
Peter Baumgartner
Data61 | CSIRO
The Australian National University

Possible Models Computation and Revision –
A Practical Approach

Situational Awareness

Factory Floor
Are the operations carried out according to the schedule?

Food Supply Chain
Are goods delivered within 3 hours and stored below 25℃?
Why is the truck late?
What is the expected quality (shelf life) of the goods?

Data Cleansing
Does the database have complete, correct and relevant data?

2

What is the difficulty?
• Events happened ≠ events reported (errors, incomplete, late …)

• Need an integrated domain model with dependencies

• Can only hope for multiple plausible explanations

Belief revision

Logic program

Models

≈ comprehending system state as it evolves over time

This talk: our approach to computing situational awareness

Events happened ≠ events reported

Fixed

3

“Fixing the event stream” as computed by our implementation

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(60, apples, pallet)

Reported

Load(10, tomatoes, pallet)

Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)

Unload(50, pallet, container)

Unload(60, tomatoes, pallet)

Happened

Load(10, tomatoes, pallet)

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened

Load(10, apples, pallet)
Load(20, pallet, container)

Load(40, container, ship)

Unload(45, container, ship)
Unload(50, pallet, container)
Unload(60, apples, pallet)

Fixed

Happened

Next:

logic program

expressing this

?

Logic Program for the Supply Chain Example

4

In(time, obj, cont) :-
Load(time, obj, cont)

// In transitivity

In(time, obj, cont) :-
In(time, obj, c),
In(time, c, cont)

// Frame axiom for In

In(next, obj, cont) :-
In(time, obj, cont),
Step(next, time),
not Unload(next, obj, cont),
not (In(time, obj, c),

 Unload(next, c, cont))

// No Unload without earlier Load

fail :-
Unload(time, obj, cont),

 not (Load(t, obj, cont),
 t < time))

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont),
 t < time,
 SameBatch(t, b),
 ((b contains obj) && (b contains o))

+ 4 more rulesDefault negation

“fail” heads for fixing
the event stream

Derived “In” relation Integrity constraints and revision

The Rest of This Talk Graph

5

Stratified model computation

Situational awareness

as

Logic programs
(specific ones)

expressed
through

Belief revision
(rather simple)

disrupted
by

Semantics

“Possible Models Computation and Revision -“ “A Practical Approach”

Calculus
Proof Procedure

(no surprises)

embedded
into

Scala
(two-way coupling)

provides

Method

Situational Awareness = Stratified Model Computation

6

E2E1

I2I1

E0EDBs E0,1,2,…

IDBs I0,1,2,… I0

“Situational awareness” task is naturally stratified

Time 0,1,2

• Comprehend evolving situation from “past” and “now”, not “future” 
→ Stratification by time 0,1,2,…,now

• Distinguish between events and states induced from these events 
→ Stratification by sets of literals EDB / IDB (extensional database / intensional database)

Stratified model computation (ignoring revision)

Bottom-up application
of logic program
rules until fixpoint

(*) Cannot change past state

(*)

Next: Stratified logic programs for computing models (E∪I)0, (E∪I)1, (E∪I)2, …

Revising events is simply addition/removal

“Not known now” -> “never known”
Makes default negation possible

Stratified Logic Programs

7

head :- body, …, not body, …

(1) var(head) ⊆ fvar(body, …, not body, …)
(2) head has a time variable (“now”)
(3) one body lit has same time variable
(4) other body lits have time ≤ time
(5) EDB lits in not body have time ≤ time
(6) IDB lits in not body have time < time

s. th.

Examples

I(time, x) :- J(time, x, y), I(t, y), t ≤ time

I(time, x) :- J(time, x, y), not (I(t, y), t < time)

I(time, x) :- J(time, x, y), not (E(t, y), t ≤ time)

I(time, x) :- J(time, x, y), I(time, y)

I,J: IDB
E: EDB

I(time, x) :- J(time, x, y), not (I(t, y), t ≤ time) No!

Range restriction

↝ Simple model computation

Stratification by time

↝ Effective model computation

Avoids guessing whether head is

true or false in final model

↝ Efficient model computation

Consists of rules over literals

Closed world assumption

E∪I ⊨ not body[x] iff

not exists a s.th. body[a] ⊆ E∪I

http://s.th

Integrity Constraints

8

fail :- body, …, not body, …

Usual integrity constraints

Generalized for revision of EDB literals

fail(-e, …, +f, …) :- body, …, not body, …

• “conditions for body as for ordinary rules”
• EDB lits e and f have time ≤ time

s. th.

// Unload a different object

fail(- Unload(time, obj, cont),
 + Unload(time, o, cont)) :-
 Unload(time, obj, cont),
 not (Load(t, obj, cont), t < time),
 Load(t, o, cont), t < time,
 …

Example

Semantics
E∪I

(E \ eσ) ∪ fσ

if E∪I ⊨ (body, …,
 not body, …)σ

…
Unload(60, apples, pallet)

…

Unload(60, tomatoes, pallet)

-

+

Semantics of Programs With Fail Rules

9

12 P. Baumgartner

(a) ?) ?1, . . . , ?: by Ext and {?1, . . . , ?: } *)8 ,
(b) ?) @1, . . . , @< by Restart and {?1, . . . , ?: } = {? 2 {@1, . . . , @<} | ? is new wrt.)8},
(c) ?) by Fail and : = 0, or
(d) ?) ?1 by Jump and : = 1.

In addition, the inference rules must be prioritized in this order. That is, if)8+1 is obtained
from)8 by, say, case (c) , then there is no tableau that can be obtained from)8 by case
(a) or case (b) with the same selected path ?; analogously for the other cases.

The derivation ⇡ is exhausted if it is finite and no inference rule is applicable to
its final tableau)=, for no ? 2)=. In this case the computed models of ⇡ is the set
M(⇡) = {(⇢ , �) | (⇢ , �, C) 2)= for some C 2 N}.

Figure 2 is a graphical illustration of a derivation and its computed models.

⇢init

fail() �0
0 �1

0

fail(Æ40
0)

⇢1

�0
1

�1
1 fail(Æ40

2)

⇢2

�0
2 �1

2 fail()fail()

fail(Æ41
0)

. . .

Fig. 2. Illustration of a hypothetical derivation. The root of each sub-tableau is labeled with the
EDB in that sub-derivation. The first sub-tableau has two Restart inferences, leading to the second
and third sub-tableau, where ⇢1 = upd(⇢init, Æ4

0
0), ⇢2 = upd(⇢init, Æ4

1
0). The isolated fail()s do not

cause a Restart, they cause Fail. The computed models are (⇢init, �
0
0), (⇢init, �

1
0), (⇢1, �

0
1), etc.

Theorem 1 (Soundness and completeness). Assume a signature ⌃without :-ary func-
tion symbol, for : > 0. Let % be a stratified program and ⇢init an EDB. Assume an
exhausted derivation ⇡ from ⇢init and %. Then M(⇡) = mods% (⇢init).

Proof. (Sketch) Let)= be the final tableau of ⇡. For soundness, assume M(⇡) < ;

and chose any (⇢ , �) 2 M(⇡) arbitrary. That is, (⇢ , �, C) 2)=, for some C. We have to
show (⇢ , �) 2 mods% (⇢init), equivalently (⇢init, ⇢ , �) |= %.

The EDB ⇢ is either ⇢init or derived from ⇢init through, say, : > 0 intermediate
EDBs by Restarts. By induction on : one can show that, on the semantic side, ⇢ is a
restart induced by % and ⇢init, i.e., ⇢ 2 E in Def. 5. This follows from the definition
of derivations. In particular, the earliest-time requirement in Definition 5 is matched by
prioritizing Restart over Fail and Jump.

With the EDB ⇢ traced down in E, it remains to prove (⇢ , �) |= %. With the
stratification of % (Def. 1) this is rather straightforward. Range-restrictedness makes
sure that only ground heads are derivable. The Ext inference rule achieves on-the-fly
splitting and only for those variable-free instances of rules whose body is satisfied, which

for a given EDB E
for time t = 0,1,2, …, now

compute { I0, I1, … all IDBs for time ≤ t }
for I = I0, I1, …

let F = { fail(…) heads derivable from E∪I }
if F is non-empty then
 obtain new EDBs E1, E2, … as per F and
 abandon model candidate I

Can branch out because of disjunctive heads

Operational

Declarative: see paper

Principles
- Fail as early as possibly

- Collect all possible fails

The Rest of This Talk Graph

10

Stratified model computation

Situational awareness

as

Logic programs
(specific ones)

expressed
through

Belief revision
(rather simple)

disrupted
by

Semantics

“Possible Models Computation and Revision -“ “A Practical Approach”

Calculus
Proof Procedure

(no surprises)

embedded
into

Scala
(two-way coupling)

provides

Method

We are here

Embedding Into Scala: Translation

11

type Time = Int

case class Load(time: Time, obj: String, cont: String) extends Atom

case class In(time: Time, obj: String, cont: String) extends Atom

@rules
val rules = List(In(time, obj, cont) :− (In(time, obj, c), In(time, c, cont))

Macro annotation

 case List(In(time, obj, c), In(time0, c1, cont))
 if c == c1 && time == time0
 => In(time, obj, cont)

Macro expansion

into partial

function

(In reality the macro expansion is more complicated because of default negation)

+ given-clause loop operating on such rules-as-partial-functions

Input program ≈ Scala source code

Logic Scala
Pred/Fun signature Class
Interpretation Set of class instances
Variable Variable
Rule Partial function
Matching subst Pattern matching

Embedding into Scala: Method

12

val eventsCSV = List(“Load,10,tomatoes,pallet",“Load,20,pallet,container", …)

// Compute alternative “fixes” and extract their Load/Unload events a CSV again
eventsCSV map { line =>
 line.split(",") match {
 case Array("Load", time, obj, cont) => Load(time.toInt, obj, cont)
 …
 }
} saturate { @rules …
 fail(…) :—

…
 (b ∋ obj) && (b ∋ o),
 where { val b = sameBatch(t) }
} map { I =>
 I.toList.sortBy(_.time) flatMap {
 case Load(time, obj, cont) => List(s"Load,$time,$obj,$cont")
 …
 }
}

def sameBatch(time: Time) =
 if (time == 10) Set("tomatoes", "apples") else Set.∅[String]

“Natural” integration into Scala and vice versa

List(Load,10,tomatoes,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,tomatoes,pallet)
List(Load,10,tomatoes,pallet, Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)
List(Load,10,apples,pallet, Load,20,pallet,container, Load,40,container,ship, Unload,45,container,ship, Unload,50,pallet,container, Unload,60,apples,pallet)

Conclusions

Talk Summary

 “Situational awareness = time-stratified logic programming + belief revision”

Practical? (a) Scala embedding (b) structured data (c) controllable complexity

In the Paper

 Disjunctive heads, possible model semantics: Hungry(t) ∨ Thirsty(t) :- GetUp(t)

 Partial correctness: soundness and model completeness theorem

Current and Future Work

Generalize two-layer EDB/IDB stratification to arbitrary many levels [implemented]

Classical negation [implemented]

Proper belief revision

Timed LTL constraints

Probabilistic EDBs a la ProbLog Load(10, “tomatoes”, “pallet”) : 0.3

13

□ t . 𝗌𝗁𝗂𝗉𝗉𝖾𝖽(B) → ◊s . s ≤ t + 5 ∧ 𝗋𝖾𝖼𝖾𝗂𝗏𝖾𝖽(B)

Get the implementation at https://bitbucket.csiro.au/users/bau050/repos/fusemate/

