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Actions: move left, move right, enter, get Eve, exit

Stochastic Shortest Path Problem (SSP) 
Problem: What action to take in what state to reach the goal with minimal costs? 
Solution: Stochastic policy: probability distribution on actions  
                       “When at door 1 enter the room 3 out of 10 times,…”  

Goal

Environment: door possibly jams, …

action ⟹ stochastic environment response

Add constraints for better expressivity (C-SSP) 
- well-known: “fuel < 5”  
- here: PLTL 



Multi-Objective Probabilistic LTL (MO-PLTL)
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0 0

Eve stays in a room until Eve and Wall-E are together 

eve_in_a_room U together (ψ1)

Once together, eventually together forever  

G (together ⇒ F G together) (ψ2)

Wall-E never visits room1 twice 

G (wall-E_room1 ⇒ (wall-E_room1 U G ¬wall-E_room1) (ψ3)

ψ := ⊤ | A | ψ ∧ ψ | ψ ∨ ψ | ¬ ψ 

 |  X ψ | ψ U ψ | F ψ | G ψ (LTL) 

ϕ := P>z ψ | P≥z ψ (PLTL)

Additional Multi-Objective PLTL Constraint 
 ϕ  = P≥0.8 ψ1 ∧ P≥1.0 ψ2 ∧ P≥0.5 ψ3              (MO-PLTL) 

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)  
   such that ϕ is satisfied
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ϕ := P>z ψ | P≥z ψ (PLTL)

Additional Multi-Objective PLTL Constraint 
 ϕ  = P≥0.8 ψ1 ∧ P≥1.0 ψ2 ∧ P≥0.5 ψ3              (MO-PLTL) 

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)  
   such that ϕ is satisfied

Not as used in “optimisation” 



Solving MO-PLTL 

Methods Based on Probabilistic Verification 

• State of the art method, implemented in PRISM probabilistic model checker 

• Needs infinite runs 

(1) add self-loop at Goal 

(2) add Goal constraint : ϕ  = P1 ψ1  ∧  ⋯  ∧  Pk ψk  ∧  P≥1 F Goal 

• Compute cross-product automaton  
 

• Obtain policy for ϕ as a solution of a certain linear program obtained from A 
Complexity 

• |DRA(ψ)| is double exponential in |ψ| 
• |S| is usually huge for planning problems - cannot afford to generate in full 
• Upfront DRA-computation/crossproduct is problematic even for small examples  
• The verification/synthesis problem is 2EXPTIME complete 
• Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

 4

A = DRA(ψ1) × ⋯ × DRA(ψk) ×  DRA(F Goal) × S             (S is given state transition system, MDP). 
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 4

A = DRA(ψ1) × ⋯ × DRA(ψk) ×  DRA(F Goal) × S             (S is given state transition system, MDP). 

We have a specific problem - all BSCCs are self-loops at goals -  and can do better

ψ NBA DRA
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Verification Based Our Method

General Yes No (Requires Goal)

Complexity Double exponential in ϕ Single exponential in ϕ for (1)

Heuristics No Yes (i2Dual)

Approach Automata (DRA)
(1) Formula progression, Tseitin 
(2) NBA

State Space Upfront On-the-fly

Baier&McIlraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation
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General Yes No (Requires Goal)

Complexity Double exponential in ϕ Single exponential in ϕ for (1)

Heuristics No Yes (i2Dual)

Approach Automata (DRA)
(1) Formula progression, Tseitin 
(2) NBA

Rest of this talk: approach, complexity, heuristics, experiments

State Space Upfront On-the-fly

Baier&McIlraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation
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[Bachus&Kabanza98]

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL:   s0 sa sa  ⋯  ⊨ G X A
LTLf:  s0 sa              ⊨  G X A

LTL is defined on infinite runs
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Multi-Objective Progression in the State Space
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A = DRA(ψ1) × ⋯ × DRA(ψk) ×  DRA(F Goal) × S

‹ ψ1,…,ψk,s0›

‹ ψ1’,…,ψk’,s1› ‹ ψ1’,…,ψk’,s2›

‘ is the progression operator

Questions/Issues 
• Q: Does repeated progression terminate?  

A: It better does, but some rules even increases formula size:  F A  ↝  A ∨ X F A  

• Q:  How to detect a loop ‹ψ,s› ≡ ‹ψ’’…’,s› ? 
A: Check equivalence of LTL formulas. Exponential! 
A: Check equality of canonical representation of LTL formulas. Polynomial!  

Loop “Goal”

α
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Tseitin-style progression
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• Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966] 
• Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013] 

How it works 
• Introduce names for complex subformulas before multiplying-out 

• Requires polynomially many names, one for each subformula 
• Apply once-and-forall to given formula and obtain equi-satisfiable CNF 
• That CNF is a conjunction of disjunction of 3-literal clauses

(A ∧ B) ∨ ψ     ↝     (A ∨ ψ) ∧ (B ∨ ψ) Duplicates ψ

(A ∧ B) ∨ ψ     ↝     ψ(A ∧ B) ∨ ψ
¬ψ(A ∧ B) ∨ A

¬ψ(A ∧ B) ∨ B

ψ(A ∧ B) is a name for (A ∧ B)

Definition of ψ(A ∧ B)
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• Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013] 

How it works 
• Introduce names for complex subformulas before multiplying-out 

• Requires polynomially many names, one for each subformula 
• Apply once-and-forall to given formula and obtain equi-satisfiable CNF 
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(A ∧ B) ∨ ψ     ↝     (A ∨ ψ) ∧ (B ∨ ψ) Duplicates ψ

(A ∧ B) ∨ ψ     ↝     ψ(A ∧ B) ∨ ψ
¬ψ(A ∧ B) ∨ A

¬ψ(A ∧ B) ∨ B

ψ(A ∧ B) is a name for (A ∧ B)

Definition of ψ(A ∧ B)

↝ We need to apply Tseitin CNF to every derived formula: Tseitin-style progression
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First (?) application to LTL progression

All LTL formulas are now in 3-CNF

 {    …                                            …   } { Li1, Li2, Li3 }
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First (?) application to LTL progression

Progression 
• Sequence s0 ⊨ {{ ψ }}    →    s1 ⊨ Γ1     →   s2 ⊨ Γ2    →    … →   si ⊨ Γi  

• Initially s0 ⊨ Γ0  where Γ0 = simplified 3-CNF of {{ ψ }}  

• Step si ⊨ Γi    →    si+1 ⊨ Γi+1  : 

(1) Eliminate names from Γi  and strip X-operators 
(2) Γi+1  = simplified 3-CNF of (1) 

• Stop if sk ⊨ Γk  =  si ⊨ Γi for some k < i  

Replaces ≡-test for LTL-formulas by polynomial set equality test! 
Complexity 

Literal signature |Σ| ∈ O(|ψ|2) 

O(|Σ|3)  =  O(|ψ|6)     different clauses 

Theorem 
Space and time complexity  polynomial in |S| and single exponential |ψ|

O(|ψ|6)2                   different clause sets

All LTL formulas are now in 3-CNF

 {    …                                            …   } { Li1, Li2, Li3 }
3-CNF: 

∧-connected set of 3-literal clauses
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Progression is formalized with the help of the relation)r between set formulas as follows:

{{}} ] �)r {{}} if � < ; (Triv)
{{>} ]  } ] �)r � (>)

{{¬>} ]  } ] �)r { } [ � (¬>)
{{(u, d)} ]  } ] �)r � if (u, d) 2 AP and r[u] = d (Eval1)
{{(u, d)} ]  } ] �)r { } [ � if (u, d) 2 AP and r[u] < d (Eval2)

{{¬(u, d)} ]  } ] �)r { } [ � if (u, d) 2 AP and r[u] = d (Eval3)
{{¬(u, d)} ]  } ] �)r � if (u, d) 2 AP and r[u] < d (Eval4)
{{¬¬'} ]  } ] �)r {{'} [  } [ � (¬¬)

{{'1 _ '2} ]  } ] �)r {{A'1_'2 } [  ,

{¬A'1_'2, '1, '2}} [ �

(_)

{{¬('1 _ '2)} ]  } ] �)r {{¬A'1_'2 } [  ,

{A'1_'2, '1},

{A'1_'2, '2}} [ �

(¬_)

{{'1 ^ '2} ]  } ] �)r {{A'1^'2 } [  ,

{¬A'1^'2, '1},

{¬A'1^'2, '2}} [ �

(^)

{{¬('1 ^ '2)} ]  } ] �)r {{¬A'1^'2 } [  ,

{A'1^'2, '1, '2}} [ �

(¬^)

{{'1 U'2} ]  } ] �)r {{A'1 U'2 } [  ,

{¬A'1 U'2, '2, A'1^X ('1 U'2)},

{¬A'1^X ('1 U'2), '1},

{¬A'1^X ('1 U'2), X ('1 U'2)}} [ �

(U)

{{¬('1 U'2)} ]  } ] �)r {{¬A'1 U'2 } [  ,

{A'1 U'2, '2},

{A'1 U'2, ¬A'1^X ('1 U'2)},

{A'1^X ('1 U'2),  1, X¬('1 U'2)}} [ �

(¬U)

{{¬X'} ]  } ] �)r {{X'} [  } [ � (¬X)

The singled-out literal in the left-hand side of the rule is called the pivot.
In the de�nition of)r above we left its domain unspeci�ed. The following lemma is a �rst step

and helps by clarifying that)r preserves the domain ⌃(').

Lemma 9 Let �1 be a set formula with domain ⌃('), for some LTL formula '. If �1 )r �2 then �2 has
domain ⌃(').

Proof. Assume �1 )r �2. We need to check all rules in)r and argue in each case that every clause
in �2 has domain ⌃('). In doing that, we argue with closure properties such as “⌃( ) is closed under
subterms” by which we mean the fact that sub(') ✓ ⌃( ).

For the rules (Triv)–(Eval4) the proof is trivial, as they either remove clauses or remove literals
from clauses. For the rule (¬¬) use the fact that ⌃(') is closed under subformulas. For the rules

20



Tseitin-Style Progression

 10

First (?) application to LTL progression

Progression 
• Sequence s0 ⊨ {{ ψ }}    →    s1 ⊨ Γ1     →   s2 ⊨ Γ2    →    … →   si ⊨ Γi  

• Initially s0 ⊨ Γ0  where Γ0 = simplified 3-CNF of {{ ψ }}  

• Step si ⊨ Γi    →    si+1 ⊨ Γi+1  : 

(1) Eliminate names from Γi  and strip X-operators 
(2) Γi+1  = simplified 3-CNF of (1) 

• Stop if sk ⊨ Γk  =  si ⊨ Γi for some k < i  

Replaces ≡-test for LTL-formulas by polynomial set equality test! 
Complexity 

Literal signature |Σ| ∈ O(|ψ|2) 

O(|Σ|3)  =  O(|ψ|6)     different clauses 

Theorem 
Space and time complexity  polynomial in |S| and single exponential |ψ|

O(|ψ|6)2                   different clause sets

All LTL formulas are now in 3-CNF

 {    …                                            …   } { Li1, Li2, Li3 }
3-CNF: 

∧-connected set of 3-literal clauses

Lik ∈ sub(ψ) ∪ { ¬ϕ, X ϕ, X ¬ϕ | ϕ ∈ sub(ψ)  } ∪ “Names” ∪ …  
                                                                        where ψ = initially given formula



Policy Synthesis by Translation to Linear Program

 11

s0 α

β
si

Search Space

Policy π 
π(α | si) = ?    π(β | si) = ?    …. 

k+1 tuple
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s0 α

β
si

Search Space

Policy π 
π(α | si) = ?    π(β | si) = ?    …. 

k+1 tuple

Goal

Linear program computes expected values

Primary:  e.g. time 
Secondary: e.g.  fuel < 50 

Expected number of times α is executed in si

Cost(              ) × Pr(              ) +
Cost(              ) × Pr(              ) +
Cost(              ) × Pr(              )

=   …  +  x(si, α) × C(α)   
             +  x(si, β) × C(β)  +  …

Expected policy costs

x(si, α)   =    Σ    π(α | si) × Pr(       si )si
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Linear Program Solver 
Optimal solution of linear program, i.e.,  values for x(si, α) s.th. 
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Heuristics Search: i-dual and i2-dual

 12

s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”) 

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

s

s
s

Current  
state space
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s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”) 

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

… with A*-like heuristic estimation function H 
(1) Compute best policy π* for current state space  

by translation into LP with fringe as artificial goals  
with costs H 
π* minimizes f = g + H 

(2)  Expand all fringe states reachable under π* 
(3) If all reachable fringe states are original goals  

then stop else repeat

H

H

H

s

s
s

Current  
state space
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s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”) 

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

… with A*-like heuristic estimation function H 
(1) Compute best policy π* for current state space  

by translation into LP with fringe as artificial goals  
with costs H 
π* minimizes f = g + H 

(2)  Expand all fringe states reachable under π* 
(3) If all reachable fringe states are original goals  

then stop else repeat

H

H

H

Search space 
• Over policies, not paths; g(s) may change in each step 
• Policies may become constrained  

E.g. Pr(                  ) < 0.1 if   Hfuel(s) = 50     
as otherwise  fuel < 5   not achievable

s

s
s

Current  
state space
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• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

… with A*-like heuristic estimation function H 
(1) Compute best policy π* for current state space  

by translation into LP with fringe as artificial goals  
with costs H 
π* minimizes f = g + H 

(2)  Expand all fringe states reachable under π* 
(3) If all reachable fringe states are original goals  

then stop else repeat

H

H

H

Search space 
• Over policies, not paths; g(s) may change in each step 
• Policies may become constrained  

E.g. Pr(                  ) < 0.1 if   Hfuel(s) = 50     
as otherwise  fuel < 5   not achievable

s

s
s

Current  
state space

↝ For PLTL constraints
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Pr {               | Ψ } = 0.9    ≤    H(      ) = 1

Max among all π*      ≤    Heuristic value

Pr {               | Ψ } = 0        ≤    H(      ) = 0.5

Pr {               | Ψ } = 0.2    ≤    H(      ) = 0.3
How to compute H(      ) with NBAs 
1.Ψ’ := Ψ  ∧ “finite extension semantics” 
2.Compute NBA B for Ψ’ 
3.Trace B to find      - states  (overapproximation) 
4.Trace B from      - states as initial states to Goal  

- using relaxed actions from S consistent with trace  
- as a SSP T 

5.Solve T putting 1 unit of flow into      - states  
6.Get H(     ) from flow into Goal

A universal heuristic for search space pruning 
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Optimal (final) policy π*  
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Experiment: Wall-e and Eve
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• Goal: Wall-e at G 

• Constraints: 

1. Wall-e and Eve must eventually be together (P ≥ 0.5) 
2. Eve must be in a room until they are together (P ≥ 0.8) 
3. Once together, they eventually stay together (P = 1) 
4. Eve must visit the rooms 1, 2, and 3 (P = 1) 
5. Wall-e never visits a room twice (P ≥ 0.8)
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Experiments - Wall-E
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Figure 2: Time in seconds to solve: factory problems m, j (m 2 2..8, j 2 0..(m�1)); andWall-e
problem for m 2 4..7.

19

NBA heur: full heuristics, may yield “many” states 
NBA heur (100): use trivial heuristics if > 100 states in NBA 
Good also for progression: violated LTL constraints detected early by simplification
Wall-E never visits room1 twice 

G (wall-E_room1 ⇒ (wall-E_room1 U G ¬wall-E_room1) (ψ3)
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Figure 2: Time in seconds to solve: factory problems m, j (m 2 2..8, j 2 0..(m�1)); andWall-e
problem for m 2 4..7.

19



Conclusion

Summary 
• Policy synthesis algorithm for multi-objective PLTL constraints Ψ =  P1 ψ1 ∧ ⋯ ∧ Pk ψk 

Resulting history-independent (Markovian) policy over cross-product state space converts to 
finite-memory policy in the standard way 

• Tseitin-style progression 
Better worst-case complexity: single-exponential (vs double-exponential) in |Ψ| 

• NBA-based A*-like heuristics 
• “Promising experiments” 

Future Work 
• Implement progression in full 
• Heuristics based on progression (vs NBA) 
• Multi-objective PLTL verification (on infinite runs) based on progression 
• Quantification over finite domains. Non-prob: [Baier&McIlraith 2006] 
• Beyond PLTL, e.g. P>0.8 G (A → P>0.4 F B)
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