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Planning Under Uncertainty

<
> > >
action = stochastic environment response
Actions: move left, move right, enter, get Eve, exit
Environment: door possibly jams, ... Add constraints for better expressivity (C-SSP)

- well-known: “fuel < 5”

Stochastic Shortest Path Problem (SSP) - here: PLTL
Problem: What action to take in what state to reach the goal with minimal costs?

Solution: Stochastic policy: probability distribution on actions
“When at door 1 enter the room 3 out of 10 times,...”



Multi-Objective Probabilistic LTL (MO-PLTL)

W=TIA[WAR| WV Y[y r &
XY [YUY[FY|Gy (LTL)

=P, P[P P (PLTL)

Eve stays in a room until Eve and Wall-E are together

eve_in_a_room U together (Y1)

Once together, eventually together forever
G (together = F G together) (P2)

Wall-E never visits room1 twice
G (wall-E_room1 = (wall-E_room1 U G -wall-E_room1) (P3)
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Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)
such that ¢ is satisfied
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=P, P[P P (PLTL)

Eve stays in a room until Eve and Wall-E are together

eve_in_a_room U together (W1)

Once together, eventually together forever
G (together = F G together) (P2)

Wall-E never visits room1 twice
G (wall-E_room1 = (wall-E_room1 U G -wall-E_room1) (P3)
Jie— Not as used in “optimisation”

Additional Multi-Objective PLTL Constraint
® =Px08 W1 A Pz1.0 P2 A Pxos D3 (MO-PLTL)

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)
such that ¢ is satisfied



Solving MO-PLTL

Methods Based on Probabilistic Verification
o State of the art method, implemented in PRISM probabilistic model checker
 Needs infinite runs
(1) add self-loop at Goal
(2) add Goal constraint: d =P P1 A =+ A PPk A Px1 F Goal

« Compute cross-product automaton

A =DRA(Y;) x -+ x DRA(Y«) x DRA(F Goal) xS (S is given state transition system, MDP).

« Obtain policy for ¢ as a solution of a certain linear program obtained from A
Complexity

 |[DRA(Y)| is double exponential in ||
S| is usually huge for planning problems - cannot afford to generate in full

Upfront DRA-computation/crossproduct is problematic even for small examples

The verification/synthesis problem is 2EXPTIME complete
Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])
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Solving MO-PLTL

Methods Based on Probabilistic Verification

o State of the art method, implemented in PRISM probabilistic model checker

 Needs infinite runs p—> —

(1) add self-loop at Goal
(2) add Goal constraint: d =P P1 A =+ A PPk A Px1 F Goal

« Compute cross-product automaton

A =DRA(Y;) x -+ x DRA(Y«) x DRA(F Goal) xS (S is given state transition system, MDP).

« Obtain policy for ¢ as a solution of a certain linear program obtained from A
Complexity

 |[DRA(Y)| is double exponential in ||
S| is usually huge for planning problems - cannot afford to generate in full

Upfront DRA-computation/crossproduct is problematic even for small examples

The verification/synthesis problem is 2EXPTIME complete
Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

We have a specific problem - all BSCCs are self-loops at goals - and can do better
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Contributions

Verification Based Our Method

General Yes No (Requires Goal)

(1) Formula progression, Tseitin

Approach Automata (DRA
pp (DRA) (2) NBA
State Space Upfront On-the-fly
Complexity Double exponential in ¢ Single exponential in ¢ for (1)
Heuristics No Yes (i2Dual)

Baier&Mcllraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation
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Verification Based Our Method

General Yes No (Requires Goal)

(1) Formula progression, Tseitin

Approach Automata (DRA
pp (DRA) (2) NBA
State Space Upfront On-the-fly
Complexity Double exponential in ¢ Single exponential in ¢ for (1)
Heuristics No Yes (i2Dual)

Baier&Mcllraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Rest of this talk: approach, complexity, heuristics, experiments



How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6



How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [x — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-gs F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6



How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

Non-probabilistic LTL
~ Ignore finiteness of paths on this slide




How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6



How to Check a Policy it for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6



How to synthesize Policy mt for Satisfying a PLTL Formula

Given policy =

so: [0 — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6, B — 0.4 ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [ —»  , B — ]

It follows sg & P-gg F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6
iff

06 -06+ 04 -0.7=0.64>0.6



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [ —»  , B — ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

06 -06+ 04 -0.7=0.64>0.6



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [ —»  , B — ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

06 06+ 04 -0.7=0.64>0.6 ~ Quantify over action probabilities and

compute solution



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [ —»  , B — ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and

compute solution



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [ —»  , B — ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and

n(o | so) + T(B|so) = 1 compute solution



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6 B — 0.4 ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff

n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and

n(o | so) + T(B|so) = 1 compute solution



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6 B — 0.4 ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff
Pr{p | p is a path from sgp and p= F A} > 0.6

iff
Non-probabilistic LTL

~ Ignore finiteness of paths on this slide

Pr{sosa, sosc} > 0.6

iff
n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and
n(o | so) + T(B|so) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =
so: [0 — 0.6 B — 0.4 ]

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from so satisfying F Ais > 0.6
iff

Pr{p | p is a path from sgp and p= F A} > 0.6
iff

Pr{sosa, sosc} > 0.6

iff
n(ox | so) 0.6 + T(P | so) 0.7 > 0.6 -~ Quantify over action probabilities and
n(x | so) + (B |so0) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [0 — 0.6 B — 0.4 ]
0.3

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6

iff

Contributions
Pr{p | p is a path from sp and p=F A} > 0.6 o utio

iff
«._ (1) Formula progression, or
Pr{sosa, sosc} > 0.6 ™ (2)NBA mode
iff
n(ot | so) 0.6 + m(B|so) 0.7 > 0.6 - Quantify over action probabilities and
(o | so) + T(B|so) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead



How to synthesize Policy mt for Satisfying a PLTL Formula

Find policy =

so: [0 — 0.6 B — 0.4 ]
0.3

suchthatso = P-os F A

Proof

so = P-os F A The probability of all paths from se satisfying F Ais > 0.6
iff

Pr{p | p is a path from sp and p=F A} > 0.6 Contributions

~-___ Next

iff
Pr{sosa, sosc} > 0.6 AN
iff
m(o | so) 0.6 + m(PB|se) 0.7 > 0.6  ~ Quantify over action probabilities and
(X | so) + T(B | so) = 1 compute solution

Non-linear program in general - we use dual-space LPs instead
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Multi-Objective Progression in the State Space
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« Q: Does repeated progression terminate?

Loop
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« Q: How to detect a loop <P,s> = P28 ?

A: Check equivalence of LTL formulas. Exponential! x
A: Check equality of canonical representation of LTL formulas. Polynomial! J



Multi-Objective Progression in the State Space

I A=DRAWL) x -+ x DRA(WI) x DRA(F Goal) x S

/ < q)la---,q)k:so)

/,\ “is the progression operator

<P1...,Pk,S1> <\P1)...,Px,S2>

C_. “Géal”
Questions/Issues

« Q: Does repeated progression terminate?

Loop

A: It better does, but some rules even increases formula size: FA -~ AVvXFA
« Q: How to detect a loop <P,s> = P28 ?

A: Check equivalence of LTL formulas. Exponential! x
A: Check equality of canonical representation of LTL formulas. Polynomial! J

» Tseitin-style progression



Tseitin Transformation for Classical Logic

o Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
 Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works
o Introduce names for complex subformulas before multiplying-out

x (AAB)VY ~ (AvUY)Aa(BVvWY) Duplicates Y

J (AAB) VY ~ WYargVvP W ~p)isaname for (A A B)

“Panp) VA .
" Definition of Y(a A B)

“P@are) VB

« Requires polynomially many names, one for each subformula
 Apply once-and-forall to given formula and obtain equi-satisfiable CNF

« That CNF is a conjunction of disjunction of 3-literal clauses
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Optimal solution of linear program, i.e., values for x(si, &) s.th.

« primary cost is minimized, and

« secondary cost constraints are satisfied

Iin expectation
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Policy Synthesis by Translation to Linear Program

Search Space |I: Linear program computes expected values
Expected number of times ot is executed in s;
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Heuristics Search: i-dual and i2-dual

« First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel <5”)
« Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space...
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So

(2) Expand all ™
Current f3 H /' (3) If all reachable fringe states are original goals
SR E R . .o then stop else repeat

Search space
« Over policies, not paths; g(s) may change in each step

 Policies may become constrained
E.g. Pr(— =—==)<0.1if Hfels)=50
as otherwise fuel <5 not achievable

~ For PLTL constraints
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Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V
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Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

Optimal (final) policy *
'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

Max among allm* = Heuristic value

Pr{@---|¥}=09 = H(®)=1
Pr{@---[Y}=0 = H(®)=05
Pr{@---|¥}=02 = H(®)=0.3

Entailed feasibilty policy constraint
(o, so) <0.2
Otherwise, e.g. with (&, so) = 0.21
0.21 - 0.5 + m(ot,S0) -1 = 0.9
= 10X, So) > 0.795
But 0.21+0.795 = 1.005 > 1 6
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Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy t s.th so, T = P00V

How to compute H( ® ) with NBAs
1.V =¥ A “finite extension semantics”

2.Compute NBAB for ¥’
3.Trace Bto find @ - states (overapproximation)
4.Trace B from @ - states as initial states to Goal

- using relaxed actions from S consistent with trace
-asaSSPT

5.Solve T putting 1 unit of flow into @ - states
6.Get H(® ) from flow into Goal

Optimal (final) policy *

'I'I*(O(, So) =1 'I'I*(O(, So) =0 'I'I*(O(, So) =0

Max among allm* = Heuristic value

Pr{®---|¥}=09 = H(®)=1
Pr{®---|¥}=0 < H(®)=05
Pr{@®---|¥Y}=02 < H(®)=0.3

Entailed feasibilty policy constraint

'I'I(O(, So) <0.2

Otherwise, e.g. with (&, so) = 0.21

0.21- 0.5 + m(et, so) -1
= 'I'I(O(, So)
But 0.21 + 0.795 = 1.005

>

>

>

0.9
0.795

‘%
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Experiment: Wall-e and Eve

Rooms

Hallway

* Goal: Wall-e at G
e Constraints:

1. Wall-e and Eve must eventually be together (P = 0.5)
Eve must be in a room until they are together (P =0.8)
Once together, they eventually stay together (P =1)
Eve must visit therooms 1,2,and 3 (P=1)

>

Wall-e never visits a room twice (P =0.8)
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Experiments - Wall-E

3800

600

400

200

0

NBA + NBA heur Wall-e
NBA + NBA heur (100)
NBA + trivial heur
Prism

Prog. trivial heur

SASL

4 5 6

NBA heur: full heuristics, may yield “many” states
NBA heur (100): use trivial heuristics if > 100 states in NBA

Good also for progression: violated LTL constraints detected early by simplification

Wall-E never visits room1 twice

G (wall-E_room1l = (wall-E_room1 U G -wall-E_room1)

(W3)
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Experiments - Factory
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Conclusion

Summary
« Policy synthesis algorithm for multi-objective PLTL constraints ¥ = Py Q1 A =+ A Pk Yk

Resulting history-independent (Markovian) policy over cross-product state space converts to
finite-memory policy in the standard way

« Tseitin-style progression
Better worst-case complexity: single-exponential (vs double-exponential) in ||

- NBA-based A*-like heuristics

« “Promising experiments”

Future Work
 Implement progression in full

Heuristics based on progression (vs NBA)

Multi-objective PLTL verification (on infinite runs) based on progression

Quantification over finite domains. Non-prob: [Baier&Mcllraith 2006]
Beyond PLTL, e.g. P>o.s G (A > P-o4 F B)
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