z3 in our approach and expect
much better performance on many problems (Beagle’s theory reasoning component is
a rather slow implementation of Cooper’s quantifier elimination algorithm.)

Problem (4) is a simple test of the default interpretation/exception mechanism. Prob-
lem (5) is the one in the Introduction, and problem (6) is our running example.

The problems (4), (5) and (6) scale very well, as expected. The first two are proven
satisfiable using the default interpretation and a fixed number of exception points. In

13

m = 2 variable occurrences 
n = 1000 size of (largest) domain 
Each iteration requires about m + ld(n) = 2 + 10 prover calls in find 
!
By contrast, ground instantiation gives nm = 106 instances 
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# Problem |�| #Iter #TP Time
1 f(x) > 1 + y _ y < 0 _ x < � any 1 1 <1

2 g(x) ⇡ x _ g(x) ⇡ x + 1 _ ¬(x � 0)
g(x) ⇡ �x _ ¬(x < 0)
f(x) < g(x) _ x < �

10 9 32 5.5
20 20 86 55

3 f(x1, x2, x3, x4) > x1 + x2 + x3 + x4 _
x1 < � _ x2 < � _ x3 < � _ x4 < �

any 1 1 <1

4- see caption 5- see Section 1 6- see Example 3.2 6alt- see text
|�| #Iter #TP Time #Iter #TP Time #Iter #TP Time #Iter #TP Time
10 2 5 <1 3 15 2.3 3 12 <1 5 25 1.5
20 2 6 <1 3 17 2.6 3 14 <1 15 87 4.4
50 2 8 <1 3 19 2.8 3 19 1.1 34 239 23

100 2 9 <1 3 21 2.8 3 21 1.1 59 456 181
200 2 10 <1 3 23 2.8 3 23 1.2
500 2 11 <1 3 25 2.9 3 24 1.2

1000 2 12 <1 3 27 3.0 3 26 1.3
2000 2 13 <1 3 29 3.0 3 28 1.4
5000 2 15 <1 3 33 3.5 3 32 1.5

Table 1. Experimental results. Problem 4 is {f(x) 0 x _ x < �, f(5) ⇡ 8, f(8) ⇡ 5}

the total CPU time needed to solve the problem. All experiments were carried out on a
Linux desktop with a quad-core Intel i7 cpu running at 2.8 GHz. For comparison, we
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f(x) ≉ x ∨ x ∉ Δ 
f(5) ≈ 8 
f(8) ≈ 5 

Running Example
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!
!
!
!
!
!
!
!
!
!
Problem 1: default interpretation enough 
Problem 2: have sufficient completeness wrt. g, need to treat only f 
Problem 3: default interpretation enough 
!
Z3: does not solve problems 1 and 2, solves problem 3 up to |Δ| = 60   
Z3: solves running examples above
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Conclusions

Presented a method on top of HSP for theorem (dis)proving under 
finitely quantified variables 
  Main idea: conflict-driven repair of default interpretation 
  Requires BG reasoner for EA-fragment 
  Meant to scale well with domain size 
  However worst case needs exceptions “everywhere” 
   
Can (sometimes) be used on top of SMT 
  Eliminate first non-ground definitions by exhaustive superposition 
!
Generalizes instantiation heuristics known from SMT 
  Return “unsatisfiable” or “satisfiable (over finite domain)”  
  (Supposing underlying prover terminates) 
!
Future work 
  Instantiation-based methods as special case of the method here?
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