Heuristic Search Planning With Multi-Objective Probabilistic
LTL Constraints

Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU
Australia

Planning Under Uncertainty

Actions: move left, move right, enter, get Eve, exit

Planning Under Uncertainty

action = stochastic environment response
Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

Planning Under Uncertainty

action = stochastic environment response
Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

Planning Under Uncertainty

action = stochastic environment response
Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

Stochastic Shortest Path Problem (SSP)
Problem: What action to take in what state to reach the goal with minimal costs?

Solution: Stochastic policy: probability distribution on actions
“When at door 1 enter the room 3 out of 10 times,...”

Planning Under Uncertainty

<
> > >
action = stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, ... Add constraints for better expressivity (C-SSP)

- well-known: “fuel < 5”

Stochastic Shortest Path Problem (SSP) - here: PLTL
Problem: What action to take in what state to reach the goal with minimal costs?

Solution: Stochastic policy: probability distribution on actions
“When at door 1 enter the room 3 out of 10 times,...”

Multi-Objective Probabilistic LTL (MO-PLTL)

W=TIA[WAR| WV Y[y r &
XY [YUY[FY|Gy (LTL)

=P, P[P P (PLTL)

Eve stays in a room until Eve and Wall-E are together

eve_in_a_room U together (Y1)

Once together, eventually together forever
G (together = F G together) (P2)

Wall-E never visits room1 twice
G (wall-E_room1 = (wall-E_room1 U G -wall-E_room1) (P3)

Additional Multi-Objective PLTL Constraint
b =P8 P1 A P210 P2 A P2os P3 (MO-PLTL)

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)
such that ¢ is satisfied

Multi-Objective Probabilistic LTL (MO-PLTL)

=T [A|QAY[YVY[-y
| XY |QYUY[|FY|GY (LTL)

=P, P[P P (PLTL)

Eve stays in a room until Eve and Wall-E are together

eve_in_a_room U together (W1)

Once together, eventually together forever
G (together = F G together) (P2)

Wall-E never visits room1 twice
G (wall-E_room1 = (wall-E_room1 U G -wall-E_room1) (P3)
Jie— Not as used in “optimisation”

Additional Multi-Objective PLTL Constraint
® =Px08 W1 A Pz1.0 P2 A Pxos D3 (MO-PLTL)

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)
such that ¢ is satisfied

Solving MO-PLTL

Methods Based on Probabilistic Verification
o State of the art method, implemented in PRISM probabilistic model checker
 Needs infinite runs
(1) add self-loop at Goal
(2) add Goal constraint: d =P P1 A =+ A PPk A Px1 F Goal

« Compute cross-product automaton

A =DRA(Y;) x -+ x DRA(Y«) x DRA(F Goal) xS (S is given state transition system, MDP).

« Obtain policy for ¢ as a solution of a certain linear program obtained from A
Complexity

 |[DRA(Y)| is double exponential in ||
S| is usually huge for planning problems - cannot afford to generate in full

Upfront DRA-computation/crossproduct is problematic even for small examples

The verification/synthesis problem is 2EXPTIME complete
Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

Solving MO-PLTL

Methods Based on Probabilistic Verification

o State of the art method, implemented in PRISM probabilistic model checker

 Needs infinite runs p—> —

(1) add self-loop at Goal
(2) add Goal constraint: d =P P1 A =+ A PPk A Px1 F Goal

« Compute cross-product automaton

A =DRA(Y;) x -+ x DRA(Y«) x DRA(F Goal) xS (S is given state transition system, MDP).

« Obtain policy for ¢ as a solution of a certain linear program obtained from A
Complexity

 |[DRA(Y)| is double exponential in ||
S| is usually huge for planning problems - cannot afford to generate in full

Upfront DRA-computation/crossproduct is problematic even for small examples

The verification/synthesis problem is 2EXPTIME complete
Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

.

DRA

J

Solving MO-PLTL

Methods Based on Probabilistic Verification

o State of the art method, implemented in PRISM probabilistic model checker

 Needs infinite runs p—> —

(1) add self-loop at Goal
(2) add Goal constraint: d =P P1 A =+ A PPk A Px1 F Goal

« Compute cross-product automaton

A =DRA(Y;) x -+ x DRA(Y«) x DRA(F Goal) xS (S is given state transition system, MDP).

« Obtain policy for ¢ as a solution of a certain linear program obtained from A
Complexity

 |[DRA(Y)| is double exponential in ||
S| is usually huge for planning problems - cannot afford to generate in full

Upfront DRA-computation/crossproduct is problematic even for small examples

The verification/synthesis problem is 2EXPTIME complete
Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

We have a specific problem - all BSCCs are self-loops at goals - and can do better

.

DRA

J

4

Contributions

Verification Based Our Method

General Yes No (Requires Goal)

(1) Formula progression, Tseitin

Approach Automata (DRA
pp (DRA) (2) NBA
State Space Upfront On-the-fly
Complexity Double exponential in ¢ Single exponential in ¢ for (1)
Heuristics No Yes (i2Dual)

Baier&Mcllraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Contributions

Verification Based Our Method

General Yes No (Requires Goal)

(1) Formula progression, Tseitin

Approach Automata (DRA
pp (DRA) (2) NBA
State Space Upfront On-the-fly
Complexity Double exponential in ¢ Single exponential in ¢ for (1)
Heuristics No Yes (i2Dual)

Baier&Mcllraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Rest of this talk: approach, complexity, heuristics, experiments

How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6

How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [x — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-gs F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

Non-probabilistic LTL
~ Ignore finiteness of paths on this slide

How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6

How to synthesize Policy mt for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6, B — 0.4]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [—» , B —]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [—» , B —]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

06 -06+ 04 -0.7=0.64>0.6

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [—» , B —]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

06 06+ 04 -0.7=0.64>0.6 ~ Quantify over action probabilities and

compute solution

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [—» , B —]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and

compute solution

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [—» , B —]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and

n(o | so) + T(B|so) = 1 compute solution

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6 B — 0.4]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and

n(o | so) + T(B|so) = 1 compute solution

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6 B — 0.4]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff
n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and
n(o | so) + T(B|so) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6 B — 0.4]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6
iff

Pr{sosa, sosc} > 0.6

iff
n(ox | so) 0.6 + T(P | so) 0.7 > 0.6 -~ Quantify over action probabilities and
n(x | so) + (B |so0) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [0 — 0.6 B — 0.4]
0.3

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6

iff

Contributions
Pr{p | p is a path from sp and p=F A} > 0.6 o utio

iff
«._ (1) Formula progression, or
Pr{sosa, sosc} > 0.6 ™ (2)NBA mode
iff
n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and
(o | so) + T(B|so) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead

How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [0 — 0.6 B — 0.4]
0.3

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sp and p=F A} > 0.6 Contributions

~-___ Next

iff
Pr{sosa, sosc} > 0.6 AN
iff
m(o | so) 0.6 + m(PB|se) 0.7 > 0.6 ~ Quantify over action probabilities and
(X | so) + T(B | so) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs 0.7 0.3

U 1A} {}

R\._ﬁ—w Self loops at goals

Formula Progression [Bachus&Kabanza98]

Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

- Self loops at goals

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs 0.7 0.3

a)
ITL: SoSaSa - =G XA U {A} {}
LTLs: So Sa # GXA

_) ‘ - Self loops at goals

Progression: expand and simplify a given LTL formula along a path

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs 0.7 0.3

a)
ITL: SoSaSa - =G XA U {A} {}
LTLs: So Sa # GXA

_) ‘ - Self loops at goals

Progression: expand and simplify a given LTL formula along a path

SoSaSa'"FFA J

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs 0.7 0.3

a)
ITL: SoSaSa - =G XA U {A} {}
LTLs: So Sa # GXA

_) ‘ - Self loops at goals

Progression: expand and simplify a given LTL formula along a path

SoSaSa'"FFA J

S0SaSa - "EAVXFA (by expand)

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs 0.7 0.3

4)
LTL' S0SaSa ' |=GXA {} {A} {}
LTLs: So Sa # GXA ,

. J R\._ow Self loops at goals

Progression: expand and simplify a given LTL formula along a path

SoSaSa"""FFA J

S0SaSa - "EAVXFA (by expand)

S0SaSa - "EXFA (by simplify)

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs 0.7 0.3

4)
LTL' S0SaSa ' |=GXA {} {A} {}
LTLs: So Sa # GXA ,

. J R\._ow Self loops at goals

Progression: expand and simplify a given LTL formula along a path

SoSaSa~""FFA J

S0SaSa - "EAVXFA (by expand)
S0SaSa - "EXFA (by simplify)

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

0.7 0.3
a)
LTL: SoSaSa "+ =GXA U 5 {A} ;s {}
LTL: So Sa ¥ GXA ,
. J R\._ow Self loops at goals

Progression: expand and simplify a given LTL formula along a path

SoSaSa"""FFA J

S0SaSa'"=AVXFA (by expand)
S0SaSa - "EXFA (by simplify)

SaSa'""EA (by self-loop)

Formula Progression [Bachus&Kabanza98]
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

0.7 0.3
a)
LTL: SoSaSa "+ =GXA U 5 {A} ;s {}
LTL: So Sa ¥ GXA ,
. J R\._ow Self loops at goals

Progression: expand and simplify a given LTL formula along a path

SoSaSa"""FFA J

S0SaSa - "EAVXFA (by expand)

S0SaSa'"=XFA (by simplify)
SaSa-"EFA (by X)
SaSa'""EA (by self-loop)

SaSa' ' ET (by self-loop)

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

[Bachus&Kabanza98]

0.7 0.3

U 1A} {}

R\._ow Self loops at goals

Progression: expand and simplify a given LTL formula along a path

Sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

SoSbSp " FFA x

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

[Bachus&Kabanza98]

0.7 0.3

U 1A} {}

R\._ﬁ—w Self loops at goals

Progression: expand and simplify a given LTL formula along a path

sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

SoSbSp " FFA x

sosbSh " =AVXFA (by expand)

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

[Bachus&Kabanza98]

0.7 0.3

U 1A} {}

R\._ﬁ—w Self loops at goals

Progression: expand and simplify a given LTL formula along a path

sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

SoSbSh " EFA x

sosbSh " =AVXFA (by expand)

SoSbSh ' =XFA (by simplify)

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

[Bachus&Kabanza98]

0.7 0.3

U 1A} {}

R\._ﬁ—w Self loops at goals

Progression: expand and simplify a given LTL formula along a path

sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

SoSbSp " FFA x

sosbSh " =AVXFA (by expand)
SoSbSh ' =XFA (by simplify)
SbSh "EFA (by X)

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

[Bachus&Kabanza98]

Progression: expand and simplify a given LTL formula along a path

sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

SoSbSp " FFA x

Sosbsb...
sosbsb...
sbsb...

sbsb...

FAVXFA

FXFA

=FA

= A

0.7 0.3

U {A} {}

- Self loops at goals

(by expand)
(by simplify)
(by X)

(by self-loop)

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

[Bachus&Kabanza98]

Progression: expand and simplify a given LTL formula along a path

sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

SoSbSp " FFA x

SoSp Sh -
SoSp Sp -+
SuSp -
SuSp -

sbsb...

FAVXFA

FXFA

=FA

= A

Ll

0.7 0.3

U {A} {}

- Self loops at goals

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

Formula Progression
Why? On-the-fly instead of upfront cross-product

LTL is defined on infinite runs

sosasa coe

sosasa coe

sosasa coe

sasa oo o

Sasa e o0

sasa e o0

4)
LTL: SoSaSa - EGXA
LTL: So Sa ¥ GXA

_ Y,

I

=AvXFA
=XFA
=FA

= A

=T

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

All transitions “if and only if”

[Bachus&Kabanza98]

SoSbSp " FFA x

SoSp Sh -
SoSp Sp -+
SuSp -
SuSp -

sbsb...

0.7 0.3

U 1A} {}

R\._ﬁ—w Self loops at goals

Progression: expand and simplify a given LTL formula along a path

FAVXFA

FXFA

=FA

= A

Ll

(by expand)
(by simplify)
(by X)

(by self-loop)

(by self-loop)

Multi-Objective Progression in the State Space

I A=DRAWL) x -+ x DRA(WI) x DRA(F Goal) x S

/ < q)la---,q)k:so)

/,\ “is the progression operator

¢ Ll)l,)'°°)q)k,>sl> < Ll)l’r"aq)k’:S?

C_. “Géal”
Questions/Issues

« Q: Does repeated progression terminate?

Loop

A: It better does, but some rules even increases formula size: FA -~ AVvXFA
« Q: How to detect a loop <P,s> = P28 ?

A: Check equivalence of LTL formulas. Exponential! x
A: Check equality of canonical representation of LTL formulas. Polynomial! J

Multi-Objective Progression in the State Space

I A=DRAWL) x -+ x DRA(WI) x DRA(F Goal) x S

/ < q)la---,q)k:so)

/,\ “is the progression operator

<P1...,Pk,S1> <\P1)...,Px,S2>

C_. “Géal”
Questions/Issues

« Q: Does repeated progression terminate?

Loop

A: It better does, but some rules even increases formula size: FA -~ AVvXFA
« Q: How to detect a loop <P,s> = P28 ?

A: Check equivalence of LTL formulas. Exponential! x
A: Check equality of canonical representation of LTL formulas. Polynomial! J

» Tseitin-style progression

Tseitin Transformation for Classical Logic

o Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
 Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works
o Introduce names for complex subformulas before multiplying-out

x (AAB)VY ~ (AvUY)Aa(BVvWY) Duplicates Y

J (AAB) VY ~ WYargVvP W ~p)isaname for (A A B)

“Panp) VA .
" Definition of Y(a A B)

“P@are) VB

« Requires polynomially many names, one for each subformula
 Apply once-and-forall to given formula and obtain equi-satisfiable CNF

« That CNF is a conjunction of disjunction of 3-literal clauses

Tseitin Transformation for Classical Logic

o Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
 Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works
o Introduce names for complex subformulas before multiplying-out

x (AAB)VY ~ (AvUY)Aa(BVvWY) Duplicates Y

/ (AAB) VY ~ Yarp VY W ~p)isaname for (A A B)

“Panp) VA .
" Definition of Y(a A B)

“P@are) VB

« Requires polynomially many names, one for each subformula
 Apply once-and-forall to given formula and obtain equi-satisfiable CNF

« That CNF is a conjunction of disjunction of 3-literal clauses

~ We need to apply Tseitin CNF to every derived formula: Tseitin-style progression

Tseitin-Style Progression

All LTL formulas are now in 3-CNF

{ coe [{Lilal-i2al-i3}j ...}

First (?) application to LTL progression

10

Tseitin-Style Progression

All LTL formulas are now in 3-CNF

{ coe [{LilaLiZaLi3}] ...}

First (?) application to LTL progression

3-CNF:
w An-connected set of 3-literal clauses

10

Tseitin-Style Progression First (?) application to LTL progression

All LTL formulas are now in 3-CNF

L } 3-CNF:
{ [{ Liz, L2, L's } j w A-connected set of 3-literal clauses

Lix € sub(P) u { D, X P, X P | d € sub(P) }u“Names” u ...
where P =initially given formula

10

Tseitin-Style Progression First (?) application to LTL progression

All LTL formulas are now in 3-CNF

{ ; ; ; } 3-CNF:
[{ L', 2’ Lis }] w A-connected set of 3-literal clauses

roeression e Lig e sub(W) U { b, X &, X - | & e sub(P) }u“Names”u ...
« Sequenceso={{P}} > sieEl = sa=M 5> .5 sieli where P =initially given formula
o Initially so=To where I'p = simplified 3-CNF of {{ Y }}
e Stepsieli > sinElia
(1) Eliminate names from I'; and strip X-operators
(2) IN+1 =simplified 3-CNF of (1)
e Stopifsk=lk = sieliforsomek<i
Replaces =-test for LTL-formulas by polynomial set equality test!

Complexity
Literal signature || € O(|W|?)

O(|2|3) = O(|w|é) different clauses

20(|L|)|6) different clause sets

Theorem
Space and time complexity polynomialin |S| and single exponential || 10

Tseitin-Style Progre

All LTL formulas are now in

{ coo [{ Lila LiZ’ Li; }

—

Progression
« Sequenceso={{WV}} > ¢

o Initially sol=To where o=
e Stepsieli > sinaETia |
(1) Eliminate names from
(2) IN+1 = simplified 3-CNF
e Stopifsk=Tk = si=T;for
Replaces =-test for LTL-for|

Complexity
Literal signature |Z| € O(|1

O(|23) = O(|wl[¢) differe
20(|L|)|6) different claus:
Theorem

Space and time complexity

{{}} Wl =5 {{}} ifTC+0
({T) WP WT =, T
(=T} WP wT =, (¥} UT
{v,d)} w¥}wl =T if (v, d) € AP and s[v] =d
({0, d)} WP} WT =, (¥} UT if (v, d) € AP and s[v] # d
{{-(v,d)} WP} Wl =, {P}UTl if (v, d) € AP and s[v] =d
{{-(v,d)} WP} WTI =, T if (v, d) € AP and s[v] # d
{-Ptw Pl =, {{p}u¥}ul
{1 Vo WO T =5 {{Ay, vy, t U,
{= Ay, vy, Y1, P2} UT
{{~(1 V) WP WT = {{~Ay,vy,} U,
{Apyvps 1},
{Ag, vy, P23} UT
{1 A WP WT =5 {{Agap, f U,
{=Ay np,»> P11}
{=Ay np,, P2} UT
{1 AY2)} W} O T =5 {{-Ayap,} VY,
{Agingss 1. 92} UT
{1 U} w WL O T =5 {{Ay,uy,} VY,
{=Ay, up,> P2, A AX (1 U))
{= Ay AX @1 Uys) Y1}
{— Ay AX @ U X1 UP)}yUT
{-h1 U) w W w T =5 {{-Ay,uy,} VY,

{Ay, Uy, U2},
{Ay, Uy, AP AX (1 U)o

{Ap, X @y U P1. X1 Ugpp)} L UT
({-Xp}wPwl =, {{XPplUuPuT

e e e A 1 T

(Triv)
(T)
(=T)
(Evall)
(Eval2)
(Eval3)
(Eval4)

(=)
(V)

(=V)

(A)

(=)

C))

(-U)

(=X)

Tseitin-Style Progression First (?) application to LTL progression

All LTL formulas are now in 3-CNF

{ ; ; ; } 3-CNF:
[{ L', 2’ Lis }] w A-connected set of 3-literal clauses

roeression e Lig e sub(W) U { b, X &, X - | & e sub(P) }u“Names”u ...
« Sequenceso={{P}} > sieEl = sa=M 5> .5 sieli where P =initially given formula
o Initially so=To where I'p = simplified 3-CNF of {{ Y }}
e Stepsieli > sinElia
(1) Eliminate names from I'; and strip X-operators
(2) IN+1 =simplified 3-CNF of (1)
e Stopifsk=lk = sieliforsomek<i
Replaces =-test for LTL-formulas by polynomial set equality test!

Complexity
Literal signature || € O(|W|?)

O(|2|3) = O(|w|é) different clauses

20(|L|)|6) different clause sets

Theorem
Space and time complexity polynomialin |S| and single exponential || 10

Policy Synthesis by Translation to Linear Program

Search Space

(

k+1 tuple

Policy t
n(x|s)=? n(B|si)=? ...

11

Policy Synthesis by Translation to Linear Program

Search Space

(

k+l tuple

Policy t
n(ex|si)=? n(B|si)=?

Linear program computes expected values

Expected number of times ot is executed in s;
x(si, X) = zs.'l'l(O(| si) x Pr(—si)

Expected policy costs
COSt((mmm mmm) X P (e e) +
COSH (mmm) X P (e s) +
COST(mmmm) X P (e e)

Primary: e.g. time
Secondary: e.g. fuel <50

= ... + X(si, ®) x C(x)

+ X(si, B) x C(B) + ...

11

Policy Synthesis by Translation to Linear Program

Search Space |I:

X

so\->Si
(i

k.+1 tuple
Policy t
(o |si)=7?

—» Goal

n(B|si)=?

Linear Program Solver

Linear program computes expected values

Expected number of times ot is executed in s;
x(si, X) = zs.'l'l(O(| si) x Pr(—si)

Expected policy costs

Cost(m= =) X Pr(=—==—) + Primary: e.g. time
COST(mmm) X P (e e) +

COSt(mmm) X P (o = Secondary: e.g. fuel <50

= ... + X(si, ®) x C(x)

+ X(si, B) x C(B) + ...

4

Optimal solution of linear program, i.e., values for x(si, &) s.th.

« primary cost is minimized, and

« secondary cost constraints are satisfied

Iin expectation

11

Policy Synthesis by Translation to Linear Program

Search Space |I:

—» Goal
So (04
.
B

k+l tuple

Policy t
n(ex|si)=? n(B|si)=?

(o | si) = x(si, &) / (x(si, &) + x(si, B))

N\

Linear Program Solver

Linear program computes expected values

Expected number of times ot is executed in s;
x(si, X) = zs.'l'l(O(| si) x Pr(—si)

Expected policy costs

Cost(m= =) X Pr(=—==—) + Primary: e.g. time
COST(mmm) X P (e e) +

COSt(mmm) X P (o = Secondary: e.g. fuel <50

= ... + X(si, ®) x C(x)

+ X(si, B) x C(B) + ...

4

Optimal solution of linear program, i.e., values for x(si, &) s.th.

« primary cost is minimized, and

« secondary cost constraints are satisfied

Iin expectation

11

Policy Synthesis by Translation to Linear Program

Search Space |I: Linear program computes expected values
Expected number of times ot is executed in s;

—» Goal
x(si, X) = zsiﬂ(O(| Si) X Pr(=—s;)

So (0,4
(V \->si Expected policy costs

B Cost(mm=) X Pr(=—==—) + Primary: e.g.time
COST(mmm) X P (e e) +
COSt (=) X P (e e)

k+l tuple Secondary: e.g. fuel <50

Policy t
n(ex|si)=? n(B|si)=?

(o | si) = x(si, &) / (x(si, &) + x(si, B))

L " 4

Linear Program Solver
Optimal solution of linear program, i.e., values for x(si, &) s.th.

= ... + X(si, ®) x C(x)

+ X(si, B) x C(B) + ...

e e e

=

« primary cost is minimized, and

« secondary cost constraints are satisfied

Iin expectation 11

Heuristics Search: i-dual and i2-dual

« First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel <5”)
« Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space...

12

Heuristics Search: i-dual and i2-dual

« First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel <5”)
« Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space With A*-like heuristic estimation function H
(1) Compute best policy m* for current state space

S_-- “$ Goal by translation into LP with fringe as artificial goals
H A with costs H
m* minimizesf=g+H

So

(2) Expand all ™
Current f3 H (3) If all reachable fringe states are original goals
state space R then stop else repeat

12

Heuristics Search: i-dual and i2-dual

« First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel <5”)
« Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space With A*-like heuristic estimation function H
(1) Compute best policy m* for current state space

S_-- “$ Goal by translation into LP with fringe as artificial goals
H A with costs H
m* minimizesf=g+H

So

(2) Expand all ™
Current f3 H /' (3) If all reachable fringe states are original goals
SR E R . .o then stop else repeat

Search space
« Over policies, not paths; g(s) may change in each step

 Policies may become constrained
E.g. Pr(— =—==)<0.1if Hfels)=50
as otherwise fuel <5 not achievable

12

Heuristics Search: i-dual and i2-dual

« First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel <5”)
« Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space With A*-like heuristic estimation function H
(1) Compute best policy m* for current state space

S_-- “$ Goal by translation into LP with fringe as artificial goals
H A with costs H
m* minimizesf=g+H

So

(2) Expand all ™
Current f3 H /' (3) If all reachable fringe states are original goals
SR E R . .o then stop else repeat

Search space
« Over policies, not paths; g(s) may change in each step

 Policies may become constrained
E.g. Pr(— =—==)<0.1if Hfels)=50
as otherwise fuel <5 not achievable

~ For PLTL constraints

12

Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

13

http://s.th

Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

Optimal (final) policy *
'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

13

http://s.th

Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

Optimal (final) policy *
'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

Max among allm* = Heuristic value
Pr{@®---|Y}=0.9 H®)=1
Pri@---|¥}=0 H(@®)=0.5
Pri@---|¥1}=0.2 H(®)=0.3

IA

IA

IA

13

http://s.th

Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

Optimal (final) policy *
'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

Max among allm* = Heuristic value
Pr{@®---|Y}=0.9 H®)=1
Pri@---|¥}=0 H(@®)=0.5
Pri@---|¥1}=0.2 H(®)=0.3

IA

IA

IA

13

http://s.th

Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

Optimal (final) policy *
'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

Max among allm* = Heuristic value

Pr{@---|¥}=09 = H(®)=1
Pr{@---[Y}=0 = H(®)=05
Pr{@---|¥}=02 = H(®)=0.3

Entailed feasibilty policy constraint
(o, so) <0.2
Otherwise, e.g. with (&, so) = 0.21
0.21 - 0.5 + m(ot,S0) -1 = 0.9
= 10X, So) > 0.795
But 0.21+0.795 = 1.005 > 1 6

13

http://s.th

Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

How to compute H(®) with NBAs
1.V =¥ A “finite extension semantics”

2.Compute NBAB for ¥’
3.Trace Bto find @ - states (overapproximation)
4.Trace B from @ - states as initial states to Goal

- using relaxed actions from S consistent with trace
-asaSSPT

5.Solve T putting 1 unit of flow into @ - states
6.Get H(®) from flow into Goal

Optimal (final) policy *

'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

Max among allm* = Heuristic value

Pr{®---|¥}=09 = H(®)=1
Pr{®---|¥}=0 < H(®)=05
Pr{@®---|¥Y}=02 < H(®)=0.3

Entailed feasibilty policy constraint

'I'I(O(, So) <0.2

Otherwise, e.g. with (&, so) = 0.21

0.21- 0.5 + m(et, so) -1
= 'I'I(O(, So)
But 0.21 + 0.795 = 1.005

>

>

>

0.9
0.795

‘%

13

http://s.th

Experiment: Wall-e and Eve

Rooms

Hallway

* Goal: Wall-e at G
e Constraints:

1. Wall-e and Eve must eventually be together (P = 0.5)
Eve must be in a room until they are together (P =0.8)
Once together, they eventually stay together (P =1)
Eve must visit therooms 1,2,and 3 (P=1)

>

Wall-e never visits a room twice (P =0.8)

14

Experiment: Wall-e and Eve

Rooms

Hallway

* Goal: Wall-e at G
e Constraints:

1. Wall-e and Eve must eventually be together (P = 0.5)
Eve must be in a room until they are together (P =0.8)
Once together, they eventually stay together (P =1)
Eve must visit therooms 1,2,and 3 (P=1)

>

Wall-e never visits a room twice (P =0.8)

14

Experiments - Wall-E

3800

600

400

200

0

NBA + NBA heur Wall-e
NBA + NBA heur (100)
NBA + trivial heur
Prism

Prog. trivial heur

SASL

4 5 6

NBA heur: full heuristics, may yield “many” states
NBA heur (100): use trivial heuristics if > 100 states in NBA

Good also for progression: violated LTL constraints detected early by simplification

Wall-E never visits room1 twice

G (wall-E_room1l = (wall-E_room1 U G -wall-E_room1)

(W3)

15

Experiments - Factory

=
o
w

=
o
N
L L LI

101
: | NBA + NBA heur
10°_ NBA + NBA heur (100)
2 NBA + trivial heur
_ Prism
1074 Prog. trivial heur
: OO0 —ANO—TINMO—"ANMITOANMINOANMILOOOANMS
AN ANMOMOMNMSSTITITTLOOOWOLW O OOOOOMNMMDM’DM’DM’DMS;’DMNMNS’O 0 0 0

Conclusion

Summary
« Policy synthesis algorithm for multi-objective PLTL constraints ¥ = Py Q1 A =+ A Pk Yk

Resulting history-independent (Markovian) policy over cross-product state space converts to
finite-memory policy in the standard way

« Tseitin-style progression
Better worst-case complexity: single-exponential (vs double-exponential) in ||

- NBA-based A*-like heuristics

« “Promising experiments”

Future Work
 Implement progression in full

Heuristics based on progression (vs NBA)

Multi-objective PLTL verification (on infinite runs) based on progression

Quantification over finite domains. Non-prob: [Baier&Mcllraith 2006]
Beyond PLTL, e.g. P>o.s G (A > P-o4 F B)

17

