Superposition and Model Evolution Combined

Peter Baumgartner

NICTA and Australian National University

Uwe Waldmann

Max Planck Institute for Informatics

Motivation

- Both Superposition and Model Evolution are calculi for FOL=
- Superposition
 - Equality, redundancy elimination
 - Decides Guarded Fragment, Monadic class, ...
 - Wins FOF CASC division
- Model Evolution, more generally "Instance Based Methods"
 - Conceptually different to resolution/superposition
 - Method of choice for Bernays-Schönfinkel class (EPR)
 - Wins EPR CASC division

Combine Superposition and Instance Based Methods? ME+Sup = Model Evolution + Superposition

Motivating Example

Ordered arrays

(1)
$$x \leq z \lor \neg (x \leq y) \lor \neg (y \leq z)$$

$$(2) \quad x \leq y \lor y \leq x$$

(3)
$$x \approx y \lor \neg (x \leq y) \lor \neg (y \leq x)$$

(4) select(store(
$$a$$
, i , e), i) $\approx e$

(5) select(store(
$$a$$
, i , e), j) \approx select(a , j) \lor $i \approx j$

(6)
$$i \leq j \lor \neg (\operatorname{select}(a0, i) \leq \operatorname{select}(a0, j))$$

- Termination on (1)-(3): ME: yes Superposition: no
- Termination on (4)-(6): ME: no Superposition: yes
- Termination on (1)-(6): ME+Sup: yes
 - use ME for \leq -literals
 - use Superposition for \approx -literals

Propositional Resolution \rightarrow **Superposition Ordered** resolution Superposition - ground level $I \approx r \lor C$ $s[I]_p \not\approx t \lor D$ $A \lor C \qquad \neg A \lor D$ $C \lor D$ $s[r]_{p} \not\approx t \lor C \lor D$ if if (i) A is strictly maximal in $A \vee C$ (ii) $\neg A$ is maximal (iii) $l \succ r$, in $\neg A \lor D$ (iv) $l \approx r$ is strictly maximal in $I \approx r \vee C$. (v) $s \succ t$, and (vi) $s \not\approx t$ is maximal in $s \not\approx t \lor C$.

Propositional Resolution \rightarrow **Superposition**

if

Ordered resolution $A \lor C$ $\neg A \lor D$ $C \lor D$

- if (i) A is strictly maximal in $A \lor C$
 - (ii) $\neg A$ is maximal in $\neg A \lor D$

Superposition

 $I \approx r \lor C \qquad s[u]_p \not\approx t \lor D$ $(s[r]_p \not\approx t \lor C \lor D)\sigma$

(i) σ is a mgu of *I* and *u*,

(ii) *u* is not a variable,

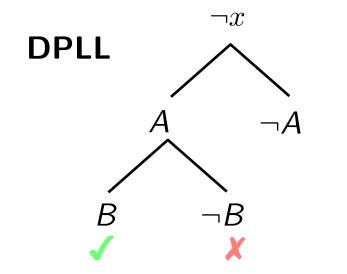
(iii)
$$r\sigma \not\succeq l\sigma$$
,

(iv) $(l \approx r)\sigma$ is strictly maximal in $(l \approx r \lor C)\sigma$,

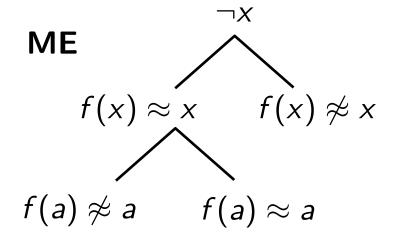
(v)
$$t\sigma \not\succeq s\sigma$$
, and

(vi) $(s \not\approx t)\sigma$ is maximal in $(s \not\approx t \lor C)\sigma$.

DPLL → **Model Evolution (ME)**



$$\{A\} \stackrel{?}{\models} \neg A \lor B \qquad \text{no - Split}$$
$$\{A, B\} \stackrel{?}{\models} \neg A \lor B \qquad \checkmark$$
$$A, \neg B\} \stackrel{!}{\models} \neg A \lor B \qquad \checkmark \text{Close}$$



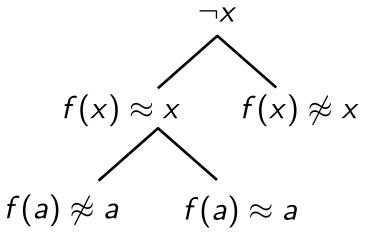
- Branches are called "contexts"
- Context induces interpretation
- **Split** to repair interpretation
- **Close** to abandon interpretation

Induced Interpretation via *Productivity*

Productivity

A context literal $K \in \Lambda$ produces L iff (i) L is an instance of K and (ii) there is no more specific literal in Λ that produces \overline{L}

> A "syntactic" notion! Not an E-Interpretation



produces

```
\{f(b) \approx b, f(f(a)) \approx f(a), f(a) \not\approx a, f(f(b)) \not\approx b, \ldots\}
```

Productivity is a central concept in the combination of ME and superposition via *constrained clauses*

Constraint clause $C \cdot \Gamma$

• *C* is an ordinary clause

$$x \le y \lor y \le x \cdot \emptyset$$

 $y \le x \cdot \neg (x \le y)$

• Constraint Γ is a multiset of literals

Semantics

- Given context Λ and E-interpretation I
- Λ , $I \models C \cdot \Gamma$ iff (if Λ produces Γ then $I \models C$)

$$A \\ | , \{C\} \models C \lor D \cdot A, \neg B \\ \neg B$$

C is evaluated "semantically", Γ is evaluated "syntactically"

Constraint clause $C \cdot \Gamma$

• *C* is an ordinary clause

$$x \le y \lor y \le x \cdot \emptyset$$

 $y \le x \cdot \neg (x \le y)$

• Constraint Γ is a multiset of literals

Semantics

- Given context Λ and E-interpretation I
- $\Lambda, I \models C \cdot \Gamma$ iff (if Λ produces Γ then $I \models C$)

$$A \\ | , \{\} \not\models C \lor D \cdot A, \neg B \\ \neg B$$

C is evaluated "semantically", *Γ* is evaluated "syntactically"

Constraint clause $C \cdot \Gamma$

• *C* is an ordinary clause

$$x \le y \lor y \le x \cdot \emptyset$$

 $y \le x \cdot \neg (x \le y)$

• Constraint Γ is a multiset of literals

Semantics

- Given context Λ and E-interpretation I
- Λ , $I \models C \cdot \Gamma$ iff (if Λ produces Γ then $I \models C$)

$$A \\ \mid , ? \models C \lor D \cdot A, B \\ \neg B$$

C is evaluated "semantically", Γ is evaluated "syntactically"

Constraint clause $C \cdot \Gamma$

• *C* is an ordinary clause

$$x \le y \lor y \le x \cdot \emptyset$$

 $y \le x \cdot \neg (x \le y)$

• Constraint Γ is a multiset of literals

Semantics

• Given context Λ and E-interpretation I

•
$$\Lambda, I \models C \cdot \Gamma$$
 iff (if Λ produces Γ then $I \models C$)
 $f(x) \approx x$
 $\mid \qquad , ? \models f(b) \not\approx b \cdot f(a) \approx a$
 $f(a) \not\approx a$

C is evaluated "semantically", Γ is evaluated "syntactically"

ME+Sup Calculus - Initialisation

- **Given**: clause set *M*
- Initialisation
 - Context $\neg x$
 - Constrained clause set $\Phi = \{ C \cdot \emptyset \mid C \in M \}$ It holds $\Lambda, I \models \Phi$ iff $I \models M$
- User-supplied control parameters
 - Term ordering, as usual
 - Labelling on ground atoms:
 split atoms U superposition atoms = Herbrand base
 - Can also configure pure ME or pure Superposition calculus: superposition atoms = \emptyset or split atoms = \emptyset

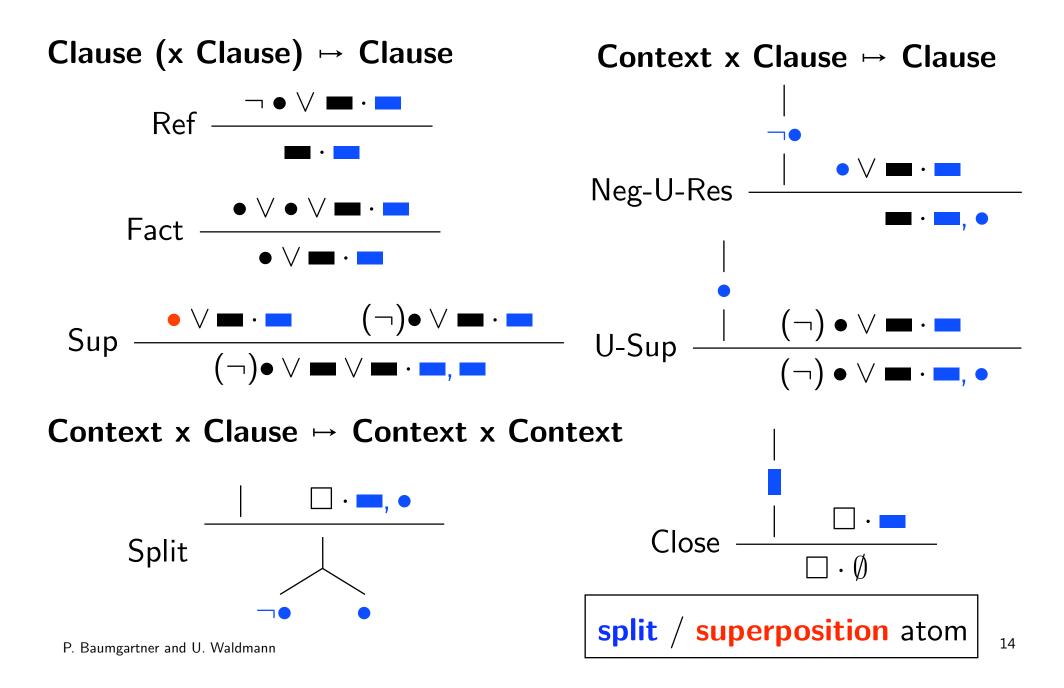
Labelling Example

- (1) $x \leq z \lor \neg (x \leq y) \lor \neg (y \leq z)$
- (2) $x \leq y \lor y \leq x$
- (3) $x \approx y \lor \neg (x \leq y) \lor \neg (y \leq x)$
- (4) select(store(a, i, e), i) $\approx e$
- (5) select(store(a, i, e), j) \approx select(a, j) $\lor i \approx j$
- (6) $i \leq j \vee \neg (\operatorname{select}(a0, i) \leq \operatorname{select}(a0, j))$

split / superposition atom

Labelling is used to control inference rule applications

ME+Sup Calculus - Inference Rules



U-Sup: Context x Clause → Clause

 $b \not\approx c \cdot f(b) \approx b$

Must add $f(b) \approx b$ to the constraint because $f(b) \approx b$ could be false in the induced interpretation

U-Sup: Context x Clause \mapsto **Clause**

U-Sup
$$\frac{\Lambda, l \approx r \qquad s[u]_{p} \not\approx t \lor C \cdot \Gamma}{(s[r]_{p} \not\approx t \lor C \cdot \Gamma, l \approx r)\sigma}$$

where

Sup: Clause x Clause → Clause

$$\mathsf{Sup} = \frac{I \approx r \lor C' \cdot \Gamma' \quad s[u]_p \not\approx t \lor C \cdot \Gamma}{(s[r]_p \not\approx t \lor C \lor C' \cdot \Gamma, \Gamma') \sigma \pi}$$

- (i) σ is a mgu of *I* and *u*,
- (ii) *u* is not a variable,

Standard Superposition is a special case

(iii) π merges $x_1 \approx t_1 \lor \cdots \lor x_n \approx t_n \subseteq C'\sigma$ with $(I \approx r)\sigma$,

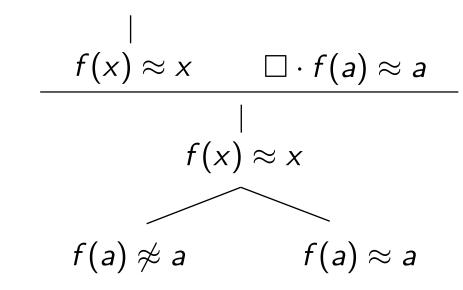
(iv)
$$\{x_1,\ldots,x_n\} \subseteq \mathcal{V}ar(\Gamma'\sigma),$$

- (v) $(l \approx r)\sigma$ is a superposition atom,
- (vi) $r\sigma\pi \succeq I\sigma\pi$,
- (vii) $(I \approx r)\sigma\pi$ is strictly maximal in $(I \approx r \lor C')\sigma\pi$,

(viii)
$$t\sigma \not\succeq s\sigma$$
, and

(ix) $(s \not\approx t)\sigma$ is maximal in $(s \not\approx t \lor C)\sigma$.

Split: Context x Clause → Context x Context



Split
$$\frac{\Lambda \quad \Box \cdot \Gamma, \ s \approx t}{\Lambda, \ s \not\approx t \quad \Lambda, \ s \approx t}$$

(Similarly for $\Box \cdot \Gamma$, $s \not\approx t$)

(i) Λ produces every literal in $\Gamma \cup \{s \approx t\}$

(ii) neither
$$s \approx t \in \Lambda$$
 nor $s \not\approx t \in \Lambda$

(iii) $s \approx t$ is a **split** atom

P. Baumgartner and U. Waldmann

Derivation Example

(No equality in this example, empty constraints not shown)

(1a)
$$x \leq z \lor \neg (x \leq y) \lor \neg \operatorname{leq}(y, z)$$

- (1b) $leq(y, z) \lor \neg (y \le z)$
- $(2) \qquad x \leq y \lor y \leq x$

Initial context is $\neg x$

Resolution on (1a) and (1b) is blocked

 $(3) \qquad x \leq x$

- (4) $\neg (y \leq z) \cdot \neg \operatorname{leq}(y, z)$
- (5) $z \leq y \cdot \neg \operatorname{leq}(y, z)$
- (6) $\Box \cdot \neg \operatorname{leq}(x, x)$

(Factoring (2)) (Neg-U-Res of (1b)) (Resolution (2)+(4)) (Resolution (3)+(4))

Derivation Example

(1a)
$$x \leq z \lor \neg (x \leq y) \lor \neg \operatorname{leq}(y, z)$$

:
(6) $\Box \cdot \neg \operatorname{leq}(x, x)$
(ctxt-1) $\operatorname{leq}(x, x) \neg \operatorname{leq}(x, x)$
(Split)
(7) $x \leq y \lor \neg (x \leq y) \cdot \operatorname{leq}(y, y)$
((ctxt-1)+(1a))

(Derivation continues, but will terminate eventually)

Inference rule applications controlled by labelling, orderings, productivity, *redundancy/simplification*

Redundancy and Simplification

- A ground clause $C \cdot \Gamma$ is redundant if it follows from smaller ground clauses and "certain additional conditions" are satisfied
- DPLL-style simplification rules by elements from current context Λ

$$f(x) \approx x \cdot g(a) \approx a$$
 $f(x) \approx x \cdot g(a) \approx a$ if $g(a) \approx a \in \Lambda$ if $g(a) \approx a \in \Lambda$

• Simplification by clauses from current clause set Φ

$$f(x) \approx h(x) \cdot g(x) \approx x$$

$$f(x) \approx x \cdot g(x) \approx x \in \Phi$$

$$x \approx h(x) \cdot g(x) \approx x, g(x) \approx x$$

Generalizes redundancy/simplification of ME and Superposition

Soundness and Completeness

- ME+Sup is sound
- ME+Sup (with simplification) is refutationally complete
 - Every fair derivation from an unsatisfiable clause set ends in a derivation tree where every leaf is closed
 - Fairness: every inference from persistent non-redundant premises becomes redundant eventually
 - But input clauses must not contain constraints $P(x) \cdot \emptyset$ is OK $\Box \cdot \neg P(x)$ is not OK
 - Proof by adaptation of Bachmair/Ganzinger model construction technique

Model Construction

Given: Λ , Φ is saturated and $\Box \cdot \emptyset \notin \Phi$. Construct rewrite system RNeed a total ordering:

- $C_1 \cdot \Gamma_1$ and $C_2 \cdot \Gamma_2$ compared lexicographically
- Context equation $s \approx t$ is taken as $s \approx t \cdot \bot$ where $\bot \prec \emptyset$

Inspect $\Pi_{\Lambda}\,\cup\,ground(\Phi)$ in increasing order

(ii) If $s \approx t \lor C \cdot \Gamma$ in ground(Φ), Λ produces Γ and "other conditions" apply then add $s \rightarrow t$ to R

Can show that inference rules reduce smallest relevant counterexample

Conclusions

- ME+Sup
 - Properly generalizes Superposition with redundancy criteria
 - Generalize essentials of Model Evolution with Equality (universal variables and some optional inference rules missing)
 - Symmetric integration, configuration of mixed calculi
- Technical complications required some new concepts
- Future work
 - New decision procedures?
 - Generalization of full Model Evolution with Equality
 - "Basic" variants of inference rules