ME(LIA) Model Evolution With Linear Integer Arithmetic Constraints

Peter Baumgartner
NICTA, Canberra, Australia

Alexander Fuchs, Cesare Tinelli
University of lowa, USA

Motivation

Proof problems in SW verification often require rich theories

- Background theory $\mathcal{T}=$ (Linear) integer arithmetic + Arrays $+\ldots$
- Free function and/or predicate symbols
- Quantifiers

A Q_AUFLIA proof problem [Ranise]

- Backgroud theory $\mathcal{T}=$ Linear integer arithmetic + Arrays
- Axiom:

$$
\forall a, n \operatorname{symmetric}(a, n) \leftrightarrow(\forall i, j 1 \leq i, j \leq n \rightarrow \operatorname{select}(a, i, j)=\operatorname{select}(a, j, i))
$$

- Proof task:

$$
\{\operatorname{symmetric}(\mathrm{a}, \mathrm{n})\} \quad \mathrm{a}[0,0]:=\mathrm{e}_{0} ; \ldots ; \mathrm{a}[\mathrm{k}, \mathrm{k}]:=\mathrm{e}_{\mathrm{k}} \quad\{\operatorname{symmetric}(\mathrm{a}, \mathrm{n})\}
$$

Form of proof problem: $\forall \Phi \models_{\mathcal{T}} \forall \Psi \quad(\Phi, \Psi$ with free symbols)

> The combination "Background theories + free symbols + quantifiers" makes it difficult

Approaches

- First-order resolution theorem proving
- Support free symbols and quantifiers natively
- Extensions for reasoning with background theories
- Theory R [Stickel 85], Constraint R [Bürckert 90], Hierarchical Superposition [BGW 94], R+LIA [Korovin\&Voronkov 07]
- SMT solvers, in particular DPLL(T)
- Very successful for the quantifier free case, i.e. $\vDash \mathcal{T} \forall \Phi$
- Rely on instantiation heuristics for non-quantifier free case, $\forall \Psi \models_{\mathcal{T}} \forall \Phi$
- ME(LIA)
- "DPLL(LIA) with quantifiers treated natively"
- LIA constraints over \mathbb{Z}, free constants over finite domains, e.g. [1 .. 10]
- Main result: sound and complete

DPLL procedure

Input: Propositional clause set Output: Model or „unsatisfiable"

Algorithm components:

- Propositional semantic tree enumerates interpretations
- Propagation
- Split
- Backjumping

ME - lifting to first-order level

ME as First-Order DPLL

Input: First-order clause set
Output: Model or „unsatisfiable" if termination

Algorithm components:

- First-order semantic tree
enumerates interpretations
- Propagation
- Split
- Backjumping

$$
\begin{aligned}
& \{P(\mathrm{~b}) \\
& \\
& P(\mathrm{f}(\mathrm{a})), P(\mathrm{f}(\mathrm{~b}), \ldots\}
\end{aligned}
$$

- A branch literal specifies a truth value for all its ground instances, unless there is a more specific literal specifying the opposite truth value
- ME's tries to compute a model of the input clause set represented this way

ME - Achievements so far

Plan: efficient theorem prover by integrating DPLL and FO techniques
Rationale: sufficient expressivity without compromising efficiency (BS logic)

- FDPLL [CADE-17]
- Basic ideas, predecessor of ME
- ME Calculus [CADE-19, AIJ 2008]
- Proper treatment of universal variables and unit propagation
- Semantically justified redundancy criteria
- Finite model computation [JAL 2007]
- ME+Equality [CADE-20]
- ME+Lemmas [LPAR 2006]
- Darwin prover [JAIT 2006] http://combination.cs.uiowa.edu/Darwin/
- CASC winner of EPR in 2006, 2007, second in 2008

Rest of This Talk - ME(LIA)

- Define the input language
- Generalize semantic trees
- Inference rules overview
- Discussion of calculus properties

Input Language

- Constraint clauses $C \leftarrow c$, where C is a "normalized" clause, e.g.

$$
P\left(x_{1}, x_{2}\right) \vee \neg Q\left(x_{2}, x_{3}\right) \leftarrow \exists y 2 \leq y \wedge y<\mathrm{a}+x_{1} \wedge x_{2}=x_{3}
$$

where P, Q, \ldots are free predicate symbols and a is a free constant

- Constraints c over \mathbb{Z} generated by the syntax

$$
\begin{aligned}
n & ::=\text { integer constants } 0, \pm 1, \pm 2, \ldots \\
a & ::=\text { free constants ("parameters") a }, \mathrm{b}, \ldots \\
x & ::=\text { variables } x, y, \ldots \\
t & ::=n|a| x\left|t_{1}+t_{2}\right| t_{1}-t_{2} \\
l & ::=\top|\perp| t_{1}=t_{2} \mid t_{1}<t_{2} \\
c & ::=l\left|c_{1} \wedge c_{2}\right| \exists x c
\end{aligned}
$$

- Domain declaration a : $\left[n_{1} . . n_{2}\right]$, for every input parameter a
- Constraint solutions must be bounded from below (add e.g. $-10<x_{1} \wedge 3<x_{2} \wedge 0<x_{3}$ above)

Generalized Semantic Trees

What is the meaning of a branch literal (model construction)?

Model Construction

... parametric in parameters, e.g:

$$
\mathrm{a}=4: \begin{aligned}
& \frac{I}{P(5)} \\
& P(6) \\
& P(7) \\
& P(8)
\end{aligned}
$$

Idea:

For any assignment of constants consistent with the constraints, a branch literal specifies a truth values for all its ground instances over \mathbb{Z} that satisfy its constraint, unless ... (next slide)

Model Construction

$$
\begin{gathered}
\frac{I}{P(5)} \\
\mathrm{a}=4: \\
\neg P(6) \\
\neg P(8) \\
\vdots \\
\text { olution is } a+1
\end{gathered}
$$

Least solution is $a+3 \longrightarrow \neg \mathrm{P}(x)|\mathrm{a}+2<x \quad \mathrm{P}(x)| \mathrm{a}+2<x$

For any assignment of the constants consistent with the constraints:
a branch literal specifies a truth value for all its ground instances
unless there is a branch literal with a greater least solution
specifying the opposite truth value

Non-Contradictory Branches

The model construction works only for non-contradictory branches

- Contradictory branch: for some consistent assignment of the constants, two complementary branch literals have the same least solution
- The branch above is contradictory: take $a=4$
- The calculus will never builds contradictory branches

Inference Rule - Split

Repair interpretation:
Context unifier $\mathrm{a}<x \wedge \underline{a+2<x}$ Equivalently $a+2<x$

Split candidate $\neg P(x) \mid \underline{a+2<x}$
Non-contradictory $a:[1 . .10] \vDash a+1 \neq \mathrm{a}+3$

$$
\neg \mathrm{P}(x)|\underline{\mathrm{a}+2<x} \quad \mathrm{P}(x)| \mathrm{a}+2<x
$$

\Rightarrow Split with candidate is applicable

Inference Rule - Domain Split

$$
\begin{gathered}
\neg P(x) \leftarrow x=6 \\
\neg P(6)
\end{gathered}
$$

Split domain of constant a

Context unifier $\mathrm{a}<x \wedge x=6$
Split candidate $\neg P(x) \mid \underline{a}<x \wedge x=6$
Least solutions of $\mathrm{a}<x$ and $\mathrm{a}<x \wedge x=6$ are the same if $a=5$. Split not applicable:

$$
\neg P(x) \mid \mathrm{a}<x \wedge x=6
$$

Contradictory $a:[1 . .10] \not \vDash a \neq 5$
(And also a: $[1 . .10] \not \models a=5$)

\Rightarrow Domain Split with a $=5$ is applicable

Inference Rule - Close

$$
\neg P(x) \leftarrow x=6
$$

$\neg P(6)$

The left branch is closed

$$
\text { a青 } 5:
$$

- If $a \neq 5$ then
the left branch does not satisfy $\mathrm{a}=5$
- If $\mathrm{a}=5$ then
the least solutions of the branch literal and the context unifier are the same

This is the Soundness argument

In Reality

- ...the calculus works not just with unary clauses and unary predicates
- ...n-ary predicates: pointwise minimal solutions instead of the least ones
- Example: $\mathrm{P}(\mathrm{x}, \mathrm{y}) \leftarrow \mathrm{x} \neq \mathrm{y}$ has two minimal solutions: $(0,1)$ and $(1,0)$
- Can define for a constraint, e.g., $x \neq y$ by formulas over constraint language:
- The lexicographically least solution of $x \neq y$
- The pointwise minimal solutions of $x \neq y$
- The i-th pointwise minimal solution of $x \neq y$, which is the formula expressing the lexicographic least solution of
- $\mu 1 x \neq y=$ " (x, y) is a pointwise minimal solution of $x \neq y$ "
- $\mu 2 x \neq y="(x, y)$ is a pointwise minimal solution of $x \neq y$ and (x, y) does not satisfy $\mu 1 \mathrm{x} \neq \mathrm{y}^{\prime \prime}$
- $\mu 3 x \neq y=$ "..." is unsatisfiable
- Inference rules need effective satisfiability test for closed LIA-constraints

Main Result

- Soundness
- As indicated above
- Completeness
- Fair derivations via branch saturation (one branch at a time)
- Every saturated open (limit) branch B specifies a model of the clause set
- Proof idea: assume B falsifies a ground instance of a clause C. Then show that one of the following cases applies
- B is closed
[contradictory for all assignments]
- Domain Split is applicable [contradictory for some assignments]
- An inference rule is applicable to satisfy C
[contradictory for no assignments)]
- Each case leads to a contradiction

Why ME(LIA) Could be Good in Practice

- Semantic Redundancy Criterion
- Can ignore clauses that are satisfied in current interpretation
- Domain Splitting
- Domain decl a:[1 .. 10] could be eliminated using $a=1 \vee \ldots \vee a=10$
- But demand-driven splitting of domains is more efficient

$$
\neg P(x) \leftarrow x=6 \nless \underbrace{P(x) \mid \mathrm{a}<x}_{\mathrm{a}=5} \neg P(x) \mid \mathrm{a}<x
$$

- Application to finite model computation:

$$
\mathrm{a}:[1 . .10] \quad \mathrm{P}(\mathrm{a}) \quad \neg \mathrm{P}(\mathrm{x}) \leftarrow 1 \leq \mathrm{x} \leq 10
$$

can be refuted in $\mathrm{O}(1)$ steps.
Model finders need $O(n)$ steps (here: $n=10$)

ME(LIA) Variations

- No constants
- ME(LIA) not a decision procedure
- There are clause sets that don't admit finite model representation with contexts

$$
\begin{aligned}
& \mathrm{P}(0) \\
& \neg \mathrm{P}(1) \\
& \mathrm{P}(x) \leftrightarrow \mathrm{P}(x+2)
\end{aligned}
$$

- But ME(LIA) is sound and complete
- Parameters unbounded
I.e. for "declarations" a : [0 .. ∞]
- No complete calculus possible then
- Can express domain emptyness problem of 2-register machines
- Can express multiplication
- Ignore? Add induction?

ME(LIA) Variations

- Variables bounded
l.e. additionally finite domain restriction for free variables
- ME(LIA) derivations are finite then
- Application e.g. arrays (Totality axiom only)

$$
\forall i:[1 . .10] \exists v:[1 . .20] \text { select_a1 }(i, v)
$$

becomes

$$
\begin{aligned}
& \mathrm{v}_{1}:[1 . .20] \\
& \text { select_a1 }(i, v) \leftarrow i=1 \wedge v=\mathrm{v}_{1} \\
& \vdots \\
& \mathrm{v}_{10}:[1 . .20] \\
& \text { select_a } 1(i, v) \leftarrow i=10 \wedge v=\mathrm{v}_{10}
\end{aligned}
$$

Conclusions

Summary

- Sound and complete thanks to native quantifier treatment
- Needs ("only") a satisfiability checker for LIA
- Avoids expanding finite domains into disjunctions
- Model building capabilities
- Application: countermodels for wrong conjectures
- Countermodel then is more informative than "don't know" answer from system based on instantiation heuristics

Todo

- Universal literals, unit propagation and related inference rules
- Generalize parameters to functions with finite range ([BGW 94])
- Herbrand terms, equality (e.g. to axiomatize lists, arrays)

