
The Model Evolution Calculus with Equality

Peter Baumgartner

Max-Planck-Institute for Informatics

Saarbrücken, Germany

Cesare Tinelli

The University of Iowa

Iowa, USA

The Model Evolution Calculus with Equality 2

Background – Instance Based Methods

• Model Evolution is related to Instance Based Methods

– Ordered Semantic Hyper Linking [Plaisted et al]

– Primal Partial Instantiation [Hooker et al]

– Disconnection Method [Billon], DCTP [Letz&Stenz]

– Inst-Gen [Ganzinger&Korovin]

– Successor of First-Order DPLL [B.]

• Principle: Reduce proof search in first-order (clausal) logic to
propositional logic in an „intelligent“ way

• Different to Resolution, Model Elimination,…
(Pro‘s and Con‘s)

The Model Evolution Calculus with Equality 3

Background – Model Evolution

• The best modern SAT solvers (satz, MiniSat, zChaff, Berkmin,…) are

based on the Davis-Putnam-Logemann-Loveland procedure

[DPLL 1960-1963]

• Can DPLL be lifted to the first-order level?

How to combine

– successful SAT techniques

(unit propagation, backjumping, lemma learning,…)

– successful first-order techniques?

(unification, redundancy concepts, ...)?

• Realization in Model Evolution calculus / Darwin implementation

– Basic approach developed (CADE-19)

– Lemma learning on the way

– This work: built-in equality reasoning

The Model Evolution Calculus with Equality 4

Contents

• DPLL as a starting point for the Model Evolution calculus

• Model Evolution calculus without equality

– Model construction

– Inference rules

• Equality reasoning

– Equality reasoning in instance based methods

– Inference rules

– How it works (semantical considerations)

The Model Evolution Calculus with Equality 5

DPLL procedure

Input: Propositional clause set
Output: Model or „unsatisfiable”

Algorithm components:

- Propositional semantic tree

enumerates interpretations

- Simplification

- Split

- Backtracking

A ¬A

B

¬C

¬B

C

No, split on C: {A, B, C} |= ¬A ∨ ¬B ∨ C ∨ D, . . .

{A, B}
?

|= ¬A ∨ ¬B ∨ C ∨ D, . . .

Lifting to first-order logic?

The Model Evolution Calculus with Equality 6

Model Evolution as First-Order DPLL

Input: First-order clause set
Output: Model or „unsatisfiable”

if termination

Interpretation induced by a branch?

Lifing of semantic tree data structure and derivation rules to first-order

Algorithm components:

- First-order semantic tree

enumerates interpretations

- Simplification

- Split

- Backtracking

v is a "parameter"
not quite like a variable

P(v) ¬P(v)

¬P(a) P(a)

{P(v),¬P(a)}
?

|= P(x) ∨ Q(x)

The Model Evolution Calculus with Equality 7

Interpretation Induced by a Branch
A branch literal specifies the truth value of its ground instances unless
a more specific branch literal specifies the opposite truth value

Calculus?

¬v

P(v) ¬P(v)

¬P(a) P(a)

Q(a) ¬Q(a)

{¬v, P(v),¬P(a)}
?

|= P(x) ∨ Q(x)

No, because {¬v, P(v),¬P(a)} �|= P(a) ∨ Q(a)

⇒ Split with Q(a) to satisfy P(a) ∨ Q(a)

Q(a)

Branch:
{¬v, P(v), ¬P(a)}

Induced Interpretation for Σ = {a, b}
true: P(b)

false: P(a) Q(a) Q(b)

The Model Evolution Calculus with Equality 8

Derivation Rules – Simplified (1)

Split

Λ current context
Lσ Lσ

σ C ∨ L

Φ, C ∨ L current clause set

if
1. σ is a simultaneous mgu of C ∨ L against Λ,
2. neither Lσ nor Lσ is contained in Λ, and
3. Lσ contains no variables

Λ � Φ, C ∨ L

Λ, Lσ � Φ, C ∨ L Λ, Lσ � Φ, C ∨ L

The Model Evolution Calculus with Equality 9

Derivation Rules – Simplified (2)

Close

if
1. Φ �= ∅ or C �= ⊥
2. there is a simultaneous mgu σ of C against Λ such that
Λ contains the complement of each literal of Cσ

Λ � Φ, C

Λ � ⊥

Λ current context

σ

Φ, C current clause set

C

⊥

The Model Evolution Calculus with Equality 10

Derivation Rules – Simplification Rules (1)

Subsume

Propositional level:

First-order level ≈≈≈≈ unit subsumption:

- L contains no parameters (variables OK)
- Matching instead of syntactic equality

Λ, L � Φ, L ∨ C

Λ, L � Φ

The Model Evolution Calculus with Equality 11

Derivation Rules – Simplification Rules (2)

Resolve

Propositional level:

First-order level ≈≈≈≈ restricted unit resolution

- L contains no parameters (variables OK)
- Unification instead of syntactic equality
- The unifier must not modify C

Λ, L � Φ, L ∨ C

Λ, L � Φ, C

The Model Evolution Calculus with Equality 12

Derivation Rules – Simplification Rules (3)

Compact
Λ, K, L � Φ

Λ, K � Φ

if
1. K contains no parameters (variables OK)
2. Kσ = L, for some substitution σ

Calculus
- Derivations are trees over sequents
- initial sequent
- Fairness
- Soundness and completeness

¬v � Input clause set

The Model Evolution Calculus with Equality 13

Contents

• DPLL as a starting point for the Model Evolution calculus

• Model Evolution calculus without equality

– Model construction

– Inference rules

• Equality reasoning

– Equality reasoning in instance based methods

– Inference rules

– How it works (semantical considerations)

The Model Evolution Calculus with Equality 14

Equality Reasoning in Instance Based Methods

Inst-Gen [Ganzinger&Korovin CSL 2004]:

σ

σ proper instantiator

σ � E-unsatisfiability

The Model Evolution Calculus with Equality 15

Equality Reasoning in Instance Based Methods

DCTP [Letz&Stenz Tableaux 02, Stenz 03]:

(
�

s ≈ t

L[s′]

(s ≈ t)σ

s �≈ t L[t])σ

Our approach: related

σ = mgu(s, s′)

sσ �� tσ

The Model Evolution Calculus with Equality 16

Contents

• DPLL as a starting point for the Model Evolution calculus

• Model Evolution calculus without equality

– Model construction

– Inference rules

• Equality reasoning

– Equality reasoning in instance based methods

– Inference rules

– How it works (semantical considerations)

The Model Evolution Calculus with Equality 17

Model Evolution Calculus with Equality - Overview

- Split and Close: same

- Simplification rules: general rule based on redundancy concept

- Clauses: with constraints now:

-Equality reasoning: Reflection and (Ordered) Paramodulation rules

Paramodulation

Reflection

L1 ∨ · · · ∨ Lm · l1 → r1, ..., ln → rn

s �≈ t ∨ C · Γ
(C · Γ)σ

if σ = mgu(s, t)

Initially C · ∅ for an input clause C

Assumes reduction ordering �
l ≈ r L[t] ∨ C · Γ

(L[r] ∨ C · Γ, l → r)σ
if





σ = mgu(l, t)
t is not a variable
lσ �� rσ

Embed these rules in calculus

The Model Evolution Calculus with Equality 18

Derivation Rules (1) - Reflection

Ref
Λ � Φ, s �≈ t ∨ C · Γ

Λ � Φ, s �≈ t ∨ C · Γ, (C · Γ)σ

if
1. σ is a mgu of s and t,
2. the new clause is not contained in Φ ∪ {s �≈ t ∨ C · Γ}

The Model Evolution Calculus with Equality 19

Derivation Rules (2) - Paramodulation

Para
Λ, l ≈ r � Φ, L[t] ∨ C · Γ

Λ, l ≈ r � Φ, L[t] ∨ C · Γ, (L[r] ∨ C · Γ, l → r)σ

if
1. σ is a mgu of l and t,
2. t is not a variable,
3. lσ �� rσ,
4. the new clause contains no parameters, and
5. the new clause is not contained in Φ ∪ {L ∨ C · Γ}

NB – This is not a resolution calculus:
- Paramodulation only from unit equations
- Clause part does not grow in length, and
no paramodulation into constrained part

- (No paramodulation from context equations into context literals)

The Model Evolution Calculus with Equality 20

Derivation Rules (3) - Split

Split
Λ � Φ, C ∨ L

Λ, Lσ � Φ, C ∨ L Λ, Lσ � Φ, C ∨ L

Split applies to
C · l1 → r1, . . . , ln → rn

only if C is a positive clause

Use conversion to ordinary clause
C ∨ l1 �≈ r1 ∨ · · · ∨ ln �≈ rn

and ordinary Split:

The Model Evolution Calculus with Equality 21

Derivation Example

Para

Simp

Split (left)

Initial clause encodes ¬P(x, y) ∨ Q(x) ∨ R(y):
¬v, P(u, u) ≈ t � P(x, y) �≈ t ∨ Q(x) ≈ t ∨ R(y) ≈ t · ∅

¬v, P(u, u) ≈ t �
P(x, y) �≈ t ∨ Q(x) ≈ t ∨ R(y) ≈ t · ∅,

t �≈ t ∨ Q(x) ≈ t ∨ R(x) ≈ t · P(x, x) → t

¬v, P(u, u) ≈ t �
P(x, y) �≈ t ∨ Q(x) ≈ t ∨ R(x) ≈ t · ∅,

Q(x) ≈ t ∨ R(x) ≈ t · P(x, x) → t

¬v, P(u, u) ≈ t,
Q(u) ≈ t �

P(x, y) �≈ t ∨ Q(x) ≈ t ∨ R(x) ≈ t · ∅,
Q(x) ≈ t ∨ R(x) ≈ t · P(x, x) → t

The Model Evolution Calculus with Equality 22

Derivation Rules (4)

Close
Λ � Φ, C

Λ � ⊥

Close applies to
C · l1 → r1, . . . , ln → rn

Use conversion to ordinary clause
C ∨ l1 �≈ r1 ∨ · · · ∨ ln �≈ rn

and ordinary Close:

The Model Evolution Calculus with Equality 23

Optional Derivation Rules (1)

Assert if L is not subsumed by a context literal
and "soundness condition" holds

Examples

No Split for unit clauses:

With equality reasoning:

Λ � Φ

Λ, L � Φ

Λ � Φ, P(x) · ∅
−→ Λ, P(x) � Φ, P(x) · ∅

P(u, b), b ≈ c � ¬P(x, y) ∨ f(x) ≈ y · ∅
−→ P(u, b), b ≈ c, f(u) ≈ c � ¬P(x, y) ∨ f(x) ≈ y · ∅

The Model Evolution Calculus with Equality 24

Optional Derivation Rules (2)

Simp

ExamplesExamplesExamplesExamples

Delete a clause whose constraint will never be satisfied:

Simplify constraint:

Generic Simp rule covers most simplification rules so far as special cases

Λ � Φ, C · Γ

Λ � Φ, C′ · Γ′
if





C · Γ is redundant wrt.
Φ ∪ {C′ · Γ′} and Λ, and

``Soundness condition''

f(x) �≈ x � a ≈ b · f(a) → a
−→ f(x) �≈ x � t ≈ t · ∅

f(x) ≈ x � a ≈ b · f(a) → a
−→ f(x) ≈ x � a ≈ b · ∅

The Model Evolution Calculus with Equality 25

Contents

• DPLL as a starting point for the Model Evolution calculus

• Model Evolution calculus without equality

– Model construction

– Inference rules

• Equality reasoning

– Equality reasoning in instance based methods

– Inference rules

– How it works (semantical considerations)

The Model Evolution Calculus with Equality 26

Model Evolution Calculus with Equality – How it Works

Without Equality

With Equality

- Current context Λ
- Candidate Model IΛ

- Current clause C

- If IΛ �|= C then repair IΛ (Split) or give up IΛ (Close)

RΛ ?

- Current context Λ
- Candidate E-model RΛ -- a ground rewrite system
- Current clause C

- If RΛ �|=E C then repair RΛ (Split) or give up RΛ (Close)

The Model Evolution Calculus with Equality 27

E-Interpretation Induced by a Branch

¬v

b ≈ c b �≈ c

a �≈ ua ≈ u

a ≈ ca �≈ c

(1) RΛ := ∅

(2) candidate b ≈ c: RΛ := {b → c}

(3) candidate a ≈ b: RΛ = {b → c}

Initially RΛ := ∅

For all s ≈ t ∈ IΛ, smaller equations first:
if s � t and

s and t are irreducible by smaller rules in RΛ

then RΛ := RΛ ∪ {s → t}

Candidate equations IΛ = {a
.

≈ b, b
.

≈ c}

Ordering a � b � c

Example

Important: RΛ is convergent

The Model Evolution Calculus with Equality 28

Repairing the Candidate Model

RΛ �|=E Cγ

s �= t

Cγ ↓ RΛ = q �≈ q ∨ · · · ∨ s ≈ t ∨ · · ·

Calculus:

Used rewrite rules from RΛ:
l → r, . . .

lifted versions

RΛ �|=E Φ, C RΛ �|=E Cγ ↓ RΛ

(Ground) constrained clauses semantics:
RΛ |=E C · Γ iff Γ �⊆ RΛ or RΛ |=E C

Split with s′ ≈ t′ to add s ≈ t to RΛ, or
Split with l′ �≈ r′ to remove l → r from RΛ

C · ∅ ⇒�Para,Ref s′ ≈ t′ ∨ · · · · l′ → r′, . . .

After Split Cγ ↓ RΛ will be E-satisfied, and so will be Cγ

The Model Evolution Calculus with Equality 29

Model Construction Considerations

• The model construction technique has been developed for the
Superposition calculus [Bachmair&Ganzinger]

• Differences due to parametric literals

– Nonmonotonicity:

– Have to work with two orderings:
term ordering and instantiation ordering

– Model construction:
smaller sides of equations must be irreducible, too,
in order to be turned into rewrite rules

– In consequence, paramodulation into smaller sides is necessary
(really?)

e.g. f(u) ≈ u later partially retracted due to f(a) �≈ a

The Model Evolution Calculus with Equality 30

Limit Derivations

¬v � Input clause set

Λ1 � Φ1

Λ2 � Φ2

Λn � Φn

Λ∞ :=
⋃

i≥0

⋂
j≥i Λj

Φ∞ :=
⋃

i≥0

⋂
j≥i Φj

closed Completeness
Suppose a fair derivation
that is not a closed tree
Show that RΛ∞ |= Φ∞

Limit rewrite system RΛ∞
- This is the intended model
- Approximations used in

redundancy tests

Fairness?

The Model Evolution Calculus with Equality 31

Fairness

Def. (Fairness)
Para Suppose timepoint i in derivation such that

Para Λi, l ≈ r � Φi, C · Γ

Λi, l ≈ r � Φi, C · Γ, C′ · Γ′

where C · Γ⇒Para(l≈r,σ) C′ · Γ′

If
1. l ≈ r ∈ ΛB,
2. ΛB produces (l ≈ r)σ, and
3. (C · Γ)σ is not redundant wrt. Φi ∪{C · Γ} and RΛBthen

there is a j such that the inference
C · Γ⇒Para(l≈r,σ) C′ · Γ′ is redundant wrt. Φj and RΛB

Split, Ref, Close. . .

The Model Evolution Calculus with Equality 32

Conclusions

• Main result: soundness and refutational completeness

• Nice features (perhaps):

– Paramodulation only from unit equations

– No paramodulation inferences between context equations or
into constraint part

– Clause part of constrained clauses does not grow in length
(decide Bernays-Schoenfinkel clauses with equality)

– Works with explicitly represented model candidate
at the calculus level (the context)

• Not so nice features (perhaps):

– Semantic redundancy criterion based on model candidate
difficult to exploit

– Need paramodulation into smaller sides of equations (really?)

