The Model Evolution Calculus with Built-in Theories

Peter Baumgartner
MPI Informatik, Saarbrücken

www.mpi-sb.mpg.de/~baumgart/

Problem

- The Model Evolution Calculus is a sound and refutationally complete calculus for first-order clause logic
- Can we extend it with built-in theory handling?
 That is, "plug in" an (efficient) reasoner for a special domain
- Examples for interesting theories
 - Equality
 - Real arithmetic
 - Theories axiomatized by logic programs
- Can existing theory reasoners be plugged in (to Darwin)?
 - Equality: Waldmeister
 - Real arithmetic: quantifier elimination
 - Logic programs: logic program interpreter

Model Evolution – Idea (1)

DPLL: Davis-Putnam-Logemann-Loveland Procedure (1960-63) Basis of some of the SAT solvers (Chaff, ...)

Input: Propositional clause set **Output**: Model or "unsatisfiable"

Algorithm components:

- Simplification
- Split
- Backtracking

Model Evolution – Idea (2)

≈First Order DPLL [Joint Work with Cesare Tinelli]

Input: First-order clause set

Output: Model or "unsatisfiable"

if termination

Procedure components:

- Simplification
- Split
- Backtracking

Calculus

Sequent Style Calculus

- Simplified Calculus (for the purpose of talk)
 - No simplification inference rules to modify Φ
 - No simplification inference rules to modify Λ
 - No "universal" variables, only "parametric" ones

Derivation Rules (1)

Split
$$\frac{\Lambda \vdash \Phi, C \lor L}{\Lambda, L\sigma \vdash \Phi, C \lor L}$$
 $\Lambda, \overline{L}\sigma \vdash \Phi, C \lor L$

if

- (1) σ is a context unifier of $C \vee L$ against Λ
- (2) neither $L\sigma$ nor $\neg L\sigma$ is contraditory with Λ
- σ is a **context unifier**: σ is a most general simultaneous unifier of the clause literals and context literals with opposite sign (pairwise)
- $L\sigma$ is **contradictory** with Λ : Λ contains a variant of $\neg L\sigma$

Context:
$$P(u,u) \rightarrow Q(v,b)$$
 $Q(v,b) \rightarrow Q(a,z)$ $\sigma = \{x \rightarrow u, y \rightarrow u, v \rightarrow a, z \rightarrow b\}$

Clause
$$\sigma$$
: $\neg P(x,x) \lor \neg Q(a,b)$ $\neg Q(a,b)$ is admissible for Split

contradictory not contradictory

Derivation Rules (2)

Close
$$\frac{\Lambda \vdash \Phi, C}{\Lambda \vdash \bot}$$

if (1)
$$\Phi \neq \emptyset$$
 or $C \neq \bot$

- (2) there is a context unifier σ of C against Λ such that each literal of $C\sigma$ is contraditory with Λ
- σ is a **context unifier**: σ is a most general simultaneous unifier of the clause literals and context literals with opposite sign (pairwise)
- $L\sigma$ is **contradictory** with Λ : Λ contains a variant of $\neg L\sigma$

Context:
$$P(u,u)$$
 $Q(a,b)$ $Q(a,z)$ $Q(a,z)$ $Q(a,z)$ $Q(a,z)$

Clause
$$\sigma$$
: $\neg P(x,x) \lor \neg Q(a,b)$ Close is applicable

contradictory contradictory

Model Evolution – Further Ingredients

Derivation

- Start with sequent ¬∨ ⊢ "Input Clause Set"
- Apply Split and Close derivation rules (gives tree over sequents)
- Refutation: Every branch ends in sequent of the form Λ ⊢ ⊥

Fairness

- Consider a derivation with limit context \(\Lambda_\infty = \cup_{i>0} \Lambda_i\)
- Close is not applicable to any Λ_i
- Roughly: if some ground instance $C\gamma$ of an input clause is falsified by Λ_i then there is a j>i such that Λ_j satisfies $C\gamma$ (this can always be achieved by applying the split rule)

Completeness

- Assume a fair derivation with limit context
- Show that Λ_{∞} constitutes a model for the input clause set

Theories – Basic Definitions

- A **Theory** \mathcal{T} is a consistent set of sentences
- Consider here universal theories
 (no existential quantifier in prenex normal form)
- **Def**: Clause set Φ is \mathcal{T} -unsatisfiable iff $\Phi \cup \mathcal{T}$ is unsatisfiable
- Def: Let K be a set of literals and L be a literal

$$\mathcal{K} \vDash_{\mathcal{T}} L$$

iff
$$\mathcal{K} \cup \mathcal{T} \vDash L$$

iff for every structure A and every valuation v:

$$\mathcal{A}, v \models \mathcal{K} \cup \mathcal{T}$$
 implies $\mathcal{A}, v \models L$

Examples

$$\{P(u,a), u=f(u), a=f(a)\} \models_E P(f(u),f(a)) \text{ holds}$$

 $\{P(u,a), u=f(u), v=f(v)\} \models_F P(f(u),f(a)) \text{ does not hold}$

ME(7) – Derivation Rules (1)

if

- (1) σ is a \mathcal{T} -context unifier of $C \vee L$ against Λ with key set $\mathcal{K} \cup \{L\}$
- (2) $K \in \neg \mathcal{K}$
- (3) neither $K\sigma$ nor $\neg K\sigma$ is \mathcal{T} -contraditory with Λ

σ is a \mathcal{T} -context unifier of clause $L_1 \vee ... \vee L_v$ iff there are sets $\mathcal{K}_1,...,\mathcal{K}_n$ of variants of literals from Λ s.th. \mathcal{K}_i σ $\models_{\mathcal{T}} \neg L_i$ σ Each set $\mathcal{K}_i \cup \{L_i\}$ is called a **key set**

Context:
$$P(a,b)$$
 $u=f(u)$ Key set: $\{P(a,b), u=f(u), v=f(v), \neg P(f(a),f(x))\}$ Clause: $\neg P(f(a),f(x))$ $\sigma = \{u \rightarrow a, v \rightarrow b, x \rightarrow b\}$

T-Split on $\neg (a=f(a))$

ME(7) – Derivation Rules (1)

if

- (1) σ is a \mathcal{T} -context unifier of $C \vee L$ against Λ with key set $\mathcal{K} \cup \{L\}$
- (2) $K \in \neg \mathcal{K}$
- (3) neither $K\sigma$ nor $\neg K\sigma$ is \mathcal{T} -contraditory with Λ

$K\sigma$ is \mathcal{T} -contradictory with Λ

iff there is a set K of variants of literals from Λ s.th. $K \models_{\mathcal{T}} \neg K_{\mathsf{i}} \sigma$

Example for \mathcal{T} -contradictory:

Context:
$$P(u,v)$$
 $u=f(u)$ $\mathcal{K} = \{ P(u,v), u=f(u), v=f(v) \}$ $K\sigma: \neg P(f(u),f(v))$

ME(7) – Derivation Rules (2)

$$au$$
-Repair $begin{array}{c} hinspace & hinspace$

if

- (1) σ is a \mathcal{T} -context unifier of $C \vee L$ against Λ with key set $\mathcal{K} \cup \{L\}$
- (2) $K \in \neg \mathcal{K}$
- (3) $K\sigma$ is not \mathcal{T} -contradictory with Λ , but $\neg K\sigma$ is \mathcal{T} -contraditory with Λ
- (4) Λ does not contain a variant of $K\sigma$
- \mathcal{T} -Repair is the one-armed, disjoint variant of \mathcal{T} -Split
- \mathcal{T} -Repair is not applicable if \mathcal{T} is the "empty" theory

Context:
$$\neg(f(a)=b)$$
 a=b P(a) $f(u)=u$

Clause:
$$\neg P(f(a))$$

$$\mathcal{T}$$
-Repair with $\neg(a=f(a))$

ME(7) – Derivation Rules (3)

$$\mathcal{T}\text{-Close} \quad \frac{\land \vdash \Phi, C}{\land \vdash \bot}$$

- if (1) $\Phi \neq \emptyset$ or $C \neq \bot$
 - (2) there is a \mathcal{T} -context unifier σ of C against Λ such that each literal of $C\sigma$ is \mathcal{T} -contraditory with Λ

Note: Condition (2) must be decidable!

Interpretation Associated to a Context

- Crucial to understand the working of the calculus
- Basis of the completeness proof
- Basis of feasible instantiation with theory reasoners
 E.g. Waldmeister for the theory of equality

Interpretation Associated to a Context

Literal set \mathcal{KT} -produces a literal L in Λ

Interpretation Associated to Λ

A ground atom A is assigned true in Λ via $\mathcal K$

iff some set $\mathcal K$ of variants of literals from Λ $\mathcal T$ -produces A

Interpretation Associated to a Context

Context Λ \mathcal{T} -produces a literal L

Examples

{ P(a),
$$f(x)=x$$
, $\neg(f(a)=a)$ } does not E-produce P(f(a))

=> P(f(a)) is assigned false in associated E-interpretation $\{P(a), f(x)=x, \neg P(f(a))\}$ E-produces P(f(a)) and $\neg P(f(a))$

=> P(f(a)) is assigned true in associated E-interpretation

ME(T) Calculus – Theory Reasoner R_T

- A lifting lemma cannot be proven "once and for all", replace it by admissibility condition of theory reasoner $R_{\mathcal{T}}$
- Theory reasoner $R_{\mathcal{T}}$
 - Input: a context Λ and a clause $C = L_1 \ \c C \dots \ \c C \ L_n$
 - **Output**: a n+1 -tuple ($\mathcal{K}_1, ..., \mathcal{K}_n, \sigma$) or undefined where \mathcal{K}_i is a set of variants of literals from Λ and σ is a substitution
- $R_{\mathcal{T}}$ is **sound** iff $\mathcal{K}_{\mathsf{i}}\sigma \models_{\mathcal{T}} \neg L_{\mathsf{i}}\sigma$ (i.e. σ is a \mathcal{T} -context unifier)
- $R_{\mathcal{T}}$ is **complete** iff the following holds: For every ground instance $C\gamma$ and all sets $\mathcal{K}_1,...,\mathcal{K}_n$ (as above): If $C\gamma$ is assigned false in Λ via $\mathcal{K}_1,...,\mathcal{K}_n$ then $R_{\mathsf{T}}(\Lambda,C)=(\mathcal{K}_1,...,\mathcal{K}_n,\sigma)$ for some substitution $\sigma\gtrsim\gamma$
- R_{τ} is **admissible** iff it is sound and complete

Consequences and Properties

- Associated interpretation should be total: easy, context contains ¬v
- Associated interpretation should be a *T*-interpretation
 Need further restrictions on allowed theories to guarantee this:
 - Non-negative theories: not $\models \exists (A_1 \land \cdots \land A_n)$
 - $-\mathcal{T}=\{\neg A\}$ is not allowed
 - Theory must be ground convex: $\models_{\mathcal{T}} B \to A_1 \vee \ldots \vee A_{\mathsf{n}} \text{ implies} \models_{\mathcal{T}} B \to A_{\mathsf{i}} \text{ for some i}$ (B conjunction of ground atoms, A ground atom) $\mathcal{T} = \{ \mathsf{A} \vee \mathsf{B} \} \text{ is not allowed}$
- **Property** If limit context Λ_{∞} assigns false to a (ground) clause $C\gamma$ via $\mathcal{K}_{1},\dots,\mathcal{K}_{n}$ then there is an i such that for all j > i Λ_{j} assigns false to $C\gamma$ via $\mathcal{K}_{1},\dots,\mathcal{K}_{n}$

Completeness

Fairness + admissible theory reasoner will detect this situation eventually and invalidate it

Equality and Waldmeister

Problem

Waldmeister is a theorem prover for unit clauses $\{s_1=t_1,...,s_n=t_n, \neg(s=t)\}$

How to match it to **contexts** and **arbitrary clauses**? $\neg(s_1=t_1) \lor ... \lor \neg(s_m=t_m) \lor s_{m+1}=t_{m+1} \lor ... \lor s_n=t_n$

Context Problem

$$\Lambda = \{a = f(a), P(u), \neg P(a), \neg P(f(a)), \neg P(f(f(a)))\}$$

Clause $\neg P(a)$

Waldmeister has to discover instances P(f(f(a))),...

Solution (?)

Convert context to equivalent set of atoms

E.g. for signature {a/0, b/0, f/1} obtain

$$\Lambda = \{a = f(a), P(b), P(f(b)), P(f(f(b))), P(f(f(f(x))))\}$$

Resulting set can be infinite in case of non-linear literals!

Equality and Waldmeister

Problem

Waldmeister is a theorem prover for unit clauses $\{s_1=t_1,...,s_n=t_n, \neg(s=t)\}$

How to match it to **contexts** and **arbitrary clauses**
$$\neg(s_1=t_1) \lor ... \lor \neg(s_m=t_m) \lor s_{m+1}=t_{m+1} \lor ... \lor s_n=t_n$$

Arbitrary Clauses Problem

From definition of associated interpretation it follows:

Context Λ falsifies a positive literal A iff some negative literal $\neg B \in \Lambda$ produces $\neg A$ in Λ

Consequently:

Can resolve away positive clause literals against context literals Leaves only rest clause $(\neg(s_1=t_1) \lor ... \lor \neg(s_m=t_m))\sigma$

Equality and Waldmeister

Problem

Waldmeister is a theorem prover for unit clauses $\{s_1=t_1,\ldots,s_n=t_n,\ \neg(s=t)\}$

How to match it to **contexts** and **arbitrary clauses**
$$\neg(s_1 = t_1) \lor ... \lor \neg(s_m = t_m) \lor s_{m+1} = t_{m+1} \lor ... \lor s_n = t_n$$

Arbitrary Clauses Problem

How to treat rest clause $(\neg(s_1=t_1) \lor ... \lor \neg(s_m=t_m))\sigma$?

Solution

Code it as a negative unit clause (due to Thomas Hillenbrand): \neg (clause($s_1, t_1, ..., s_m, t_m$) = true)

$$clause(x_1,x_1,...,x_m,x_m) = true$$

Can easily query Waldmeister with many clauses simultaneously

Thus have transformation for Waldmeister now

But Waldmeister still has to be modifed to compute "all" solutions!

Conclusion

- Presented simplified calculus, without universal variables e.g. ∀ x P(x,u)
 - Universal variables crucial for performance
 - calculus instantiates to postive hyper-resolution for Horn case
 - One call to Waldmeister for unit theories
 - Should work out without greater difficulties
- Is this all feasible?
- Difference to Ganzinger/Korovin Calculus wrt.\ theory reasoning
 - Works for arbitrary universal non-negative convex theories
 - Does not need a term ordering
 But using term orderings might be advantageous...