Heuristic Search Planning With Multi-Objective Probabilistic LTL Constraints

Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan
Data61/CSIRO and Research School of Computer Science, ANU
Australia

Planning Under Uncertainty

Actions: move left, move right, enter, get Eve, exit

Planning Under Uncertainty

action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, ...

Planning Under Uncertainty

action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, ...

Planning Under Uncertainty

action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, ...

Stochastic Shortest Path Problem (SSP)
Problem: What action to take in what state to reach the goal with minimal costs?
Solution: Stochastic policy: probability distribution on actions
"When at door 1 enter the room 3 out of 10 times, ..."

Planning Under Uncertainty

action \Longrightarrow stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, ...
Add constraints for better expressivity (C-SSP)

- well-known: "fuel < 5"

Stochastic Shortest Path Problem (SSP) - here: PLTL
Problem: What action to take in what state to reach the goal with minimal costs?
Solution: Stochastic policy: probability distribution on actions "When at door 1 enter the room 3 out of 10 times, ..."

Multi-Objective Probabilistic LTL (MO-PLTL)

$$
\begin{align*}
\Psi: & :=\top|A| \Psi \wedge \psi|\Psi \vee \psi| \neg \psi \\
& |\mathbf{X} \psi| \Psi \mathbf{U} \psi|\mathbf{F} \psi| \mathbf{G} \psi \tag{LTL}\\
\phi & :=\mathbf{P}_{\geq z} \Psi \mid \mathbf{P}_{\geq z} \psi \tag{PLTL}
\end{align*}
$$

Eve stays in a room until Eve and Wall-E are together eve_in_a_room U together

Once together, eventually together forever

$$
\begin{equation*}
\mathbf{G} \text { (together } \Rightarrow \mathbf{F} \text { G together) } \tag{2}
\end{equation*}
$$

Wall-E never visits room1 twice

$$
\begin{equation*}
\text { G (wall-E_room1 = (wall-E_room1 U G }\urcorner \text { wall-E_room1) } \tag{3}
\end{equation*}
$$

Additional Multi-Objective PLTL Constraint

$$
\begin{equation*}
\boldsymbol{\phi}=\mathbf{P}_{\geq 0.8} \Psi_{1} \wedge \mathbf{P}_{\geq 1.0} \Psi_{2} \wedge \mathbf{P}_{\geq 0.5} \Psi_{3} \tag{MO-PLTL}
\end{equation*}
$$

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1) such that $\boldsymbol{\phi}$ is satisfied

Multi-Objective Probabilistic LTL (MO-PLTL)

$$
\begin{align*}
\Psi:= & \top|A| \Psi \wedge \psi|\Psi \vee \Psi| \neg \psi \\
& |\mathbf{X} \psi| \Psi \mathbf{U} \Psi|\mathbf{F} \psi| \mathbf{G} \psi \tag{LTL}\\
\phi & :=\mathbf{P}_{\geq z} \Psi \mid \mathbf{P}_{\geq z} \Psi \tag{PLTL}
\end{align*}
$$

Eve stays in a room until Eve and Wall-E are together eve_in_a_room U together

Once together, eventually together forever

$$
\begin{equation*}
\mathbf{G} \text { (together } \Rightarrow \mathbf{F} \text { G together) } \tag{2}
\end{equation*}
$$

Wall-E never visits room1 twice

$$
\begin{equation*}
\text { G (wall-E_room1 = (wall-E_room1 U G }\urcorner \text { wall-E_room1) } \tag{3}
\end{equation*}
$$

Not as used in "optimisation"

Additional Multi-Objective PLTL Constraint

$$
\begin{equation*}
\boldsymbol{\phi}=\mathbf{P}_{\geq 0.8} \Psi_{1} \wedge \mathbf{P}_{\geq 1.0} \Psi_{2} \wedge \mathbf{P}_{\geq 0.5} \Psi_{3} \tag{MO-PLTL}
\end{equation*}
$$

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1) such that $\boldsymbol{\phi}$ is satisfied

Solving MO-PLTL

Methods Based on Probabilistic Verification

- State of the art method, implemented in PRISM probabilistic model checker
- Needs infinite runs
(1) add self-loop at Goal
(2) add Goal constraint : $\boldsymbol{\phi}=\mathbf{P}_{1} \Psi_{1} \wedge \cdots \wedge \mathbf{P}_{\mathrm{k}} \Psi_{\mathrm{k}} \wedge \mathbf{P}_{\geq 1} \mathbf{F}$ Goal
- Compute cross-product automaton

$$
\mathbf{A}=\operatorname{DRA}\left(\Psi_{1}\right) \times \cdots \times \operatorname{DRA}\left(\Psi_{k}\right) \times \operatorname{DRA}(\mathbf{F} \text { Goal }) \times \mathbf{S} \quad(\mathbf{S} \text { is given state transition system, MDP })
$$

- Obtain policy for $\boldsymbol{\phi}$ as a solution of a certain linear program obtained from \mathbf{A}

Complexity

- $|\operatorname{DRA}(\Psi)|$ is double exponential in $|\Psi|$
- $|\mathbf{S}|$ is usually huge for planning problems - cannot afford to generate in full
- Upfront DRA-computation/crossproduct is problematic even for small examples
- The verification/synthesis problem is 2EXPTIME complete
- Complicated algorithms (see also [deGiacomo\&Vardi IJCAI2013, IJCAI2015])

Solving MO-PLTL

Methods Based on Probabilistic Verification

- State of the art method, implemented in PRISM probabilistic model checker
- Needs infinite runs
(1) add self-loop at Goal
(2) add Goal constraint : $\boldsymbol{\phi}=\mathbf{P}_{1} \Psi_{1} \wedge \cdots \wedge \mathbf{P}_{\mathrm{k}} \Psi_{\mathrm{k}} \wedge \mathbf{P}_{\geq 1} \mathbf{F}$ Goal
- Compute cross-product automaton

$$
\mathbf{A}=\operatorname{DRA}\left(\Psi_{1}\right) \times \cdots \times \operatorname{DRA}\left(\Psi_{\mathrm{k}}\right) \times \operatorname{DRA}(\mathbf{F} \text { Goal }) \times \mathbf{S} \quad(\mathbf{S} \text { is given state transition system, MDP })
$$

- Obtain policy for $\boldsymbol{\phi}$ as a solution of a certain linear program obtained from \mathbf{A}

Complexity

- $|\operatorname{DRA}(\Psi)|$ is double exponential in $|\Psi|$
- $|\mathbf{S}|$ is usually huge for planning problems - cannot afford to generate in full
- Upfront DRA-computation/crossproduct is problematic even for small examples
- The verification/synthesis problem is 2EXPTIME complete
- Complicated algorithms (see also [deGiacomo\&Vardi IJCAI2013, IJCAI2015])

Solving MO-PLTL

Methods Based on Probabilistic Verification

- State of the art method, implemented in PRISM probabilistic model checker
- Needs infinite runs
(1) add self-loop at Goal
(2) add Goal constraint : $\boldsymbol{\phi}=\mathbf{P}_{1} \Psi_{1} \wedge \cdots \wedge \mathbf{P}_{\mathrm{k}} \Psi_{\mathrm{k}} \wedge \mathbf{P}_{\geq 1} \mathbf{F}$ Goal
- Compute cross-product automaton

$$
\mathbf{A}=\operatorname{DRA}\left(\Psi_{1}\right) \times \cdots \times \operatorname{DRA}\left(\Psi_{\mathrm{k}}\right) \times \operatorname{DRA}(\mathbf{F} \text { Goal }) \times \mathbf{S} \quad(\mathbf{S} \text { is given state transition system, MDP). }
$$

- Obtain policy for $\boldsymbol{\phi}$ as a solution of a certain linear program obtained from \mathbf{A}

Complexity

- $|\operatorname{DRA}(\Psi)|$ is double exponential in $|\Psi|$
- $|\mathbf{S}|$ is usually huge for planning problems - cannot afford to generate in full
- Upfront DRA-computation/crossproduct is problematic even for small examples
- The verification/synthesis problem is 2EXPTIME complete
- Complicated algorithms (see also [deGiacomo\&Vardi IJCAI2013, IJCAI2015])

We have a specific problem - all BSCCs are self-loops at goals - and can do better

Contributions

Verification Based

General Yes

Approach Automata (DRA)

State Space Upfront

Complexity \quad Double exponential in $\boldsymbol{\phi} \quad$ Single exponential in $\boldsymbol{\phi}$ for (1)

Heuristics No

Our Method

No (Requires Goal)
(1) Formula progression, Tseitin
(2) NBA

On-the-fly

Yes (i²Dual)

Baier\&Mcllraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Contributions

Verification Based

General Yes

Approach Automata (DRA)

State Space Upfront

Complexity \quad Double exponential in $\boldsymbol{\phi} \quad$ Single exponential in $\boldsymbol{\phi}$ for (1)

Heuristics No

Our Method

No (Requires Goal)
(1) Formula progression, Tseitin
(2) NBA

On-the-fly

Yes (i2Dual)

Baier\&Mcllraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation Rest of this talk: approach, complexity, heuristics, experiments

How to Check a Policy π for Satisfying a PLTL Formula

Given policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof
$\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6}$ FA

The probability of all paths from \mathbf{s}_{0} satisfying $\mathbf{F A}$ is >0.6

How to Check a Policy π for Satisfying a PLTL Formula

Given policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6}$ F A
The probability of all paths from $\mathbf{s o}_{0}$ satisfying $\mathbf{F A}$ is >0.6
iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$

How to Check a Policy π for Satisfying a PLTL Formula

Given policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} A\right\}>0.6$

Non-probabilistic LTL
Ignore finiteness of paths on this slide

How to Check a Policy π for Satisfying a PLTL Formula

Given policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6
iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$
$\operatorname{Pr}\left\{\mathbf{s}_{0} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6 \quad \begin{aligned} & \text { Non-probabilistic LTL } \\ & \text { Ignore finiteness of paths on this slide }\end{aligned}$

How to Check a Policy π for Satisfying a PLTL Formula

Given policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from \mathbf{s}_{0} satisfying $\mathbf{F A}$ is >0.6
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from \mathbf{s}_{0} and $\left.p \vDash F A\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
Non-probabilistic LTL
Ignore finiteness of paths on this slide
iff
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$

How to Synthesize Policy π for Satisfying a PLTL Formula

Given policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from \mathbf{s}_{0} satisfying $\mathbf{F A}$ is >0.6
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from \mathbf{s}_{0} and $\left.p \vDash \mathbf{F A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6$
Non-probabilistic LTL
Ignore finiteness of paths on this slide
iff
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$

How to Synthesize Policy π for Satisfying a PLTL Formula

Find policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6, \beta \rightarrow 0.4]$
It follows $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from $\mathbf{s o}_{0}$ satisfying \mathbf{F} A is >0.6
iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{c}}\right\}>0.6$
Non-probabilistic LTL
Ignore finiteness of paths on this slide
iff
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$

How to Synthesize Policy π for Satisfying a PLTL Formula

Find policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow \quad, \beta \rightarrow \quad]$
It follows $\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof

$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
The probability of all paths from \mathbf{s}_{0} satisfying FA is >0.6
iff
$\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{c}}\right\}>0.6$
Non-probabilistic LTL
Ignore finiteness of paths on this slide
iff
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$

How to Synthesize Policy π for Satisfying a PLTL Formula

Find policy $\pi=$
$\mathbf{s}_{0}:\left[\begin{array}{lll}\alpha & \quad, \beta \rightarrow \quad]\end{array}\right.$
such that $\mathrm{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof
$\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6}$ F A

The probability of all paths from \mathbf{s}_{0} satisfying $\mathbf{F A}$ is >0.6
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from \mathbf{s}_{0} and $\left.\mathrm{p} \vDash \mathbf{F A}\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{o}} \mathbf{S}_{\mathrm{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{c}}\right\}>0.6$
Non-probabilistic LTL
Ignore finiteness of paths on this slide
iff
$0.6 \cdot 0.6+0.4 \cdot 0.7=0.64>0.6$

How to Synthesize Policy π for Satisfying a PLTL Formula

```
Find policy }\pi
\mp@subsup{\mathbf{s}}{0}{}:[\alpha-> ', 纤 ]
such that son}\vDash\mp@subsup{\mathbf{P}}{>0.6}{}\mathbf{FA
```

Proof
$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} A\right\}>0.6$
iff

$$
\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6
$$

iff
$\begin{aligned} 0.6 \cdot 0.6+\quad 0.4 \cdot 0.7=0.64>0.6 \rightarrow & \rightarrow \text { Quantify over action probabilities and } \\ & \text { compute solution }\end{aligned}$
Ignore finiteness of paths on this slide
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6
iff
$\operatorname{Pr}\{p \mid p$ is a path fro
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{c}}\right\}>0.6$

Non-probabilistic LTL

How to Synthesize Policy π for Satisfying a PLTL Formula

 Find policy \(\pi=\)
 \(\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow \quad, \quad \beta \rightarrow \quad]\)
 such that \(\mathrm{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}\)
 Proof
 \(\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}\)
 The probability of all paths from \(\mathbf{s}_{0}\) satisfying \(\mathbf{F}\) A is \(>0.6\)
 iff
 \(\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.\) is a path from \(\mathbf{s}_{\mathbf{0}}\) and \(\left.\mathrm{p} \vDash \mathbf{F} \mathrm{A}\right\}>0.6\)
 iff
 \(\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{c}}\right\}>0.6\)
 Non-probabilistic LTL
 Ignore finiteness of paths on this slide
 iff
 $\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right) 0.6+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right) 0.7 \quad>0.6 \rightarrow$ Quantify over action probabilities and
compute solution

How to Synthesize Policy π for Satisfying a PLTL Formula

```
    Find policy }\pi
    \mp@subsup{\mathbf{s}}{0}{}:[\alpha-> ', 纤 ]
    such that s\mathbf{0}}\vDash=\mp@subsup{\mathbf{P}}{>0.6}{}\mathbf{FA
    Proof
    son}=\mp@subsup{\mathbf{P}}{>0.6}{}\mathbf{F A
    The probability of all paths from so satisfying F A is >0.6
    iff
    Pr{p|p}\mathrm{ is a path from son and p
        iff
    Pr{{}\mp@subsup{\mathbf{s}}{\mathbf{0}}{\mathbf{S}}\mathbf{a},\mp@subsup{\mathbf{s}}{\mathbf{0}}{\mathbf{0}}\mathbf{c
        Non-probabilistic LTL
                            Ignore finiteness of paths on this slide
    iff
\begin{tabular}{lcc}
\(\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right) 0.6+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right) 0.7\) & \(>0.6\) & \(\rightarrow\) Quantify over action probabilities and \\
\(\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right)+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right)=1\) & compute solution
\end{tabular}
```


How to Synthesize Policy π for Satisfying a PLTL Formula

Find policy $\pi=$
$\mathbf{s}_{\mathbf{0}}:[\alpha \rightarrow \mathbf{0 . 6} \beta \rightarrow \mathbf{0 . 4}]$
such that $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6}$ FA

Proof
$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} A\right\}>0.6$ iff

$$
\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6
$$

iff

| $\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right) 0.6+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right) 0.7$ | >0.6 |
| :--- | :---: | | Quantify over action probabilities and |
| :---: |
| $\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right)+\boldsymbol{\Pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right)=1$ |\quad compute solution compute solution

Ignore finiteness of paths on this slide
The probability of all paths from \mathbf{s}_{0} satisfying \mathbf{F} A is >0.6

How to Synthesize Policy π for Satisfying a PLTL Formula

Find policy $\pi=$
$\mathrm{s}_{0}:[\alpha \rightarrow \mathbf{0 . 6} \beta \rightarrow \mathbf{0 . 4}]$
such that $\mathrm{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof
$\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

The probability of all paths from \mathbf{s}_{0} satisfying $\mathbf{F A}$ is >0.6
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from \mathbf{s}_{0} and $\left.p \vDash \mathbf{F A}\right\}>0.6$
iff

$$
\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6
$$

Non-probabilistic LTL
Ignore finiteness of paths on this slide
iff

```
m(\alpha|\mp@subsup{\mathbf{s}}{0}{})0.6+\boldsymbol{\pi}(\boldsymbol{\beta}|\mp@subsup{\mathbf{s}}{0}{})0.7 > 0.6 }->\mathrm{ Quantify over action probabilities and
m(\alpha|so)+\pi(\beta|so)=1
```


How to Synthesize Policy π for Satisfying a PLTL Formula

Find policy $\pi=$
$\mathbf{s}_{0}:[\alpha \rightarrow 0.6 \beta \rightarrow 0.4]$
such that $\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$

Proof
$\mathbf{s}_{\mathbf{0}} \vDash \mathbf{P}_{>0.6} \mathbf{F A}$
iff
$\operatorname{Pr}\left\{p \mid p\right.$ is a path from $\mathbf{s}_{\mathbf{0}}$ and $\left.\mathrm{p} \vDash \mathbf{F} A\right\}>0.6$
iff
$\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{c}}\right\}>0.6$
iff


```
m(\alpha|\mp@subsup{\mathbf{s}}{0}{})+\pi(\beta|\mp@subsup{\mathbf{s}}{0}{})=1

\section*{How to Synthesize Policy \(\pi\) for Satisfying a PLTL Formula}

Find policy \(\pi=\)
\(\mathrm{s}_{0}:[\alpha \rightarrow \mathbf{0 . 6} \beta \rightarrow \mathbf{0 . 4}]\)
such that \(\mathrm{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}\)

Proof


The probability of all paths from \(\mathbf{s}_{0}\) satisfying \(\mathbf{F A}\) is \(>0.6\)
iff
Contributions
\(\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.\) is a path from \(\mathbf{s}_{\mathbf{0}}\) and \(\left.\mathrm{p} \vDash \mathbf{F A}\right\}>0.6\)
(1) Formula progression, or
\(\operatorname{Pr}\left\{\mathbf{s}_{\mathbf{o}} \mathbf{S}_{\mathbf{a}}, \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{c}}\right\}>0.6\)
(2) NBA mode
iff
\begin{tabular}{lll}
\(\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right) 0.6+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right) 0.7\) & \(>0.6\) & \(\rightarrow\) Quantify over action probabilities and \\
\(\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right)+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right)=1\) & compute solution
\end{tabular}

\section*{How to Synthesize Policy \(\pi\) for Satisfying a PLTL Formula}

Find policy \(\pi=\)
\(\mathrm{s}_{0}:[\alpha \rightarrow \mathbf{0 . 6} \beta \rightarrow \mathbf{0 . 4}]\)
such that \(\mathrm{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}\)

Proof
\(\mathbf{s}_{0} \vDash \mathbf{P}_{>0.6} \mathbf{F A}\)
iff
\(\operatorname{Pr}\left\{\mathrm{p} \mid \mathrm{p}\right.\) is a path from \(\mathbf{s}_{\mathbf{0}}\) and \(\left.\mathrm{p} \vDash \mathbf{F A}\right\}>0.6\)
The probability of all paths from \(\mathbf{s o}_{0}\) satisfying \(\mathbf{F A}\) is \(>0.6\)

Contributions
(1) Formula progression, or
(2) NBATMure
\begin{tabular}{lll}
\(\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right) 0.6+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right)\) & 0.7 & \(>0.6\)
\end{tabular} \begin{tabular}{c}
\(\rightarrow\) Quantify over action probabilities and \\
\(\boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{0}}\right)+\boldsymbol{\pi}\left(\boldsymbol{\beta} \mid \mathbf{s}_{\mathbf{0}}\right)=1\)
\end{tabular} \begin{tabular}{c} 
compute solution
\end{tabular}

Formula Progression [Bachus\&Kabanza98]
Why? On-the-fly instead of upfront cross-product


Formula Progression [Bachus\&Kabanza98]
Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Formula Progression [Bachus\&Kabanza98]
Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\(\mathbf{S}_{\mathbf{0}} \mathbf{S}_{\mathrm{a}} \mathbf{S}_{\mathrm{a}} \cdots \models \mathbf{F A}\)

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathrm{a}} \mathbf{S}_{\mathrm{a}} \cdots \models \mathrm{FA}_{\mathrm{A}}\)
\(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathrm{A} \vee \mathbf{X F A} \quad\) (by expand)

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\(\mathbf{S}_{\mathbf{0}} \mathbf{S}_{\mathrm{a}} \mathbf{S}_{\mathrm{a}} \cdots \models \mathbf{F A}\)
\(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathrm{A} \vee \mathbf{X F A} \quad\) (by expand)
\(\mathbf{S}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \neq \mathbf{X F A}\)
(by simplify)

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\[
\begin{aligned}
& \mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathrm{a}} \cdots \vDash \mathbf{F A}_{\mathrm{A}} \\
& \mathbf{s}_{0} \mathbf{s}_{\mathrm{a}} \mathrm{~s}_{\mathrm{a}} \cdots \vDash \mathrm{~A} \vee \mathbf{X F A} \quad \text { (by expand) } \\
& \mathbf{S}_{0} \boldsymbol{s}_{\mathrm{a}} \mathbf{S}_{\mathbf{a}} \cdots \vDash \mathbf{X} \mathbf{F A} \quad \text { (by simplify) } \\
& \left.\mathbf{S}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{F A} \quad \text { (by } \mathbf{X}\right)
\end{aligned}
\]

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\[
\begin{aligned}
& \mathbf{S}_{\mathbf{0}} \mathbf{S}_{\mathrm{a}} \mathbf{S}_{\mathrm{a}} \cdots \vDash{ }^{\cdots} \mathrm{F} \\
& \mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathrm{A} \vee \mathbf{X F A} \quad \text { (by expand) } \\
& \mathbf{s}_{0} \mathbf{S}_{\mathrm{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathbf{X} \mathbf{F A} \quad \text { (by simplify) } \\
& \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \vDash \text { FA } \quad(\text { by } \mathbf{X}) \\
& \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \vDash \mathrm{A} \\
& \text { (by self-loop) }
\end{aligned}
\]

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs
```

LTL: }\mp@subsup{\mathbf{so}}{\mathbf{0}}{\mathbf{s}}\mp@subsup{\mathbf{a}}{\mathbf{a}}{\mathbf{s}}\mathbf{a

```



Progression: expand and simplify a given LTL formula along a path

\(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathrm{A} \vee \mathbf{X F A} \quad\) (by expand)
\[
\begin{aligned}
\mathbf{s}_{0} \mathbf{s}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots & \models \mathbf{X} \mathbf{F A} & & \text { (by simplify) } \\
\mathbf{s}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots & \models \mathbf{F A} & & \text { (by } \mathbf{X}) \\
\mathbf{s}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots & \models \mathrm{~A} & & \text { (by self-loop) } \\
\mathbf{s}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots & \models \mathrm{~T} & & \text { (by self-loop) }
\end{aligned}
\]

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|}
\hline \(\mathrm{s}_{0} \mathrm{~s}_{\mathrm{a}} \mathrm{s}_{\mathrm{a}} \cdots \models F \mathrm{FA}\) & & \(\mathbf{S}_{0} \mathbf{S} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{F}^{\prime}\) \\
\hline \(\mathbf{s o n}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathrm{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \\
\hline \(\mathrm{S}_{\mathbf{0}} \mathrm{Sa}_{\mathbf{a}} \mathrm{Sa}_{\mathrm{a}} \cdots \models\) X F A & (by simplify) & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{FA}^{\text {a }}\) & (by X) & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{A}\) & (by self-loop) & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathrm{T}\) & (by self-loop) & \\
\hline
\end{tabular}

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{s}_{0} \mathbf{s}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots \models \mathrm{FA}\) & & \(s_{0} s_{b} s_{b} \cdots \models F A\) & \\
\hline \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) \\
\hline \(\mathbf{S o s}_{0} \mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathrm{a}} \cdots \models\) X F A & (by simplify) & & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{FA}^{\text {A }}\) & (by X) & & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{A}\) & (by self-loop) & & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \vDash \mathrm{T}\) & (by self-loop) & & \\
\hline
\end{tabular}

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{s}_{0} \mathbf{S}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots \models\) FA & & \(\mathbf{s}_{0} \mathbf{s}_{\mathrm{b}} \mathbf{s}_{\mathrm{b}} \cdots \models \mathrm{FA}\) & \\
\hline \(\mathbf{S o s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \(\mathbf{S}_{\mathbf{0}} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) \\
\hline \(\mathbf{S o}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathrm{a}} \cdots \models\) X F A & (by simplify) & \(\mathbf{S o}_{0} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models\) X F A & (by simplify) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathrm{a}} \cdots \models \mathrm{FA}^{\text {A }}\) & (by X) & & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{A}\) & (by self-loop) & & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathrm{T}\) & (by self-loop) & & \\
\hline
\end{tabular}

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{s}_{0} \mathbf{s}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots \models F \mathrm{~F}\) & & \(s_{0} s_{b} s_{b} \cdots \models F A\) & \\
\hline \(\mathbf{s}_{\mathbf{0}} \mathbf{S a}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{b}} \mathbf{s}_{\mathbf{b}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) \\
\hline \(\mathbf{S}_{\mathbf{0}} \mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models\) X F A & (by simplify) & \(\mathbf{S}_{0} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathbf{X F A}\) & (by simplify) \\
\hline \(\mathbf{S a}_{\mathrm{a}} \mathbf{S}_{\mathrm{a}} \cdots \models \mathrm{FA}^{\text {A }}\) & (by X) & \(\mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{F}^{\prime}\) & (by X) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathrm{A}\) & (by self-loop) & & \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S} \mathbf{a} \boldsymbol{\cdots} \vDash \mathrm{T}\) & (by self-loop) & & \\
\hline
\end{tabular}

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs
LTL: \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{G} \mathbf{X A}\)
LTL: \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{G} \mathbf{X A}\)
LTLf: \(\mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \quad \nvdash G X A\)
LTLf: \(\mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \quad \nvdash G X A\)


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|c|}
\hline \[
\mathbf{S}_{0} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathbf{F} A
\] & & \(\mathrm{s}_{0} \mathbf{s}_{\mathrm{b}} \mathrm{s}_{\mathrm{b}} \cdots \models F \mathrm{FA}\) & \\
\hline \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{b}} \mathbf{s}_{\mathbf{b}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) \\
\hline \(\mathrm{S}_{\mathbf{0}} \mathrm{Sa}_{\mathbf{a}} \mathrm{Sa}_{\mathbf{a}} \cdots \models\) X F A & (by simplify) & \(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models\) X F A & (by simplify) \\
\hline \(\mathbf{S a}_{\mathrm{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{FA}^{\text {A }}\) & (by \(\mathbf{X}\) ) & \(\mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{F}^{\text {A }}\) & (by X) \\
\hline \(\mathbf{S}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathrm{A}\) & (by self-loop) & \(\mathbf{S b}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \vDash \mathrm{A}\) & (by self-loop) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \vDash T\) & (by self-loop) & & \\
\hline
\end{tabular}

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs
LTL: \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{G} \mathbf{X A}\)
LTL: \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{G} \mathbf{X A}\)
LTLf: \(\mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \quad \nvdash G X A\)
LTLf: \(\mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \quad \nvdash G X A\)


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|c|}
\hline \(\mathbf{s}_{0} \mathbf{S a}_{\mathrm{a}} \mathbf{s}_{\mathrm{a}} \cdots \models\) FA & & \(\mathrm{s}_{0} \mathrm{~s}_{\mathrm{b}} \mathrm{s}_{\mathrm{b}} \cdots \models F \mathrm{~F}\) & \\
\hline \(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) \\
\hline \(\mathbf{S o}_{\mathbf{0}} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models\) X F A & (by simplify) &  & (by simplify) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{FA}^{\text {a }}\) & (by \(\mathbf{X}\) ) & \(\mathbf{S b}_{\mathrm{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{F}^{\text {A }}\) & (by \(\mathbf{X}\) ) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{A}\) & (by self-loop) & \(\mathbf{S b}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \vDash \mathrm{A}\) & (by self-loop) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{T}\) & (by self-loop) & \(\mathbf{S b}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \vDash \perp\) & (by self-loop) \\
\hline
\end{tabular}

\section*{Formula Progression [Bachus\&Kabanza98]}

Why? On-the-fly instead of upfront cross-product LTL is defined on infinite runs
LTL: \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{G} \mathbf{X A}\)
LTL: \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \vDash \mathbf{G} \mathbf{X A}\)
LTLf: \(\mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \quad \nvdash G X A\)
LTLf: \(\mathbf{s}_{0} \mathbf{s}_{\mathbf{a}} \quad \nvdash G X A\)


Progression: expand and simplify a given LTL formula along a path
\begin{tabular}{|c|c|c|c|}
\hline \[
\mathbf{S}_{0} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathbf{F} A
\] & & \(\mathrm{s}_{0} \mathbf{s}_{\mathrm{b}} \mathrm{s}_{\mathrm{b}} \cdots \models F \mathrm{FA}\) & \\
\hline \(\mathbf{s}_{\mathbf{0}} \mathbf{s}_{\mathbf{a}} \mathbf{s}_{\mathbf{a}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) & \(\mathbf{s}_{\mathbf{0}} \mathbf{S}_{\mathbf{b}} \mathbf{s}_{\mathbf{b}} \cdots \models \mathrm{A} \vee \mathbf{X F A}\) & (by expand) \\
\hline \(\mathbf{S o s}_{0} \mathbf{S a}_{\mathrm{a}} \mathbf{S a}_{\mathrm{a}} \cdots \models\) X F A & (by simplify) & \(\mathbf{S}_{0} \mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models\) X F A & (by simplify) \\
\hline \(\mathbf{S a}_{\mathrm{a}} \mathbf{S a}_{\mathbf{a}} \cdots \models \mathrm{FA}^{\text {A }}\) & (by X) & \(\mathbf{S}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{F}^{\text {A }}\) & (by X) \\
\hline \(\mathbf{S a}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathrm{A}\) & (by self-loop) & \(\mathbf{S b}_{\mathbf{b}} \mathbf{S}_{\mathbf{b}} \cdots \models \mathrm{A}\) & (by self-loop) \\
\hline \(\mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \mathfrak{}\), & (by self-loop) & \(\mathbf{S b} \mathbf{S} \mathbf{b} \cdots \vDash \perp\) & (by self-loop) \\
\hline
\end{tabular}

\section*{Multi-Objective Progression in the State Space}
\(x\)


'is the progression operator

Questions/Issues
- Q: Does repeated progression terminate?

A: It better does, but some rules even increases formula size: FA \(\rightarrow \mathrm{A} \vee \mathbf{X F A}\)
- Q: How to detect a loop \(\langle\boldsymbol{\Psi}, \mathbf{s}\rangle \equiv\left\langle\boldsymbol{\Psi}{ }^{\prime} . ., ’, \mathbf{s}\right\rangle\) ?

A: Check equivalence of LTL formulas. Exponential!
A: Check equality of canonical representation of LTL formulas. Polynomial!

\section*{Multi-Objective Progression in the State Space}
\(x\)


'is the progression operator

Questions/Issues
- Q: Does repeated progression terminate?

A: It better does, but some rules even increases formula size: FA \(\rightarrow \mathrm{A} \vee \mathbf{X F A}\)
- Q: How to detect a loop \(\langle\boldsymbol{\Psi}, \mathbf{s}\rangle \equiv\left\langle\boldsymbol{\Psi}{ }^{\prime} . ., ’, \mathbf{s}\right\rangle\) ?

A: Check equivalence of LTL formulas. Exponential!
A: Check equality of canonical representation of LTL formulas. Polynomial!

\section*{Tseitin Transformation for Classical Logic}
- Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
- Improved versions popular with first-order theorem proving [Azmy\&Weidenbach 2013]

How it works
- Introduce names for complex subformulas before multiplying-out
\(x\)
\[
\begin{array}{rlrl}
(A \wedge B) \vee \Psi \rightarrow & & (A \vee \Psi) \wedge(B \vee \Psi) & \\
& & \text { Duplicates } \Psi \\
(A \wedge B) \vee \Psi \rightarrow & & \\
& & & \\
(A \wedge B) \vee \Psi & \\
& & (A \wedge B) \vee A & \\
& & \Psi_{(A \wedge B)} \vee B & \text { is a name for }(A \wedge B) \\
& & \text { Definition of } \Psi_{(A \wedge B)}
\end{array}
\]
- Requires polynomially many names, one for each subformula
- Apply once-and-forall to given formula and obtain equi-satisfiable CNF
- That CNF is a conjunction of disjunction of 3-literal clauses

\section*{Tseitin Transformation for Classical Logic}
- Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
- Improved versions popular with first-order theorem proving [Azmy\&Weidenbach 2013]

How it works
- Introduce names for complex subformulas before multiplying-out
\(x\)
\[
\begin{array}{rlrl}
(A \wedge B) \vee \Psi \rightarrow & (A \vee \Psi) \wedge(B \vee \Psi) & & \text { Duplicates } \Psi \\
(A \wedge B) \vee \Psi \rightarrow & & \\
& \Psi(A \wedge B) \vee \Psi & & \Psi_{(A \wedge B)} \text { is a name for }(A \wedge B) \\
& \neg \Psi(A \wedge B) \vee A & & \text { Definition of } \Psi(A \wedge B)
\end{array}
\]
- Requires polynomially many names, one for each subformula
- Apply once-and-forall to given formula and obtain equi-satisfiable CNF
- That CNF is a conjunction of disjunction of 3-literal clauses
\(\rightarrow\) We need to apply Tseitin CNF to every derived formula: Tseitin-style progression

\section*{Tseitin-Style Progression}

First (?) application to LTL progression
All LTL formulas are now in 3-CNF
\[
\left\{\ldots,\left\{L_{1}, L i_{2}, L i_{3}\right\} \quad \ldots\right\}
\]

\section*{Tseitin-Style Progression}

All LTL formulas are now in 3-CNF


\section*{Tseitin-Style Progression}

All LTL formulas are now in 3-CNF


\section*{Tseitin-Style Progression}

\section*{All LTL formulas are now in 3-CNF}

Progression
\(\left\{\ldots,\left\{\mathrm{Li}_{1}, \mathrm{Li}_{2}, \mathrm{Li}_{3}\right\} \quad \ldots\right\} \quad \begin{aligned} & \text { 3-CNF: } \\ & \wedge \text {-connected set of } 3 \text {-literal clauses }\end{aligned}\)
- Sequence \(\mathbf{s}_{\mathbf{0}} \vDash\{\{\psi\}\} \rightarrow \mathbf{s}_{\mathbf{1}} \vDash \boldsymbol{\Gamma}_{\mathbf{1}} \rightarrow \mathbf{s}_{\mathbf{2}} \vDash \boldsymbol{\Gamma}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{s}_{\mathbf{i}} \vDash \boldsymbol{\Gamma}_{\mathbf{i}} \quad\) where \(\psi=\) initially given formula
- Initially \(\mathbf{s}_{0} \vDash \Gamma_{0}\) where \(\Gamma_{0}=\) simplified 3-CNF of \(\{\{\Psi\}\}\)
- Step \(\mathbf{s}_{\mathbf{i}} \models \boldsymbol{\Gamma}_{\mathbf{i}} \rightarrow \mathbf{s}_{\mathbf{i + 1}} \models \boldsymbol{\Gamma}_{\mathrm{i}+1}\) :
(1) Eliminate names from \(\Gamma_{\mathbf{i}}\) and strip \(\mathbf{X}\)-operators
(2) \(\Gamma_{i+1}=\) simplified 3-CNF of (1)
- Stop if \(\mathbf{s}_{\mathbf{k}} \vDash \boldsymbol{\Gamma}_{\mathbf{k}}=\mathbf{s}_{\mathbf{i}} \models \boldsymbol{\Gamma}_{\mathbf{i}}\) for some \(\mathbf{k}<\mathbf{i}\)

Replaces \(\equiv\)-test for LTL-formulas by polynomial set equality test!

\section*{Complexity}

Literal signature \(|\Sigma| \in \mathrm{O}\left(|\Psi|^{2}\right)\)
\(\mathrm{O}\left(|\Sigma|^{3}\right)=\mathrm{O}\left(|\Psi|^{6}\right)\) different clauses
\(2^{0} \mathrm{O}\left(|\Psi|^{6}\right)\) different clause sets
Theorem
Space and time complexity polynomial in \(|\mathbf{S}|\) and single exponential \(|\Psi|\)

Tseitin-Style Progre
All LTL formulas are now in

\section*{Progression}
- Sequence \(\mathbf{s}_{0} \vDash\{\{\Psi\}\} \rightarrow\)
- Initially \(\mathbf{S}_{0} \vDash \Gamma_{0}\) where \(\Gamma_{0}=\)
- Step \(\mathbf{s}_{\mathbf{i}} \vDash \boldsymbol{\Gamma}_{\mathbf{i}} \rightarrow \mathbf{s}_{\mathbf{i}+1} \models \boldsymbol{\Gamma}_{\mathbf{i}+1}\)
(1) Eliminate names from
(2) \(\Gamma_{i+1}=\) simplified 3-CNF
- Stop if \(\mathbf{s}_{\mathbf{k}} \vDash \boldsymbol{\Gamma}_{\mathbf{k}}=\mathbf{s}_{\mathrm{i}} \vDash \boldsymbol{\Gamma}_{\mathrm{i}}\) for Replaces \(\equiv\)-test for LTL-for

Complexity
Literal signature \(|\Sigma| \in \mathrm{O}|\mid\) \(\mathrm{O}\left(|\Sigma|{ }^{3}\right)=\mathrm{O}\left(|\Psi|^{6}\right)\) differe \(2^{\mathrm{O}}\left(|\Psi|^{6}\right)\) different claus

\section*{Theorem}

Space and time complexity
\[
\begin{align*}
& \left\{\}\} \uplus \Gamma \Rightarrow_{s}\{\{ \}\} \quad \text { if } \Gamma \neq \emptyset\right. \\
& \{\{T\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \Gamma  \tag{T}\\
& \{\{\neg \top\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s}\{\Psi\} \cup \Gamma \\
& \{\{(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \Gamma \quad \text { if }(v, d) \in A P \text { and } s[v]=d  \tag{Eval1}\\
& \{\{(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s}\{\Psi\} \cup \Gamma \quad \text { if }(v, d) \in A P \text { and } s[v] \neq d \\
& \{\{\neg(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s}\{\Psi\} \cup \Gamma \quad \text { if }(v, d) \in A P \text { and } s[v]=d \\
& \{\{\neg(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \Gamma \quad \text { if }(v, d) \in A P \text { and } s[v] \neq d \\
& \{\{\neg \neg \psi\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s}\{\{\psi\} \cup \Psi\} \cup \Gamma \\
& \left\{\left\{\psi_{1} \vee \psi_{2}\right\} \uplus \Psi\right\} \uplus \Gamma \Rightarrow_{s}\left\{\left\{A_{\psi_{1} \vee \psi_{2}}\right\} \cup \Psi,\right. \\
& \left.\left\{\neg A_{\psi_{1} \vee \psi_{2}}, \psi_{1}, \psi_{2}\right\}\right\} \cup \Gamma \\
& \left\{\left\{\neg\left(\psi_{1} \vee \psi_{2}\right)\right\} \uplus \Psi\right\} \uplus \Gamma \Rightarrow_{s}\left\{\left\{\neg A_{\psi_{1} \vee \psi_{2}}\right\} \cup \Psi,\right. \\
& \left\{A_{\psi_{1} \vee \psi_{2}}, \overline{\psi_{1}}\right\}, \\
& \left.\left\{A_{\psi_{1} \vee \psi_{2}}, \overline{\psi_{2}}\right\}\right\} \cup \Gamma \\
& \left\{\left\{\psi_{1} \wedge \psi_{2}\right\} \uplus \Psi\right\} \uplus \Gamma \Rightarrow_{s}\left\{\left\{A_{\psi_{1} \wedge \psi_{2}}\right\} \cup \Psi,\right. \\
& \left\{\neg A_{\psi_{1} \wedge \psi_{2}}, \psi_{1}\right\}, \\
& \left.\left\{\neg A_{\psi_{1} \wedge \psi_{2}}, \psi_{2}\right\}\right\} \cup \Gamma \\
& \left\{\left\{\neg\left(\psi_{1} \wedge \psi_{2}\right)\right\} \uplus \Psi\right\} \uplus \Gamma \Rightarrow_{s}\left\{\left\{\neg A_{\psi_{1} \wedge \psi_{2}}\right\} \cup \Psi,\right. \\
& \left.\left\{A_{\psi_{1} \wedge \psi_{2}}, \overline{\psi_{1}}, \overline{\psi_{2}}\right\}\right\} \cup \Gamma \\
& \left\{\left\{\psi_{1} \mathbf{U} \psi_{2}\right\} \uplus \Psi\right\} \uplus \Gamma \Rightarrow_{s}\left\{\left\{A_{\psi_{1}} \mathbf{U} \psi_{2}\right\} \cup \Psi,\right.  \tag{U}\\
& \left\{\neg A_{\psi_{1}} \mathbf{U} \psi_{2}, \psi_{2}, A_{\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)}\right\}, \\
& \left\{\neg A_{\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \cup \psi_{2}\right)}, \psi_{1}\right\} \text {, } \\
& \left.\left\{\neg A_{\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \cup \psi_{2}\right)}, \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\}\right\} \cup \Gamma \\
& \left\{\left\{\neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\} \uplus \Psi\right\} \uplus \Gamma \Rightarrow_{S}\left\{\left\{\neg A_{\psi_{1}} \mathbf{U} \psi_{2}\right\} \cup \Psi,\right. \\
& \left\{A_{\psi_{1}} \mathbf{U}_{\psi_{2}}, \overline{\psi_{2}}\right\}, \\
& \left\{A_{\psi_{1}} \mathbf{U} \psi_{2}, \neg A_{\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \mathbf{U} \psi_{2}\right)}\right\}, \\
& \left.\left\{A_{\psi_{1} \wedge \mathbf{X}\left(\psi_{1} \cup \psi_{2}\right)}, \overline{\Psi_{1}}, \mathbf{X} \neg\left(\psi_{1} \mathbf{U} \psi_{2}\right)\right\}\right\} \cup \Gamma \\
& \{\{\neg \mathbf{X} \psi\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s}\{\{\mathbf{X} \bar{\psi}\} \cup \Psi\} \cup \Gamma
\end{align*}
\]

\section*{Tseitin-Style Progression}

\section*{All LTL formulas are now in 3-CNF}

Progression
\(\left\{\ldots,\left\{\mathrm{Li}_{1}, \mathrm{Li}_{2}, \mathrm{Li}_{3}\right\} \quad \ldots\right\} \quad \begin{aligned} & \text { 3-CNF: } \\ & \wedge \text {-connected set of } 3 \text {-literal clauses }\end{aligned}\)
- Sequence \(\mathbf{s}_{\mathbf{0}} \vDash\{\{\psi\}\} \rightarrow \mathbf{s}_{\mathbf{1}} \vDash \boldsymbol{\Gamma}_{\mathbf{1}} \rightarrow \mathbf{s}_{\mathbf{2}} \vDash \boldsymbol{\Gamma}_{\mathbf{2}} \rightarrow \ldots \rightarrow \mathbf{s}_{\mathbf{i}} \vDash \boldsymbol{\Gamma}_{\mathbf{i}} \quad\) where \(\psi=\) initially given formula
- Initially \(\mathbf{s}_{0} \vDash \Gamma_{0}\) where \(\Gamma_{0}=\) simplified 3-CNF of \(\{\{\Psi\}\}\)
- Step \(\mathbf{s}_{\mathbf{i}} \models \boldsymbol{\Gamma}_{\mathbf{i}} \rightarrow \mathbf{s}_{\mathbf{i + 1}} \models \boldsymbol{\Gamma}_{\mathrm{i}+1}\) :
(1) Eliminate names from \(\Gamma_{\mathbf{i}}\) and strip \(\mathbf{X}\)-operators
(2) \(\Gamma_{i+1}=\) simplified 3-CNF of (1)
- Stop if \(\mathbf{s}_{\mathbf{k}} \vDash \boldsymbol{\Gamma}_{\mathbf{k}}=\mathbf{s}_{\mathbf{i}} \models \boldsymbol{\Gamma}_{\mathbf{i}}\) for some \(\mathbf{k}<\mathbf{i}\)

Replaces \(\equiv\)-test for LTL-formulas by polynomial set equality test!

\section*{Complexity}

Literal signature \(|\Sigma| \in \mathrm{O}\left(|\Psi|^{2}\right)\)
\(\mathrm{O}\left(|\Sigma|^{3}\right)=\mathrm{O}\left(|\Psi|^{6}\right)\) different clauses
\(2^{0} \mathrm{O}\left(|\Psi|^{6}\right)\) different clause sets
Theorem
Space and time complexity polynomial in \(|\mathbf{S}|\) and single exponential \(|\Psi|\)

\section*{Policy Synthesis by Translation to Linear Program}

\section*{Search Space}


Policy \(\pi\)
\[
\pi\left(\alpha \mid s_{\mathrm{i}}\right)=? \pi\left(\beta \mid s_{\mathrm{i}}\right)=?
\]

\section*{Policy Synthesis by Translation to Linear Program}

\section*{Search Space}


Policy \(\pi\)
\[
\pi\left(\alpha \mid s_{i}\right)=? \quad \pi\left(\beta \mid s_{i}\right)=?
\]

Linear program computes expected values
Expected number of times \(\alpha\) is executed in \(\mathrm{s}_{\mathrm{i}}\)
\[
\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\alpha}\right)={\underline{\underline{s_{\mathbf{i}}}}} \boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{i}}\right) \times \operatorname{Pr}\left(-\mathbf{s}_{\mathbf{i}}\right)
\]

Expected policy costs
\[
\begin{aligned}
& \left.\left.\operatorname{Cost}(-)^{-}\right) \times \operatorname{Pr}(-)^{-}\right)+ \text {Primary: e.g. time } \\
& \left.\begin{array}{l}
\operatorname{Cost}\left(\sim^{-}\right) \times \operatorname{Pr}\left(\sim_{-}\right)+ \\
\operatorname{Cost}(-\infty)
\end{array}\right) \operatorname{Pr}\left(\sim_{-}\right) \quad \text { Secondary: e.g. fuel }<50 \\
& =\ldots+x\left(s_{i}, \alpha\right) \times C(\alpha) \\
& +x\left(s_{i}, \beta\right) \times C(\beta)+\ldots
\end{aligned}
\]

\section*{Policy Synthesis by Translation to Linear Program}

Search Space


Policy \(\pi\)
\[
\pi\left(\alpha \mid s_{i}\right)=? \quad \pi\left(\beta \mid s_{i}\right)=? \quad \ldots
\]

Linear program computes expected values
Expected number of times \(\alpha\) is executed in \(\mathrm{s}_{\mathrm{i}}\)
\[
\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\alpha}\right)=\underline{-}_{\mathbf{s}_{\mathbf{i}}} \boldsymbol{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{i}}\right) \times \operatorname{Pr}\left(-\mathbf{s}_{\mathbf{i}}\right)
\]

\section*{Expected policy costs}
\[
\begin{aligned}
& \operatorname{Cost}(-\infty) \times \operatorname{Pr}(-\infty)+\begin{array}{l}
\text { Primary: e.g. time } \\
\operatorname{Cost}(-\infty) \\
\operatorname{Cost}(-\infty) \times \operatorname{Pr}(-\infty)+\begin{array}{l}
\text { Secondary: e.g. fuel }<50 \\
\text { S }
\end{array} \\
=\ldots+\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\alpha}\right) \times \mathbf{C}(\boldsymbol{\alpha}) \\
\\
\quad+\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\beta}\right) \times \mathbf{C}(\boldsymbol{\beta})+\ldots
\end{array}
\end{aligned}
\]


\section*{Linear Program Solver}

Optimal solution of linear program, i.e., values for \(\mathbf{x}(\mathbf{s i}, \boldsymbol{\alpha})\) s.th.
- primary cost is minimized, and
- secondary cost constraints are satisfied
in expectation

\section*{Policy Synthesis by Translation to Linear Program}

Search Space


Policy \(\pi\)
\[
\begin{aligned}
& \pi\left(\alpha \mid s_{i}\right)=? \quad \pi\left(\beta \mid s_{i}\right)=? \\
& \pi\left(\alpha \mid s_{i}\right)=x\left(s_{i}, \alpha\right) /\left(x\left(s_{i}, \alpha\right)+x\left(s_{i}, \beta\right)\right)
\end{aligned}
\]


Linear program computes expected values
Expected number of times \(\alpha\) is executed in \(\mathrm{s}_{\mathrm{i}}\)
\[
\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\alpha}\right)={\underline{\mathbf{s}_{\mathbf{i}}}}^{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{i}}\right) \times \operatorname{Pr}\left(一 \mathbf{s}_{\mathbf{i}}\right)
\]

\section*{Expected policy costs}
\[
\begin{aligned}
& \operatorname{Cost}(-\infty) \times \operatorname{Pr}(-\infty)+\begin{array}{l}
\text { Primary: e.g. time } \\
\operatorname{Cost}(-\infty) \\
\operatorname{Cost}(-\infty) \times \operatorname{Pr}(-\infty)+\begin{array}{l}
\text { Secondary: e.g. fuel }<50 \\
\\
=\ldots
\end{array} \\
\quad+\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\alpha}\right) \times \mathbf{C}(\boldsymbol{\alpha}) \\
\\
\quad+\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \boldsymbol{\beta}\right) \times \mathbf{C}(\boldsymbol{\beta})+\ldots
\end{array}
\end{aligned}
\]


\section*{Linear Program Solver}

Optimal solution of linear program, i.e., values for \(\mathbf{x}(\mathbf{s i}, \boldsymbol{\alpha})\) s.th.
- primary cost is minimized, and
- secondary cost constraints are satisfied
in expectation

\section*{Policy Synthesis by Translation to Linear Program}

Search Space


Policy \(\pi\)
\[
\begin{aligned}
& \pi\left(\alpha \mid s_{i}\right)=? \quad \pi\left(\beta \mid s_{i}\right)=? \\
& \pi\left(\alpha \mid s_{i}\right)=x\left(s_{i}, \alpha\right) /\left(x\left(s_{i}, \alpha\right)+x\left(s_{i}, \beta\right)\right)
\end{aligned}
\]


Linear program computes expected values
Expected number of times \(\alpha\) is executed in \(\mathrm{s}_{\mathrm{i}}\)
\[
\mathbf{x}\left(\mathbf{s}_{\mathbf{i}}, \alpha\right)={\underline{s_{i}}}^{\pi}\left(\boldsymbol{\alpha} \mid \mathbf{s}_{\mathbf{i}}\right) \times \operatorname{Pr}\left(一 \mathbf{s}_{\mathrm{i}}\right)
\]

\section*{Expected policy costs}
\[
\begin{aligned}
& \left.\left.\operatorname{Cost}(-)^{-}\right) \times \operatorname{Pr}(-)^{-}\right)+ \text {Primary: e.g. time } \\
& \begin{array}{l}
\operatorname{Cost}\left(\sim^{-}\right) \times \operatorname{Pr}\left(\sim_{-}\right)+\quad \text { Secondary: e.g. fuel }<50 \\
\operatorname{Cost}(-\infty)
\end{array} \\
& =\ldots+x\left(s_{i}, \alpha\right) \times C(\alpha) \\
& +x\left(s_{i}, \beta\right) \times C(\beta)+\ldots
\end{aligned}
\]

\section*{Linear Program Solver}

Optimal solution of linear program, i.e., values for \(\mathbf{x}(\mathbf{s i}, \boldsymbol{\alpha})\) s.th.
- primary cost is minimized, and
- secondary cost constraints are satisfied
in expectation

\section*{Heuristics Search: i-dual and i²-dual}
- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...


\section*{Heuristics Search: i-dual and \({ }^{2}\)-dual}
- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

... with \(\mathrm{A}^{*}\)-like heuristic estimation function H
(1) Compute best policy \(\boldsymbol{\pi}^{*}\) for current state space by translation into LP with fringe as artificial goals with costs H \(\pi^{*}\) minimizes \(f=g+H\)
(2) Expand all friinge states reachable under \(\boldsymbol{\pi}\) *
(3) If all reachable fringe states are original goals then stop else repeat

\section*{Heuristics Search: i-dual and \({ }^{2}\)-dual}
- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

... with \(\mathrm{A}^{*}\)-like heuristic estimation function H
(1) Compute best policy \(\boldsymbol{\pi}^{\star}\) for current state space by translation into LP with fringe as artificial goals with costs H \(\pi^{\star}\) minimizes \(f=g+H\)
(2) Expand all fringe states reachable under \(\boldsymbol{\pi}^{*}\)
(3) If all reachable fringe states are original goals then stop else repeat

\section*{Search space}
- Over policies, not paths; g(s) may change in each step
- Policies may become constrained E.g. \(\operatorname{Pr}(----)<0.1\) if \(\mathrm{H}_{\text {fuel }}(\mathbf{s})=50\) as otherwise fuel < 5 not achievable

\section*{Heuristics Search: i-dual and \({ }^{2}\)-dual}
- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

\(\rightarrow\) For PLTL constraints
... with \(\mathrm{A}^{*}\)-like heuristic estimation function H
(1) Compute best policy \(\boldsymbol{\pi}^{\star}\) for current state space by translation into LP with fringe as artificial goals with costs H \(\pi^{\star}\) minimizes \(f=g+H\)
(2) Expand all fringe states reachable under \(\boldsymbol{\pi}^{*}\)
(3) If all reachable fringe states are original goals then stop else repeat

\section*{Search space}
- Over policies, not paths; g(s) may change in each step
- Policies may become constrained E.g. \(\operatorname{Pr}(----)<0.1\) if \(\mathrm{H}_{\text {fuel }}(\mathbf{s})=50\) as otherwise fuel \(<5\) not achievable

\section*{Heuristic Search for PLTL - PLTL-dual}

A universal heuristic for search space pruning
Find policy \(\pi\) s.th \(\mathbf{s}_{0}, \pi \vDash \mathbf{P}_{\geq 0.9} \Psi\)


\section*{Heuristic Search for PLTL - PLTL-dual}

A universal heuristic for search space pruning
Find policy \(\pi\) s.th \(\mathbf{s}_{0}, \pi \vDash \mathbf{P}_{\geq 0.9} \Psi\)

\[
\begin{aligned}
& \text { Optimal (final) policy } \pi^{\star} \\
& \begin{array}{ccc}
\pi^{\star}\left(\alpha, s_{0}\right)=1 & \pi^{\star}\left(\alpha, s_{0}\right)=0 & \pi^{\star}\left(\alpha, s_{0}\right)=0
\end{array}
\end{aligned}
\]

\section*{Heuristic Search for PLTL - PLTL-dual}

A universal heuristic for search space pruning
Find policy \(\pi\) s.th \(\mathbf{s}_{\mathbf{0}}, \pi \vDash \mathbf{P}_{\geq 0.9} \Psi\)


\section*{Heuristic Search for PLTL - PLTL-dual}

A universal heuristic for search space pruning
Find policy \(\pi\) s.th \(\mathbf{s}_{\mathbf{0}}, \pi \vDash \mathbf{P}_{\geq 0.9} \Psi\)


\section*{Heuristic Search for PLTL - PLTL-dual}

A universal heuristic for search space pruning
Find policy \(\pi\) s.th \(\mathbf{s}_{0}, \pi \vDash \mathbf{P}_{\geq 0.9} \Psi\)


Optimal (final) policy \(\pi^{*}\)
\[
\begin{aligned}
& \pi^{\star}\left(\alpha, s_{0}\right)=1 \quad \pi^{\star}\left(\alpha, s_{0}\right)=0 \quad \pi^{\star}\left(\alpha, s_{0}\right)=0 \\
& \text { Max among all } \pi^{\star} \leq \text { Heuristic value } \\
& \operatorname{Pr}\{---\mid \Psi\}=0.9 \leq H(\bullet)=1 \\
& \operatorname{Pr}\{--\mid \Psi\}=0 \leq H(\bullet)=0.5 \\
& \operatorname{Pr}\{--\mid \Psi\}=0.2 \leq H(\bullet)=0.3
\end{aligned}
\]

Entailed feasibilty policy constraint
\[
\pi\left(\alpha, s_{0}\right) \leq 0.2
\]
\[
\text { Otherwise, e.g. with } \pi\left(\alpha, s_{0}\right)=0.21
\]
\[
\begin{aligned}
& 0.21 \cdot 0.5+\pi\left(\alpha, s_{0}\right) \cdot 1 \geq 0.9 \\
& \Rightarrow \pi\left(\alpha, s_{0}\right) \geq 0.795 \\
& \text { But } 0.21+\mathbf{0 . 7 9 5}=1.005>\mathbf{1}
\end{aligned}
\]

\section*{Heuristic Search for PLTL - PLTL-dual}

\section*{A universal heuristic for search space pruning}

Find policy \(\pi\) s.th \(\mathbf{s}_{0}, \pi \vDash \mathbf{P}_{\geq 0.9} \Psi\)


How to compute \(\mathrm{H}(\mathrm{O})\) with NBAs
1. \(\Psi\) ' \(:=\Psi \wedge\) "finite extension semantics"
2. Compute NBA B for \(\Psi\),
3. Trace \(\mathbf{B}\) to find - states (overapproximation)
4. Trace B from - states as initial states to Goal
- using relaxed actions from S consistent with trace
- as a SSP T
5. Solve \(\mathbf{T}\) putting 1 unit of flow into - states
6. Get \(\mathrm{H}(\mathrm{O})\) from flow into Goal

\section*{Experiment: Wall-e and Eve}
- Goal: Wall-e at G

- Constraints:
1. Wall-e and Eve must eventually be together ( \(P \geq 0.5\) )
2. Eve must be in a room until they are together ( \(P \geq 0.8\) )
3. Once together, they eventually stay together \((P=1)\)
4. Eve must visit the rooms 1,2 , and \(3(P=1)\)
5. Wall-e never visits a room twice \((P \geq 0.8)\)

\section*{Experiment: Wall-e and Eve}
- Goal: Wall-e at G

- Constraints:
1. Wall-e and Eve must eventually be together ( \(P \geq 0.5\) )
2. Eve must be in a room until they are together ( \(P \geq 0.8\) )
3. Once together, they eventually stay together \((P=1)\)
4. Eve must visit the rooms 1,2 , and \(3(P=1)\)
5. Wall-e never visits a room twice \((P \geq 0.8)\)

\section*{Experiments - Wall-E}


NBA heur: full heuristics, may yield "many" states
NBA heur (100): use trivial heuristics if > 100 states in NBA
Good also for progression: violated LTL constraints detected early by simplification
Wall-E never visits room1 twice
\(\mathbf{G}\) (wall-E_room1 \(\Rightarrow\) (wall-E_room1 U G \(\neg\) wall-E_room1)

\section*{Experiments - Factory}


\section*{Conclusion}

\section*{Summary}
- Policy synthesis algorithm for multi-objective PLTL constraints \(\Psi=\mathbf{P}_{\mathbf{1}} \Psi_{1} \wedge \cdots \wedge \mathbf{P}_{\mathbf{k}} \Psi_{\mathrm{k}}\) Resulting history-independent (Markovian) policy over cross-product state space converts to finite-memory policy in the standard way
- Tseitin-style progression

Better worst-case complexity: single-exponential (vs double-exponential) in \(|\Psi|\)
- NBA-based A*-like heuristics
- "Promising experiments"

\section*{Future Work}
- Implement progression in full
- Heuristics based on progression (vs NBA)
- Multi-objective PLTL verification (on infinite runs) based on progression
- Quantification over finite domains. Non-prob: [Baier\&Mcllraith 2006]
- Beyond PLTL, e.g. \(\mathbf{P}_{>0.8} \mathbf{G}\left(\mathbf{A} \rightarrow \mathbf{P}_{>0.4} \mathbf{F}\right.\) B)```

