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Theorem Proving

Theorem proving is about . . .

Logics (Propositional, First-Order, Higher-Order, Modal, Description, . . . )

Calculi and proof procedures (Resolution,. . . )

Systems (Interactive, Automated)

Applications (Knowledge Representation, Verification, . . . )

Milestones

60s: Calculi: DPLL, Resolution, Model Elimination

70s: Logic Programming

80s: Knowledge Representation

90s: “A Basis for Applications”

2000s: Semantic Web, Ontologies, SW-Engineering
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Two Separated Worlds

First-Order
Reasoning

Propositional
Reasoning

Techniques Resolution DPLL

Model Elimination OBDD

Hyper Linking Stalmarck’s Method

Tableaux

Stochastic (GSAT)

Systems E, Otter, Setheo, SNARK,

Spass, Vampire

Chaff, SMV, Heerhugo, FACT,

WalkSat

Applications SW-Verification (Limited) Symbolic Model Checking

Mathematics Mathematics

Discourse Representation Planning, Description Logics

TPTP Nonmonotonic Reasoning

Can couple these worlds more closely?
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Motivation

DPLL: Successfully used for propositional logic

FDPLL: New lifting of DPLL to f irst-order logic

Why?

Use successful first-order techniques

(unification, redundancy tests)

Close a gap in the calculus landscape

Theorem Proving: Alternative to

Resolution, Model Elimination

Model computation

(Counterexamples, diagnosis, abduction,

planning, nonmonotonic reasoning,. . . –

largely unexplored)

(Dream) Bring first-order reasoning to

domains that are successfully tackled with

propositional DPLL

Unification:

unify{P(a, y), P(x, f(x))}

= {P(a, f(a))}

Theorem Proving:

Axioms
?

|= Conjecture

Model Computation: Is

Axioms∧¬Conjecture

satisfiable?

Axioms
?

6|= Conjecture
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Overview

Propositional DPLL as a semantic tree method

First-Order DPLL so far

FDPLL

Relation to other calculi
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Notation

Propositional clause: a disjunction of literals, e.g.

A∨B∨¬C∨¬D

Propositional clause set: a finite set of propositional clauses.

Interpretation: maps atoms to {true, false}, e.g.

A B C D

true false true false

Representation by consistent sets of literals, e.g. (all the same)

{A, C} {A,¬B, C} {A,¬B, C,¬D}

Model: an interpretation such that every clause is satisfied, e.g.

{A, C} |= {A∨B∨¬C∨¬D}

{A, C} 6|= {A∨B∨¬C∨¬D, ¬A∨B}

A clause set is satisfiable iff a model for it exists, otherwise unsatisfiable.
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Propositional DPLL as a Semantic Tree Method

(1) A∨B (2) C∨¬A (3) D∨¬C∨¬A (4) ¬D∨¬B

{} 6|= A∨B

{} |= C∨¬A

{} |= D∨¬C∨¬A

{} |= ¬D∨¬B

〈empty tree〉

A Branch stands for an interpretation

Purpose of splitting: Satisfy a clause that is currently “false”

Close branch if some clause plainly contradicts it (?)

Sound and complete, also for (minimal) model reasoning
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DP vs. DPLL

Two versions of the main inference rule:

Davis, Putnam 1960: “Rule for eliminating atomic formulas”:

1. Select an atom A

2. Resolve (!) on all clauses A∨ . . . and ¬A∨ . . .

3. Delete all clauses A∨ . . . and ¬A∨ . . .

Problem: Step 2 involves multiplying out
∨ ∧

-formula to
∧ ∨

-formula

Solution:

Davis, Logemann, Loveland 1962: “Splitting Rule”:

1. Select an atom A

2. Split into cases A and ¬A.

3. In each case, simplify according to new information.

Davis 1963; Chinlund, Davis, Hinman, McIlroy 1964:

Improvement of first-order case.
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DPLL - The First-Order Case (1962)

Grounding

Propositional
DPLL

→∃y P(y, a)

Given Formula

P(f(x), x)
¬P(y, a)

Clause Form

∀x ∃y P(y, x)
Preprocessing:

Outer loop:

Inner loop:

Problems/Issues:

Controlling the grounding process in outer loop (irrelevant clauses)

Repeat work across inner loops

Weak redundancy criterion within inner loop
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Controlling the Grounding Process

Davis 1963; Chinlund, Davis, Hinman, McIlroy 1964:

“Linked Conjunct Method”:

Admissible clause set:

P(a) ∨ Q(a)

¬P(a) ∨ Q(a)

¬Q(a) ∨ P(a)

Every literal has a mate

Non-admissible clause set:

P(b) ∨ Q(a)

¬P(a) ∨ Q(a)

¬Q(a) ∨ P(a)

The literal P(b) is pure

Anticipates unification! Note: Robinson paper on Resolution 1965

Some more recent work in this tradition:

Lee&Plaisted 1992, Chu&Plaisted 1994, Plaisted & Zhu 1997: (O)(S)HL

Billon 1996: Disconnection Method

Baumgartner 1998: Hyper Tableaux Next Generation

Parkes 1999: Lifted Search Engines for Satisfiability

May show very good performance!
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Summary / Further Plan

Instance based methods reduce first-order to propositional logic

E.g. Resolution performs intrinsic first-order reasoning

Advantages:

Representation: Infinitely many inferences finitely represented:

P(f(x), x) ¬P(y, z)∨Q(y, z)

Q(f(x), x)

Infinitely many inferences in instance based methods

Redundancy testing: E.g. by subsumption:

¬P(y, z) subsumes ¬P(y, y)∨Q(y, y)

Lack of redundancy testing in instance based methods
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Lack of redundancy testing in instance based methods
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Overview

Propositional DPLL as a semantic tree method 4

First-Order DPLL so far 4

FDPLL

Relation to other calculi

FDPLL – A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.14



Meta-Level Strategy

Lifted data structures:

Propositional
Reasoning

First-Order
Reasoning

Resolution A∨¬B∨C P(x, y)∨¬Q(x, z)∨R(y, z)

DPLL

B

A ¬A

¬B

C ¬C
?

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

¬Q(x, y)
?

Q(x, y)

FDPLL: First-Order Semantic Trees
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First-Order Semantic Trees

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

¬Q(x, y)
?

Q(x, y)

Issues:

One-branch-at-a-time approach desired

How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

How to extract an interpretation from a branch?

When is a branch closed?

How to construct such trees (calculus)?
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Extracting an Interpretation from a Branch

Branch B:

P(x, y)

Interpretation [[B]] = {...}:

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

The order of literals does not matter.
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Extracting an Interpretation from a Branch

Branch B: Interpretation [[B]] = {. . .}:

{

}

, ,

,

P(x, y)

P(a, b)
P(a, b)

¬P(a, y)

¬P(b, b)

¬P(a, a) P(b, a)

¬P(b, b)

A branch literal specifies the truth values for all its ground instances,

unless there is a more specific literal specifying opposite truth values.

The order of literals does not matter.
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First-Order Semantic Trees

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

Q(x, y) ¬Q(x, y)
?

Issues:

One-branch-at-a-time approach desired

How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

How to extract an interpretation from a branch? 4

When is a branch closed?

How to construct such trees (calculus)?
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Calculus: Branch Closure

Purpose: Determine if branch elementary contradicts an input clause.

Propositional case:

¬C

¬B

?

¬AA

C B∨Cclosed by

B

1.

2.

3.

Theorem: FDPLL is sound (because propositional DPLL is sound), and splitting

can be done with arbitrary literal.
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First-Order Semantic Trees

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

Q(x, y) ¬Q(x, y)
?

Issues:

How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

How to extract an interpretation from a branch? 4

When is a branch closed? 4

How to construct such trees (calculus)?
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FDPLL Calculus

Input: a clause set S

Output: “unsatisfiable” or “satisfiable” (if terminates)

Note: Strategy much like in inner loop of propositional DPLL:

〈empty
tree〉

Init

Next: Testing [[B]] |= S and splitting
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Calculus: The Splitting Rule

Purpose: Satisfy a clause that is currently “false”

P(y, a)¬P(y, a)

P(x, y) ∨ ¬P(y, x)¬P(a, b)

¬P(a, y′)

P(y′′, x′′)

Some clause
from S

1.

2.

3.

This split was really necessary!

Proposition: If [[B]] 6|= S, then split is applicable to some clause from S
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Calculus: The Splitting Rule – Another Example

Purpose: Satisfy a clause that is currently “false”

P(y, a)¬P(y, a)

P(x, y) ∨ ¬P(a, x)¬P(a, b)

¬P(a, y′)

P(y′′, x′′)

Some clause
from S

1.

2.

Non-applicability is a redundancy test

Proposition: If for no clause split is applicable, [[B]] |= S holds
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Calculus: The Commit Rule

Purpose: Achieve consistency of interpretation associated to branch

P(x, y)

P(a, y)

¬P(x, b)

1.

2.

Now have removed the inconsistency
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FDPLL Complete Example

(1) train(X,Y) ; flight(X,Y). %% train from X to Y or flight from X to Y.

(2) -flight(koblenz,X). %% no flight from koblenz to anywhere.

(3) flight(X,Y) :- flight(Y,X). %% flight is symmetric.

(4) connect(X,Y) :- flight(X,Y). %% a flight is a connection.

(5) connect(X,Y) :- train(X,Y). %% a train is a connection.

(6) connect(X,Z) :- connect(X,Y), %% connection is a transitive relation.

connect(Y,Z).

Computed Model (as output by implementation)

+ flight(X, Y)

- flight(koblenz, X)

- flight(X, koblenz)

+ train(koblenz, Y)

+ train(Y, koblenz)

+ connect(X, Y)
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FDPLL Model Computation Example - Derivation

〈empyty tree〉

Clause instance used in inference: train(x, y)∨flight(x, y)

Done. Return

“satisfiable with model {flight(x, y), . . . , connect(x, y)}”
Redundancy: Instance not used in inference: connect(x, ko)∨¬train(x, ko)
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Optional Inference Rule – Universal Splits

(1) P(x) (2) ¬P(x)∨Q(x)

Split based on tautology ∀x P(x)∨¬∀x P(x):

?
¬P(sk1)∀x P(x)

Sources for Universal Splits

Unit input clauses

Resolving away n− 1 literals from an n-literal clause (UR-Resolution)

Advantages: – No “exceptions” permitted, hence much better efficiency

– Subsumption
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Calculus: Summary / Properties

Summary

DPLL data structure lifted to first-order logic level

Two simple inference rules, controlled by unification

Computes with interpretations/models

Semantical redundancy criterion

Properties

Soundness and completeness (with fair strategy).

Extension: More efficient reasoning with unit clauses (e.g. ∀x P(x, a))

Proof convergence (avoids backtracking the semantics trees)

Decides function-free clause logic (Bernays-Schönfinkel class)

Covers e.g. Basic modal logic, Description logic, DataLog

Returns model in satisfiable case

But: Resolution better on other classes!

[Fermüller et. al. Handbook AR 2001 (e.g. Gödel class, Monadic class, Guarded Fragment,. . . )]
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First-Order Semantic Trees

P(x, y) ¬P(x, y)

¬P(x, a) P(x, a)

Q(x, y) ¬Q(x, y)
?

Issues:

How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

How to extract an interpretation from a branch? 4

When is a branch closed? 4

How to construct such trees (calculus)? 4

FDPLL – A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.30



Overview

Propositional DPLL as a semantic tree method 4

First-Order DPLL so far 4

FDPLL 4

Relation to other calculi
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Families of First-Order Logic Calculi

Consider a transitivity clause P(x, z)←P(x, y)∧P(y, z).

Resolution:

P(x, z′) ← P(x, y)∧P(y, z)∧P(z, z′)

[Bachmair & Ganzinger,

Handbook AR 2001],

[Fermüller et. al.,

Handbook AR 2001]

P(x, z′′) ← P(x, y)∧P(y, z)∧P(z, z′)∧P(z′, z′′)

Does not terminate for function-free clause sets

Complicated to extract model

Very good on other classes, Equality

Rigid Variable Approaches:

P(x′, z′) ← P(x′, y′)∧P(y′, z′)

P(x′′, z′′) ← P(x′′, y′′)∧P(y′′, z′′)

FO-DPLL: [Chang&Lee 73]

Tableaux and CM: [Peltier, IGPL

99], [Baumgartner et al, CADE 99],

[Beckert, FTP 2000], [Giese, CADE

01]

Unpredictable number of variants, weak redundancy test

Difficult to avoid unnecessary (!) backtracking

Difficult to extract model
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Families of First-Order Logic Calculi

Consider a transitivity clause P(x, z)←P(x, y)∧P(y, z).

Instance Based Methods:

P(x, z) ← P(x, y)∧P(y, z)

P(a, z) ← P(a, y)∧P(y, b)

HL [Lee&Plaisted, JAR 92], SHL

[Chu&Plaisted, CADE 94], DM

[Billon, TABLEAUX 96], OSHL

[Plaisted & Zhu, AAAI 97], Hyper

Tableaux NG [TABLEAUX 98], [van

Eijck, CSL 01]

Weak redundancy criterion (no subsumption)

Need to keep clause instances (memory problem)

Clauses do not become longer (cf. Resolution)

May delete variant clauses (cf. Rigid Variable Approach)

FDPLL in this tradition, but

need not keep instances

conceptually different: – binary splitting

– based on first-order interpretations
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Conclusions

Implementation

In Eclipse Prolog, ≈ 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/

Some improvements (Dependency directed backtracking)

Still slow due to low inference rate and non-optimal algorithm

. . . on TPTP

Solves some moderately difficult problems e.g. IVT

3-move Rubik’s cube problem (654 possible state predicate instances)

Relative strength: non-Horn, satisfiable problems (Modal Logic)

Success rates:

State-of-the-art systems: ≈ 55%, FDPLL: ≈ 40%

State-of-the-art Resolution systems, 70’s technology: ≈ 30%
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