Blocking and Other Enhancements for Bottom-Up Model Generation Methods

Peter Baumgartner National ICT Australia

Renate A. Schmidt The University of Manchester

Motivation: Disproving

• Disproving

- Show that a given (first-order) formula (with equality) is not valid
- This can be done by computing a model, i.e. a counterexample

Applications of Disproving

- Mathematics
 - Refute conjectures
 - Finite group existence
- Verification: disproving verification conditions
- Knowledge representation
 - Knowledge base is consistent
 - Speculated subsumption relation does not hold

Existing methods? Limits? What's new here?

Disproving Methods (1)

Finite model building

- Assume a fixed, finite domain { $d_1,...,d_n$ }
- Decide if there is a model of the given formula over that domain
- If not, add a new domain element and repeat

Methods

- MACE-style: by reduction to
 - propositional SAT (Paradox, Mace2) or
 - function-free clause logic (FM-Darwin)
- SEM-style: guess function tables and check for model
- (Tableaux) algorithms by Bry&Torge, Bezem, Nivelle&Meng

No syntactic restrictions on input formula
 X Finite models sometimes not sufficient

Poor scaling

Finite Model Builders - Scaling Problems

• Consider the clause set consisting of the $O(n^2)$ unit clauses

 $\neg \mathsf{p}(x_1, \dots, x_{i-1}, \mathbf{x}, x_{i+1}, \dots, x_{j-1}, \mathbf{x}, x_{j+1}, \dots, x_n) \quad \text{for all } 1 \le i < j \le n$

- Second clause says no c_i and c_j can be mapped to the same element
 - Therefore, smallest model has n domain elements
- 10^9 instances for n=10
 - For which n do current finite model finders give up?
- Any resolution method will terminate here

Finite model builders / (our) resolution methods are rather different Our approach doesn't iterate on domain size Our approach doesn't identify different constants

Disproving Methods (2)

Identify decidable fragment of FOL

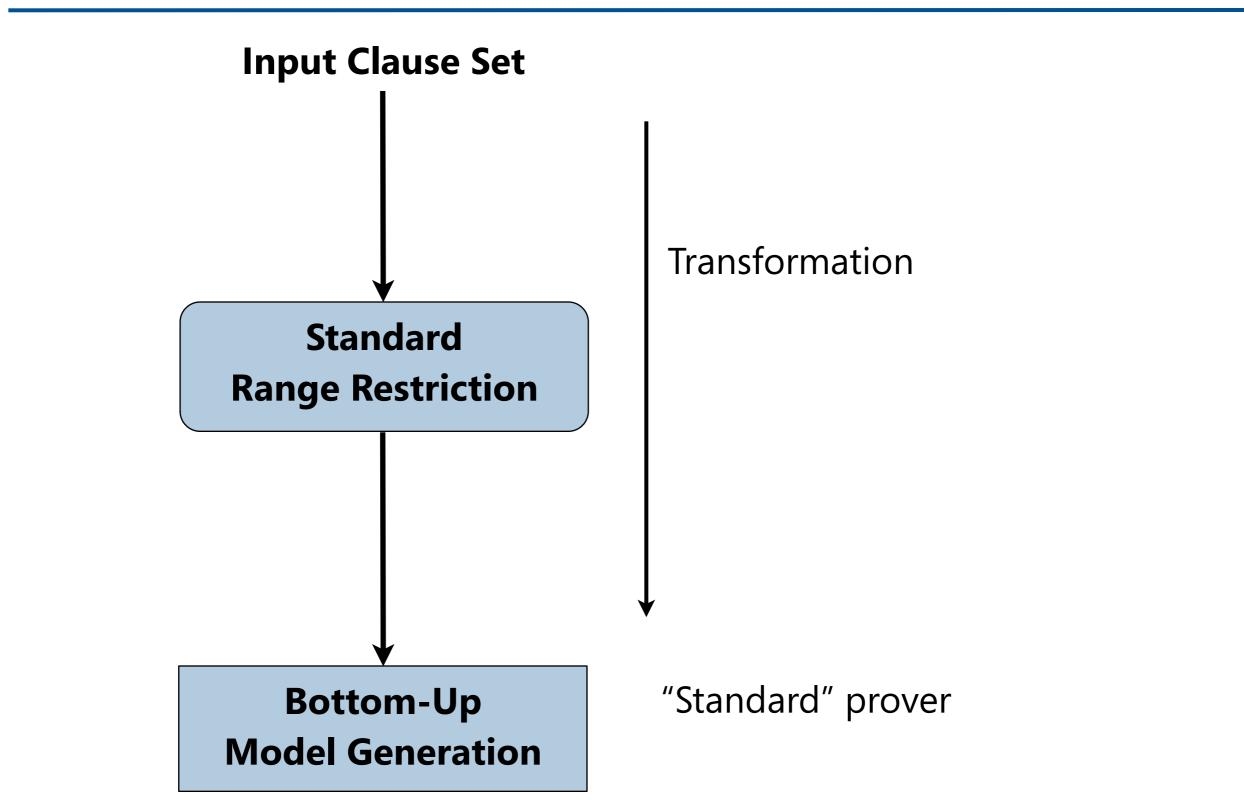
- Guarded Fragment
- Description and modal logics
- Positive-variable dominated clauses
- Prefix-classes: $\exists * \forall *, \exists * \forall \exists *, ...$

• Design decision procedure for it

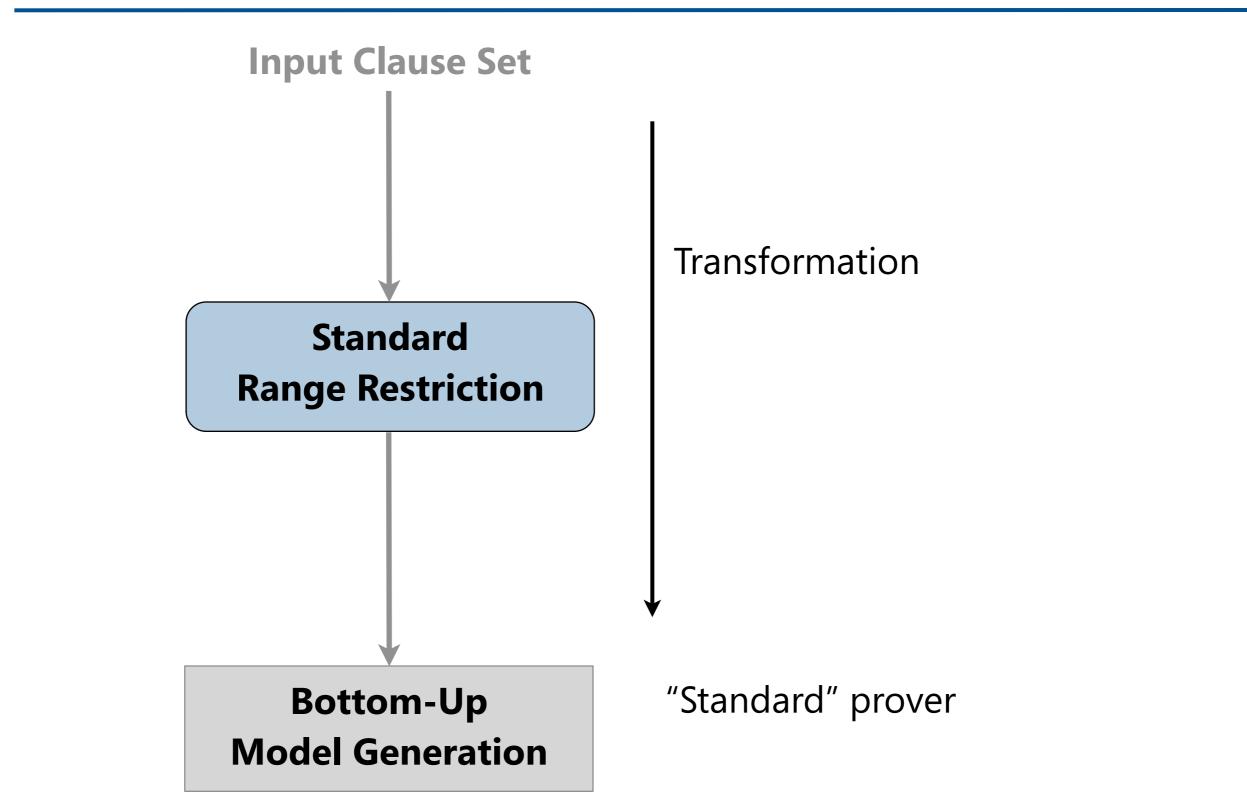
- From scratch. E.g. tableaux algorithms for description logics
- By showing that a certain (resolution) refinement decides it.
 E.g. with axiomatic translation [Schmidt&Hustadt 2005],
 ordered resolution + splitting decides many modal logics

✓ Powerful Kesolution not practical for ∃*∀* Really ?

Problems of Using Resolution for \exists^* \forall^*


- $\exists * \forall *$ fragment corresponds to function-free clause logic
 - Important for many database-like applications (Datalog)
- Pathological example for resolution:

$$\mathsf{Res} \ \frac{\mathsf{p}(x,y) \lor \mathsf{p}(y,z) \leftarrow \mathsf{p}(x,z)}{\mathsf{p}(\mathsf{a},y) \lor \mathsf{p}(y,z) \lor \mathsf{p}(z,\mathsf{a})}$$


Derived clauses pattern:
$$p(a, z) \lor p(z, a)$$

 $p(a, y) \lor p(y, z) \lor p(z, a)$
 $p(a, x) \lor p(x, y) \lor p(y, z) \lor p(z, a)$
:

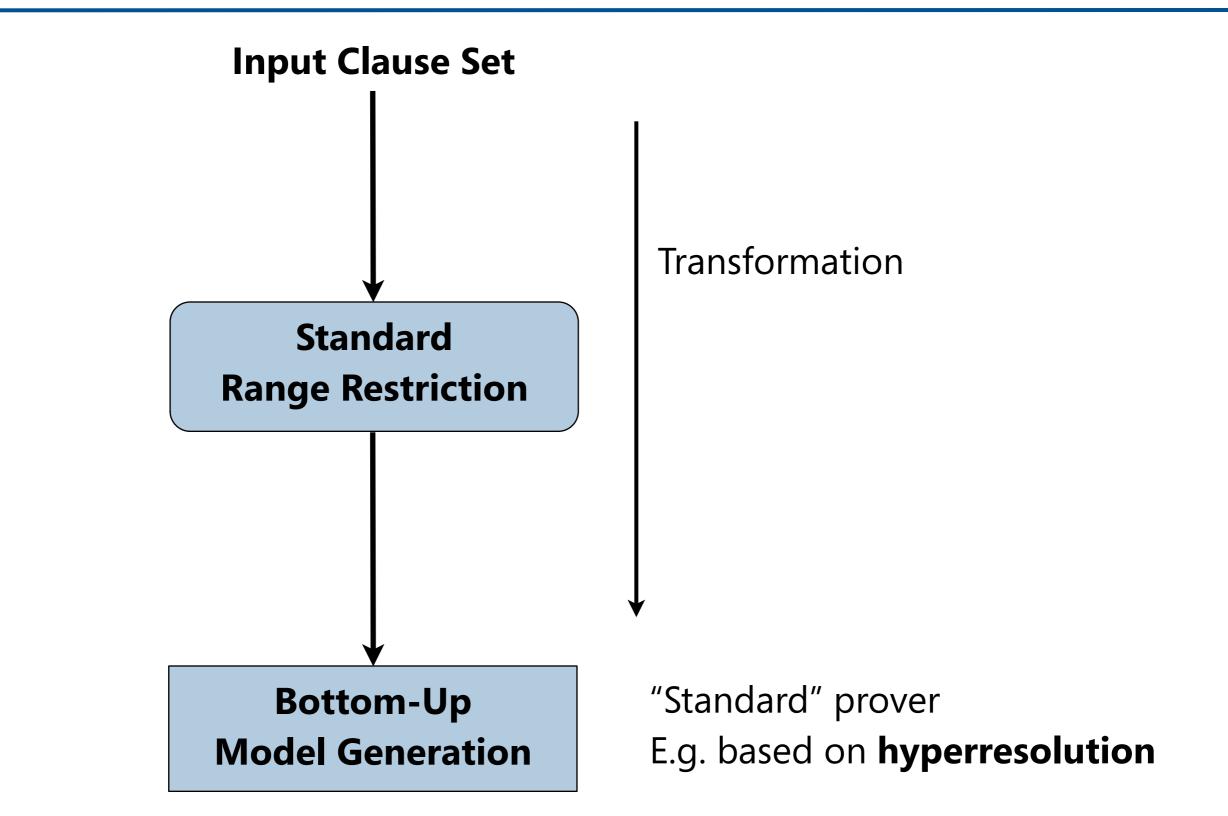
K Refinements like subsumption, condensing, splitting don't help X Hyperresolution + range restriction works, but inefficiently (One) contribution here: improved range restriction

Classical Approach

Classical Approach

Standard Range Restriction

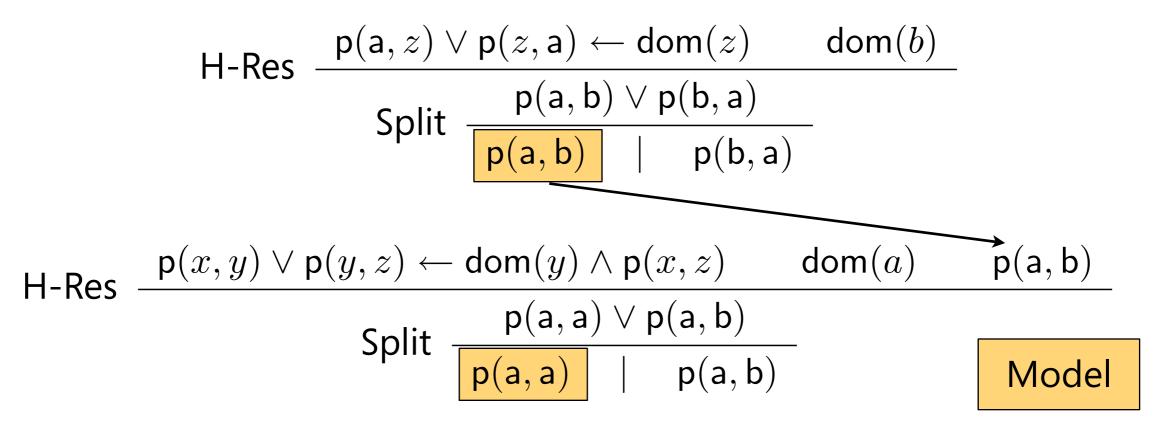
- A clause is **range restricted** iff each variable in its head also occurs in its body, as in $p(x, z) \lor p(z, a) \leftarrow q(x, z)$
- Every clause (set) can be made range restricted:
 - Restrict all extra variables in head in all input clauses to dom, e.g.


 $p(x, z) \lor p(z, a)$ becomes $p(x, z) \lor p(z, a) \leftarrow dom(x) \land dom(z)$

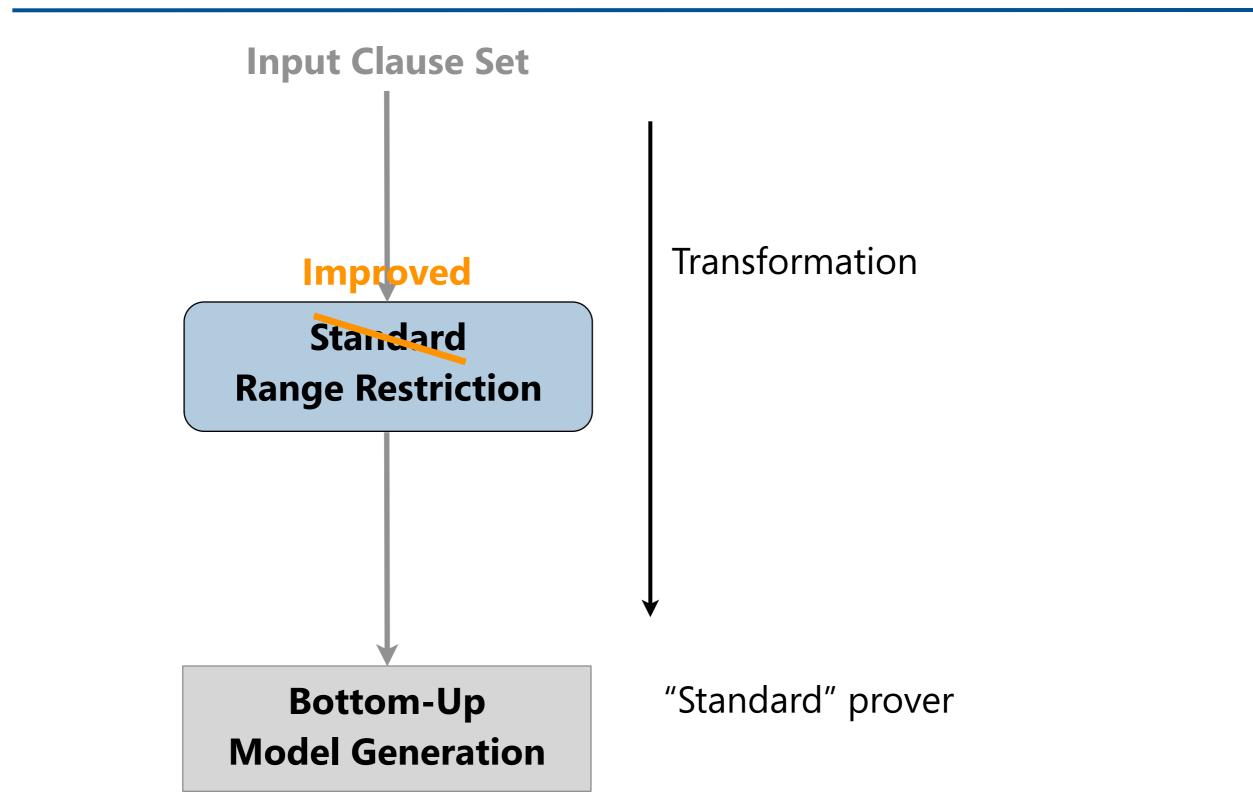
Add "dom"-clauses to enumerate Herbrand universe:

$$dom(a) dom(b) dom(f(x_1, ..., x_n)) \leftarrow dom(x_1) \land \cdots \land dom(x_n)$$

All positive clauses derived by hyperresolution are ground


Classical Approach

Hyperresolution + Range Restriction + Splitting


Given clause set: $p(a, z) \lor p(z, a)$ $p(x, y) \lor p(y, z) \leftarrow p(x, z)$

Derivation by hyperresolution + splitting after range restriction

✓ Decides function-free clause logic (BS class) X Search space too big Improvement?

Our Approach

Improved Range Restriction

Here: idea by means of an example, see paper for details

(1) Domain elements from clause heads

Clause	Transformation	
	dom(a)	for some constant a
$P(x) \lor Q(b)$	$P(x) \lor Q(b) \leftarrow don$	$\mathbf{n}(x)$
	$dom(x) \leftarrow P(x)$) for each head
	$dom(x) \leftarrow Q(x)$	c) predicate symbol

May yield smaller domain, depending on splits chosen

(2) Domain elements from clause bodies

Clause	Transformation					
P(x)	$\begin{array}{l} dom(a) & f \\ P(x) \leftarrow dom(x) \\ dom(x) \leftarrow P(x) \end{array}$	or some constant a)				
$\bot \gets P(a) \land P(b)$	$\perp \leftarrow P(a) \land$ dom(a) $\leftarrow P(x)$ dom(b) $\leftarrow P(x)$					

May yield smaller domain, depending on satisfied literals

(2) Domain elements from clause bodies

Clause	Transformation					
P(x)	$dom(a) \qquad for all a dom(x) \leftarrow dom(x) \\ dom(x) \leftarrow P(x)$	or some constant a)				
$\bot \leftarrow Q(a) \land Q(b)$	$\begin{array}{l} \bot \leftarrow Q(a) \land\\ dom(a) \leftarrow Q(x)\\ dom(b) \leftarrow Q(x) \end{array}$	for each body				

May yield smaller domain, depending on satisfied literals

Soundness and Completeness

• rr(M) := transformation of clause set M into range-restricted form

Proposition

A clause set M is satisfiable iff rr(M) is satisfiable Proof (completeness):

- Given a Herbrand model I_{rr} of rr(M).
- Define Interpretation *I* for *M*:
 - Domain $|I| = \{ t \mid I_{rr} \vDash dom(t) \}$
 - Terms in |I| evaluate to themselves ("Quasi-Herbrand")
- Show that I is a model of $M\colon \ldots$

Corollary

A clause set M is E-satisfiable iff

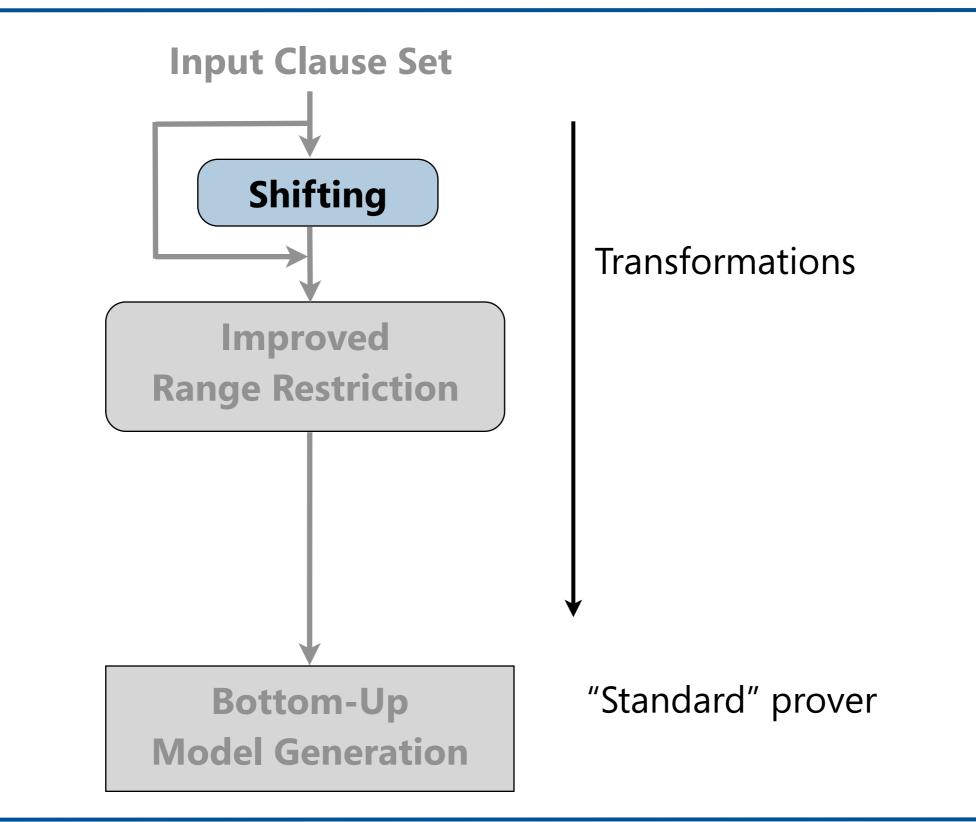
 $rr(M) \cup \{ x \approx x \leftarrow dom(x) \}$ is E-satisfiable

Proof: Use equality axioms. Only equality axiom affected is reflexivity

Problem with Improved Range Restriction

- **Problem:** function symbols in clause bodies may lead to non-termination of BUMG
- Example:

From $r(x) \leftarrow q(x) \land p(f(x))$ obtain $dom(f(x)) \leftarrow p(y)$


and finally $dom(f(x)) \leftarrow dom(x) \land p(y)$

 Together with p(b), q(a), dom(a) derive
 dom(f(a)) dom(f(f(a))) dom(f(f(f(a))))

...

The "shifting" transformation avoids this problem

Our Approach

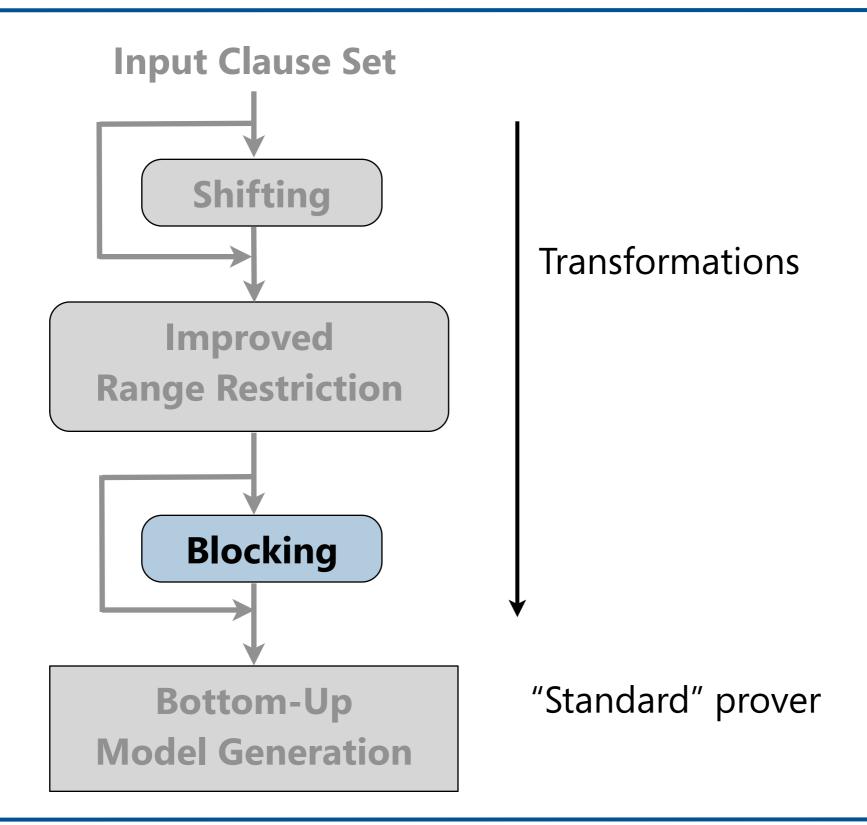
Shifting

• Moves body literals with function terms into the head: $r(x) \leftarrow q(x) \land p(f(x))$

Shifting:

 $r(x) \lor not_p(f(x)) \leftarrow q(x)$

 $\bot \leftarrow p(x) \land not_p(x)$


- Advantage: criticial head atom not_p(f(x)) possibly avoided now:
- With, say p(b), q(a) dom(a) derive r(a) ∨ not_p(f(a))

then split r(a)

and done

Improved RR + Shifting already quite effective Next: going beyond ∃*∀* by "blocking"

Our Approach

Blocking: Idea

- Detect periodicity in models and achieve termination by exploiting ulletstandard redundancy criteria
- Example from Tambis KB ullet

Chapter(a)

∃ part_of Book Chapter ∃ has_part $\mathsf{Book}(\mathsf{f}_{\mathsf{Book}}(x)) \leftarrow \mathsf{Chapter}(x)$ $Chapter(f_{Chapter}(x)) \leftarrow Book(x)$

 $\perp \leftarrow \mathsf{Chapter}(x) \land \mathsf{Book}(x)$

BUMG without blocking derives infinite model: ${\bullet}$

{Chapter(a), Book($f_{Book}(a)$), Chapter($f_{Chapter}(f_{Book}(a))$),...}

But same model represented finitely by • {Chapter(a), Book($f_{Book}(a)$)} and $f_{Chapter}(f_{Book}(a)) \approx a$

Blocking transformation encodes this search for equations

Blocking

• If y is a subterm of x then speculate $x \approx y$ - or not:

$$\begin{array}{l} x \approx y \lor x \not\approx y \leftarrow \mathsf{sub}(x,y) \\ \bot \leftarrow x \approx y \land x \not\approx y \end{array}$$

To be effective, BUMG must consider the case $x \approx y$ first

• The subterm relation, restricted to dom elements:

 $sub(x, x) \leftarrow dom(x)$ $sub(x, f(x_1, \dots, x_n)) \leftarrow sub(x, x_i) \land dom(x) \land dom(f(x_1, \dots, x_n))$

for every *n*-ary function symbol $f \in \Sigma_f$ and all $i \in \{1, \ldots, n\}$

• This way, say, dom(f(a)) will be simplified to dom(a) when equation $f(a) \approx a$ has been speculated

Never equates two constants, search limited to subterms in domain

Experiments

- TPTP Version 3.1.1, tried all 514 clausal satisfiable problems
- Main prover: slightly modified superposition prover MSPASS
- Environment: Linux PC, Intel Pentium 4, 3.8 GHz, 1 GByte
- Timeout 5 minutes Memory limit 300 MByte (never a problem for MSPASS and KRHyper)
- Results: MSPASS + our transformations vs. ...
 - ... SPASS auto mode: orthogonal
 - ... Paradox: about 20 problems unsolvable for Paradox that can be solved by our methods
- Next slides:
 - Detailed evaluation of MSPASS + our transformations
 - On non-equational problems also tried KRHyper

		rr	rr	sh∘rr	sh∘rr	rr ∘ bl	$sh \circ rr \circ bl$	crr ∘ bl
Category	#	-sp	+sp	-sp	+sp	+sp	+sp	+sp
ALG	1	0	0	0	0	1	0	0
BOO	13	0	0	0	0	2	3	2
COL	5	0	0	0	0	0	0	0
GEO	1	0	0	0	0	0	0	0
GRP	25	7	7	7	8	15	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

		rr	rr	sh∘rr	sh∘rr	rr∘bl	$\operatorname{sh} \circ \operatorname{rr} \circ \operatorname{bl}$	crr ∘ bl
Category	#	-sp	+sp	-sp	+sp	+sp	+20	+sp
ALG	1	0	0	0	0	1	Splitting	0
BOO	13	0	0	0	0		s advisable) 2
COL	5	0	0	0	0		0	0
GEO	1	0	0	0	0	0	0	0
GRP	25	7	7	7	8	15	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

		rr	rr	sh∘rr	sh∘rr	rr ∘ bl	$\operatorname{sh} \circ \operatorname{rr} \circ \operatorname{bl}$	crr ∘ bl
Category	#	-sp	+sp	-sp	+sp	+sp	+sp	+sp
ALG	1	0	0	0	0	1	0	0
BOØ	sh 30 I	r r and	rr 9 k	ol d	0	2	3	2
COL	⁵ or	thogo	onal	9	0	0	0	0
GEO	1	0	0	$\langle 0$	0	0	0	0
GRP	25	7	7	X	8	15	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

	sh o rr o	bl	<u>}</u>						1
/	gonorally k	act) rr	rr	sh∘rr	sh∘rr	rr o bl	$\operatorname{sh} \circ \operatorname{rr} \circ \operatorname{bl}$	crr ∘ bl
	generally b	Jest _{# ,}	sp	+sp	-sp	+sp	+sp	+sp	+sp
	ALG		≥ 0	0	0	0	1	0	0
	BOO	13	0	0	0	0	2	3	2
	COL	5	0	0	0	0	0	0	0
	GEO	1	0	0	0	0	0	0	0
	GRP	25	7	7	7	8	15	14	12
	KRS	8	1	1	4	8	4	6	4
	LAT	1	0	0	0	0	1	1	0
	LCL	4	0	1	1	1	1	1	1
	MGT	10	1	1	3	4	4	5	0
	MSC	1	1	1	1	1	1	1	1
	NLP	236	49	79	68	96	87	160	68
	NUM	1	1	1	1	1	1	1	1
	PUZ	20	6	6	6	6	10	10	9
	RNG	4	0	0	0	0	0	0	0
	SWV	8	0	0	0	0	1	1	0
	SYN	176	20	50	20	52	124	125	120
	All	514	86	147	111	177	252	328	218
									J

		rr	rr	sh∘rr	sh∘rr	rr∘bl	sh o rr o bl	crr ∘ bl
Category	#	-sp	+sp	-sp	+sp	+sp	+sp	+sp
ALG	1	0	0	0	0	1	0	0
BOO	13	0	8	sh o	rr o bl	2	3	2
COL	5	0	0	0		Ó	0	0
GEO	1	0	$\left(0 \right)$	much b	etter ₀ tr		0	0
GRP	25	7	X	Cr	r	5	14	12
KRS	8	1	1	4	8	4	6	4
LAT	1	0	0	0	0	1	1	0
LCL	4	0	1	1	1	1	1	1
MGT	10	1	1	3	4	4	5	0
MSC	1	1	1	1	1	1	1	1
NLP	236	49	79	68	96	87	160	68
NUM	1	1	1	1	1	1	1	1
PUZ	20	6	6	6	6	10	10	9
RNG	4	0	0	0	0	0	0	0
SWV	8	0	0	0	0	1	1	0
SYN	176	20	50	20	52	124	125	120
All	514	86	147	111	177	252	328	218

KRHyper on Satisfiable non-Equational Problems

			KRHyper				KRHyper
Rating	#	MSPASS	additional	Rating	#	MSPASS	additional
1.00	4	0		0.40	47	26	1
0.80	57	24	4	0.33	8	4	1
0.67	26	5		0.20	70	50	
0.60	44	23	10	0.17	31	10	
0.50	5	0		0.00	223	198	1

Conclusions

- Various improvements to BUMG paradigm, based on
 - Shifting, improved range restriction, blocking
 - Hyperresolution + splitting
 - State-of-the-art equality inference rules
 - Standard notion of redundancy
- Improves model building capabilities of standard BUMG provers
 - E.g. MSPASS, KRHyper, but not limited to these
 - Method generates domain elements on a by need basis
 - Never identifies constants (unlike finite model finders)
- Future work
 - Sorts
 - Nonmonotonic reasoning