
Peter Baumgartner, Sylvie Thiébaux, Felipe Trevizan

Data61/CSIRO and Research School of Computer Science, ANU
Australia

Heuristic Search Planning With Multi-Objective Probabilistic
LTL Constraints

Planning Under Uncertainty

 2

Actions: move left, move right, enter, get Eve, exit

Goal

Planning Under Uncertainty

 2

Actions: move left, move right, enter, get Eve, exit

Goal

Environment: door possibly jams, …

action ⟹ stochastic environment response

Planning Under Uncertainty

 2

0.9 0.5

Actions: move left, move right, enter, get Eve, exit

Goal

Environment: door possibly jams, …

action ⟹ stochastic environment response

Planning Under Uncertainty

 2

0.9 0.5

Actions: move left, move right, enter, get Eve, exit

Stochastic Shortest Path Problem (SSP)
Problem: What action to take in what state to reach the goal with minimal costs?
Solution: Stochastic policy: probability distribution on actions  
 “When at door 1 enter the room 3 out of 10 times,…”  

Goal

Environment: door possibly jams, …

action ⟹ stochastic environment response

Planning Under Uncertainty

 2

0.9 0.5

Actions: move left, move right, enter, get Eve, exit

Stochastic Shortest Path Problem (SSP)
Problem: What action to take in what state to reach the goal with minimal costs?
Solution: Stochastic policy: probability distribution on actions  
 “When at door 1 enter the room 3 out of 10 times,…”  

Goal

Environment: door possibly jams, …

action ⟹ stochastic environment response

Add constraints for better expressivity (C-SSP)
- well-known: “fuel < 5”
- here: PLTL

Multi-Objective Probabilistic LTL (MO-PLTL)

 3

0 0

0 0

Eve stays in a room until Eve and Wall-E are together

eve_in_a_room U together (ψ1)

Once together, eventually together forever

G (together ⇒ F G together) (ψ2)

Wall-E never visits room1 twice

G (wall-E_room1 ⇒ (wall-E_room1 U G ¬wall-E_room1) (ψ3)

ψ := ⊤ | A | ψ ∧ ψ | ψ ∨ ψ | ¬ ψ

 | X ψ | ψ U ψ | F ψ | G ψ (LTL)

ϕ := P>z ψ | P≥z ψ (PLTL)

Additional Multi-Objective PLTL Constraint
 ϕ = P≥0.8 ψ1 ∧ P≥1.0 ψ2 ∧ P≥0.5 ψ3 (MO-PLTL)

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)  
 such that ϕ is satisfied

Multi-Objective Probabilistic LTL (MO-PLTL)

 3

0 0

0 0

Eve stays in a room until Eve and Wall-E are together

eve_in_a_room U together (ψ1)

Once together, eventually together forever

G (together ⇒ F G together) (ψ2)

Wall-E never visits room1 twice

G (wall-E_room1 ⇒ (wall-E_room1 U G ¬wall-E_room1) (ψ3)

ψ := ⊤ | A | ψ ∧ ψ | ψ ∨ ψ | ¬ ψ

 | X ψ | ψ U ψ | F ψ | G ψ (LTL)

ϕ := P>z ψ | P≥z ψ (PLTL)

Additional Multi-Objective PLTL Constraint
 ϕ = P≥0.8 ψ1 ∧ P≥1.0 ψ2 ∧ P≥0.5 ψ3 (MO-PLTL)

Task: compute a cost-minimal stochastic policy for reaching the goal (with probability 1)  
 such that ϕ is satisfied

Not as used in “optimisation”

Solving MO-PLTL

Methods Based on Probabilistic Verification

• State of the art method, implemented in PRISM probabilistic model checker

• Needs infinite runs 

(1) add self-loop at Goal 

(2) add Goal constraint : ϕ = P1 ψ1 ∧ ⋯ ∧ Pk ψk ∧ P≥1 F Goal

• Compute cross-product automaton  
 

• Obtain policy for ϕ as a solution of a certain linear program obtained from A
Complexity

• |DRA(ψ)| is double exponential in |ψ|
• |S| is usually huge for planning problems - cannot afford to generate in full
• Upfront DRA-computation/crossproduct is problematic even for small examples
• The verification/synthesis problem is 2EXPTIME complete
• Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

 4

A = DRA(ψ1) × ⋯ × DRA(ψk) × DRA(F Goal) × S (S is given state transition system, MDP).

Solving MO-PLTL

Methods Based on Probabilistic Verification

• State of the art method, implemented in PRISM probabilistic model checker

• Needs infinite runs 

(1) add self-loop at Goal 

(2) add Goal constraint : ϕ = P1 ψ1 ∧ ⋯ ∧ Pk ψk ∧ P≥1 F Goal

• Compute cross-product automaton  
 

• Obtain policy for ϕ as a solution of a certain linear program obtained from A
Complexity

• |DRA(ψ)| is double exponential in |ψ|
• |S| is usually huge for planning problems - cannot afford to generate in full
• Upfront DRA-computation/crossproduct is problematic even for small examples
• The verification/synthesis problem is 2EXPTIME complete
• Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

 4

A = DRA(ψ1) × ⋯ × DRA(ψk) × DRA(F Goal) × S (S is given state transition system, MDP).

ψ NBA DRA

Solving MO-PLTL

Methods Based on Probabilistic Verification

• State of the art method, implemented in PRISM probabilistic model checker

• Needs infinite runs 

(1) add self-loop at Goal 

(2) add Goal constraint : ϕ = P1 ψ1 ∧ ⋯ ∧ Pk ψk ∧ P≥1 F Goal

• Compute cross-product automaton  
 

• Obtain policy for ϕ as a solution of a certain linear program obtained from A
Complexity

• |DRA(ψ)| is double exponential in |ψ|
• |S| is usually huge for planning problems - cannot afford to generate in full
• Upfront DRA-computation/crossproduct is problematic even for small examples
• The verification/synthesis problem is 2EXPTIME complete
• Complicated algorithms (see also [deGiacomo&Vardi IJCAI2013, IJCAI2015])

 4

A = DRA(ψ1) × ⋯ × DRA(ψk) × DRA(F Goal) × S (S is given state transition system, MDP).

We have a specific problem - all BSCCs are self-loops at goals - and can do better

ψ NBA DRA

Contributions

 5

Verification Based Our Method

General Yes No (Requires Goal)

Complexity Double exponential in ϕ Single exponential in ϕ for (1)

Heuristics No Yes (i2Dual)

Approach Automata (DRA)
(1) Formula progression, Tseitin
(2) NBA

State Space Upfront On-the-fly

Baier&McIlraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

Contributions

 5

Verification Based Our Method

General Yes No (Requires Goal)

Complexity Double exponential in ϕ Single exponential in ϕ for (1)

Heuristics No Yes (i2Dual)

Approach Automata (DRA)
(1) Formula progression, Tseitin
(2) NBA

Rest of this talk: approach, complexity, heuristics, experiments

State Space Upfront On-the-fly

Baier&McIlraith ICAPS 2006: non-stochastic planning w/ LTL, heuristics, NFA, by compilation

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

It follows s0 ⊨ P>0.6 F A

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

It follows s0 ⊨ P>0.6 F A

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6
Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

Synthesize

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

such that

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

such that

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(β | s0)π(α | s0)

such that

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(α | s0) + π(β | s0) = 1

π(β | s0)π(α | s0)

such that

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(α | s0) + π(β | s0) = 1

0.6 0.4

π(β | s0)π(α | s0)

such that

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

Non-probabilistic LTL

Ignore finiteness of paths on this slide

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(α | s0) + π(β | s0) = 1

0.6 0.4

π(β | s0)π(α | s0)

such that

Non-linear program in general - we use dual-space LPs instead

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(α | s0) + π(β | s0) = 1

0.6 0.4

π(β | s0)π(α | s0)

such that

Non-linear program in general - we use dual-space LPs instead

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(α | s0) + π(β | s0) = 1

0.6 0.4

π(β | s0)π(α | s0)

(1) Formula progression, or

(2) NBA mode

Contributions

such that

Non-linear program in general - we use dual-space LPs instead

How to Check a Policy π for Satisfying a PLTL Formula

 6

s0: [α → 0.6, β → 0.4]

Given policy π =
s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd

{A} {A}

s0 ⊨ P>0.6 F A The probability of all paths from s0 satisfying F A is > 0.6

Proof

iff

Pr{p | p is a path from s0 and p ⊨ F A} > 0.6

iff

Pr{s0sa, s0sc} > 0.6

0.6 ⋅0.6 + 0.4 ⋅0.7 = 0.64 > 0.6

iff

↝ Quantify over action probabilities and 
 compute solution

It follows s0 ⊨ P>0.6 F A

Find

Synthesize

π(α | s0) + π(β | s0) = 1

0.6 0.4

π(β | s0)π(α | s0)

(1) Formula progression, or

(2) NBA mode

Contributions

Next

such that

Non-linear program in general - we use dual-space LPs instead

Formula Progression

 7

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

[Bachus&Kabanza98]

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Formula Progression

 7

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

[Bachus&Kabanza98]

Why? On-the-fly instead of upfront cross-product

{}{}

{}

LTL is defined on infinite runs

Formula Progression

 7

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

[Bachus&Kabanza98]

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL is defined on infinite runs

Formula Progression

 7

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

[Bachus&Kabanza98]

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

[Bachus&Kabanza98]

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

[Bachus&Kabanza98]

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

[Bachus&Kabanza98]

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

[Bachus&Kabanza98]

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

[Bachus&Kabanza98]

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sa sa ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sb sb ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sb sb ⋯ ⊨ A ∨ X F A (by expand)

s0 sb sb ⋯ ⊨ X F A (by simplify)

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sb sb ⋯ ⊨ A ∨ X F A (by expand)

s0 sb sb ⋯ ⊨ X F A (by simplify)

 sb sb ⋯ ⊨ F A (by X)

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sb sb ⋯ ⊨ A ∨ X F A (by expand)

s0 sb sb ⋯ ⊨ X F A (by simplify)

 sb sb ⋯ ⊨ F A (by X)

(by self-loop) sb sb ⋯ ⊨ A

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sb sb ⋯ ⊨ A ∨ X F A (by expand)

s0 sb sb ⋯ ⊨ X F A (by simplify)

 sb sb ⋯ ⊨ F A (by X)

(by self-loop) sb sb ⋯ ⊨ A

 sb sb ⋯ ⊨ ⊥ (by self-loop)

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Formula Progression

 7

Progression: expand and simplify a given LTL formula along a path

s0

sa

α

0.6 0.4

sb sc

β

0.7 0.3

sd{A} {A}

s0 sa sa ⋯ ⊨ A ∨ X F A (by expand)

s0 sa sa ⋯ ⊨ X F A (by simplify)

 sa sa ⋯ ⊨ F A (by X)

(by self-loop) sa sa ⋯ ⊨ A

[Bachus&Kabanza98]

 sa sa ⋯ ⊨ ⊤ (by self-loop)

s0 sb sb ⋯ ⊨ A ∨ X F A (by expand)

s0 sb sb ⋯ ⊨ X F A (by simplify)

 sb sb ⋯ ⊨ F A (by X)

(by self-loop) sb sb ⋯ ⊨ A

 sb sb ⋯ ⊨ ⊥ (by self-loop)

s0 sa sa ⋯ ⊨ F A s0 sb sb ⋯ ⊨ F A

Why? On-the-fly instead of upfront cross-product

All transitions “if and only if”

{}{}

{}

Self loops at goals

LTL: s0 sa sa ⋯ ⊨ G X A
LTLf: s0 sa ⊨ G X A

LTL is defined on infinite runs

Multi-Objective Progression in the State Space

 8

A = DRA(ψ1) × ⋯ × DRA(ψk) × DRA(F Goal) × S

‹ ψ1,…,ψk,s0›

‹ ψ1’,…,ψk’,s1› ‹ ψ1’,…,ψk’,s2›

‘ is the progression operator

Questions/Issues
• Q: Does repeated progression terminate?  

A: It better does, but some rules even increases formula size: F A ↝ A ∨ X F A

• Q: How to detect a loop ‹ψ,s› ≡ ‹ψ’’…’,s› ? 
A: Check equivalence of LTL formulas. Exponential! 
A: Check equality of canonical representation of LTL formulas. Polynomial!

Loop “Goal”

α

Multi-Objective Progression in the State Space

 8

A = DRA(ψ1) × ⋯ × DRA(ψk) × DRA(F Goal) × S

‹ ψ1,…,ψk,s0›

‹ ψ1’,…,ψk’,s1› ‹ ψ1’,…,ψk’,s2›

‘ is the progression operator

Questions/Issues
• Q: Does repeated progression terminate?  

A: It better does, but some rules even increases formula size: F A ↝ A ∨ X F A

• Q: How to detect a loop ‹ψ,s› ≡ ‹ψ’’…’,s› ? 
A: Check equivalence of LTL formulas. Exponential! 
A: Check equality of canonical representation of LTL formulas. Polynomial!

Loop “Goal”

α

Tseitin-style progression

Tseitin Transformation for Classical Logic

 9

• Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
• Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works
• Introduce names for complex subformulas before multiplying-out

• Requires polynomially many names, one for each subformula
• Apply once-and-forall to given formula and obtain equi-satisfiable CNF
• That CNF is a conjunction of disjunction of 3-literal clauses

(A ∧ B) ∨ ψ ↝ (A ∨ ψ) ∧ (B ∨ ψ) Duplicates ψ

(A ∧ B) ∨ ψ ↝ ψ(A ∧ B) ∨ ψ
¬ψ(A ∧ B) ∨ A

¬ψ(A ∧ B) ∨ B

ψ(A ∧ B) is a name for (A ∧ B)

Definition of ψ(A ∧ B)

Tseitin Transformation for Classical Logic

 9

• Earliest polynomial conjunctive normal form (CNF) transformation [Tseitin 1966]
• Improved versions popular with first-order theorem proving [Azmy&Weidenbach 2013]

How it works
• Introduce names for complex subformulas before multiplying-out

• Requires polynomially many names, one for each subformula
• Apply once-and-forall to given formula and obtain equi-satisfiable CNF
• That CNF is a conjunction of disjunction of 3-literal clauses

(A ∧ B) ∨ ψ ↝ (A ∨ ψ) ∧ (B ∨ ψ) Duplicates ψ

(A ∧ B) ∨ ψ ↝ ψ(A ∧ B) ∨ ψ
¬ψ(A ∧ B) ∨ A

¬ψ(A ∧ B) ∨ B

ψ(A ∧ B) is a name for (A ∧ B)

Definition of ψ(A ∧ B)

↝ We need to apply Tseitin CNF to every derived formula: Tseitin-style progression

Tseitin-Style Progression

 10

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

 { … … } { Li1, Li2, Li3 }

Tseitin-Style Progression

 10

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

 { … … } { Li1, Li2, Li3 }
3-CNF:

∧-connected set of 3-literal clauses

Tseitin-Style Progression

 10

First (?) application to LTL progression

All LTL formulas are now in 3-CNF

 { … … } { Li1, Li2, Li3 }
3-CNF:

∧-connected set of 3-literal clauses

Lik ∈ sub(ψ) ∪ { ¬ϕ, X ϕ, X ¬ϕ | ϕ ∈ sub(ψ) } ∪ “Names” ∪ …
 where ψ = initially given formula

Tseitin-Style Progression

 10

First (?) application to LTL progression

Progression
• Sequence s0 ⊨ {{ ψ }} → s1 ⊨ Γ1 → s2 ⊨ Γ2 → … → si ⊨ Γi

• Initially s0 ⊨ Γ0 where Γ0 = simplified 3-CNF of {{ ψ }}

• Step si ⊨ Γi → si+1 ⊨ Γi+1 :

(1) Eliminate names from Γi and strip X-operators
(2) Γi+1 = simplified 3-CNF of (1)

• Stop if sk ⊨ Γk = si ⊨ Γi for some k < i  

Replaces ≡-test for LTL-formulas by polynomial set equality test!
Complexity

Literal signature |Σ| ∈ O(|ψ|2)

O(|Σ|3) = O(|ψ|6) different clauses

Theorem
Space and time complexity polynomial in |S| and single exponential |ψ|

O(|ψ|6)2 different clause sets

All LTL formulas are now in 3-CNF

 { … … } { Li1, Li2, Li3 }
3-CNF:

∧-connected set of 3-literal clauses

Lik ∈ sub(ψ) ∪ { ¬ϕ, X ϕ, X ¬ϕ | ϕ ∈ sub(ψ) } ∪ “Names” ∪ …
 where ψ = initially given formula

Tseitin-Style Progression

 10

First (?) application to LTL progression

Progression
• Sequence s0 ⊨ {{ ψ }} → s1 ⊨ Γ1 → s2 ⊨ Γ2 → … → si ⊨ Γi

• Initially s0 ⊨ Γ0 where Γ0 = simplified 3-CNF of {{ ψ }}

• Step si ⊨ Γi → si+1 ⊨ Γi+1 :

(1) Eliminate names from Γi and strip X-operators
(2) Γi+1 = simplified 3-CNF of (1)

• Stop if sk ⊨ Γk = si ⊨ Γi for some k < i  

Replaces ≡-test for LTL-formulas by polynomial set equality test!
Complexity

Literal signature |Σ| ∈ O(|ψ|2)

O(|Σ|3) = O(|ψ|6) different clauses

Theorem
Space and time complexity polynomial in |S| and single exponential |ψ|

O(|ψ|6)2 different clause sets

All LTL formulas are now in 3-CNF

 { … … } { Li1, Li2, Li3 }
3-CNF:

∧-connected set of 3-literal clauses

Lik ∈ sub(ψ) ∪ { ¬ϕ, X ϕ, X ¬ϕ | ϕ ∈ sub(ψ) } ∪ “Names” ∪ …
 where ψ = initially given formula

Progression is formalized with the help of the relation)r between set formulas as follows:

{{}}] �)r {{}} if � < ; (Triv)
{{>}] }] �)r � (>)

{{¬>}] }] �)r { } [� (¬>)
{{(u, d)}] }] �)r � if (u, d) 2 AP and r[u] = d (Eval1)
{{(u, d)}] }] �)r { } [� if (u, d) 2 AP and r[u] < d (Eval2)

{{¬(u, d)}] }] �)r { } [� if (u, d) 2 AP and r[u] = d (Eval3)
{{¬(u, d)}] }] �)r � if (u, d) 2 AP and r[u] < d (Eval4)
{{¬¬'}] }] �)r {{'} [} [� (¬¬)

{{'1 _ '2}] }] �)r {{A'1_'2 } [,

{¬A'1_'2, '1, '2}} [�

(_)

{{¬('1 _ '2)}] }] �)r {{¬A'1_'2 } [,

{A'1_'2, '1},

{A'1_'2, '2}} [�

(¬_)

{{'1 ^ '2}] }] �)r {{A'1^'2 } [,

{¬A'1^'2, '1},

{¬A'1^'2, '2}} [�

(^)

{{¬('1 ^ '2)}] }] �)r {{¬A'1^'2 } [,

{A'1^'2, '1, '2}} [�

(¬^)

{{'1 U'2}] }] �)r {{A'1 U'2 } [,

{¬A'1 U'2, '2, A'1^X ('1 U'2)},

{¬A'1^X ('1 U'2), '1},

{¬A'1^X ('1 U'2), X ('1 U'2)}} [�

(U)

{{¬('1 U'2)}] }] �)r {{¬A'1 U'2 } [,

{A'1 U'2, '2},

{A'1 U'2, ¬A'1^X ('1 U'2)},

{A'1^X ('1 U'2), 1, X¬('1 U'2)}} [�

(¬U)

{{¬X'}] }] �)r {{X'} [} [� (¬X)

The singled-out literal in the left-hand side of the rule is called the pivot.
In the de�nition of)r above we left its domain unspeci�ed. The following lemma is a �rst step

and helps by clarifying that)r preserves the domain ⌃(').

Lemma 9 Let �1 be a set formula with domain ⌃('), for some LTL formula '. If �1)r �2 then �2 has
domain ⌃(').

Proof. Assume �1)r �2. We need to check all rules in)r and argue in each case that every clause
in �2 has domain ⌃('). In doing that, we argue with closure properties such as “⌃() is closed under
subterms” by which we mean the fact that sub(') ✓ ⌃().

For the rules (Triv)–(Eval4) the proof is trivial, as they either remove clauses or remove literals
from clauses. For the rule (¬¬) use the fact that ⌃(') is closed under subformulas. For the rules

20

Tseitin-Style Progression

 10

First (?) application to LTL progression

Progression
• Sequence s0 ⊨ {{ ψ }} → s1 ⊨ Γ1 → s2 ⊨ Γ2 → … → si ⊨ Γi

• Initially s0 ⊨ Γ0 where Γ0 = simplified 3-CNF of {{ ψ }}

• Step si ⊨ Γi → si+1 ⊨ Γi+1 :

(1) Eliminate names from Γi and strip X-operators
(2) Γi+1 = simplified 3-CNF of (1)

• Stop if sk ⊨ Γk = si ⊨ Γi for some k < i  

Replaces ≡-test for LTL-formulas by polynomial set equality test!
Complexity

Literal signature |Σ| ∈ O(|ψ|2)

O(|Σ|3) = O(|ψ|6) different clauses

Theorem
Space and time complexity polynomial in |S| and single exponential |ψ|

O(|ψ|6)2 different clause sets

All LTL formulas are now in 3-CNF

 { … … } { Li1, Li2, Li3 }
3-CNF:

∧-connected set of 3-literal clauses

Lik ∈ sub(ψ) ∪ { ¬ϕ, X ϕ, X ¬ϕ | ϕ ∈ sub(ψ) } ∪ “Names” ∪ …
 where ψ = initially given formula

Policy Synthesis by Translation to Linear Program

 11

s0 α

β
si

Search Space

Policy π
π(α | si) = ? π(β | si) = ? ….

k+1 tuple

Policy Synthesis by Translation to Linear Program

 11

s0 α

β
si

Search Space

Policy π
π(α | si) = ? π(β | si) = ? ….

k+1 tuple

Goal

Linear program computes expected values

Primary: e.g. time
Secondary: e.g. fuel < 50

Expected number of times α is executed in si

Cost() × Pr() +
Cost() × Pr() +
Cost() × Pr()

= … + x(si, α) × C(α)
 + x(si, β) × C(β) + …

Expected policy costs

x(si, α) = Σ π(α | si) × Pr(si)si

Policy Synthesis by Translation to Linear Program

 11

s0 α

β
si

Search Space

Linear Program Solver
Optimal solution of linear program, i.e., values for x(si, α) s.th.
• primary cost is minimized, and
• secondary cost constraints are satisfied
in expectation

Policy π
π(α | si) = ? π(β | si) = ? ….

k+1 tuple

Goal

Linear program computes expected values

Primary: e.g. time
Secondary: e.g. fuel < 50

Expected number of times α is executed in si

Cost() × Pr() +
Cost() × Pr() +
Cost() × Pr()

= … + x(si, α) × C(α)
 + x(si, β) × C(β) + …

Expected policy costs

x(si, α) = Σ π(α | si) × Pr(si)si

Policy Synthesis by Translation to Linear Program

 11

s0 α

β
si

Search Space

Linear Program Solver
Optimal solution of linear program, i.e., values for x(si, α) s.th.
• primary cost is minimized, and
• secondary cost constraints are satisfied
in expectation

Policy π
π(α | si) = ? π(β | si) = ? ….

π(α | si) = x(si, α) / (x(si, α) + x(si, β))

k+1 tuple

Goal

Linear program computes expected values

Primary: e.g. time
Secondary: e.g. fuel < 50

Expected number of times α is executed in si

Cost() × Pr() +
Cost() × Pr() +
Cost() × Pr()

= … + x(si, α) × C(α)
 + x(si, β) × C(β) + …

Expected policy costs

x(si, α) = Σ π(α | si) × Pr(si)si

Policy Synthesis by Translation to Linear Program

 11

s0 α

β
si

Search Space

Linear Program Solver
Optimal solution of linear program, i.e., values for x(si, α) s.th.
• primary cost is minimized, and
• secondary cost constraints are satisfied
in expectation

Policy π
π(α | si) = ? π(β | si) = ? ….

π(α | si) = x(si, α) / (x(si, α) + x(si, β))

k+1 tuple

Amenable to heuristics

Goal

Linear program computes expected values

Primary: e.g. time
Secondary: e.g. fuel < 50

Expected number of times α is executed in si

Cost() × Pr() +
Cost() × Pr() +
Cost() × Pr()

= … + x(si, α) × C(α)
 + x(si, β) × C(β) + …

Expected policy costs

x(si, α) = Σ π(α | si) × Pr(si)si

Heuristics Search: i-dual and i2-dual

 12

s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”)

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

s

s
s

Current
state space

Heuristics Search: i-dual and i2-dual

 12

s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”)

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

… with A*-like heuristic estimation function H
(1) Compute best policy π* for current state space  

by translation into LP with fringe as artificial goals  
with costs H 
π* minimizes f = g + H

(2) Expand all fringe states reachable under π*
(3) If all reachable fringe states are original goals  

then stop else repeat

H

H

H

s

s
s

Current
state space

Heuristics Search: i-dual and i2-dual

 12

s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”)

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

… with A*-like heuristic estimation function H
(1) Compute best policy π* for current state space  

by translation into LP with fringe as artificial goals  
with costs H 
π* minimizes f = g + H

(2) Expand all fringe states reachable under π*
(3) If all reachable fringe states are original goals  

then stop else repeat

H

H

H

Search space
• Over policies, not paths; g(s) may change in each step
• Policies may become constrained  

E.g. Pr() < 0.1 if Hfuel(s) = 50  
as otherwise fuel < 5 not achievable

s

s
s

Current
state space

Heuristics Search: i-dual and i2-dual

 12

s0

Goal

α

β
si

Exploring the state space …

• First heuristic search algorithms for constrained SSPs [Trevizan, Thiebaux, Haslum, Williams, Santana] 
i.e. primary expected cost (“time”) and secondary expected cost constraints (“fuel < 5”)

• Sound, complete and optimal for admissible heuristics H (H must understimate expected costs)

… with A*-like heuristic estimation function H
(1) Compute best policy π* for current state space  

by translation into LP with fringe as artificial goals  
with costs H 
π* minimizes f = g + H

(2) Expand all fringe states reachable under π*
(3) If all reachable fringe states are original goals  

then stop else repeat

H

H

H

Search space
• Over policies, not paths; g(s) may change in each step
• Policies may become constrained  

E.g. Pr() < 0.1 if Hfuel(s) = 50  
as otherwise fuel < 5 not achievable

s

s
s

Current
state space

↝ For PLTL constraints

Heuristic Search for PLTL - PLTL-dual

 13

s0 Goal

α

Find policy π s.th s0, π ⊨ P≥0.9Ψ

A universal heuristic for search space pruning

α
α

0.2

0

0.9

http://s.th

Heuristic Search for PLTL - PLTL-dual

 13

s0 Goal

α

Find policy π s.th s0, π ⊨ P≥0.9Ψ

A universal heuristic for search space pruning

α
α

Optimal (final) policy π*
 π*(α, s0) = 1 π*(α, s0) = 0 π*(α, s0) = 0

0.2

0

0.9

http://s.th

Heuristic Search for PLTL - PLTL-dual

 13

s0 Goal

α

Find policy π s.th s0, π ⊨ P≥0.9Ψ

Pr { | Ψ } = 0.9 ≤ H() = 1

Max among all π* ≤ Heuristic value

Pr { | Ψ } = 0 ≤ H() = 0.5

Pr { | Ψ } = 0.2 ≤ H() = 0.3

A universal heuristic for search space pruning

α
α

Optimal (final) policy π*
 π*(α, s0) = 1 π*(α, s0) = 0 π*(α, s0) = 0

0.2

0

0.9

http://s.th

Heuristic Search for PLTL - PLTL-dual

 13

s0 Goal

α

Find policy π s.th s0, π ⊨ P≥0.9Ψ

Pr { | Ψ } = 0.9 ≤ H() = 1

Max among all π* ≤ Heuristic value

Pr { | Ψ } = 0 ≤ H() = 0.5

Pr { | Ψ } = 0.2 ≤ H() = 0.3

A universal heuristic for search space pruning

α
α

Optimal (final) policy π*
 π*(α, s0) = 1 π*(α, s0) = 0 π*(α, s0) = 0

0.2

0

0.91

0.5

0.3

http://s.th

Heuristic Search for PLTL - PLTL-dual

 13

s0 Goal

α

Find policy π s.th s0, π ⊨ P≥0.9Ψ

Pr { | Ψ } = 0.9 ≤ H() = 1

Max among all π* ≤ Heuristic value

Pr { | Ψ } = 0 ≤ H() = 0.5

Pr { | Ψ } = 0.2 ≤ H() = 0.3

A universal heuristic for search space pruning

α
α

Optimal (final) policy π*
 π*(α, s0) = 1 π*(α, s0) = 0 π*(α, s0) = 0

0.2

0

0.9

Entailed feasibilty policy constraint
π(α, s0) ≤ 0.2
Otherwise, e.g. with π(α, s0) = 0.21
0.21 ⋅ 0.5 + π(α, s0) ⋅1 ≥ 0.9

But 0.21 + 0.795 = 1.005 > 1
⇒ π(α, s0) ≥ 0.795

1

0.5

0.3

http://s.th

Heuristic Search for PLTL - PLTL-dual

 13

s0 Goal

α

Find policy π s.th s0, π ⊨ P≥0.9Ψ

Pr { | Ψ } = 0.9 ≤ H() = 1

Max among all π* ≤ Heuristic value

Pr { | Ψ } = 0 ≤ H() = 0.5

Pr { | Ψ } = 0.2 ≤ H() = 0.3
How to compute H() with NBAs
1.Ψ’ := Ψ ∧ “finite extension semantics”
2.Compute NBA B for Ψ’
3.Trace B to find - states (overapproximation)
4.Trace B from - states as initial states to Goal  

- using relaxed actions from S consistent with trace  
- as a SSP T

5.Solve T putting 1 unit of flow into - states
6.Get H() from flow into Goal

A universal heuristic for search space pruning

α
α

Optimal (final) policy π*
 π*(α, s0) = 1 π*(α, s0) = 0 π*(α, s0) = 0

0.2

0

0.9

Entailed feasibilty policy constraint
π(α, s0) ≤ 0.2
Otherwise, e.g. with π(α, s0) = 0.21
0.21 ⋅ 0.5 + π(α, s0) ⋅1 ≥ 0.9

But 0.21 + 0.795 = 1.005 > 1
⇒ π(α, s0) ≥ 0.795

1

0.5

0.3

http://s.th

Experiment: Wall-e and Eve

 14

Rooms

Hallway

1 2 n

G

3 4 …

• Goal: Wall-e at G

• Constraints:

1. Wall-e and Eve must eventually be together (P ≥ 0.5)
2. Eve must be in a room until they are together (P ≥ 0.8)
3. Once together, they eventually stay together (P = 1)
4. Eve must visit the rooms 1, 2, and 3 (P = 1)
5. Wall-e never visits a room twice (P ≥ 0.8)

Experiment: Wall-e and Eve

 14

Rooms

Hallway

1 2 n

G

3 4 …

• Goal: Wall-e at G

• Constraints:

1. Wall-e and Eve must eventually be together (P ≥ 0.5)
2. Eve must be in a room until they are together (P ≥ 0.8)
3. Once together, they eventually stay together (P = 1)
4. Eve must visit the rooms 1, 2, and 3 (P = 1)
5. Wall-e never visits a room twice (P ≥ 0.8)

Experiments - Wall-E

 15

Figure 2: Time in seconds to solve: factory problems m, j (m 2 2..8, j 2 0..(m�1)); andWall-e
problem for m 2 4..7.

19

NBA heur: full heuristics, may yield “many” states
NBA heur (100): use trivial heuristics if > 100 states in NBA
Good also for progression: violated LTL constraints detected early by simplification
Wall-E never visits room1 twice

G (wall-E_room1 ⇒ (wall-E_room1 U G ¬wall-E_room1) (ψ3)

Experiments - Factory

 16

Figure 2: Time in seconds to solve: factory problems m, j (m 2 2..8, j 2 0..(m�1)); andWall-e
problem for m 2 4..7.

19

Conclusion

Summary
• Policy synthesis algorithm for multi-objective PLTL constraints Ψ = P1 ψ1 ∧ ⋯ ∧ Pk ψk 

Resulting history-independent (Markovian) policy over cross-product state space converts to
finite-memory policy in the standard way

• Tseitin-style progression 
Better worst-case complexity: single-exponential (vs double-exponential) in |Ψ|

• NBA-based A*-like heuristics
• “Promising experiments”

Future Work
• Implement progression in full
• Heuristics based on progression (vs NBA)
• Multi-objective PLTL verification (on infinite runs) based on progression
• Quantification over finite domains. Non-prob: [Baier&McIlraith 2006]
• Beyond PLTL, e.g. P>0.8 G (A → P>0.4 F B)

 17

