
P. Baumgartner and R. Schmidt

Blocking and Other Enhancements for
Bottom-Up Model Generation Methods

1

Peter Baumgartner
National ICT Australia

Renate A. Schmidt
The University of Manchester

P. Baumgartner and R. Schmidt

Motivation: Disproving

2

• Disproving
– Show that a given (first-order) formula (with equality) is not valid
– This can be done by computing a model, i.e. a counterexample

• Applications of Disproving
– Mathematics

• Refute conjectures
• Finite group existence

– Verification: disproving verification conditions
– Knowledge representation

• Knowledge base is consistent
• Speculated subsumption relation does not hold

Existing methods? Limits? What’s new here?

P. Baumgartner and R. Schmidt

Disproving Methods (1)

• Finite model building
– Assume a fixed, finite domain { d1,...,dn }
– Decide if there is a model of the given formula over that domain
– If not, add a new domain element and repeat

• Methods
– MACE-style: by reduction to

• propositional SAT (Paradox, Mace2) or
• function-free clause logic (FM-Darwin)

– SEM-style: guess function tables and check for model
– (Tableaux) algorithms by Bry&Torge, Bezem, Nivelle&Meng

3

 No syntactic restrictions on input formula
 Finite models sometimes not sufficient

 Poor scaling

P. Baumgartner and R. Schmidt

Finite Model Builders - Scaling Problems

• Consider the clause set consisting of the O(n2) unit clauses

• Second clause says no ci and cj can be mapped to the same element
– Therefore, smallest model has n domain elements

• 109 instances for n=10
– For which n do current finite model finders give up?

• Any resolution method will terminate here

4

p(c1, . . . , cn)
¬p(x1, . . . , xi−1, x, xi+1, . . . , xj−1, x, xj+1, . . . , xn) for all 1 ≤ i < j ≤ n

Finite model builders / (our) resolution methods are rather different
Our approach doesn’t iterate on domain size

Our approach doesn’t identify different constants

P. Baumgartner and R. Schmidt

Disproving Methods (2)

• Identify decidable fragment of FOL
– Guarded Fragment
– Description and modal logics
– Positive-variable dominated clauses
– Prefix-classes: ∃*∀*, ∃*∀∃*, ...

• Design decision procedure for it
– From scratch. E.g. tableaux algorithms for description logics
– By showing that a certain (resolution) refinement decides it.

E.g. with axiomatic translation [Schmidt&Hustadt 2005],
ordered resolution + splitting decides many modal logics

5

 Powerful
 Resolution not practical for ∃*∀*

Really ?

P. Baumgartner and R. Schmidt

Problems of Using Resolution for ∃*∀*

6

• ∃*∀* fragment corresponds to function-free clause logic
– Important for many database-like applications (Datalog)

• Pathological example for resolution:

Res
p(x, y) ∨ p(y, z)← p(x, z) p(a, z) ∨ p(z, a)

p(a, y) ∨ p(y, z) ∨ p(z, a)

Derived clauses pattern: p(a, z) ∨ p(z, a)
p(a, y) ∨ p(y, z) ∨ p(z, a)

p(a, x) ∨ p(x, y) ∨ p(y, z) ∨ p(z, a)

...
 Refinements like subsumption, condensing, splitting don’t help
 Hyperresolution + range restriction works, but inefficiently

(One) contribution here: improved range restriction

P. Baumgartner and R. Schmidt 7

Standard
Range Restriction

Input Clause Set

Bottom-Up
Model Generation

Transformation

“Standard” prover

Classical Approach

P. Baumgartner and R. Schmidt 8

Standard
Range Restriction

Input Clause Set

Bottom-Up
Model Generation

Transformation

Classical Approach

“Standard” prover

P. Baumgartner and R. Schmidt 9

Standard Range Restriction [Manthey & Bry 88]

• A clause is range restricted iff each variable in its head also occurs in
its body, as in p(x, z) ∨ p(z, a)  q(x, z)

• Every clause (set) can be made range restricted:
– Restrict all extra variables in head in all input clauses to dom, e.g.

– Add “dom”-clauses to enumerate Herbrand universe:

All positive clauses derived by hyperresolution are ground

p(x, z) ∨ p(z, a) becomes p(x, z) ∨ p(z, a)← dom(x) ∧ dom(z)

dom(a)
dom(b)

dom(f(x1, . . . , xn)) ← dom(x1) ∧ · · · ∧ dom(xn)

P. Baumgartner and R. Schmidt 10

Standard
Range Restriction

Input Clause Set

Bottom-Up
Model Generation

Transformation

“Standard” prover
E.g. based on hyperresolution

Classical Approach

P. Baumgartner and R. Schmidt 11

 Hyperresolution + Range Restriction + Splitting

Model

 Decides function-free clause logic (BS class)
 Search space too big

Improvement?

H-Res
p(a, z) ∨ p(z, a)← dom(z) dom(b)

p(a, b) ∨ p(b, a)

H-Res
p(x, y) ∨ p(y, z)← dom(y) ∧ p(x, z) dom(a) p(a, b)

p(a, a) ∨ p(a, b)

p(a, z) ∨ p(z, a)
p(x, y) ∨ p(y, z) ← p(x, z)

Given clause set:

Derivation by hyperresolution + splitting after range restriction

Split
p(a, b) | p(b, a)

Split
p(a, a) | p(a, b)

P. Baumgartner and R. Schmidt 12

Standard
Range Restriction

Input Clause Set

Bottom-Up
Model Generation

Transformation

Our Approach

“Standard” prover

Improved

P. Baumgartner and R. Schmidt

Improved Range Restriction

13

(1) Domain elements from clause heads

P(x) ∨ Q(b)

Clause Transformation

dom(a) for some constant a

P(x) ∨ Q(b)← dom(x)

 May yield smaller domain, depending on splits chosen

dom(x)← P(x) for each head

dom(x)← Q(x) predicate symbol

Here: idea by means of an example, see paper for details

P. Baumgartner and R. Schmidt

Improved Range Restriction

14

(2) Domain elements from clause bodies

Clause Transformation

 May yield smaller domain, depending on satisfied literals

dom(a) for some constant a

P(x)← dom(x)
dom(x)← P(x)

P(x)

⊥ ← P(a) ∧ P(b) ⊥ ← P(a) ∧ P(b)

dom(a)← P(x) for each body

dom(b)← P(x) predicate symbol

P. Baumgartner and R. Schmidt

Improved Range Restriction

15

(2) Domain elements from clause bodies

Clause Transformation

 May yield smaller domain, depending on satisfied literals

dom(a) for some constant a

P(x)← dom(x)
dom(x)← P(x)

P(x)

⊥ ← Q(a) ∧ Q(b) ⊥ ← Q(a) ∧ Q(b)

dom(a)← Q(x) for each body

dom(b)← Q(x) predicate symbol

P. Baumgartner

Soundness and Completeness

16

• rr(M) := transformation of clause set M into range-restricted form
• Proposition

A clause set M is satisfiable iff rr(M) is satisfiable
Proof (completeness):
– Given a Herbrand model Irr of rr(M).
– Define Interpretation I for M :

• Domain |I| = { t | Irr ⊨ dom(t) }

• Terms in |I| evaluate to themselves (“Quasi-Herbrand”)
– Show that I is a model of M : ...

• Corollary
A clause set M is E-satisfiable iff
rr(M) ∪ { x º x ← dom(x) } is E-satisfiable
Proof: Use equality axioms. Only equality axiom affected is reflexivity

P. Baumgartner and R. Schmidt

Problem with Improved Range Restriction

17

• Problem: function symbols in clause bodies may lead to
non-termination of BUMG

• Example:
From

 r(x)  q(x) ∧ p(f(x))

obtain
 dom(f(x))  p(y)
and finally
 dom(f(x))  dom(x) ∧ p(y)

• Together with p(b), q(a),

 dom(a)
derive
 dom(f(a))

 dom(f(f(a)))

 dom(f(f(f(a))))

 ...

The “shifting” transformation avoids this problem

P. Baumgartner and R. Schmidt

Our Approach

18

Shifting

Improved
Range Restriction

Input Clause Set

Bottom-Up
Model Generation

Transformations

“Standard” prover

P. Baumgartner and R. Schmidt

Shifting

19

• Moves body literals with function terms into the head:

 r(x)  q(x) ∧ p(f(x))

Shifting:

 r(x) ∨ not_p(f(x))  q(x)

 ⊥  p(x) ∧ not_p(x)
• Advantage: criticial head atom not_p(f(x)) possibly avoided now:
• With, say
 p(b), q(a)

 dom(a)
derive
 r(a) ∨ not_p(f(a))

then split
 r(a)
and done

 Improved RR + Shifting already quite effective
Next: going beyond ∃*∀* by “blocking”

P. Baumgartner and R. Schmidt

Our Approach

20

Shifting

Improved
Range Restriction

Blocking

Input Clause Set

Bottom-Up
Model Generation

Transformations

“Standard” prover

P. Baumgartner and R. Schmidt

Blocking: Idea

21

• Detect periodicity in models and achieve termination by exploiting
standard redundancy criteria

• Example from Tambis KB

• BUMG without blocking derives infinite model:

• But same model represented finitely by

Chapter Book
∃ part_of

∃ has_part

Blocking transformation encodes this search for equations

Chapter(a)
Book(fBook(x))← Chapter(x)

Chapter(fChapter(x))← Book(x)
⊥ ← Chapter(x) ∧ Book(x)

{Chapter(a), Book(fBook(a)), Chapter(fChapter(fBook(a))), . . .}

{Chapter(a), Book(fBook(a))} and fChapter(fBook(a)) ≈ a

P. Baumgartner and R. Schmidt

Blocking

• If y is a subterm of x then speculate x º y - or not:

To be effective, BUMG must consider the case x º y first
• The subterm relation, restricted to dom elements:

• This way, say, dom(f(a)) will be simplified to dom(a) when equation
f(a) º a has been speculated

22

x ≈ y ∨ x #≈ y ← sub(x, y)
⊥ ← x ≈ y ∧ x #≈ y

sub(x, x)← dom(x)
sub(x, f(x1, . . . , xn))← sub(x, xi) ∧ dom(x) ∧ dom(f(x1, . . . , xn))

for every n-ary function symbol f ∈ Σf and all i ∈ {1, . . . , n}

Never equates two constants, search limited to subterms in domain

P. Baumgartner and R. Schmidt

Experiments

• TPTP Version 3.1.1, tried all 514 clausal satisfiable problems
• Main prover: slightly modified superposition prover MSPASS
• Environment: Linux PC, Intel Pentium 4, 3.8 GHz, 1 GByte
• Timeout 5 minutes

Memory limit 300 MByte (never a problem for MSPASS and KRHyper)
• Results: MSPASS + our transformations vs. ...

– ... SPASS auto mode: orthogonal
– ... Paradox: about 20 problems unsolvable for Paradox that can be

solved by our methods
• Next slides:

– Detailed evaluation of MSPASS + our transformations
– On non-equational problems also tried KRHyper

23

P. Baumgartner and R. Schmidt

MSPASS on Satisfiable TPTP Problems

24

rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp
ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

Table 1. Result summary of MSPASS runs on the satisfiable clausal TPTP problems.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent
columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr ◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,
crr◦bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting

P. Baumgartner and R. Schmidt

MSPASS on Satisfiable TPTP Problems

25

rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp
ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

Table 1. Result summary of MSPASS runs on the satisfiable clausal TPTP problems.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent
columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr ◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,
crr◦bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting

Splitting
is advisable

P. Baumgartner and R. Schmidt

MSPASS on Satisfiable TPTP Problems

26

rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp
ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

Table 1. Result summary of MSPASS runs on the satisfiable clausal TPTP problems.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent
columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr ◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,
crr◦bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting

sh ∘ rr and rr ∘ bl
orthogonal

P. Baumgartner and R. Schmidt

MSPASS on Satisfiable TPTP Problems

27

rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp
ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

Table 1. Result summary of MSPASS runs on the satisfiable clausal TPTP problems.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent
columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr ◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,
crr◦bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting

sh ∘ rr ∘ bl
generally best

P. Baumgartner and R. Schmidt

MSPASS on Satisfiable TPTP Problems

28

rr rr sh◦ rr sh◦ rr rr◦bl sh◦ rr◦bl crr◦bl
Category # −sp +sp −sp +sp +sp +sp +sp
ALG 1 0 0 0 0 1 0 0
BOO 13 0 0 0 0 2 3 2
COL 5 0 0 0 0 0 0 0
GEO 1 0 0 0 0 0 0 0
GRP 25 7 7 7 8 15 14 12
KRS 8 1 1 4 8 4 6 4
LAT 1 0 0 0 0 1 1 0
LCL 4 0 1 1 1 1 1 1
MGT 10 1 1 3 4 4 5 0
MSC 1 1 1 1 1 1 1 1
NLP 236 49 79 68 96 87 160 68
NUM 1 1 1 1 1 1 1 1
PUZ 20 6 6 6 6 10 10 9
RNG 4 0 0 0 0 0 0 0
SWV 8 0 0 0 0 1 1 0
SYN 176 20 50 20 52 124 125 120
All 514 86 147 111 177 252 328 218

Table 1. Result summary of MSPASS runs on the satisfiable clausal TPTP problems.

Table 1 is a summary of the results of the MSPASS runs. The column with the head-
ing “#” gives the number of problems in the listed TPTP categories. The subsequent
columns give the number of problems solved within the given time limit of five minutes
(CPU time) and 300 MByte main memory consumption (which was not a bottleneck).
Results are presented for the different transformations that were used. For example,
sh ◦ rr ◦ bl means that shifting, the new range-restriction and blocking was used; +sp,
respectively −sp, indicate whether splitting was enabled or disabled. The last column,
crr◦bl, contains the results for the classical range-restricting transformation in combi-
nation with blocking. (For the reasons mentioned before, evaluating the classical range-
restricting transformation without blocking is not of interest for satisfiable problems.)
Testing the crr◦bl setting is interesting because it allows us to assess the significance of
the shifting and our new range-restricting transformations in comparison with classical
range-restriction. As can be seen from the number of problems solved, the sh, rr, and
in particular, the sh◦ rr transformations performed much better than crr in combination
with bl. This demonstrates the need for all our new transformations. The runtimes for
the problems solved spanned the whole range, from less than one second to almost all
of the time allowed. It is not a mistake that no results are given for transformations with
blocking but no splitting; this would not make sense.

Let us now compare the individual combinations and discuss our observations from
the experiments conducted with MSPASS. Broadly, the results indicate that the per-
formance for the combination (rr,−sp) was inferior to that for (rr,+sp) and for (sh ◦
rr,−sp), and each of these was inferior to the performance for (sh ◦ rr,+sp). There
were only very few problems that were solved by an “inferior” combination alone. This
suggests that switching splitting on is advisable, and that shifting is an effective im-
provement, in particular in combination with splitting. In that combination, splitting

sh ∘ rr ∘ bl
much better than

crr ∘ bl

P. Baumgartner and R. Schmidt

KRHyper on Satisfiable non-Equational Problems

29

Rating # MSPASS
KRHyper
additional Rating # MSPASS

KRHyper
additional

1.00 4 0 0.40 47 26 1
0.80 57 24 4 0.33 8 4 1
0.67 26 5 0.20 70 50
0.60 44 23 10 0.17 31 10
0.50 5 0 0.00 223 198 1

Table 2. Result summary wrt. problem rating.

Table 2 summarizes the results with respect to problem rating. The column with the
heading “MSPASS” reflects how many problems were solved, among all the combina-
tions mentioned in Table 1 except crr◦bl. The “KRHyper additional” column says how
many problems were solved by KRHyper (using the transformation sh ◦ rr) that were
not solvable in any combination with MSPASS. As far as we know, problems with rat-
ing 0.80 have so far been solved by one theorem prover only. It was notable that each
problem with a rating 0.80 or 0.67 solvable by MSPASS required blocking. On the other
hand, there were several unsolvable “easy” problems.

Together, this indicates that the approach presented here and the more established
methods are orthogonal. This finding was confirmed by a comparison with MSPASS (in
autonomous mode) and Paradox [9], a state-of-the-art MACE-style finite model builder.
We ran Paradox on the same problem set, with the same time limit of five minutes (CPU
time) and a limit on 400 MByte main memory consumption. There were several prob-
lems that were solved by Paradox but not with our methods. On the other side, there
were 21 problems, all of the NLP category, that were be solved with our methods but
not by Paradox. Each of these problems required shifting (and splitting) to be solv-
able by our methods. In about half of the cases blocking was essential, while the other
half were solved by shifting alone. Without shifting (with or without splitting), none of
these problems were solved. The runtimes varied between two and at most 15 seconds.
Memory consumption was not an issue at all. By contrast, for 13 of these 21 problems
Paradox was stopped prematurely because the memory limit was exceeded before the
time limit was reached. We sampled some of these problems and re-ran Paradox with-
out artificial limits. For the problem NLP049-1, for instance, about 10 million (ground)
clauses were generated for a domain size of 8 elements, consuming about 1 GByte of
main memory, and the underlying SAT solver did not complete its run within 15 min-
utes (we stopped it then). This picture seems typical for these problems. Regarding the
comparison with MSPASS in autonomous mode, the differences in which problems
were solvable were more pronounced.

5 Conclusions

We have presented and tested a number of enhancements for BUMG methods. An im-
portant aspect is that our enhancements exploit the strengths of readily available BUMG
system without any, or only little modifications. Our techniques have the advantage over
existing approaches based on transformations to range-restricted clauses that terms are
added to the domain of interpretation on a “by need” basis. Moreover, we present meth-
ods that allow us to extend BUMG methods with a blocking technique, which has only

P. Baumgartner and R. Schmidt

Conclusions

30

• Various improvements to BUMG paradigm, based on
– Shifting, improved range restriction, blocking
– Hyperresolution + splitting

• State-of-the-art equality inference rules
• Standard notion of redundancy

• Improves model building capabilities of standard BUMG provers
– E.g. MSPASS, KRHyper, but not limited to these
– Method generates domain elements on a by need basis
– Never identifies constants (unlike finite model finders)

• Future work
– Sorts
– Nonmonotonic reasoning

