Superposition and Model Evolution
Combined

Peter Baumgartner Uwe Waldmann
NICTA and Max Planck Institute

Australian National University for Informatics

P. Baumgartner and U. Waldmann

Motivation

= Both Superposition and Model Evolution are calculi for FOL_
= Superposition
— Equality, redundancy elimination
— Decides Guarded Fragment, Monadic class, ...
— Wins FOF CASC division
= Model Evolution, more generally "Instance Based Methods"

— Conceptually different to resolution/superposition

— Method of choice for Bernays-Schonfinkel class (EPR)
— Wins EPR CASC division

Combine Superposition and Instance Based Methods?
ME+Sup = Model Evolution 4+ Superposition

P. Baumgartner and U. Waldmann

Motivating Example

Ordered arrays

(1) x<zV(x<y)V-(y<2)

(2) x<yVy<x

(3) xmyV-alx<y)V-ly <x)

(4) select(store(a, i, e), i)~ e

(5) select(store(a, i, e),j) ~ select(a,j) Vi~ j
(6) i <jV (select(al, i) < select(a0,))

m Termination on (1)-(3): ME: yes Superposition: no
m Termination on (4)-(6): ME: no Superposition: yes
= Termination on (1)-(6): ME+Sup: yes

- use ME for <-literals

- use Superposition for =-literals

P. Baumgartner and U. Waldmann

Propositional Resolution — Superposition

Ordered resolution Superposition - ground level
AV C -AV D |~rvVvC sl]l, 2tV D
CvD slrlp #2tv CVvD
if if
(i) A is strictly maximal
in AV C
(i) —A is maximal (iii) /> r,
in AV D

(iv) /= r is strictly maximal
inl~rvVvC,

(v) s > t, and

(vi) s %t is maximal
ins#%tVC.

P. Baumgartner and U. Waldmann

Propositional Resolution — Superposition

Ordered resolution Superposition
AV C AV D [~rVvC slul, 2tV D
CvD (s[r]p 2tV CV D)o
if if
(i) A is strictly maximal (i) o is a mgu of / and u,
in AV C (i) u is not a variable,
(i) —A is maximal (iii) ro % lo,
in "AV D

(iv) (/= r)o is strictly maximal
in (Il ~rv (o,

(v) to % so, and

(vi) (s % t)o is maximal

in(s2tV (C)o.

P. Baumgartner and U. Waldmann

DPLL — Model Evolution (ME)

—X

DPLL /\ ME /\
A _A f(x) ~ x f(x) % x
B -B fla)2a f(a)=~a
?
{A} F AV B no - Split - Branches are called "contexts"
?
{A,B} = -AVB - Context induces interpretation
AR ? AV B - Split to repair interpretation
4 -Br= - Close - Close to abandon interpretation
[Induced Interpretation via Productivity j

P. Baumgartner and U. Waldmann

6

Productivity

A context literal K € A produces L iff

(i) L is an instance of K and

(ii) there is no more specific literal in A

that produces L

-

(&

A "syntactic" notion!

Not an E-Interpretation

~

)

—X

/N

f(x)~x f(x)%x

f(a) # a f(a) =~ a
produces

{f(b) = b, f(f(a)) ~ f(a),
f(a)# a, f(f(b))#%b, ...}

Productivity is a central concept in the combination

of ME and superposition via constrained clauses

P. Baumgartn

er and U. Waldmann

ME+Sup - Constrained Clauses

Constraint clause C - [x<yVy<x -

e (is an ordinary clause y<x - (x<y)

e Constraint [is a multiset of literals
Semantics
e Given context A and E-interpretation /
e A, =C-TI iff (if A produces I then | = C)

A
| {C} = CVD-A-B
-B

[C is evaluated '"'semantically', [is evaluated "'syntactically" j

P. Baumgartner and U. Waldmann 8

ME+Sup - Constrained Clauses

Constraint clause C - [x<yVy<x -

e (is an ordinary clause y<x - (x<y)

e Constraint [is a multiset of literals
Semantics
e Given context A and E-interpretation /
e A, =C-TI iff (if A produces I then | = C)

A
| . {} # CvD-A-B
-B

[C is evaluated '"'semantically', [is evaluated "'syntactically" j

P. Baumgartner and U. Waldmann 9

ME+Sup - Constrained Clauses

Constraint clause C - [x<yVy<x -

e (is an ordinary clause y<x - (x<y)

e Constraint [is a multiset of literals
Semantics

e Given context A and E-interpretation /

e A, =C-TI iff (if A produces I then | = C)

A
| ,? E CVvD-AB
-B

[C is evaluated '"'semantically', [is evaluated "'syntactically"

P. Baumgartner and U. Waldmann 10

ME+Sup - Constrained Clauses

Constraint clause C - I

e (is an ordinary clause y<x - (x<y)

e Constraint [is a multiset of literals
Semantics

e Given context A and E-interpretation /

e A, =C-TI iff (if A produces I then | = C)
f(x) ~ x
| ! = f(b)# b -f(a)~a
f(a) % a

[C is evaluated '"'semantically', [is evaluated "'syntactically"

P. Baumgartner and U. Waldmann 11

ME+Sup Calculus - Initialisation

= Given: clause set M
= Initialisation
— Context —x

— Constrained clauseset ®={ C-g | Ce M }
It holds A,/ = @ iff =M

» User-supplied control parameters
— Term ordering, as usual

— Labelling on ground atoms:

split atoms u superposition atoms = Herbrand base

— Can also configure pure ME or pure Superposition calculus:

superposition atoms = @ or split atoms = @

P. Baumgartner and U. Waldmann

12

Labelling Example

(1) x<zV(x<y)Valy <2)

(2) x<yVy<x

3) x=yV-alx<y)V-(y <x)

(4) select(store(a,i,e), i)~ e

(5) select(store(a, i, e),j) ~ select(a,j) Vi~
(6) i <jV —(select(al, i) < select(a0,))

split / superposition atom

[Labelling is used to control inference rule applications j

P. Baumgartner and U. Waldmann 13

ME+Sup Calculus - Inference Rules

Clause (x Clause) — Clause Context x Clause — Clause
— o\ mm-
Ref /== e
- o\ mm- mm
Neg-U-Res
oVeoe\/mm mm B -Em e
Fact '
o\ mu- mm]
o
\/ - o \/ mm - - .
sup ——vmm Clevemm e [(evm
()eVm\ mm- mm mm (—) o\ mm- mm o
Context x Clause — Context x Context |
[
| []-mm o | T -
Split)\ Close .0
@ [

split / superposition atom| ,

P. Baumgartner and U. Waldmann

U-Sup: Context x Clause — Clause

—X

\ f(X)LX
|

f(a) # a f(b) % c-0

b#%c-f(b)=b

_

Must add f(b) ~ b to the constraint because f(b) ~ b
could be false in the induced interpretation

P. Baumgartner and U. Waldmann

15

U-Sup: Context x Clause — Clause

NI=r slul, 2tV C-T
(s[rlp %tV C-T,I=r)o

where

(i) o is a mgu of / and u,

(ii) u is not a variable, At least one ground
(iii) (/ ~ r)o is a split atom,
(iv) ro # lo,
(v) to % so,
(vi) (s % t)o is maximal in (s %tV C)o, and

(vii) AU {/ ~ r} produces (/ =~ r)o

instance is a split atom

P. Baumgartner and U. Waldmann

16

Sup: Clause x Clause — Clause

~rvC T’ slul, 2tV C-T
(s[rlp ZtvCVC-T, Mom

Sup

(i) o is a mgu of / and v, Standard Superposition

. : : iIs a special case
(i) u is not a variable, P

(iii) ™ merges xy =~ t; V-V x, = t, C C'o with (I = r)o,
(iv) {x1,..., Xnt C Var([Mo),

(v) (/ = r)o is a superposition atom,

(vi) rom ¥ lo,

(vii) (I = r)om is strictly maximal in (/ =~ r VvV C")o,
(viii) to % so, and

(ix) (s # t)o is maximal in (s %tV C)o.

P. Baumgartner and U. Waldmann

17

Split: Context x Clause — Context x Context

|
f(x) =~ x [J-f(a) =~ a

|
f(x) ~ x

T
f(a) # a f(a) ~ a

Split A J-Ts~t (Similarly for J- T, s % t)

N s®t N, s~ t

(i) A produces every literal in T U {s ~ t}
(i) neithers=teAnors#tel

(iii)) s~ tis a split atom

P. Baumgartner and U. Waldmann 18

Derivation Example

(No equality in this example, empty constraints not shown)

(la) x<zV=(x<y)V-leq(y,z)

(1b) leq(y,z) vV ~(y < 2)
(2) x<yVy<x

leq-atoms: split
<-atoms: superposition

leg-atoms > <-atoms

Initial context is —x
Resolution on (1a) and (1b) is blocked

(3) x<x (Factoring (2))
(4) (v < z)--leq(y, 2) (Neg-U-Res of (1b))
(5) z<y--leq(y, 2) (Resolution (2)+(4))

(6) O-—leq(x, x) (Resolution (3)+(4))

P. Baumgartner and U. Waldmann 19

Derivation Example

(1) x < zV—(x<y)V-leq(y,2)

(6) OJ- —l.qu(X, x)

/N

(ctxt-1) leq(x, x) —leq(x, x) (Split)
*
(7) x<yV-alx<y)-leq(y, y) ((ctxt-1)-+(1a))

(Derivation continues, but will terminate eventually)

Inference rule applications controlled by
labelling, orderings, productivity, redundancy/simplification

P. Baumgartner and U. Waldmann 20

Redundancy and Simplification

» A ground clause C-I is redundant if it follows from smaller ground

clauses and "certain additional conditions" are satisfied

» DPLL-style simplification rules by elements from current context A

X) = <a Ax)=x - gla)y=a

if g(a)za e A if gla)=a e A
= Simplification by clauses from current clause set ®
Ax)=h(x) - gx)=x
l (x)=x . g(x)=x € &
x =h(x) - g(x)=x, g(x)=x

[Generalizes redundancy/simplification of ME and Superpositionj

P. Baumgartner and U. Waldmann 21

Soundness and Completeness

= ME+Sup is sound
= ME+Sup (with simplification) is refutationally complete

— Every fair derivation from an unsatisfiable clause set ends in a

derivation tree where every leaf is closed

— Fairness: every inference from persistent non-redundant

premises becomes redundant eventually

— But input clauses must not contain constraints
P(x)-@ is OK 0-—P(x) is not OK

— Proof by adaptation of Bachmair/Ganzinger model

construction technique

P. Baumgartner and U. Waldmann

22

Model Construction

Given: A, ® is saturated and - () ¢ ®. Construct rewrite system R
Need a total ordering:

e (1 -I71and (-, compared lexicographically

e Context equation s ~ tis taken as s ~ t-_1 where L < ()
Inspect My U ground(®) in increasing order

(i) Ifs~tell) s>t s~ tandsandt are irreducible
wrt. Rs_+ thenadd s - tto R

{P(x), ~P(b), a = b} assigns false to P(a)

(i) f s~ tVv C-T in ground(®), A produces ' and "other
conditions” apply then add s — tto R

Can show that inference rules reduce smallest relevant counterexample

P. Baumgartner and U. Waldmann 23

Conclusions

= ME+Sup
— Properly generalizes Superposition with redundancy criteria

— Generalize essentials of Model Evolution with Equality

(universal variables and some optional inference rules missing)
— Symmetric integration, configuration of mixed calculi
= Technical complications required some new concepts
= Future work
— New decision procedures?
— Generalization of full Model Evolution with Equality

— "Basic" variants of inference rules

P. Baumgartner and U. Waldmann

24

