'

I DATA
bl

N~

Possible Models Computation and Revision -
A Practical Approach

Peter Baumgartner

Data61 | CSIRO
The Australian National University

Situational Awareness = comprehending system state as it evolves over time

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25°C?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

What is the difficulty?

* Events happened + events reported (errors, incomplete, late ...) ﬂv Belief revision
- Need an integrated domain model with dependencies ﬂ" Logic program

» Can only hope for multiple plausible explanations ﬂ" Models

This talk: our approach to computing situational awareness —/

Events happened + events reported

“Fixing the event stream” as computed by our implementation Next:
Reported logic program
Load(10, tomatoes allet) : :
’ P ® expressing this
Load(20, pallet, container) i
Load(40, container, ship) i8] —
! ‘ Happened
Unload(60, apples, pallet) 0 - Load(10, apples, pallet) \ %
Load(20, pallet, container) e
Load(40, container, ship)
Happened Unload(45, container, ship)
Load(10, tomatoes , pa-l_-l_e-t) Unload(50, pallet, container)
Unload(60, apples, pallet)
Load(20, pallet, contalner)
) Happened
Load(40, contailner, ship) Load(10, tomatoes, pallet)g
Load(10, apples, pallet)“ilﬁhay)
Unload(45, container, ship) Load(20, pallet, container) =
_ ‘3?\‘ y Load(40, container, ship)
Un-l.Oad(SQ, pa'l.'l.et, contalner) “Ssgmue” Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, tomatoes, pallet) Unload(60, apples, pallet)

Logic Program for the Supply Chain Example

Derived “In” relation Integrity constraints and revision

// No Unload without earlier Load
fail :-
Unload(time, obj, cont),
not (Load(t, obj, cont),
// In transitivity t < time))
In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

In(time, obj, cont) :-
Load(time, obj, cont)

“fail” heads for fixing
// Unload a different object the event stream -
fail(- Unload(time, obj, cont), ‘%ﬂff
+ Unload(time, o, cont)) :-
Unload(time, obj, cont),

// Frame axiom for In not (Load(t, obj, cont), t < time),
In(next, obj, cont) :- Load(t, o, cont),

In(time, obj, cont), t < time,

Step(next, time), SameBatch(t, b),

Egi Unload(next, obj, cont), ((b contains obj) && (b contains o))

ot (In(time, obj, c),
| Unload(next, c, cont))

Default negation + 4 more rules

The Rest of This Talk Graph

“Possible Models Computation and Revision - “A Practical Approach”
Situational awareness Calculus
as Proof Procedure
(no surprises)
Stratified model computation
embedded
expressed disrupted into
through by v
Scala
(two-way coupling)
Logic programs Belief revision
(specific ones) (rather simple) provides
v
Method

Semantics

Situational Awareness = Stratified Model Computation
“Not known now” -> “never known”

“Situational awareness” task is naturally stratified K Makes default negation possible

« Comprehend evolving situation from “past” and “now”, not “future” (*)
— Stratification by time 0,1,2,...,now

» Distinguish between events and states induced from these events

— Stratification by sets of literals EDB /IDB (extensional database / intensional database)
Revising events is simply addition/removal

Stratified model computation (i ' isi)
P (ignoring revision) Time 0,1,2 === >

e (1) —Ce)— (D
Bottom-up application |

of logic program

rules until fixpoint
IDBs Ip1.2.... I —> @ >

Next: Stratified logic programs for computing models (Eul)o, (EUI)1, (EUI)z, ..

Stratified Logic Programs

Consists of rules over literals

h

s.th. (1)

(2)
(3)
(4)
(5)
(6)

Examples
I(time,
I(time,
I(time,
I(time,

I(time,

ead :- body, .., not body, ..

var(head) c fvar(body, .., not body, ..)
head has a time variable (“now”)

one body lit has same time variable

other body lits have time < time

EDB lits in not body have time < time

IDB lits in not body have time < time

X) - J(time, x, y), I(time, y)
x) = J(time, x, y), I(t, y), t = time

. Range restriction
ﬂ ~ Simple model computation

« Stratification by time
ﬂ ~ Effective model computation

Avoids guessing whether head is
ﬂ?‘frue or false in final model
~ Efficient model computation

Closed world assumption
Eul = not body(x) iff

(not exists a s.th. body(a) C Eul

x) - J(time, x, y), not (I(t, y), t < time)

x) :- J(time, x, y), not (I(t, y), t = time) No! I,3:IDB
X) :- J(time, x, y), not (E(t, y), t = time) E: EDB

http://s.th

Integrity Constraints
Usual integrity constraints

fail :- body, .., not body, .. Semantics

Eul
Generalized for revision of EDB literals

fail(-e, .., +f,..) :- body, .., not body, .. if Eul = (body, ..,

not body, ..)o
s.th. « “conditions for body as for ordinary rules”

» EDB lits e and f have time < time (E\ eo) u fo
Example
// Unload a different object = Unload(6®, apples, pa'l_let)
fail(- Unload(time, obj, cont),
+ Unload(time, o, cont)) :- l
Unload(time, obj, cont),

not (Load(t, obj, cont), t < time),

Load(t, o, cont), t < time,
<4 Unload(60, tomatoes, pallet)

Semantics of Programs With Fail Rules

Einit /V E;q //y E> J__EEE
// I/
/ |
/ |
,’ ' Principles
: - Fail as early as possibly
I /
/ - Colle ssible fails
fail) 19 1) Il fail() /,' 19 1) fail() fail(20) ollect all possible fail
fail (20) fall(————— -
Operational
for a given EDB E
fortimet=012 .. Now k Can branch out because of disjunctive heads

compute {9, I’, ... all IDBs fortime <t}
forI=101, ..
let F={fail(..) heads derivable from Eul }
if Fis non-empty then

obtain new EDBs Ey, E;, ... as per F and Declarative: see paper
abandon model candidate I

The Rest of This Talk Graph

“A Practical Approach”

Calculus

We are here Proof Procedure
(no surprises)

embedded
into

v

Scala
(two-way coupling)

provides

\ /
Method

10

Embedding Into Scala: Translation Logic Scala

Pred/Fun signature Class

InPUt program = Scala source code Interpretation Set of class instances
Variable Variable
Rule Partial function
type Time = Int Matching subst Pattern matching

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

Macro annotation
@rules &

val rules = List(In(time, obj, cont) :-= (In(time, obj, c), In(time, c, cont))
case List(In(time, obj, c), In(time®, c1, cont)) - __Macro expansion
if ¢ == cl && time == time0 info partial
=> In(time, obj, cont) function

+ given-clause loop operating on such rules-as-partial-functions

(In reality the macro expansion is more complicated because of default negation)

11

Embedding into Scala: Method

“Natural” integration into Scala and vice versa

def sameBatch(time: Time) =
~ if (time ==10) Set("tomatoes", "apples") else Set.@[String]

Conclusions

Talk Summary
“Situational awareness = time-stratified logic programming + belief revision”

Practical? (a) Scala embedding (b) structured data (c) controllable complexity

In the Paper
Disjunctive heads, possible model semantics: Hungry(t) v Thirsty(t) :- GetUp(t)

Partial correctness: soundness and model completeness theorem

Current and Future Work
Generalize two-layer EDB/IDB stratification to arbitrary many levels [implemented]
Classical negation [implemented]

Proper belief revision

Timed LTL constraints t . shipped(B) = (s . s < t+ 5 A received(B)
Probabilistic EDBs a la ProbLog Load(10, “tomatoes”, “pallet”) : 0.3

Get the implementation at https://bitbucket.csiro.au/users/bau050/repos/fusemate/

13

