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Motivation

• Both Superposition and Model Evolution are calculi for FOL= 
• Superposition

– Equality, redundancy elimination
– Decides Guarded Fragment, Monadic class, ...
– Wins FOF CASC division

• Model Evolution, more generally "Instance Based Methods"
– Conceptually different to resolution/superposition
– Method of choice for Bernays-Schönfinkel class (EPR)
– Wins EPR CASC division

Combine Superposition and Instance Based Methods?
ME+Sup = Model Evolution + Superposition
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Motivating Example
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Ordered arrays

•Termination on (1)-(3):     ME: yes    Superposition: no 
•Termination on (4)-(6):     ME: no     Superposition: yes
•Termination on (1)-(6):           ME+Sup: yes

 - use ME for ≤-literals
 - use Superposition for ≈-literals 
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Propositional Resolution → Superposition
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Ordered resolution Superposition - ground level
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Propositional Resolution → Superposition
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Ordered resolution Superposition
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DPLL → Model Evolution (ME)





no - Split





Close

DPLL

Induced Interpretation via Productivity

ME

- Branches are called "contexts"
- Context induces interpretation 
- Split to repair interpretation
- Close to abandon interpretation
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Productivity

produces

Productivity is a central concept in the combination
 of ME and superposition via constrained clauses

A context literal K ∈ Λ produces L iff 
(i) L is an instance of K and
(ii) there is no more specific literal in Λ
    that produces L 

A "syntactic" notion!
Not an E-Interpretation
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ME+Sup - Constrained Clauses
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C is evaluated "semantically", Γ is evaluated "syntactically"
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ME+Sup - Constrained Clauses
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C is evaluated "semantically", Γ is evaluated "syntactically"
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ME+Sup - Constrained Clauses
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C is evaluated "semantically", Γ is evaluated "syntactically"



P. Baumgartner and U. Waldmann

ME+Sup - Constrained Clauses
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C is evaluated "semantically", Γ is evaluated "syntactically"
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ME+Sup Calculus - Initialisation
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• Given: clause set M
• Initialisation

– Context ¬x
– Constrained clause set Φ = { C⋅∅ | C ∈ M }

It holds Λ,I ⊨ Φ  iff  I ⊨ M   

• User-supplied control parameters
– Term ordering, as usual
– Labelling on ground atoms:

split atoms ∪ superposition atoms = Herbrand base
– Can also configure pure ME or pure Superposition calculus:

  superposition atoms = ∅  or  split atoms = ∅
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Labelling Example
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Labelling is used to control inference rule applications

split / superposition atom
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ME+Sup Calculus - Inference Rules

14

Clause (x Clause) ↦ Clause Context x Clause ↦ Clause

Context x Clause ↦ Context x Context

split / superposition atom
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U-Sup: Context x Clause ↦ Clause
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U-Sup: Context x Clause ↦ Clause
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At least one ground
instance is a split atom
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Sup: Clause x Clause ↦ Clause
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Standard Superposition
is a special case 



P. Baumgartner and U. Waldmann

Split: Context x Clause ↦ Context x Context
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Derivation Example
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Initial context is ¬x
Resolution on (1a) and (1b) is blocked

leq-atoms: split 
 ≤-atoms: superposition
leq-atoms ≻ ≤-atoms

(No equality in this example, empty constraints not shown)
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Derivation Example

20

(Derivation continues, but will terminate eventually)

(Split)(ctxt-1)

Inference rule applications controlled by
labelling, orderings, productivity, redundancy/simplification
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Redundancy and Simplification

• A ground clause C⋅Γ is redundant if it follows from smaller ground 
clauses and "certain additional conditions" are satisfied

• DPLL-style simplification rules by elements from current context Λ

• Simplification by clauses from current clause set Φ
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Generalizes redundancy/simplification of ME and Superposition

f(x)≈x ⋅ g(a)≈a 
if g(a)≉a ∈ Λ

f(x)≈x ⋅ g(a)≈a 
if g(a)≈a ∈ Λ

f(x)≈h(x) ⋅ g(x)≈x 

    f(x)≈x . g(x)≈x  ∈ Φ

 x  ≈h(x) ⋅ g(x)≈x, g(x)≈x
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Soundness and Completeness
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• ME+Sup is sound
• ME+Sup (with simplification) is refutationally complete

– Every fair derivation from an unsatisfiable clause set ends in a 
derivation tree where every leaf is closed

– Fairness: every inference from persistent non-redundant 
premises becomes redundant eventually

– But input clauses must not contain constraints
P(x)⋅∅  is OK       □⋅¬P(x)  is not OK

– Proof by adaptation of Bachmair/Ganzinger model 
construction technique
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Model Construction
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Conclusions

• ME+Sup 
– Properly generalizes Superposition with redundancy criteria
– Generalize essentials of Model Evolution with Equality 

(universal variables and some optional inference rules missing)
– Symmetric integration, configuration of mixed calculi

• Technical complications required some new concepts
• Future work

– New decision procedures?
– Generalization of full Model Evolution with Equality
– "Basic" variants of inference rules
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