
P. Baumgartner and U. Waldmann

 Superposition and Model Evolution
Combined

1

Peter Baumgartner
NICTA and

Australian National University

Uwe Waldmann
Max Planck Institute

for Informatics

P. Baumgartner and U. Waldmann 2

Motivation

• Both Superposition and Model Evolution are calculi for FOL=
• Superposition

– Equality, redundancy elimination
– Decides Guarded Fragment, Monadic class, ...
– Wins FOF CASC division

• Model Evolution, more generally "Instance Based Methods"
– Conceptually different to resolution/superposition
– Method of choice for Bernays-Schönfinkel class (EPR)
– Wins EPR CASC division

Combine Superposition and Instance Based Methods?
ME+Sup = Model Evolution + Superposition

P. Baumgartner and U. Waldmann

Motivating Example

3

Ordered arrays

•Termination on (1)-(3): ME: yes Superposition: no
•Termination on (4)-(6): ME: no Superposition: yes
•Termination on (1)-(6): ME+Sup: yes

 - use ME for ≤-literals
 - use Superposition for ≈-literals

P. Baumgartner and U. Waldmann

Propositional Resolution → Superposition

4

Ordered resolution Superposition - ground level

P. Baumgartner and U. Waldmann

Propositional Resolution → Superposition

5

Ordered resolution Superposition

P. Baumgartner and U. Waldmann 6

DPLL → Model Evolution (ME)





no - Split





Close

DPLL

Induced Interpretation via Productivity

ME

- Branches are called "contexts"
- Context induces interpretation
- Split to repair interpretation
- Close to abandon interpretation

P. Baumgartner and U. Waldmann 7

Productivity

produces

Productivity is a central concept in the combination
 of ME and superposition via constrained clauses

A context literal K ∈ Λ produces L iff
(i) L is an instance of K and
(ii) there is no more specific literal in Λ
 that produces L

A "syntactic" notion!
Not an E-Interpretation

P. Baumgartner and U. Waldmann

ME+Sup - Constrained Clauses

8

C is evaluated "semantically", Γ is evaluated "syntactically"

P. Baumgartner and U. Waldmann

ME+Sup - Constrained Clauses

9

C is evaluated "semantically", Γ is evaluated "syntactically"

P. Baumgartner and U. Waldmann

ME+Sup - Constrained Clauses

10

C is evaluated "semantically", Γ is evaluated "syntactically"

P. Baumgartner and U. Waldmann

ME+Sup - Constrained Clauses

11

C is evaluated "semantically", Γ is evaluated "syntactically"

P. Baumgartner and U. Waldmann

ME+Sup Calculus - Initialisation

12

• Given: clause set M
• Initialisation

– Context ¬x
– Constrained clause set Φ = { C⋅∅ | C ∈ M }

It holds Λ,I ⊨ Φ iff I ⊨ M

• User-supplied control parameters
– Term ordering, as usual
– Labelling on ground atoms:

split atoms ∪ superposition atoms = Herbrand base
– Can also configure pure ME or pure Superposition calculus:

 superposition atoms = ∅ or split atoms = ∅

P. Baumgartner and U. Waldmann

Labelling Example

13

Labelling is used to control inference rule applications

split / superposition atom

P. Baumgartner and U. Waldmann

ME+Sup Calculus - Inference Rules

14

Clause (x Clause) ↦ Clause Context x Clause ↦ Clause

Context x Clause ↦ Context x Context

split / superposition atom

P. Baumgartner and U. Waldmann

U-Sup: Context x Clause ↦ Clause

15

P. Baumgartner and U. Waldmann

U-Sup: Context x Clause ↦ Clause

16

At least one ground
instance is a split atom

P. Baumgartner and U. Waldmann

Sup: Clause x Clause ↦ Clause

17

Standard Superposition
is a special case

P. Baumgartner and U. Waldmann

Split: Context x Clause ↦ Context x Context

18

P. Baumgartner and U. Waldmann

Derivation Example

19

Initial context is ¬x
Resolution on (1a) and (1b) is blocked

leq-atoms: split
 ≤-atoms: superposition
leq-atoms ≻ ≤-atoms

(No equality in this example, empty constraints not shown)

P. Baumgartner and U. Waldmann

Derivation Example

20

(Derivation continues, but will terminate eventually)

(Split)(ctxt-1)

Inference rule applications controlled by
labelling, orderings, productivity, redundancy/simplification

P. Baumgartner and U. Waldmann

Redundancy and Simplification

• A ground clause C⋅Γ is redundant if it follows from smaller ground
clauses and "certain additional conditions" are satisfied

• DPLL-style simplification rules by elements from current context Λ

• Simplification by clauses from current clause set Φ

21

Generalizes redundancy/simplification of ME and Superposition

f(x)≈x ⋅ g(a)≈a
if g(a)≉a ∈ Λ

f(x)≈x ⋅ g(a)≈a
if g(a)≈a ∈ Λ

f(x)≈h(x) ⋅ g(x)≈x

 f(x)≈x . g(x)≈x ∈ Φ

 x ≈h(x) ⋅ g(x)≈x, g(x)≈x

P. Baumgartner and U. Waldmann

Soundness and Completeness

22

• ME+Sup is sound
• ME+Sup (with simplification) is refutationally complete

– Every fair derivation from an unsatisfiable clause set ends in a
derivation tree where every leaf is closed

– Fairness: every inference from persistent non-redundant
premises becomes redundant eventually

– But input clauses must not contain constraints
P(x)⋅∅ is OK □⋅¬P(x) is not OK

– Proof by adaptation of Bachmair/Ganzinger model
construction technique

P. Baumgartner and U. Waldmann

Model Construction

23

P. Baumgartner and U. Waldmann

Conclusions

• ME+Sup
– Properly generalizes Superposition with redundancy criteria
– Generalize essentials of Model Evolution with Equality

(universal variables and some optional inference rules missing)
– Symmetric integration, configuration of mixed calculi

• Technical complications required some new concepts
• Future work

– New decision procedures?
– Generalization of full Model Evolution with Equality
– "Basic" variants of inference rules

24

