Heuristic Search Planning With Multi-Objective Probabilistic LTL Constraints

Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU Australia

Actions: move left, move right, enter, get Eve, exit

Goal

action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

Goal

action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

Stochastic Shortest Path Problem (SSP)

Problem: What action to take in what state to reach the goal with minimal costs?
Solution: Stochastic policy: probability distribution on actions
"When at door 1 enter the room 3 out of 10 times,..."

action \implies stochastic environment response

Actions: move left, move right, enter, get Eve, exit

Environment: door possibly jams, ...

Add constraints for better expressivity (C-SSP)

- well-known: "fuel < 5"</pre>

- here: PLTL

Stochastic Shortest Path Problem (SSP)

Problem: What action to take in what state to reach the goal with minimal costs?

Solution: Stochastic policy: probability distribution on actions

"When at door 1 enter the room 3 out of 10 times,..."

Multi-Objective Probabilistic LTL (MO-PLTL)

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1) such that **φ** is satisfied

Multi-Objective Probabilistic LTL (MO-PLTL)

Solving MO-PLTL

Methods Based on Probabilistic Verification

- State of the art method, implemented in PRISM probabilistic model checker
- Needs infinite runs
 - (1) add self-loop at Goal

(2) add Goal constraint : $\boldsymbol{\varphi} = \mathbf{P}_1 \psi_1 \wedge \cdots \wedge \mathbf{P}_k \psi_k \wedge \mathbf{P}_{\geq 1} \mathbf{F}$ Goal

Compute cross-product automaton

 $\mathbf{A} = DRA(\psi_1) \times \cdots \times DRA(\psi_k) \times DRA(\mathbf{F} \text{ Goal}) \times \mathbf{S}$ (S is given state transition system, MDP).

- Obtain policy for $\pmb{\varphi}$ as a solution of a certain linear program obtained from $\pmb{\mathsf{A}}$

Complexity

- $|\mathsf{DRA}(\psi)|$ is double exponential in $|\psi|$
- |**S**| is usually huge for planning problems cannot afford to generate in full
- Upfront DRA-computation/crossproduct is problematic even for small examples
- The verification/synthesis problem is 2EXPTIME complete
- Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

Solving MO-PLTL

Methods Based on Probabilistic Verification

- State of the art method, implemented in PRISM probabilistic model checker
- Needs infinite runs
 - (1) add self-loop at Goal

(2) add Goal constraint : $\mathbf{\Phi} = \mathbf{P}_1 \psi_1 \wedge \cdots \wedge \mathbf{P}_k \psi_k \wedge \mathbf{P}_{\geq 1} \mathbf{F}$ Goal

Compute cross-product automaton

 $\textbf{A} = DRA(\psi_1) \times \cdots \times DRA(\psi_k) \times DRA(\textbf{F} \text{ Goal}) \times \textbf{S}$

(S is given state transition system, MDP).

NBA

- Obtain policy for $\pmb{\varphi}$ as a solution of a certain linear program obtained from $\pmb{\mathsf{A}}$

Complexity

- $|\mathsf{DRA}(\psi)|$ is double exponential in $|\psi|$
- |**S**| is usually huge for planning problems cannot afford to generate in full
- Upfront DRA-computation/crossproduct is problematic even for small examples
- The verification/synthesis problem is 2EXPTIME complete
- Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

DRA

Solving MO-PLTL

Methods Based on Probabilistic Verification

- State of the art method, implemented in PRISM probabilistic model checker
- Needs infinite runs
 - (1) add self-loop at Goal

(2) add Goal constraint : $\mathbf{\Phi} = \mathbf{P}_1 \psi_1 \wedge \cdots \wedge \mathbf{P}_k \psi_k \wedge \mathbf{P}_{\geq 1} \mathbf{F}$ Goal

Compute cross-product automaton

 $\textbf{A} = DRA(\psi_1) \times \cdots \times DRA(\psi_k) \times DRA(\textbf{F} \text{ Goal}) \times \textbf{S}$

(S is given state transition system, MDP).

NBA

- Obtain policy for $\pmb{\varphi}$ as a solution of a certain linear program obtained from $\pmb{\mathsf{A}}$

Complexity

- $|\mathsf{DRA}(\psi)|$ is double exponential in $|\psi|$
- |S| is usually huge for planning problems cannot afford to generate in full
- Upfront DRA-computation/crossproduct is problematic even for small examples
- The verification/synthesis problem is 2EXPTIME complete
- Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

We have a specific problem – all BSCCs are self-loops at goals – and can do better

DRA

Contributions

	Verification Based	Our Method
General	Yes	No (Requires Goal)
Approach	Automata (DRA)	(1) Formula progression, Tseitin (2) NBA
State Space	Upfront	On-the-fly
Complexity	Double exponential in $oldsymbol{\Phi}$	Single exponential in ${f \varphi}$ for (1)
Heuristics	No	Yes (i²Dual)

Baier&McIlraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Contributions

	Verification Based	Our Method
General	Yes	No (Requires Goal)
Approach	Automata (DRA)	(1) Formula progression, Tseitin (2) NBA
State Space	Upfront	On-the-fly
Complexity	Double exponential in $oldsymbol{\Phi}$	Single exponential in ${f \varphi}$ for (1)
Heuristics	No	Yes (i ² Dual)

Baier&McIlraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Rest of this talk: approach, complexity, heuristics, experiments

Given policy $\pi =$

 $s_0: [\alpha \rightarrow 0.6, \ \beta \rightarrow 0.4 \]$

It follows $\mathbf{s_0} \models \mathbf{P}_{>0.6} \mathbf{F} \mathbf{A}$

Proof

 $s_0 \models P_{>0.6} F A$

The probability of all paths from **s**₀ satisfying **F** A is > 0.6

Given policy $\pi =$

 $s_0\text{:} \left[\alpha \rightarrow 0.6, \ \beta \rightarrow 0.4 \ \right]$

It follows $\mathbf{s_0} \models \mathbf{P}_{>0.6} \mathbf{F} \mathbf{A}$

 $\mathbf{s_0} \models \mathbf{P}_{>0.6} \mathbf{F} \mathbf{A}$

The probability of all paths from **s**₀ satisfying **F** A is > 0.6

S₀

0.4

Sb

α

0.6

Sa

 $\{A\}$

iff

 $Pr\{p \mid p \text{ is a path from } s_0 \text{ and } p \vDash F A\} > 0.6$

0.3

Sd

0.7

Sc

 $\{A\}$

Given policy $\pi =$

 $s_0: [\alpha \rightarrow 0.6, \ \beta \rightarrow 0.4 \]$

It follows $\mathbf{s_0} \models \mathbf{P}_{>0.6} \mathbf{F} \mathbf{A}$

Proof

 $s_0 \models P_{>0.6} F A$

The probability of all paths from **s**₀ satisfying **F** A is > 0.6

iff

 $\mathsf{Pr}\{p \mid p \text{ is a path from } \textbf{s_0} \text{ and } p \vDash \textbf{F} \text{ A}\} > 0.6$

Non-probabilistic LTL Ignore finiteness of paths on this slide

Progression: expand and simplify a given LTL formula along a path

Progression: expand and simplify a given LTL formula along a path

$$s_0 s_a s_a \cdots \models F A$$

 $\begin{array}{ll} \mathbf{s_0} \ \mathbf{s_a} \ \mathbf{s_a} \ \cdots \vDash \mathbf{F} \ \mathbf{A} & \checkmark \\ \mathbf{s_0} \ \mathbf{s_a} \ \mathbf{s_a} \ \cdots \vDash \mathbf{A} \lor \mathbf{X} \ \mathbf{F} \ \mathbf{A} & \text{(by expand)} \end{array}$

 $\begin{array}{l} \mathbf{s_0} \ \mathbf{s_a} \ \mathbf{s_a} \ \cdots \models \mathbf{F} \ \mathbf{A} \quad \mathbf{A} \\ \mathbf{s_0} \ \mathbf{s_a} \ \mathbf{s_a} \ \cdots \models \mathbf{A} \lor \mathbf{X} \ \mathbf{F} \ \mathbf{A} \qquad (by \ expand) \\ \mathbf{s_0} \ \mathbf{s_a} \ \mathbf{s_a} \ \cdots \models \mathbf{X} \ \mathbf{F} \ \mathbf{A} \qquad (by \ simplify) \end{array}$

 $s_0 s_a s_a \cdots \models FA$ $s_0 s_a s_a \cdots \models A \lor X FA$ (by expand) $s_0 s_a s_a \cdots \models X FA$ (by simplify) $s_a s_a \cdots \models FA$ (by X)

$\mathbf{S}_{0} \mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathbf{F} \mathbf{A}$	
$\textbf{S_0} \textbf{ S_a} \textbf{ S_a} \cdots \models \textbf{A} \lor \textbf{X} \textbf{ F} \textbf{ A}$	(by expand)
$\mathbf{S_0} \ \mathbf{S_a} \ \mathbf{S_a} \ \cdots \models \mathbf{X} \ \mathbf{F} \ \mathbf{A}$	(by simplify)
$\mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathbf{F} \mathbf{A}$	(by X)
$\mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models A$	(by self-loop)

$s_0 s_a s_a \cdots \models F A$	
$\textbf{S_0 S_a S_a \cdots \models A \lor \textbf{X F} A}$	(by expand)
$\mathbf{S_0} \ \mathbf{S_a} \ \mathbf{S_a} \ \cdots \models \mathbf{X} \ \mathbf{F} \ \mathbf{A}$	(by simplify)
$\mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \mathbf{F} \mathbf{A}$	(by X)
$\mathbf{s_a} \ \mathbf{s_a} \cdots \models A$	(by self-loop)
$\mathbf{S}_{\mathbf{a}} \mathbf{S}_{\mathbf{a}} \cdots \models \top$	(by self-loop)

All transitions "if and only if"

Multi-Objective Progression in the State Space

Questions/Issues

• **Q**: Does *repeated* progression terminate?

A: It better does, but some rules even increases formula size: $\mathbf{F} A \rightarrow A \lor \mathbf{X} \mathbf{F} A$

• **Q**: How to detect a loop $\langle \boldsymbol{\psi}, \boldsymbol{s} \rangle \equiv \langle \boldsymbol{\psi}'' \cdots , \boldsymbol{s} \rangle$?

A: Check equivalence of LTL formulas. Exponential!

A: Check equality of *canonical representation* of LTL formulas. Polynomial!

Multi-Objective Progression in the State Space

Questions/Issues

• **Q**: Does *repeated* progression terminate?

A: It better does, but some rules even increases formula size: $\mathbf{F} A \rightarrow A \lor \mathbf{X} \mathbf{F} A$

• **Q**: How to detect a loop $\langle \boldsymbol{\psi}, \boldsymbol{s} \rangle \equiv \langle \boldsymbol{\psi}'' \cdots , \boldsymbol{s} \rangle$?

A: Check equivalence of LTL formulas. Exponential!

A: Check equality of *canonical representation* of LTL formulas. Polynomial!

Tseitin Transformation for Classical Logic

- Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
- Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works

• Introduce *names* for complex subformulas before multiplying-out

 $(A \land B) \lor \psi \quad \Rightarrow \quad (A \lor \psi) \land (B \lor \psi) \qquad \text{Duplicates } \psi$

$$\begin{array}{cccc} (A \wedge B) \vee \psi & \rightarrow & \psi_{(A \wedge B)} \vee \psi & & \psi_{(A \wedge B)} \text{ is a name for } (A \wedge B) \\ & \neg \psi_{(A \wedge B)} \vee A & & \\ & \neg \psi_{(A \wedge B)} \vee B & & \end{array}$$

- Requires polynomially many names, one for each subformula
- Apply once-and-forall to given formula and obtain equi-satisfiable CNF
- That CNF is a conjunction of disjunction of 3-literal clauses

Tseitin Transformation for Classical Logic

- Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
- Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works

• Introduce *names* for complex subformulas before multiplying-out

 $(A \land B) \lor \psi \quad \Rightarrow \quad (A \lor \psi) \land (B \lor \psi) \qquad \text{Duplicates } \psi$

$$\begin{array}{lll} (A \wedge B) \vee \psi & \rightarrow & \psi_{(A \wedge B)} \vee \psi & & \psi_{(A \wedge B)} \text{ is a name for } (A \wedge B) \\ & \neg \psi_{(A \wedge B)} \vee A & & \\ & \neg \psi_{(A \wedge B)} \vee B & & \end{array}$$

- Requires polynomially many names, one for each subformula
- Apply once-and-forall to given formula and obtain equi-satisfiable CNF
- That CNF is a conjunction of disjunction of 3-literal clauses

→ We need to apply Tseitin CNF to every derived formula: Tseitin-style *progression*

All LTL formulas are now in 3-CNF

$$\left\{ \ ... \ \left\{ \ L^{i_{1}}, L^{i_{2}}, L^{i_{3}} \right\} \ ... \right\}$$

First (?) application to LTL progression

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

Progression

- Sequence $s_0 \models \{\{\psi\}\} \rightarrow s_1 \models \Gamma_1 \rightarrow s_2 \models \Gamma_2 \rightarrow \ldots \rightarrow s_i \models \Gamma_i$ where $\psi = initially given formula$
- Initially $\mathbf{s_0} \models \mathbf{\Gamma_0}$ where $\mathbf{\Gamma_0}$ = simplified 3-CNF of {{ ψ }}
- Step $\mathbf{s}_i \models \mathbf{\Gamma}_i \rightarrow \mathbf{s}_{i+1} \models \mathbf{\Gamma}_{i+1}$:

(1) Eliminate names from Γ_i and strip X-operators

(2) Γ_{i+1} = simplified 3-CNF of (1)

• Stop if $\mathbf{s}_k \models \mathbf{\Gamma}_k = \mathbf{s}_i \models \mathbf{\Gamma}_i$ for some $\mathbf{k} < \mathbf{i}$

Replaces =-test for LTL-formulas by *polynomial* set equality test!

Complexity

Literal signature $|\Sigma|\in O(|\psi|^2)$

 $O(|\Sigma|^3) = O(|\psi|^6)$ different clauses

 $2^{O(|\Psi|^6)}$ different clause sets

Theorem

Space and time complexity polynomial in $|\mathbf{S}|$ and single exponential $|\psi|$

Tseitin-Style Progre	$\{\{\}\} \uplus \Gamma \Rightarrow_{s} \{\{\}\} \text{if } \Gamma \neq \emptyset$
iseitiii-Styte Progre	$\{\{\top\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \Gamma$
All ITI formulas are now in	$\{\{\neg \top\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \{\Psi\} \cup \Gamma$
All LI L IOI III dias di C IIOW III	$\{\{(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \Gamma \text{if } (v, d) \in AP \text{ and } s[v] = d$
	$\{\{(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \{\Psi\} \cup \Gamma \qquad \text{if } (v, d) \in AP \text{ and } s[v] \neq d$
	$\{\{\neg(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\Psi\} \cup \Gamma \text{if } (v, d) \in AP \text{ and } s[v] = d$
$\{ \{ L^{i_1}, L^{i_2}, L^{i_3} \}$	$\{\{\neg(v, d)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_{s} \Gamma \text{if } (v, d) \in AP \text{ and } s[v] \neq d$
	$\{\{\neg\neg\psi\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{\psi\} \cup \Psi\} \cup \Gamma$
	$\{\{\psi_1 \lor \psi_2\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{A_{\psi_1 \lor \psi_2}\} \cup \Psi,$
	$\{ eg A_{\psi_1 ee \psi_2}, \psi_1, \psi_2\} \} \cup \Gamma$
Progression	$\{\{\neg(\psi_1 \lor \psi_2)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{\neg A_{\psi_1 \lor \psi_2}\} \cup \Psi,$
• Sequence $\mathbf{s}_0 \models \{\{\psi\}\} \rightarrow :$	$\{A_{oldsymbol{\psi}_1ee oldsymbol{\psi}_2}, oldsymbol{\psi}_1\},$
• Initially $\mathbf{s}_0 \models \mathbf{\Gamma}_0$ where $\mathbf{\Gamma}_0 =$	$\{A_{\psi_1 ee \psi_2}, \overline{\psi_2}\}\} \cup \Gamma$
	$\{\{\psi_1 \land \psi_2\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{A_{\psi_1 \land \psi_2}\} \cup \Psi,$
• Step $\mathbf{s}_i \models \mathbf{I}_i \rightarrow \mathbf{s}_{i+1} \models \mathbf{I}_{i+1}$	$\{ eg A_{\psi_1 \wedge \psi_2}, \psi_1\},$
(1) Eliminate names from	$\{ eg A_{\psi_1 \wedge \psi_2}, \psi_2\}\} \cup \Gamma$
(2) $\mathbf{F}_{1,2}$ = simplified 2 CNE	$\{\{\neg(\psi_1 \land \psi_2)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{\neg A_{\psi_1 \land \psi_2}\} \cup \Psi,$
(2) Γ_{i+1} – simplified 5-CNF	$\{A_{\psi_1\wedge\psi_2},\overline{\psi_1},\overline{\psi_2}\}\}\cup\Gamma$
• Stop if $\mathbf{s_k} \models \mathbf{\Gamma_k} = \mathbf{s_i} \models \mathbf{\Gamma_i}$ for	$\{\{\psi_1 \mathbf{U}\psi_2\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{A_{\psi_1}\mathbf{U}\psi_2\} \cup \Psi,\$
Replaces ≡-test for LTL-for	$\{\neg A_{\psi_1} U_{\psi_2}, \psi_2, A_{\psi_1 \wedge} X_{(\psi_1} U_{\psi_2)}\},\$
	$\{\neg A_{\psi_1 \wedge \mathbf{X} (\psi_1 \mathbf{U} \psi_2)}, \psi_1\},$
Complexity	$\{\neg A_{\psi_1 \wedge \mathbf{X} (\psi_1 \mathbf{U} \psi_2)}, \mathbf{X} (\psi_1 \mathbf{U} \psi_2)\} \} \cup \Gamma$
Literal signature $ \Sigma \in O(v)$	$\{\{\neg(\psi_1 \mathbf{U}\psi_2)\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{\neg A_{\psi_1} \mathbf{U}\psi_2\} \cup \Psi,\$
$O(\Sigma ^3) = O(W ^6)$ differe	$\{A_{\psi_1}{f u}_{\psi_2},\overline{\psi_2}\},$
$O(\mathbf{L}) = O(\mathbf{\Phi})$ and $O(\mathbf{L})$	$\{A_{\psi_1} {\sf U} {}_{\psi_2}, eg A_{\psi_1 \wedge} {\sf X} {}_{(\psi_1} {\sf U} {}_{\psi_2)}\},$
$2 \mathcal{O}(\Psi)$ different clause	$\{A_{\psi_1 \wedge \mathbf{X}(\psi_1 \mathbf{U}\psi_2)}, \overline{\Psi_1}, \mathbf{X} \neg(\psi_1 \mathbf{U}\psi_2)\}\} \cup \Gamma$
Theorem	$\{\{\neg \mathbf{X} \psi\} \uplus \Psi\} \uplus \Gamma \Rightarrow_s \{\{\mathbf{X} \overline{\psi}\} \cup \Psi\} \cup \Gamma$

Space and time complexity

$(\neg X)$

 $(\neg \mathbf{U})$

(Triv)

 (\top)

 $(\neg \top)$

(Eval1)

(Eval2)

(Eval3)

(Eval4)

 $(\neg\neg)$

 $(\neg \lor)$

 (\wedge)

 $(\neg \land)$

(**U**)

 (\vee)

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

Progression

- Sequence $s_0 \models \{\{\psi\}\} \rightarrow s_1 \models \Gamma_1 \rightarrow s_2 \models \Gamma_2 \rightarrow \ldots \rightarrow s_i \models \Gamma_i$ where $\psi = initially given formula$
- Initially $\mathbf{s_0} \models \mathbf{\Gamma_0}$ where $\mathbf{\Gamma_0}$ = simplified 3-CNF of {{ ψ }}
- Step $\mathbf{s}_i \models \mathbf{\Gamma}_i \rightarrow \mathbf{s}_{i+1} \models \mathbf{\Gamma}_{i+1}$:

(1) Eliminate names from Γ_i and strip X-operators

(2) Γ_{i+1} = simplified 3-CNF of (1)

• Stop if $\mathbf{s}_k \models \mathbf{\Gamma}_k = \mathbf{s}_i \models \mathbf{\Gamma}_i$ for some $\mathbf{k} < \mathbf{i}$

Replaces =-test for LTL-formulas by *polynomial* set equality test!

Complexity

Literal signature $|\Sigma|\in O(|\psi|^2)$

 $O(|\Sigma|^3) = O(|\psi|^6)$ different clauses

 $2^{O(|\Psi|^6)}$ different clause sets

Theorem

Space and time complexity polynomial in $|\mathbf{S}|$ and single exponential $|\psi|$

Search Space

Policy π π(α | s_i) = ? π(β | s_i) = ?

Policy π π(α | s_i) = ? π(β | s_i) = ?

Linear program computes expected values

Expected number of times α is executed in s_i

$$\mathbf{x}(\mathbf{s}_i, \boldsymbol{\alpha}) = \sum_{\mathbf{s}_i} \pi(\boldsymbol{\alpha} \mid \mathbf{s}_i) \times \Pr(\mathbf{s}_i)$$

Expected policy costs

Policy π π(α | s_i) = ? π(β | s_i) = ? Linear program computes expected values

Expected number of times α is executed in s_i

$$\mathbf{x}(\mathbf{s}_i, \boldsymbol{\alpha}) = \sum_{\mathbf{s}_i} \pi(\boldsymbol{\alpha} \mid \mathbf{s}_i) \times \Pr(\mathbf{m} \mathbf{s}_i)$$

Expected policy costs

Linear Program Solver

Optimal solution of linear program, i.e., values for $x(si, \alpha) \underline{s.th}$.

- primary cost is minimized, and
- **secondary** cost constraints are *satisfied*
- in expectation

Policy π

$$\pi(\alpha \mid s_i) = ? \pi(\beta \mid s_i) = ? \dots$$

 $\pi(\alpha \mid s_i) = x(s_i, \alpha) / (x(s_i, \alpha) + x(s_i, \beta))$

Linear program computes expected values

Expected number of times α is executed in s_i

$$\mathbf{x}(\mathbf{s}_i, \boldsymbol{\alpha}) = \sum_{\mathbf{s}_i} \pi(\boldsymbol{\alpha} \mid \mathbf{s}_i) \times \Pr(\mathbf{s}_i)$$

Expected policy costs

 $\begin{array}{l} \operatorname{Cost}(---) \times \operatorname{Pr}(----) + \\ \operatorname{Cost}(---) \times \operatorname{Pr}(----) + \\ \operatorname{Cost}(----) \times \operatorname{Pr}(----) \end{array} \qquad \begin{array}{l} \operatorname{Primary: e.g. time} \\ \operatorname{Secondary: e.g. fuel < 50} \\ \operatorname{Secondary: e.g. fuel < 50} \\ + x(s_i, \beta) \times C(\beta) + \dots \end{array}$

Linear Program Solver

Optimal solution of linear program, i.e., values for $x(si, \alpha) \underline{s.th}$.

- primary cost is minimized, and
- **secondary** cost constraints are *satisfied*
- in expectation

Policy π

 $\pi(\alpha \mid s_i) = ? \quad \pi(\beta \mid s_i) = ? \quad \dots$

 $\pi(\alpha \mid s_i) = x(s_i, \alpha) / (x(s_i, \alpha) + x(s_i, \beta))$

Linear program computes expected values

Expected number of times α is executed in s_i

$$\mathbf{x}(\mathbf{s}_i, \boldsymbol{\alpha}) = \sum_{\mathbf{s}_i} \pi(\boldsymbol{\alpha} \mid \mathbf{s}_i) \times \Pr(\mathbf{s}_i)$$

Expected policy costs

Linear Program Solver

Optimal solution of linear program, i.e., values for $x(si, \alpha) \underline{s.th}$.

- primary cost is minimized, and
- **secondary** cost constraints are *satisfied*
- in expectation

- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
 i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
 i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

... with A*-like heuristic estimation function H

(1) Compute best policy π* for current state space
 by translation into LP with fringe as artificial goals
 with costs H

 π^* minimizes f = g + H

(2) Expand all fringe states reachable under π^{\star}

(3) If all reachable fringe states are original goals then stop else repeat

- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
 i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

... with A*-like heuristic estimation function H

 (1) Compute best policy π* for current state space by translation into LP with fringe as artificial goals with costs H

 π^* minimizes f = g + H

- (2) Expand all fringe states reachable under π^{\star}
- (3) If all reachable fringe states are original goals then stop else repeat

Search space

- Over policies, not paths; g(s) may change in each step
- Policies may become constrained

E.g. Pr(---) < 0.1 if $H_{fuel}(s) = 50$

as otherwise fuel < 5 not achievable

- First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana]
 i.e. primary expected cost ("time") and secondary expected cost constraints ("fuel < 5")
- Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

Exploring the state space ...

 \rightarrow For PLTL constraints

... with A*-like heuristic estimation function H

 (1) Compute best policy π* for current state space by translation into LP with fringe as artificial goals with costs H

 π^* minimizes f = g + H

- (2) Expand all fringe states reachable under π^{\star}
- (3) If all reachable fringe states are original goals then stop else repeat

Search space

- Over policies, not paths; g(s) may change in each step
- Policies may become constrained

E.g. Pr(---) < 0.1 if $H_{fuel}(s) = 50$

as otherwise fuel < 5 not achievable

A universal heuristic for search space pruning

Find policy $\pi \text{ <u>s.th</u>} \mathbf{s_0}, \pi \models \mathbf{P}_{\geq 0.9} \Psi$

A universal heuristic for search space pruning

Find policy $\pi \underline{s.th} \mathbf{s_0}, \pi \models \mathbf{P}_{\ge 0.9} \Psi$

Optimal (final) policy π^* $\pi^*(\alpha, s_0) = 1$ $\pi^*(\alpha, s_0) = 0$ $\pi^*(\alpha, s_0) = 0$

A universal heuristic for search space pruning

Find policy $\pi \underline{s.th} \mathbf{s_0}, \pi \models \mathbf{P}_{\ge 0.9} \Psi$

Optimal (final) policy π^* $\pi^*(\alpha, s_0) = 1$ $\pi^*(\alpha, s_0) = 0$ $\pi^*(\alpha, s_0) = 0$

Max among all π^*	≤	Heuristic value
Pr { $\bullet \Psi \} = 0.9$	<	H(•) = 1
Pr{ ● Ψ} = 0	\leq	H(•) = 0.5
Pr { • • • • Ψ } = 0.2	\leq	H(●)=0.3

A universal heuristic for search space pruning

Find policy $\pi \underline{s.th} \mathbf{s_0}, \pi \models \mathbf{P}_{\ge 0.9} \Psi$

Optimal (final) policy π^* $\pi^*(\alpha, s_0) = 1$ $\pi^*(\alpha, s_0) = 0$ $\pi^*(\alpha, s_0) = 0$

Max among all π^*	≤	Heuristic value
Pr { $\bullet \Psi \} = 0.9$	<u> </u>	H(•) = 1
Pr{ ● Ψ} = 0	\leq	H(•) = 0.5
Pr { • • • • Ψ } = 0.2	\leq	H(●) = 0.3

A universal heuristic for search space pruning

Find policy $\pi \text{ s.th } \mathbf{s_0}, \pi \models \mathbf{P}_{\geq 0.9} \Psi$

Optimal (final) policy π^* $\pi^*(\alpha, s_0) = 1$ $\pi^*(\alpha, s_0) = 0$ $\pi^*(\alpha, s_0) = 0$

Max among all π^*	≤	Heuristic value
Pr { $\bullet \Psi $ } = 0.9	<	H(🛑) = 1
Pr{ ● Ψ} = 0	\leq	H(•) = 0.5
Pr { • • • • Ψ } = 0.2	<u> </u>	H(●)=0.3

Entailed feasibilty policy constraint

 $π(α, s_0) ≤ 0.2$ Otherwise, e.g. with $π(α, s_0) = 0.21$ 0.21 · 0.5 + $π(α, s_0) · 1 ≥ 0.9$ ⇒ $π(α, s_0) ≥ 0.795$ But 0.21 + 0.795 = 1.005 > 1
Heuristic Search for PLTL - PLTL-dual

A universal heuristic for search space pruning

Find policy $\pi \underline{s.th} \mathbf{s_0}, \pi \models \mathbf{P}_{\geq 0.9} \Psi$

How to compute H() with NBAs

- 1. $\Psi' := \Psi \land$ "finite extension semantics"
- 2. Compute NBA **B** for Ψ '
- 3. Trace **B** to find **-** states (overapproximation)
- 4. Trace **B** from **-** states as initial states to Goal
 - using relaxed actions from **S** consistent with trace

- as a SSP T

5. Solve **T** putting 1 unit of flow into ● - states
6. Get H(●) from flow into Goal

Optimal (final) policy π^* $\pi^*(\alpha, s_0) = 1$ $\pi^*(\alpha, s_0) = 0$ $\pi^*(\alpha, s_0) = 0$

Max among all π^*	≤	Heuristic value
Pr { $\bullet \Psi \} = 0.9$	<	H(•) = 1
Pr{ ● Ψ} = 0	\leq	H(•) = 0.5
Pr { • • • • Ψ } = 0.2	\leq	H(●) = 0.3

Entailed feasibilty policy constraint

 $\pi(\alpha, s_0) \le 0.2$ Otherwise, e.g. with $\pi(\alpha, s_0) = 0.21$ $0.21 \cdot 0.5 + \pi(\alpha, s_0) \cdot 1 \ge 0.9$ $\Rightarrow \pi(\alpha, s_0) \ge 0.795$ But 0.21 + 0.795 = 1.005 > 1

Experiment: Wall-e and Eve

 \bullet Goal: Wall-e at G

• Constraints:

- 1. Wall-e and Eve must eventually be together ($P \ge 0.5$)
- 2. Eve must be in a room until they are together $(P \ge 0.8)$
- 3. Once together, they eventually stay together (P = 1)
- 4. Eve must visit the rooms 1, 2, and 3 (P = 1)
- 5. Wall-e never visits a room twice ($P \ge 0.8$)

Experiment: Wall-e and Eve

 \bullet Goal: Wall-e at G

• Constraints:

- 1. Wall-e and Eve must eventually be together ($P \ge 0.5$)
- 2. Eve must be in a room until they are together $(P \ge 0.8)$
- 3. Once together, they eventually stay together (P = 1)
- 4. Eve must visit the rooms 1, 2, and 3 (P = 1)
- 5. Wall-e never visits a room twice ($P \ge 0.8$)

Experiments - Wall-E

NDAL (100)

NBA heur (100): use trivial heuristics if > 100 states in NBA

Good also for progression: violated LTL constraints detected early by simplification

Wall-E never visits room1 twice

G (wall-E_room1 \Rightarrow (wall-E_room1 **U G** \neg wall-E_room1) (ψ_3)

Experiments - Factory

 $0 \\ - 0 \\$

Conclusion

Summary

- Policy synthesis algorithm for multi-objective PLTL constraints Ψ = P₁ ψ₁ ∧ … ∧ P_k ψ_k
 Resulting history-independent (Markovian) policy over cross-product state space converts to finite-memory policy in the standard way
- Tseitin-style progression

Better worst-case complexity: single-exponential (vs double-exponential) in $|\Psi|$

- NBA-based A*-like heuristics
- "Promising experiments"

Future Work

- Implement progression in full
- Heuristics based on progression (vs NBA)
- Multi-objective PLTL verification (on infinite runs) based on progression
- Quantification over finite domains. Non-prob: [Baier&McIlraith 2006]
- Beyond PLTL, e.g. $P_{>0.8}$ G (A $\rightarrow P_{>0.4}$ F B)