The Model Evolution Calculus with Equality

Peter Baumgartner Max-Planck-Institute for Informatics Saarbrücken, Germany

Cesare Tinelli The University of Iowa Iowa, USA

Background – Instance Based Methods

- **Model Evolution** is related to Instance Based Methods
 - Ordered Semantic Hyper Linking [Plaisted et al]
 - Primal Partial Instantiation [Hooker et al]
 - Disconnection Method [Billon], DCTP [Letz&Stenz]
 - Inst-Gen [Ganzinger&Korovin]
 - Successor of First-Order DPLL [B.]
- Principle: Reduce proof search in first-order (clausal) logic to propositional logic in an "intelligent" way
- Different to Resolution, Model Elimination,... (Pro's and Con's)

Background – Model Evolution

- The best modern SAT solvers (satz, MiniSat, zChaff, Berkmin,...) are based on the Davis-Putnam-Logemann-Loveland procedure [DPLL 1960-1963]
- Can DPLL be lifted to the first-order level? How to combine
 - successful SAT techniques
 (unit propagation, backjumping, lemma learning,...)
 - successful first-order techniques? (unification, redundancy concepts, ...)?
- Realization in Model Evolution calculus / Darwin implementation
 - Basic approach developed (CADE-19)
 - Lemma learning on the way
 - This work: built-in equality reasoning

Contents

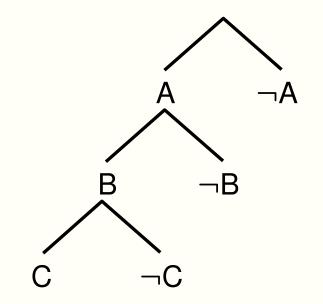
- DPLL as a starting point for the Model Evolution calculus
- Model Evolution calculus without equality
 - Model construction
 - Inference rules
- Equality reasoning
 - Equality reasoning in instance based methods
 - Inference rules
 - How it works (semantical considerations)

DPLL procedure

Input: Propositional clause set **Output:** Model or "unsatisfiable"

Algorithm components:

- Propositional semantic tree enumerates interpretations
- Simplification
- Split
- Backtracking



Lifting to first-order logic?

 $\{A,B\} \models A \lor B \lor C \lor D, \dots$

No, split on C: $\{A, B, C\} \models \neg A \lor \neg B \lor G \lor D, \ldots$

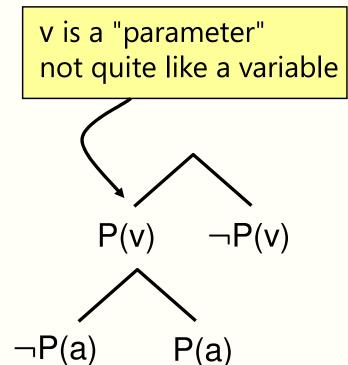
Model Evolution as First-Order DPLL

Lifing of semantic tree data structure and derivation rules to first-order

Input: First-order clause set Output: Model or "unsatisfiable" if termination

Algorithm components:

- First-order semantic tree enumerates interpretations
- Simplification
- Split
- Backtracking

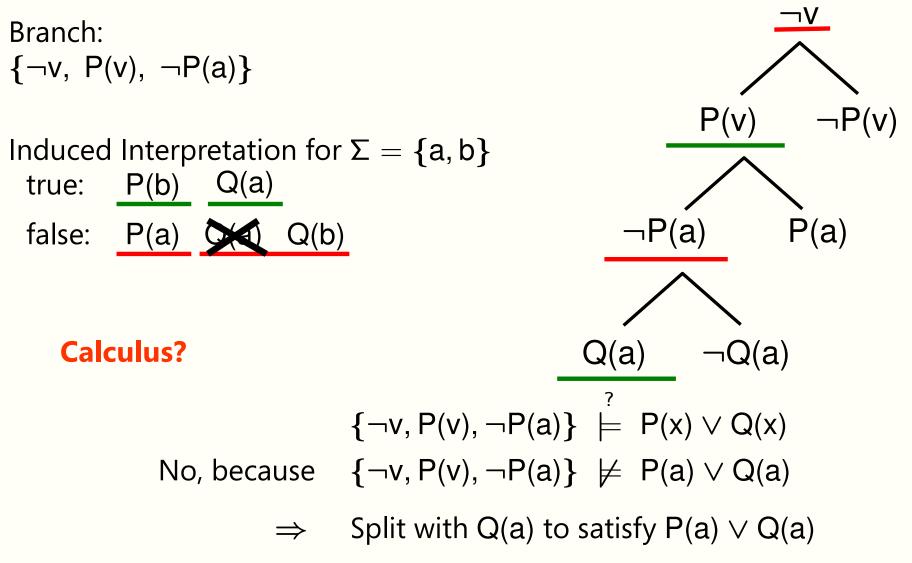


$${P(v), \neg P(a)} \stackrel{?}{\models} P(x) \lor Q(x)$$

?

Interpretation Induced by a Branch

A branch literal specifies the truth value of its ground instances unless a more specific branch literal specifies the opposite truth value

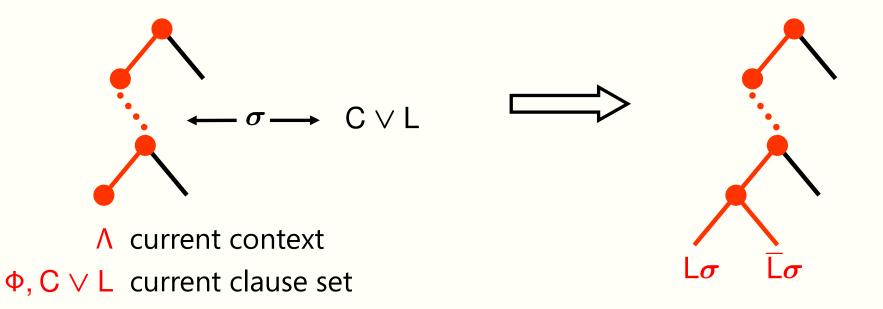


Derivation Rules – Simplified (1)

Split
$$\Lambda \vdash \Phi, C \lor L$$

 $\Lambda, L\sigma \vdash \Phi, C \lor L$ $\Lambda, \overline{L}\sigma \vdash \Phi, C \lor L$
if

- 1. σ is a simultaneous mgu of C \vee L against A,
- 2. neither $L\sigma$ nor $\overline{L}\sigma$ is contained in Λ , and
- 3. L σ contains no variables



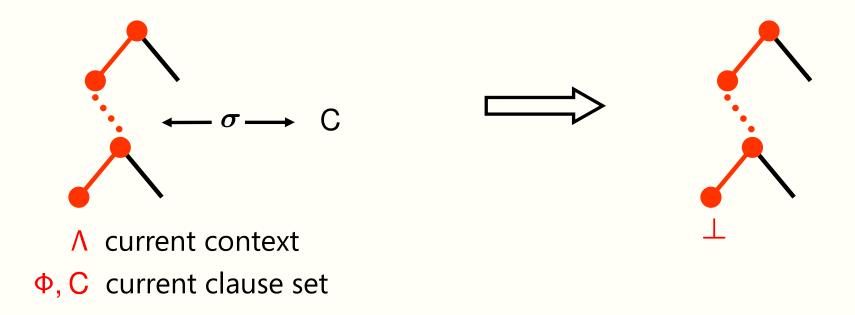
Derivation Rules – Simplified (2)

Close
$$\frac{\Lambda \vdash \Phi, C}{\Lambda \vdash \bot}$$

ľ

1. $\Phi \neq \emptyset$ or $C \neq \bot$

2. there is a simultaneous mgu σ of C against Λ such that Λ contains the complement of each literal of $C\sigma$



Derivation Rules – Simplification Rules (1)

Propositional level:

Subsume
$$\frac{\Lambda, L \vdash \Phi, L \lor C}{\Lambda, L \vdash \Phi}$$

First-order level pprox unit subsumption:

- L contains no parameters (variables OK)
- Matching instead of syntactic equality

Derivation Rules – Simplification Rules (2)

Propositional level:

Resolve
$$\frac{\Lambda, L \vdash \Phi, L \lor C}{\Lambda, L \vdash \Phi, C}$$

First-order level pprox restricted unit resolution

- L contains no parameters (variables OK)
- Unification instead of syntactic equality
- The unifier must not modify C

Derivation Rules – Simplification Rules (3)

Compact
$$\frac{\Lambda, \text{ K, } L \vdash \Phi}{\Lambda, \text{ K} \vdash \Phi}$$

if

- 1. K contains no parameters (variables OK)
- 2. K σ = L, for some substitution σ

Calculus

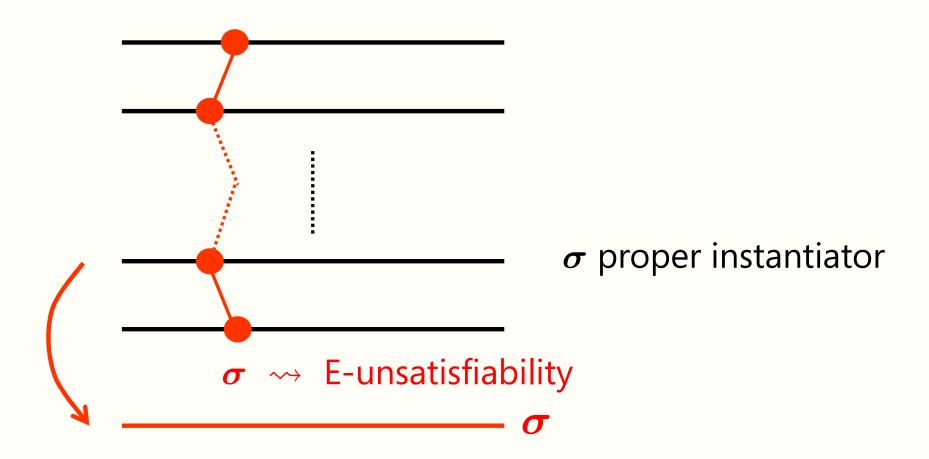
- Derivations are trees over sequents
- initial sequent $\neg v \vdash$ Input clause set
- Fairness
- Soundness and completeness

Contents

- DPLL as a starting point for the Model Evolution calculus
- Model Evolution calculus without equality
 - Model construction
 - Inference rules
- Equality reasoning
 - Equality reasoning in instance based methods
 - Inference rules
 - How it works (semantical considerations)

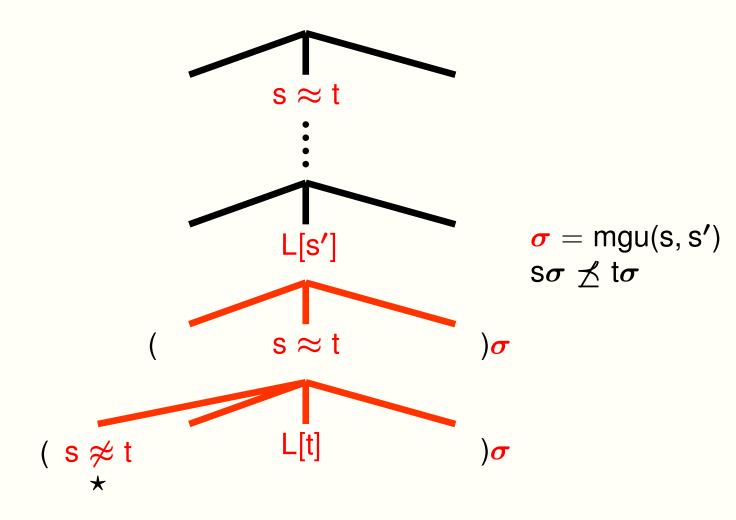
Equality Reasoning in Instance Based Methods

Inst-Gen [Ganzinger&Korovin CSL 2004]:



Equality Reasoning in Instance Based Methods

DCTP [Letz&Stenz Tableaux 02, Stenz 03]:



Our approach: related

The Model Evolution Calculus with Equality

Contents

- DPLL as a starting point for the Model Evolution calculus
- Model Evolution calculus without equality
 - Model construction
 - Inference rules
- Equality reasoning
 - Equality reasoning in instance based methods
 - Inference rules
 - How it works (semantical considerations)

Model Evolution Calculus with Equality - Overview

- Split and Close: same
- Simplification rules: general rule based on redundancy concept
- **Clauses**: with constraints now: $L_1 \lor \cdots \lor L_m \cdot I_1 \rightarrow r_1, ..., I_n \rightarrow r_n$ Initially $C \cdot \emptyset$ for an input clause C
- -Equality reasoning: Reflection and (Ordered) Paramodulation rules

Reflection

$$rac{\mathbf{s}
ot pprox \mathbf{t} ee \mathbf{C} \cdot \mathbf{\Gamma}}{(\mathbf{C} \cdot \mathbf{\Gamma}) oldsymbol{\sigma}} \quad ext{if } oldsymbol{\sigma} = \mathsf{mgu}(\mathbf{s}, \mathsf{t})$$

Paramodulation

Assumes reduction ordering \succ

$$\begin{array}{ccc} \mathsf{I} \approx \mathsf{r} & \mathsf{L}[\mathsf{t}] \lor \mathsf{C} \cdot \mathsf{\Gamma} \\ & \mathsf{(L}[\mathsf{r}] \lor \mathsf{C} \cdot \mathsf{\Gamma}, \mathsf{I} \to \mathsf{r}) \sigma \end{array} & \text{if} \left\{ \begin{array}{c} \sigma = \mathsf{mgu}(\mathsf{I}, \mathsf{t}) \\ \mathsf{t} \text{ is not a variable} \\ & \mathsf{I}\sigma \not\preceq \mathsf{r}\sigma \end{array} \right.$$

Embed these rules in calculus

Derivation Rules (1) - Reflection

$$\mathsf{Ref} \ \frac{\Lambda \ \vdash \ \Phi, \ \mathsf{s} \not\approx \mathsf{t} \lor \mathsf{C} \cdot \mathsf{\Gamma}}{\Lambda \ \vdash \ \Phi, \ \mathsf{s} \not\approx \mathsf{t} \lor \mathsf{C} \cdot \mathsf{\Gamma}, \ (\mathsf{C} \cdot \mathsf{\Gamma})\sigma}$$

if

- 1. σ is a mgu of s and t,
- 2. the new clause is not contained in $\Phi \cup \{s \not\approx t \lor C \cdot \Gamma\}$

Derivation Rules (2) - Paramodulation

Para
$$\frac{\Lambda, I \approx r \vdash \Phi, L[t] \lor C \cdot \Gamma}{\Lambda, I \approx r \vdash \Phi, L[t] \lor C \cdot \Gamma, (L[r] \lor C \cdot \Gamma, I \rightarrow r)\sigma}$$

if

- 1. σ is a mgu of I and t,
- 2. t is not a variable,
- 3. $|\sigma \preceq r\sigma$,
- 4. the new clause contains no parameters, and
- 5. the new clause is not contained in $\Phi \cup \{L \lor C \cdot \Gamma\}$

NB – This is not a resolution calculus:

- Paramodulation only from unit equations
- Clause part does not grow in length, and no paramodulation into constrained part
- (No paramodulation from context equations into context literals)

Derivation Rules (3) - Split

Split applies to

 $C\boldsymbol{\cdot} I_1 \to r_1, \dots, I_n \to r_n$

only if C is a positive clause

Use conversion to ordinary clause

$$\mathsf{C} \lor \mathsf{I}_1 \not\approx \mathsf{r}_1 \lor \cdots \lor \mathsf{I}_n \not\approx \mathsf{r}_n$$

and ordinary Split:

Split
$$\begin{array}{ccc} \Lambda \vdash \Phi, \ \mathsf{C} \lor \mathsf{L} \\ \hline \Lambda, \ \mathsf{L}\sigma \vdash \Phi, \ \mathsf{C} \lor \mathsf{L} & \Lambda, \ \overline{\mathsf{L}}\sigma \vdash \Phi, \ \mathsf{C} \lor \mathsf{L} \end{array}$$

Derivation Example

Initial clause encodes $\neg P(x, y) \lor Q(x) \lor R(y)$:

$$\neg v, \underline{P(u, u) \approx t} \vdash \underline{P(x, y) \not\approx t} \lor Q(x) \approx t \lor R(y) \approx t \cdot \emptyset$$

$$\downarrow Para$$

$$\neg v, P(u, u) \approx t \vdash \frac{P(x, y) \not\approx t \lor Q(x) \approx t \lor R(y) \approx t \cdot \emptyset,$$

$$\underline{t \not\approx t} \lor Q(x) \approx t \lor R(x) \approx t \cdot P(x, x) \rightarrow t$$

$$\downarrow Simp$$

$$\neg v, \underline{P(u, u) \approx t} \vdash \frac{P(x, y) \not\approx t \lor Q(x) \approx t \lor R(x) \approx t \cdot \emptyset, }{Q(x) \approx t \lor R(x) \approx t \cdot P(x, x) \rightarrow t }$$

$$\downarrow Split (left)$$

$$\neg v, P(u, u) \approx t,$$

$$P(x, y) \not\approx t \lor Q(x) \approx t \lor R(x) \approx t \cdot \emptyset,$$

$$Q(x) \approx t \lor R(x) \approx t \cdot \emptyset,$$

$$Q(x) \approx t \lor R(x) \approx t \cdot P(x, x) \rightarrow t$$

Derivation Rules (4)

Close applies to

 $C\boldsymbol{\cdot} I_1 \to r_1, \ldots, I_n \to r_n$

Use conversion to ordinary clause

 $C \vee I_1 \not\approx r_1 \vee \cdots \vee I_n \not\approx r_n$

and ordinary Close:

Close
$$\frac{\Lambda \vdash \Phi, C}{\Lambda \vdash \bot}$$

Optional Derivation Rules (1)

Assert
$$\frac{\Lambda \vdash \Phi}{\Lambda, L \vdash \Phi}$$

if L is not subsumed by a context literal and "soundness condition" holds

Examples

No Split for unit clauses:

With equality reasoning:

$$\begin{array}{rcl} \mathsf{P}(\mathsf{u},\mathsf{b}),\ \mathsf{b}\approx\mathsf{c} & \vdash & \neg\mathsf{P}(\mathsf{x},\mathsf{y})\lor\mathsf{f}(\mathsf{x})\approx\mathsf{y}\cdot\emptyset\\ \longrightarrow & \mathsf{P}(\mathsf{u},\mathsf{b}),\ \mathsf{b}\approx\mathsf{c},\ \mathsf{f}(\mathsf{u})\approx\mathsf{c} & \vdash & \neg\mathsf{P}(\mathsf{x},\mathsf{y})\lor\mathsf{f}(\mathsf{x})\approx\mathsf{y}\cdot\emptyset\end{array}$$

Optional Derivation Rules (2)

Simp
$$\frac{\Lambda \vdash \Phi, C \cdot \Gamma}{\Lambda \vdash \Phi, C' \cdot \Gamma'}$$
 if <

 $C \cdot \Gamma$ is redundant wrt. $\Phi \cup \{C' \cdot \Gamma'\}$ and Λ , and ``Soundness condition''

Examples

Delete a clause whose constraint will never be satisfied:

$$\begin{array}{rcl} f(x) \not\approx x & \vdash & a \approx b \cdot f(a) \to a \\ \longrightarrow & f(x) \not\approx x & \vdash & t \approx t \cdot \emptyset \end{array}$$

Simplify constraint:

$$\begin{array}{rcl} f(x) \approx x & \vdash & a \approx b \cdot f(a) \to a \\ \longrightarrow & f(x) \approx x & \vdash & a \approx b \cdot \emptyset \end{array}$$

Generic Simp rule covers most simplification rules so far as special cases

Contents

- DPLL as a starting point for the Model Evolution calculus
- Model Evolution calculus without equality
 - Model construction
 - Inference rules
- Equality reasoning
 - Equality reasoning in instance based methods
 - Inference rules
 - How it works (semantical considerations)

Model Evolution Calculus with Equality – How it Works

Without Equality

- Current context Λ
- Candidate Model I_{Λ}
- Current clause C
- If $I_{\Lambda} \not\models C$ then repair I_{Λ} (Split) or give up I_{Λ} (Close)

With Equality

- Current context Λ
- Candidate E-model R_{Λ} -- a ground rewrite system
- Current clause C
- If $R_{\Lambda} \not\models_{E} C$ then repair R_{Λ} (Split) or give up R_{Λ} (Close)

R_Λ ?

E-Interpretation Induced by a Branch

 $\begin{array}{ll} \mbox{Initially } R_{\Lambda} := \emptyset \\ \mbox{For all } s \approx t \in I_{\Lambda}, \mbox{ smaller equations first:} \\ \mbox{if } s \succ t \mbox{ and } \\ \mbox{ s and } t \mbox{ are irreducible by smaller rules in } R_{\Lambda} \\ \mbox{ then } R_{\Lambda} := R_{\Lambda} \cup \{s \rightarrow t\} \end{array}$

Example

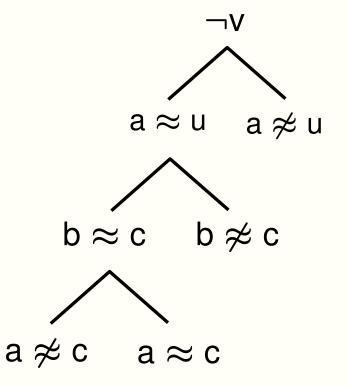
Candidate equations $I_{\Lambda} = \{a \approx b, b \approx c\}$ Ordering $a \succ b \succ c$

(1) $R_{\Lambda} := \emptyset$

(2) candidate
$$b \approx c$$
: $R_{\Lambda} := \{b \rightarrow c\}$

(3) candidate $a \approx b$: $R_{\Lambda} = \{b \rightarrow c\}$

Important: R_{Λ} is convergent



Repairing the Candidate Model

Split with s' \approx t' to add s \approx t to R_{Λ}, or Split with l' \approx r' to remove I \rightarrow r from R_{Λ} (Ground) constrained clauses semantics: R_{Λ} \models_{E} C \cdot Γ iff $\Gamma \not\subseteq$ R_{Λ} or R_{Λ} \models_{E} C

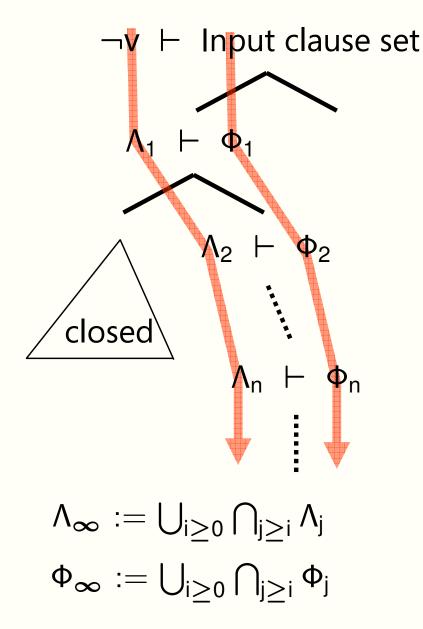
After Split C $\gamma \downarrow \mathsf{R}_{\Lambda}$ will be E-satisfied, and so will be C γ

The Model Evolution Calculus with Equality

Model Construction Considerations

- The model construction technique has been developed for the Superposition calculus [Bachmair&Ganzinger]
- Differences due to parametric literals
 - Nonmonotonicity:
 - e.g. f(u) \approx u later partially retracted due to f(a) $\not\approx$ a
 - Have to work with **two** orderings: term ordering and instantiation ordering
 - Model construction: smaller sides of equations must be irreducible, too, in order to be turned into rewrite rules
 - In consequence, paramodulation into smaller sides is necessary (really?)

Limit Derivations



Limit rewrite system $R_{\Lambda_{\infty}}$

- This is the intended model
- Approximations used in redundancy tests

Completeness

Suppose a fair derivation that is not a closed tree

Show that $\mathsf{R}_{\Lambda_{\infty}} \models \Phi_{\infty}$

Fairness?

Fairness

Def. (Fairness)

Para Suppose timepoint i in derivation such that

$$\begin{array}{rcl} \mbox{Para} & \frac{\Lambda_{i}, \ l \approx r & \vdash & \Phi_{i}, \ C \cdot \Gamma \\ \hline \Lambda_{i}, \ l \approx r & \vdash & \Phi_{i}, \ C \cdot \Gamma, \ C' \cdot \Gamma' \\ \mbox{where } C \cdot \Gamma \Rightarrow_{\mbox{Para}(l \approx r, \sigma)} C' \cdot \Gamma' \end{array}$$

lf

1. $I \approx r \in \Lambda_{B}$,

2. $\Lambda_{\rm B}$ produces (I \approx r) σ , and

3. $(\mathbf{C} \cdot \mathbf{\Gamma})\boldsymbol{\sigma}$ is not redundant wrt. $\Phi_i \cup {\mathbf{C} \cdot \mathbf{\Gamma}}$ and \mathbf{R}_{Λ_B}

then

there is a j such that the inference

 $C \cdot \Gamma \Rightarrow_{Para(I \approx r, \sigma)} C' \cdot \Gamma'$ is redundant wrt. Φ_j and R_{Λ_B}

Split, Ref, Close.

The Model Evolution Calculus with Equality

Conclusions

- Main result: soundness and refutational completeness
- Nice features (perhaps):
 - Paramodulation only from **unit** equations
 - No paramodulation inferences between context equations or into constraint part
 - Clause part of constrained clauses does not grow in length (decide Bernays-Schoenfinkel clauses with equality)
 - Works with explicitly represented model candidate at the calculus level (the context)
- Not so nice features (perhaps):
 - Semantic redundancy criterion based on model candidate difficult to exploit
 - Need paramodulation into smaller sides of equations (really?)