
Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in the
Model Evolution Calculus

1

Peter Baumgartner Alexander Fuchs
Cesare Tinelli

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 2

Background – Instance Based Methods

• Model Evolution is a sound and complete calculus for first-order
clausal logic

• Different to Resolution, Model Elimination,…
(Pro‘s and Con‘s)

• Related to Instance Based Methods
• Reduction of first-order (clausal) logic to propositional logic in an

„intelligent“ way
– [Ordered] [Semantic] Hyper Linking [Plaisted et al]
– Inst-Gen [Ganzinger&Korovin]
– Primal Partial Instantiation [Hooker et al]
– Disconnection Method [Billon]
– DCTP [Letz&Stenz]
– Successor of First-Order DPLL [B.]

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 3

Model Evolution - Motivation

• The best modern SAT solvers (satz, MiniSat, zChaff) are based on the
Davis-Putnam-Logemann-Loveland procedure [DPLL 1960-1963]

• Can DPLL be lifted to the first-order level?
How to combine

– successful DPLL techniques
(unit propagation, backjumping, lemma learning,…)

– successful first-order techniques?
(unification, subsumption, ...)?

• Our approach: Model Evolution

– Directly lifts DPLL. Not: DPLL as a subroutine

– Satisfies additional desirable properties
(proof confluence, model computation, ...)

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 4

Model Evolution - Achievements

• FDPLL [CADE-17]

– Basic ideas, predecessor of ME

• ME Calculus [CADE-19]

– Proper treatment of unit propagation

– Semantically justified redundancy criteria

• ME+Equality [CADE-20]

– Superposition inference rules

• Darwin prover [JAIT 2006]

– Won CASC-21 EPR division

• FM-Darwin: finite model computation [DISPROVING-06]

This work: extend ME and Darwin by "lemma learning"

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 5

Contents

• DPLL as a starting point for ME
• ME calculus idea

– Model representation
• Lemma learning

– Lemma learning in DPLL
– Grounded lemma learning
– Lifted lemma learning
– Experiments

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 6

DPLL procedure

Input: Propositional clause set
Output: Model or „unsatisfiable”

Algorithm components:
 - Propositional semantic tree
 enumerates interpretations
 - Propagation
 - Split
 - Backjumping

A ¬A

B ¬B

C ¬C

{A,B}
?

|= ¬A ∨ ¬B ∨ C ∨D

{A,B, C}
?

|= ¬A ∨ ¬B ∨ C ∨D

ME - lifting this idea to first-order level





Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 7

ME as First-Order DPLL

Input: First-order clause set
Output: Model or „unsatisfiable”
 if termination

Algorithm components:
 - First-order semantic tree
 enumerates interpretations
 - Propagation
 - Split
 - Backjumping

Interpretation induced by a branch?

P(a)¬ P(a)

¬ P(v)P(v)

{P (v),¬P (a)}
?

|= P (x) ∨Q(x)

v is a "parameter" -
not quite a variable

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 8

Interpretation Induced by a Branch
A branch literal specifies the truth value of its ground instances unless
a more specific branch literal specifies the opposite truth value

P(a)¬ P(a)

¬ P(v)P(v)

¬ v

¬ Q(a)Q(a)

Branch: {¬v, P (v),¬P (a)}
True: P (b)
False: ¬P (a), ¬Q(a), ¬Q(b)

{¬v, P (v),¬P (a)}
?

|= P (x) ∨Q(x)

Branch: {¬v, P (v),¬P (a), Q(a)}
True: P (b), Q(a)
False: ¬P (a), ¬Q(b)

{¬v, P (v),¬P (a), Q(a)}
?

|= P (x) ∨Q(x)





P (a) ∨Q(a)
Context Unifier

Split

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

9

A ¬A

C ¬C

B

D

*
(3)

 (1)

 (2)

Lemma Candidates
 by Resolution:

¬C ∨ ¬A

D ∨ ¬C

¬B ∨ ¬C B ∨ ¬A

With Lemma

A ¬A

¬C
(¬C ∨ ¬A)

"Avoid making the
same mistake twice"

w/o Lemma

. . .
B ∨ ¬A (1)
D ∨ ¬C (2)
¬D ∨ ¬B ∨ ¬C (3)

¬D ∨ ¬B ∨ ¬C

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in DPLL

10

• Soundness
– Can add any clause, provided it is entailed by input clause set
– Example on previous slide indicates just one strategy

• Benefits
– Can close branches earlier
– Replace (nondeterministic) search by (deterministic) computation

• Problem: (too) many redundant clauses
– Heuristics to delete lemma clauses
– In practice regress only up to last split

Lifting to lemma learning in ME?

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in ME - Grounded Version

11

*
(3)

(1)

(2)

Lemma Candidates by Resolution:

"Avoid making the same mistake twice"

Skolemize

Skolemize

Q(x) ∨ ¬P (x)

De-Skolemize

S(x) ∨ ¬R(x, y)

. . .
Q(x) ∨ ¬P (x) (1)
S(x) ∨ ¬R(x, y) (2)
¬S(x) ∨ ¬Q(x) (3)

P (f(v)) ¬P (f(v))

Q(f(v))

R(f(v), u) ¬R(f(v), u)

S(f(v))

¬S(f(v)) ∨ ¬Q(f(v))

¬S(f(c)) ∨ ¬Q(f(c))

¬Q(f(c)) ∨ ¬R(f(c), y)

¬Q(f(c)) ∨ ¬R(f(c), d)

¬P (f(c)) ∨ ¬R(f(c), d)

¬P (f(x)) ∨ ¬R(f(x), y)
Directly lifts DPLL-syle

lemma learning

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Lemma Learning in ME - Lifted Version

12

Skolemize

Grounded Version Lifted Version

Based on Skolemization/Matching Based on Unification

Proposition: Regression of propagated literals is always possible

Less general/propagations/splits More general/propagations/splits

Does the lifted method perform better than the grounded one?

S(x) ∨ ¬R(x, y)

¬S(f(v)) ∨ ¬Q(f(v))

¬S(f(c)) ∨ ¬Q(f(c)) ¬S(x) ∨ ¬Q(x) S(x) ∨ ¬R(x, y)

¬Q(x) ∨ ¬R(x, y)

¬P (x) ∨ ¬R(x, y)

¬Q(f(c)) ∨ ¬R(f(c), y)

¬P (f(x)) ∨ ¬R(f(x), y)

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Experimental Evaluation

13

• Extended the Darwin prover by lemma learning
– Grounded method
– Lifted method
– (And one more - see long version of paper)

• Experiments with TPTP (V. 3.1.1)
– all non-Horn (clausal) problems without equality

• Setting
– Xeon 2.4 GHz machines, 1 GB main memory, Linux
– Timeout 300s

• Lemma learning can give spectacular speedups for propositional SAT

Does it work equally well in our case?
What method is better?

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Darwin - TPTP Problems (1)

14

Method Solved Avg Total Speed Failure Propag. Split Splits per
Probls Time Time up Steps Steps Steps Problem

no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
grounded 895 2.4 2135.6 1.12 9476 391189 18935 ≥ 0
lifted 898 2.4 2173.4 1.10 9796 399525 19367

no lemmas 244 3.0 713.9 1.00 24481 480046 40766
grounded 243 1.8 445.1 1.60 8966 273849 14627 ≥ 3
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
grounded 108 2.2 228.5 2.43 8231 228437 12279 ≥ 20
lifted 111 2.6 274.4 2.02 8535 238103 12688

no lemmas 66 5.0 323.9 1.00 21555 371145 34288
grounded 67 1.7 111.4 2.91 6973 183292 9879 ≥ 100
lifted 70 2.3 151.4 2.14 7275 193097 10294

The more splits per problem,
the more effective lemma learning is

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Darwin - TPTP Problems (2)

15

Method Solved Avg Total Speed Failure Propag. Split Splits per
Probls Time Time up Steps Steps Steps Problem

no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
grounded 895 2.4 2135.6 1.12 9476 391189 18935 ≥ 0
lifted 898 2.4 2173.4 1.10 9796 399525 19367

no lemmas 244 3.0 713.9 1.00 24481 480046 40766
grounded 243 1.8 445.1 1.60 8966 273849 14627 ≥ 3
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
grounded 108 2.2 228.5 2.43 8231 228437 12279 ≥ 20
lifted 111 2.6 274.4 2.02 8535 238103 12688

no lemmas 66 5.0 323.9 1.00 21555 371145 34288
grounded 67 1.7 111.4 2.91 6973 183292 9879 ≥ 100
lifted 70 2.3 151.4 2.14 7275 193097 10294

The lifted method is more effective than the grounded method wrt.
the number of solved problems, but worse wrt. the other measures

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Darwin - Individual Runtimes

16

 0.1

 1

 10

 100

 0.1 1 10 100

gr
ou

nd
ed

no lemmas

 0.1

 1

 10

 100

 0.1 1 10 100

lif
te

d

no lemmas

Fig. 3. Comparative performance, on a log-log scale, for different configurations for problems

with at least 3 applications of Backjump. For readability, the cutoff is set at 100s instead of 300s,

because in all cases less than a handful of problems are solved in the 100-300s range.

In Figure 3 we plot the individual run times of the no lemmas configuration against

the lemma configurations for all problems solved by at least one configuration and

generating at least 3 backjumps in the no lemma one. The scatter plots clearly show

the positive effect of learning. For nearly all of the problems, the performance of the

grounded lemmas configuration is better, often by a large margin, than the one with

no lemmas. A similar situation occurs with lifted lemmas, although there are more

problems for which the no lemmas configuration is faster.

Overall, our results indicate that lifted lemmas generate more Decide applications

and have higher overhead than grounded lemmas. The larger number of decision steps

of the lifted method versus the grounded one seems paradoxical at first sight, but can be

explained by observing that lifted lemmas—in addition to avoiding or detecting early a

larger number of conflicts—also cause the addition of more general propagated literals

to a context, leading to a higher number of (possibly useless) context unifiers. Further-

more, due to the increased generality of lifted lemmas and the way they are condensed

when they are too long, sometimes Propagate applies to a grounded lemma but not the

corresponding lifted lemma, making the latter less effective at avoiding conflicts (see

[3] for more details).

The higher overhead of the lifted method can be attributed to two main reasons.

The first is of course the increased number of context unifiers to be considered for rule

applications. The second is the intrinsically higher cost of the lifted method versus the

grounded one, because of its use of unification—as opposed to matching—operations

during regression, and its considerable post-processing work in removingmultiple vari-

ants of the same literals from a lemma—something that occurs quite often.

Second problem set. Given that only a minority of the TPTP problems we could use

in the first experiment cause a considerable amount of search and backtracking, and

that, on the other hand, many decidable fragments of first-order logic are NP-hard, we

considered a second problem set, stemming from an application of Darwin for finite

model finding [4]. This application follows an approach similar to that of systems like

Paradox [7]. To find a finite model of a given cardinality n, a clause set, with or without

equality, is converted into an equisatisfiable Bernays-Schönfinkel problem (instead of a

propositional problem as in Paradox) that includes the cardinality restriction. If Darwin

13

- Lemma learning is a win on most problems
- No surprises (loss of problems solved) with grounded method

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

Issues with the TPTP Problems

17

• TPTP includes both satisfiable and unsatisfiable one
– Prover behaviour is better predictable for unsatisfiable ones

• Many problems are solvable with little splits
– Lemma learning is not effective then

• Experiments with a second problem set
– Basis: all satisfiable clausal TPTP problems
– FM-Darwin: MACE-style model finder
– Model search requires lots of splits, typically

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

FM-Darwin

18

• FM-Darwin: MACE-style model finder
• Procedure

– Input: clause set S
– Output: finite model of size n or non-termination
– Transformation into function-free clause set FM(S,n)

FM(S,n) is satisfiable ⇔ S has a finite model of size n
– For n=1,2,...:

• Call Darwin to decide satisfiability of FM(S,n)
• Return model for S when FM(S,n) is satisfiable

• When model is at size n , this gives lots of backjumps:
– For 1,2,...,n-1 all clause sets unsatisfiable
– Axioms like x=1 ∨ ... ∨ x=n-1 introduce lot of branching

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus

FM-Darwin, Satisfiable Problems

19

Method Solved Average Total Speed Failure Propagate Split Splits per
Probls Time Time up Steps Steps Steps Problem

no lemmas 657 5.6 3601.3 1.00 404237 16122392 628731
grounded 669 3.3 2106.3 1.71 74559 4014058 99865 ≥ 0
lifted 657 4.7 3043.9 1.18 41579 1175468 68235

no lemmas 162 17.8 2708.6 1.00 398865 15911006 614572
grounded 174 7.9 1203.1 2.25 70525 3833986 87834 ≥ 100
lifted 162 14.0 2126.2 1.27 38157 1023589 57070

no lemmas 52 36.2 1702.9 1.00 357663 14580056 555015
grounded 64 10.5 495.3 3.44 53486 3100339 64845 ≥ 1000
lifted 57 11.5 538.7 3.16 26154 678319 39873

- Considerable gain wrt. Propagate and Split steps
- Lifted method better wrt. reducing number of steps
- The grounded method is overall more effective

Baumgartner/Fuchs/Tinelli Lemma Learning in the Model Evolution Calculus 20

Conclusions

• Presented two methods of adding lemma learning to Model Evolution
– Grounded Method
– Lifted Method

• Both methods are "proper" learning
– Unlike as in SAT, lemma can apply to infinitely many instances
– The lifted method gives more general lemmas

• Grounded method seems to be best in average
– Almost always a win
– Could solve some problems previously unsolvable for Darwin

• Obtained speed-ups up to factor 3.44
– But no "exponential" improvement
– Similar observation made before in other EBL work

