
ME(LIA) -
Model Evolution With

Linear Integer Arithmetic Constraints

Peter Baumgartner
NICTA, Canberra, Australia

Alexander Fuchs, Cesare Tinelli
University of Iowa, USA

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Motivation

2

Proof problems in SW verification often require rich theories
• Background theory T = (Linear) integer arithmetic + Arrays + ...
• Free function and/or predicate symbols
• Quantifiers

The combination "Background theories + free symbols + quantifiers"
makes it difficult

select(store(a, i, j, e), i, j) = e (A1)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(i = i′) (A2)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(j = j′) (A3)

select(store(a, i, j, e), i, j) = e (A1)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(i = i′) (A2)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(j = j′) (A3)

select(store(a, i, j, e), i, j) = e (A1)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(i = i′) (A2)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(j = j′) (A3)

A Q_AUFLIA proof problem [Ranise]
• Backgroud theory T = Linear integer arithmetic + Arrays
• Axiom:

• Proof task:
∀a, n symmetric(a, n)↔ (∀i, j 1 ≤ i, j ≤ n→ select(a, i, j) = select(a, j, i))

{symmetric(a, n)} a[0, 0] := e0 ; . . . ; a[k, k] := ek {symmetric(a, n)}

Form of proof problem: ∀ Φ |=T ∀Ψ (Φ, Ψ with free symbols)

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008 3

Approaches

• First-order resolution theorem proving

– Support free symbols and quantifiers natively

– Extensions for reasoning with background theories

• Theory R [Stickel 85], Constraint R [Bürckert 90],
Hierarchical Superposition [BGW 94], R+LIA [Korovin&Voronkov 07]

• SMT solvers, in particular DPLL(T)
– Very successful for the quantifier free case, i.e. ⊨T ∀Φ

– Rely on instantiation heuristics for non-quantifier free case, ∀Ψ ⊨T ∀Φ

• ME(LIA)
– "DPLL(LIA) with quantifiers treated natively"

– LIA constraints over ℤ, free constants over finite domains, e.g. [1 .. 10]

– Main result: sound and complete

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008 4

DPLL procedure

Input: Propositional clause set
Output: Model or „unsatisfiable”

Algorithm components:
 - Propositional semantic tree
 enumerates interpretations
 - Propagation
 - Split
 - Backjumping

A ¬A

B ¬B

C ¬C

{A,B}
?

|= ¬A ∨ ¬B ∨ C ∨D

{A,B, C}
?

|= ¬A ∨ ¬B ∨ C ∨D

ME - lifting to first-order level





{A, B, C}
?

|= ¬B ∨ ¬C 

*

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008 5

ME as First-Order DPLL

Input: First-order clause set
Output: Model or „unsatisfiable”
 if termination

Algorithm components:
 - First-order semantic tree
 enumerates interpretations
 - Propagation
 - Split
 - Backjumping

P(a)¬ P(a)

¬ P(v)P(v)

v "default
 variable"

• A branch literal specifies a truth value for all its ground instances,
unless there is a more specific literal specifying the opposite truth value

• ME's tries to compute a model of the input clause set represented this way

{P(b),
P(f(a)), P(f(b), . . .}

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008 6

ME - Achievements so far

• FDPLL [CADE-17]

– Basic ideas, predecessor of ME

• ME Calculus [CADE-19, AĲ 2008]

– Proper treatment of universal variables and unit propagation

– Semantically justified redundancy criteria

• Finite model computation [JAL 2007]

• ME+Equality [CADE-20]

• ME+Lemmas [LPAR 2006]

• Darwin prover [JAIT 2006]
http://combination.cs.uiowa.edu/Darwin/

– CASC winner of EPR in 2006, 2007, second in 2008

Plan: efficient theorem prover by integrating DPLL and FO techniques
Rationale: sufficient expressivity without compromising efficiency (BS logic)

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Rest of This Talk - ME(LIA)

• Define the input language

• Generalize semantic trees

• Inference rules overview

• Discussion of calculus properties

7

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Input Language

8

• Constraint clauses C ← c, where C is a “normalized” clause, e.g.

P (x1, x2) ∨ ¬Q(x2, x3) ← ∃y 2 ≤ y ∧ y < a + x1 ∧ x2 = x3

where P,Q, . . . are free predicate symbols and a is a free constant

• Constraints c over ZZ generated by the syntax

n ::= integer constants 0,±1,±2, . . .
a ::= free constants (“parameters”) a, b, . . .
x ::= variables x, y, . . .
t ::= n | a | x | t1 + t2 | t1 − t2
l ::= ' | ⊥ | t1 = t2 | t1 < t2
c ::= l | c1 ∧ c2 | ∃x c

• Domain declaration a : [n1 .. n2], for every input parameter a

• Constraint solutions must be bounded from below
(add e.g. −10 < x1 ∧ 3 < x2 ∧ 0 < x3 above)

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Generalized Semantic Trees

9

a : [1 .. 10]

a ≤ 5 5 < a

Parameter
declaration

Domain
split

Split

Constraint c (free variables contained in literal)

Normalized literal with free predicate symbol

 What is the meaning of a branch literal (model construction)?

constraints
on constants

P(x) | a < x ¬P(x) | a < x

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Model Construction

10

a : [1 .. 10]

a ≤ 5 5 < a

P(x) | a < x ¬P(x) | a < x

Idea:
For any assignment of constants consistent with the constraints,
a branch literal specifies a truth values for all its ground instances over ℤ
that satisfy its constraint, unless ... (next slide)

a = 4 :

I
P (5)
P (6)
P (7)
P (8)
...

... parametric in parameters, e.g:

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Model Construction

11

a : [1 .. 10]

a ≤ 5 5 < a

P(x) | a < x ¬P(x) | a < x

¬P(x) | a + 2 < x P(x) | a + 2 < x

Least solution is a + 1

Least solution is a + 3

a = 4 :

I
P (5)
P (6)
¬P (7)
¬P (8)

...

For any assignment of the constants consistent with the constraints:
a branch literal specifies a truth value for all its ground instances
unless there is a branch literal with a greater least solution
specifying the opposite truth value

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Non-Contradictory Branches

12

• Contradictory branch: for some consistent assignment of the constants,
two complementary branch literals have the same least solution

• The branch above is contradictory: take a=4

• The calculus will never builds contradictory branches

a : [1 .. 10]

a ≤ 5 5 < a

P(x) | a < x ¬P(x) | a < x

a = 4 :

I

?

¬P(x) | 4 < x P(x) | 4 < x

The model construction works only for non-contradictory branches

Least solution is a + 1

Least solution is 5

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Inference Rule - Split

13

a : [1 .. 10]

Equivalently a + 2 < x

Context unifier a < x ∧ a + 2 < x

⇒ Split with candidate is applicable

Repair interpretation:

¬P (x)← a + 2 < x

P(x) | a < x ¬P(x) | a < x

¬P(x) | a + 2 < x P(x) | a + 2 < x

Split candidate ¬P (x) | a + 2 < x

Non-contradictory a : [1 .. 10] |= a + 1 != a + 3

I
P (a + 1)
P (a + 2)

¬P (a + 3)
¬P (a + 4)

. . .

I
P (a + 1)
P (a + 2)
P (a + 3)

. . .

¬P (a + 3)
¬P (a + 4)
¬P (a + 5)

. . .

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Inference Rule - Domain Split

14

⇒ Domain Split with a = 5 is applicable

Split domain of constant a

Context unifier a < x ∧ x = 6

Split candidate ¬P (x) | a < x ∧ x = 6

¬P (x)← x = 6

Contradictory a : [1 .. 10] !|= a != 5

(And also a : [1 .. 10] !|= a = 5)

a : [1 .. 10]

P (x) | a < x ¬P (x) | a < x

Split ?

¬P (x) | a < x ∧ x = 6

a : [1 .. 10]

P (x) | a < x ¬P (x) | a < x

a = 5 a != 5

¬P (6)

I
P (a + 1)
P (a + 2)
P (a + 3)

. . .

Least solutions of a < x and a < x ∧ x = 6
are the same if a = 5. Split not applicable:

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Inference Rule - Close

15

a : [1 .. 10]

P (x) | a < x ¬P (x) | a < x

a = 5 a != 5
The left branch is closed
- If a ≠ 5 then
 the left branch does not satisfy a = 5

*

¬P (x)← x = 6

¬P (6)

*

a ≠ 5 :

 This is the Soundness argument

a : [1 .. 10]

a = 5 a != 5

P (6) ¬P (6)

a=5 :- If a = 5 then
 the least solutions of the
 branch literal and the
 context unifier are the same

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

In Reality ...

16

• ...the calculus works not just with unary clauses and unary predicates

• ...n-ary predicates: pointwise minimal solutions instead of the least ones

– Example: P(x,y) ← x ≠ y has two minimal solutions: (0,1) and (1,0)

• Can define for a constraint, e.g., x ≠ y by formulas over constraint language:

– The lexicographically least solution of x ≠ y

– The pointwise minimal solutions of x ≠ y

– The i-th pointwise minimal solution of x ≠ y , which is the
formula expressing the lexicographic least solution of

• µ1 x ≠ y = "(x,y) is a pointwise minimal solution of x ≠ y"

• µ2 x ≠ y = "(x,y) is a pointwise minimal solution of x ≠ y and
 (x,y) does not satisfy µ1 x ≠ y"

• µ3 x ≠ y = "..." is unsatisfiable

– Inference rules need effective satisfiability test for closed LIA-constraints

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Main Result

17

• Soundness
– As indicated above

• Completeness
– Fair derivations via branch saturation (one branch at a time)

– Every saturated open (limit) branch B specifies a model of the clause set

– Proof idea: assume B falsifies a ground instance of a clause C.
Then show that one of the following cases applies

• B is closed [contradictory for all assignments]

• Domain Split is applicable [contradictory for some assignments]

• An inference rule is applicable to satisfy C
 [contradictory for no assignments)]

– Each case leads to a contradiction

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Why ME(LIA) Could be Good in Practice

• Semantic Redundancy Criterion
– Can ignore clauses that are satisfied in current interpretation

• Domain Splitting
– Domain decl a : [1 .. 10] could be

eliminated using a=1 ⋁ ... ⋁ a=10

– But demand-driven splitting of
domains is more efficient

– Application to finite model computation:

can be refuted in O(1) steps.
Model finders need O(n) steps (here: n=10)

18

a : [1 .. 10] P(a) ¬P(x)← 1 ≤ x ≤ 10

a : [1 .. 10]

P (x) | a < x ¬P (x) | a < x

a = 5 a != 5

¬P (x)← x = 6

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

ME(LIA) Variations

19

• No constants

– ME(LIA) not a decision procedure

• There are clause sets that don't admit
finite model representation with contexts

– But ME(LIA) is sound and complete

• Parameters unbounded
I.e. for "declarations" a : [0 .. ∞]

– No complete calculus possible then

• Can express domain emptyness
problem of 2-register machines

• Can express multiplication

– Ignore? Add induction?

 P(0)
 P(x +1) ← P(x)
¬P(a)

 P(0)
¬P(1)
 P(x) ↔ P(x +2)

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

ME(LIA) Variations

20

• Variables bounded
I.e. additionally finite domain restriction for free variables

– ME(LIA) derivations are finite then

– Application e.g. arrays
(Totality axiom only) Unfolding into disjunctions

 "by demand" only
∀i : [1 .. 10] ∃v : [1 .. 20] select a1(i, v)
becomes

v1 : [1 .. 20] select a1(i, v) ← i = 1 ∧ v = v1

...
v10 : [1 .. 20] select a1(i, v) ← i = 10 ∧ v = v10

Baumgartner/Fuchs/Tinelli ME(LIA) - LPAR 2008

Conclusions

21

Summary
– Sound and complete thanks to native quantifier treatment

– Needs ("only") a satisfiability checker for LIA

– Avoids expanding finite domains into disjunctions

– Model building capabilities

• Application: countermodels for wrong coǌectures

• Countermodel then is more informative than
"don't know" answer from system based on instantiation heuristics

Todo
– Universal literals, unit propagation and related inference rules

– Generalize parameters to functions with finite range ([BGW 94])

– Herbrand terms, equality (e.g. to axiomatize lists, arrays)

