FDPLL – A First-Order Davis-Putnam-Logemann-Loveland Procedure

Peter Baumgartner Institut für Informatik Universität Koblenz-Landau Germany

http://www.uni-koblenz.de/~peter/

Theorem Proving

Theorem proving is about ...

Logics (Propositional, First-Order, Higher-Order, Modal, Description, ...) Calculi and proof procedures (Resolution,...) Systems (Interactive, Automated)

Applications (Knowledge Representation, Verification, ...)

Theorem Proving

Theorem proving is about ...

Logics (Propositional, First-Order, Higher-Order, Modal, Description, ...) Calculi and proof procedures (Resolution,...) Systems (Interactive, Automated) Applications (Knowledge Representation, Verification, ...)

Milestones

- 60s: Calculi: DPLL, Resolution, Model Elimination
- 70s: Logic Programming
- 80s: Knowledge Representation
- 90s: "A Basis for Applications"
- 2000s: Semantic Web, Ontologies, SW-Engineering

Theorem Proving

Theorem proving is about ...

Logics (Propositional, First-Order, Higher-Order, Modal, Description, ...) Calculi and proof procedures (Resolution, ...) Systems (Interactive, Automated)

Applications (Knowledge Representation, Verification, ...)

Milestones

60s: Calculi: DPLL, Resolution, Model Elimination

70s: Logic Programming

80s: Knowledge Representation

90s: "A Basis for Applications"

2000s: Semantic Web, Ontologies, SW-Engineering

Two Separated Worlds

	First-Order Reasoning	Propositional Reasoning
Techniques	Resolution	DPLL
	Model Elimination	OBDD
	Hyper Linking	Stalmarck's Method
		Tableaux
		Stochastic (GSAT)
Systems	E, Otter, Setheo, SNARK, Spass, Vampire	Chaff, SMV, Heerhugo, FACT, WalkSat
Applications	SW-Verification (Limited)	Symbolic Model Checking
	Mathematics	Mathematics
	Discourse Representation	Planning, Description Logics
	ТРТР	Nonmonotonic Reasoning

Two Separated Worlds

	First-Order Reasoning	Propositional Reasoning
Techniques	Resolution	DPLL
	Model Elimination	OBDD
	Hyper Linking	Stalmarck's Method
		Tableaux
		Stochastic (GSAT)
Systems	E, Otter, Setheo, SNARK, Spass, Vampire	Chaff, SMV, Heerhugo, FACT, WalkSat
Applications	SW-Verification (Limited)	Symbolic Model Checking
	Mathematics	Mathematics
	Discourse Representation	Planning, Description Logics
	ТРТР	Nonmonotonic Reasoning

Can couple these worlds more closely?

DPLL: Successfully used for propositional logic FDPLL: New lifting of DPLL to first-order logic

Why?

DPLL: Successfully used for propositional logic FDPLL: New lifting of DPLL to first-order logic

Why?

Use successful first-order techniques (unification, redundancy tests)

```
Unification:
        unify{P(a, y), P(x, f(x))}
        = \{P(a, f(a))\}
```

DPLL: Successfully used for propositional logic FDPLL: New lifting of DPLL to first-order logic

Why?

- Use successful first-order techniques (unification, redundancy tests)
- Close a gap in the calculus landscape

```
Unification:
        unify{P(a, y), P(x, f(x))}
        = \{P(a, f(a))\}
```

DPLL: Successfully used for propositional logic FDPLL: New lifting of DPLL to first-order logic

Why?

- Use successful first-order techniques (unification, redundancy tests)
- Close a gap in the calculus landscape
- Theorem Proving: Alternative to Resolution, Model Elimination

```
Unification:
        unify{P(a, y), P(x, f(x))}
        = \{P(a, f(a))\}
Theorem Proving:
      Axioms \models Conjecture
```

DPLL: Successfully used for propositional logic FDPLL: New lifting of DPLL to first-order logic

Why?

- Use successful first-order techniques (unification, redundancy tests)
- Close a gap in the calculus landscape
- Theorem Proving: Alternative to Resolution, Model Elimination
- Model computation

(Counterexamples, diagnosis, abduction, planning, nonmonotonic reasoning,...– largely unexplored)

```
Unification:
        unify{P(a, y), P(x, f(x))}
        = \{P(a, f(a))\}
Theorem Proving:
       Axioms \models Conjecture
Model Computation: Is
       Axioms \land \negConjecture
satisfiable?
       Axioms \not\models Conjecture
```

DPLL: Successfully used for propositional logic FDPLL: New lifting of DPLL to first-order logic

Why?

- Use successful first-order techniques (unification, redundancy tests)
- Close a gap in the calculus landscape
- Theorem Proving: Alternative to Resolution, Model Elimination
- Model computation

(Counterexamples, diagnosis, abduction, planning, nonmonotonic reasoning,...– largely unexplored)

(Dream) Bring first-order reasoning to domains that are successfully tackled with propositional DPLL

Unification: unify{P(a, y), P(x, f(x))} $= \{P(a, f(a))\}$ **Theorem Proving:** Axioms \models Conjecture Model Computation: Is Axioms $\land \neg$ Conjecture satisfiable? Axioms $\not\models$ Conjecture

Overview

Propositional DPLL as a semantic tree method

First-Order DPLL so far

FDPLL

Relation to other calculi

Notation

Propositional clause: a disjunction of literals, e.g.

 $A \lor B \lor \neg C \lor \neg D$

Propositional clause set: a finite set of propositional clauses.

Notation

Propositional clause: a disjunction of literals, e.g.

 $A \lor B \lor \neg C \lor \neg D$

Propositional clause set: a finite set of propositional clauses.

Interpretation: maps atoms to {true, false}, e.g.

A B C D

true false true false

Representation by consistent sets of literals, e.g. (all the same)

 $\{A,C\} \qquad \{A,\neg B,C\} \qquad \{A,\neg B,C,\neg D\}$

Notation

Propositional clause: a disjunction of literals, e.g.

 $A \lor B \lor \neg C \lor \neg D$

Propositional clause set: a finite set of propositional clauses.

Interpretation: maps atoms to {true, false}, e.g.

A B C D

true false true false

Representation by consistent sets of literals, e.g. (all the same)

 $\{A,C\} \qquad \{A,\neg B,C\} \qquad \{A,\neg B,C,\neg D\}$

Model: an interpretation such that every clause is satisfied, e.g.

 $\{A, C\} \models \{A \lor B \lor \neg C \lor \neg D\}$ $\{A, C\} \not\models \{A \lor B \lor \neg C \lor \neg D, \neg A \lor B\}$

A clause set is satisfiable iff a model for it exists, otherwise unsatisfiable.

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

 $\langle empty tree \rangle$

 $\{\} \not\models A \lor B$ $\{\} \models C \lor \neg A$ $\{\} \models D \lor \neg C \lor \neg A$ $\{\} \models \neg D \lor \neg B$

- A Branch stands for an interpretation
- Purpose of splitting: Satisfy a clause that is currently "false"
- Close branch if some clause plainly contradicts it (*)

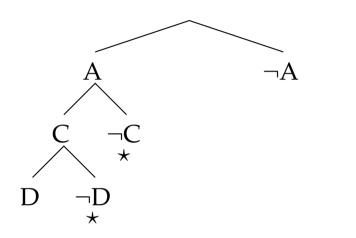
(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$ $\begin{cases} A \rbrace \models A \lor B \\ \{A \rbrace \models C \lor \neg A \\ \{A \rbrace \models D \lor \neg C \lor \neg A \\ \{A \rbrace \models \neg D \lor \neg B \end{cases}$

- A Branch stands for an interpretation
- Purpose of splitting: Satisfy a clause that is currently "false"
- Close branch if some clause plainly contradicts it (*)

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$ $\begin{cases} A, C \rbrace \models A \lor B \\ \{A, C \rbrace \models C \lor \neg A \\ \{A, C \rbrace \models C \lor \neg A \\ \{A, C \rbrace \models D \lor \neg C \lor \neg A \\ \{A, C \rbrace \models \neg D \lor \neg B \end{cases}$

- A Branch stands for an interpretation
- Purpose of splitting: Satisfy a clause that is currently "false"
- Close branch if some clause plainly contradicts it (*)

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$

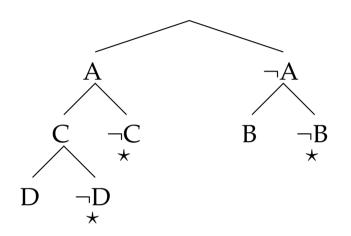


 $\{A, C, D\} \models A \lor B$ $\{A, C, D\} \models C \lor \neg A$ $\{A, C, D\} \models D \lor \neg C \lor \neg A$ $\{A, C, D\} \models \neg D \lor \neg B$

Model $\{A, C, D\}$ found.

- A Branch stands for an interpretation
- Purpose of splitting: Satisfy a clause that is currently "false"
- Close branch if some clause plainly contradicts it (*)

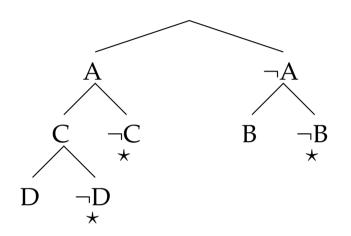
(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$



$$\{B\} \models A \lor B \{B\} \models C \lor \neg A \{B\} \models D \lor \neg C \lor \neg A \{B\} \models \neg D \lor \neg B$$

- A Branch stands for an interpretation
- Purpose of splitting: Satisfy a clause that is currently "false"
- Close branch if some clause plainly contradicts it (*)

(1) $A \lor B$ (2) $C \lor \neg A$ (3) $D \lor \neg C \lor \neg A$ (4) $\neg D \lor \neg B$



$$\{B\} \models A \lor B \{B\} \models C \lor \neg A \{B\} \models D \lor \neg C \lor \neg A \{B\} \models \neg D \lor \neg B$$

- A Branch stands for an interpretation
- Purpose of splitting: Satisfy a clause that is currently "false"
- Close branch if some clause plainly contradicts it (*)
- Sound and complete, also for (minimal) model reasoning

Two versions of the main inference rule:

Davis, Putnam 1960: "Rule for eliminating atomic formulas":

- 1. Select an atom A
- 2. Resolve (!) on all clauses $A \lor \ldots$ and $\neg A \lor \ldots$
- 3. Delete all clauses $A \lor \ldots$ and $\neg A \lor \ldots$

Two versions of the main inference rule:

Davis, Putnam 1960: "Rule for eliminating atomic formulas":

- 1. Select an atom A
- 2. Resolve (!) on all clauses $A \lor \ldots$ and $\neg A \lor \ldots$
- 3. Delete all clauses $A \lor \ldots$ and $\neg A \lor \ldots$

Problem: Step 2 involves multiplying out $\bigvee \bigwedge$ -formula to $\bigwedge \bigvee$ -formula

Two versions of the main inference rule:

Davis, Putnam 1960: "Rule for eliminating atomic formulas":

- 1. Select an atom A
- 2. Resolve (!) on all clauses $A \lor \ldots$ and $\neg A \lor \ldots$
- 3. Delete all clauses $A \lor \ldots$ and $\neg A \lor \ldots$

Problem: Step 2 involves multiplying out $\bigvee \bigwedge$ -formula to $\bigwedge \bigvee$ -formula Solution:

Davis, Logemann, Loveland 1962: "Splitting Rule":

- 1. Select an atom A
- 2. Split into cases A and $\neg A$.
- 3. In each case, simplify according to new information.

Two versions of the main inference rule:

Davis, Putnam 1960: "Rule for eliminating atomic formulas":

- 1. Select an atom A
- 2. Resolve (!) on all clauses $A \lor \ldots$ and $\neg A \lor \ldots$
- 3. Delete all clauses $A \lor \ldots$ and $\neg A \lor \ldots$

Problem: Step 2 involves multiplying out $\bigvee \bigwedge$ -formula to $\bigwedge \bigvee$ -formula Solution:

Davis, Logemann, Loveland 1962: "Splitting Rule":

- 1. Select an atom A
- 2. Split into cases A and $\neg A$.
- 3. In each case, simplify according to new information.

Davis 1963; Chinlund, Davis, Hinman, McIlroy 1964:

Improvement of first-order case.

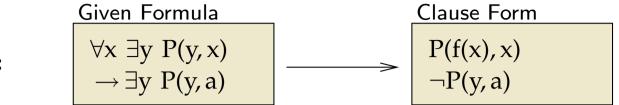
Overview

Propositional DPLL as a semantic tree method

First-Order DPLL so far

FDPLL

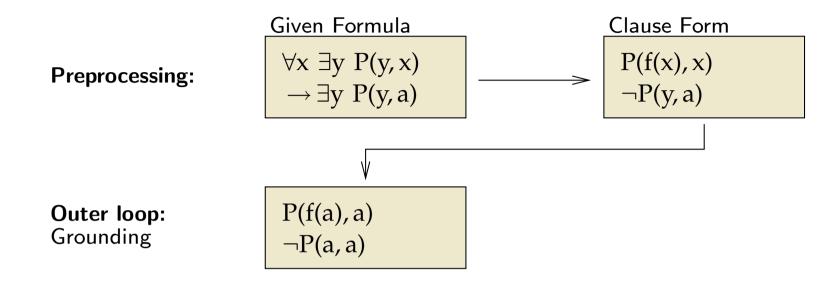
Relation to other calculi



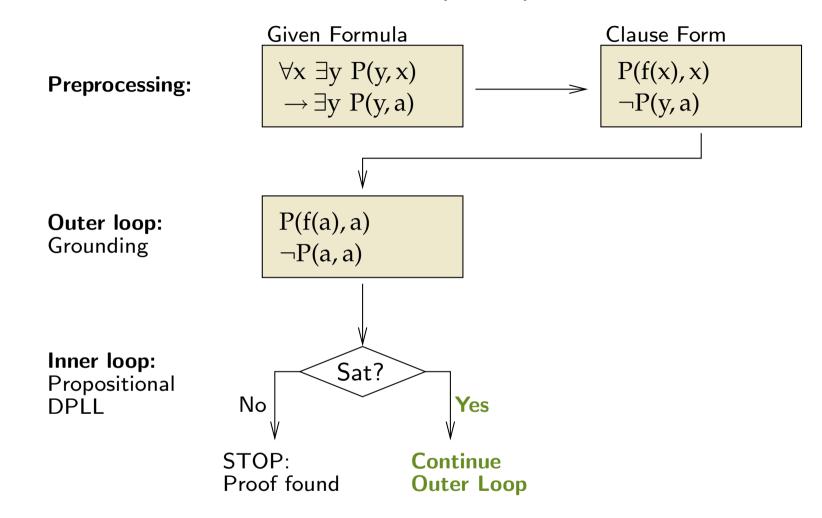
Preprocessing:

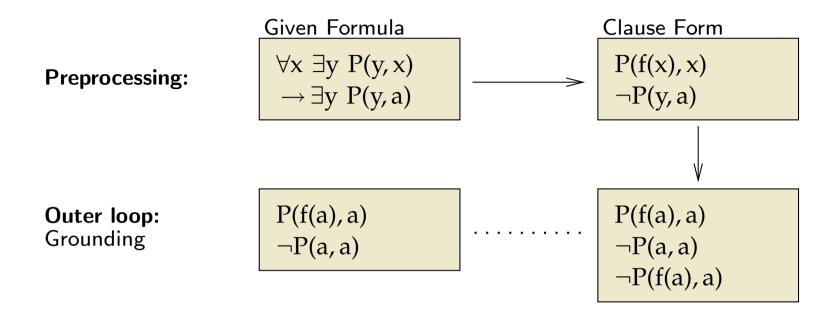
Outer loop: Grounding

Inner loop: Propositional DPLL

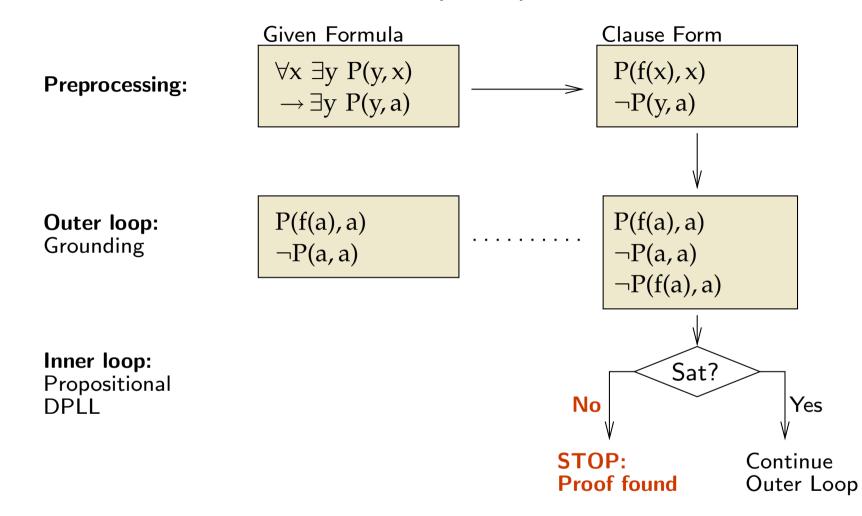


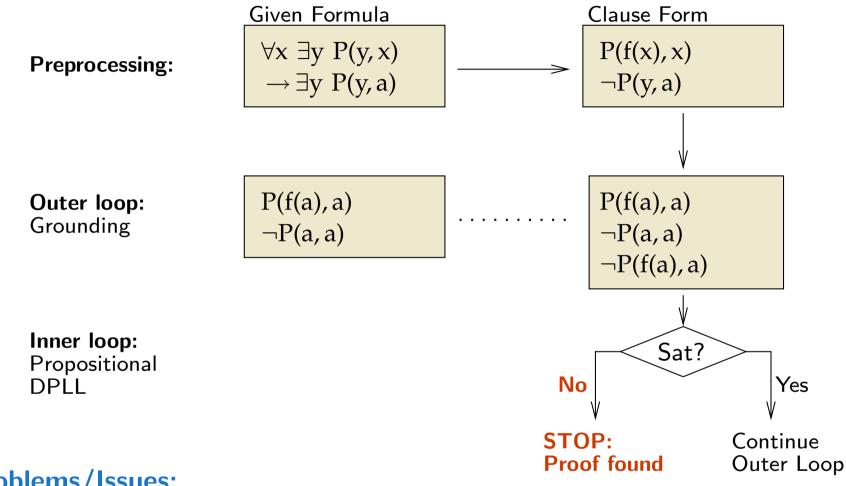
Inner loop: Propositional DPLL





Inner loop: Propositional DPLL





Problems/Issues:

- Controlling the grounding process in outer loop (irrelevant clauses)
- Repeat work across inner loops
- Weak redundancy criterion within inner loop

Controlling the Grounding Process

Davis 1963; Chinlund, Davis, Hinman, McIlroy 1964:

"Linked Conjunct Method":

Admissible clause set: $P(a) \lor Q(a)$ $\neg P(a) \lor Q(a)$ $\neg Q(a) \lor P(a)$ Every literal has a mate Non-admissible clause set: $\begin{array}{c}
P(b) \lor Q(a) \\
\neg P(a) \lor Q(a) \\
\neg Q(a) \lor P(a)
\end{array}$ The literal P(b) is pure

Anticipates unification! Note: Robinson paper on Resolution 1965

Controlling the Grounding Process

Davis 1963; Chinlund, Davis, Hinman, McIlroy 1964:

"Linked Conjunct Method":

Admissible clause set: $P(a) \lor Q(a)$ $\neg P(a) \lor Q(a)$ $\neg Q(a) \lor P(a)$ Every literal has a mate Non-admissible clause set: $\begin{array}{c}
P(b) \lor Q(a) \\
\neg P(a) \lor Q(a) \\
\neg Q(a) \lor P(a)
\end{array}$ The literal P(b) is pure

Anticipates unification! Note: Robinson paper on Resolution 1965

Some more recent work in this tradition:

Lee&Plaisted 1992, Chu&Plaisted 1994, Plaisted & Zhu 1997: (O)(S)HL

Billon 1996: Disconnection Method

Baumgartner 1998: Hyper Tableaux Next Generation

Parkes 1999: Lifted Search Engines for Satisfiability

May show very good performance!

Summary / Further Plan

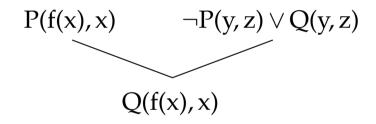
Summary / Further Plan

Instance based methods reduce first-order to propositional logic

Summary / Further Plan

- Instance based methods reduce first-order to propositional logic
- E.g. Resolution performs intrinsic first-order reasoning Advantages:

Representation: Infinitely many inferences finitely represented:

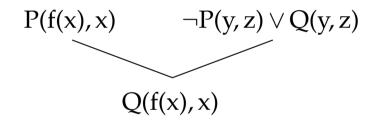


Infinitely many inferences in instance based methods

Summary / Further Plan

- Instance based methods reduce first-order to propositional logic
- E.g. Resolution performs intrinsic first-order reasoning Advantages:

Representation: Infinitely many inferences finitely represented:



Infinitely many inferences in instance based methods

Redundancy testing: E.g. by subsumption:

 $\neg P(y, z)$ subsumes $\neg P(y, y) \lor Q(y, y)$

Lack of redundancy testing in instance based methods

Overview

Propositional DPLL as a semantic tree method

First-Order DPLL so far 🖌

FDPLL

Relation to other calculi

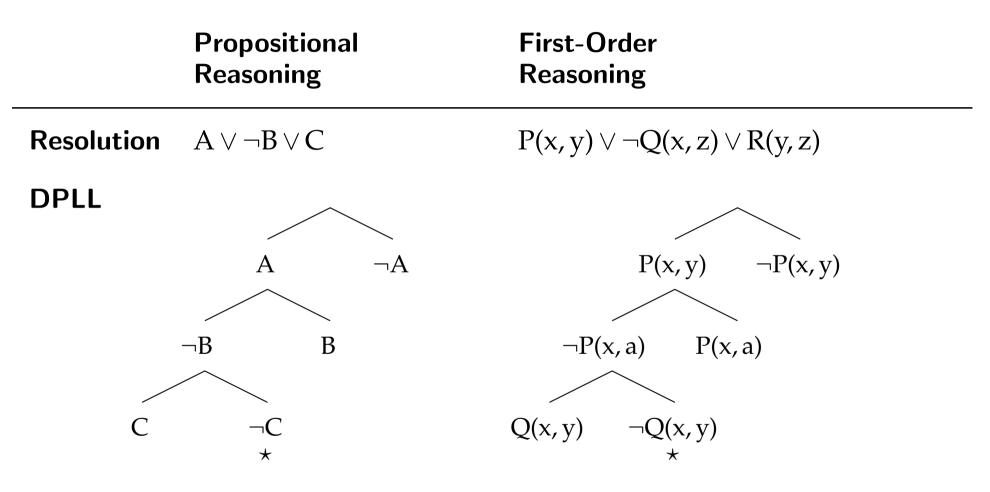
Meta-Level Strategy

Lifted data structures:

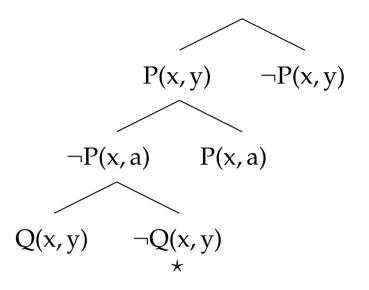
	Propositional Reasoning	First-Order Reasoning
Resolution	$A \lor \neg B \lor C$	$P(x, y) \lor \neg Q(x, z) \lor R(y, z)$

Meta-Level Strategy

Lifted data structures:

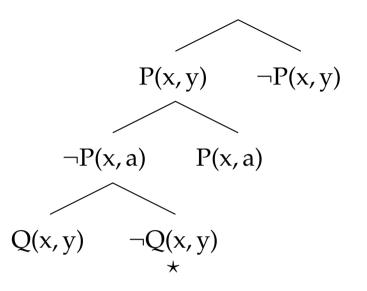


FDPLL: First-Order Semantic Trees



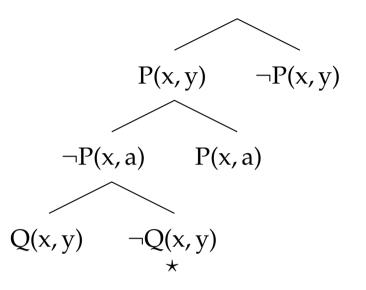
Issues:

One-branch-at-a-time approach desired



Issues:

- One-branch-at-a-time approach desired
- How are variables treated?

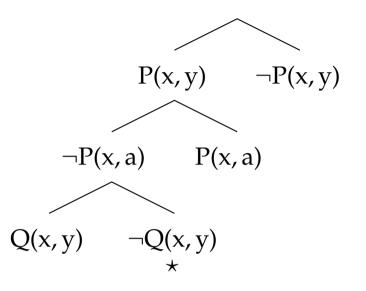


Issues:

- One-branch-at-a-time approach desired
- How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

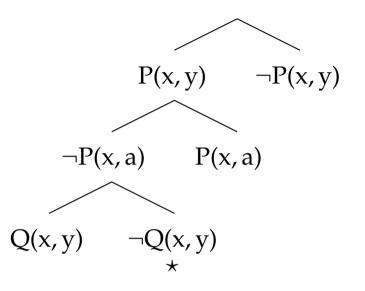
How to extract an interpretation from a branch?



Issues:

- One-branch-at-a-time approach desired
- How are variables treated?

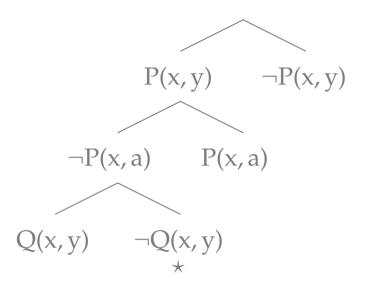
- How to extract an interpretation from a branch?
- When is a branch closed?



Issues:

- One-branch-at-a-time approach desired
- How are variables treated?

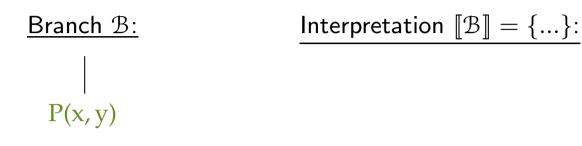
- How to extract an interpretation from a branch?
- When is a branch closed?
- How to construct such trees (calculus)?

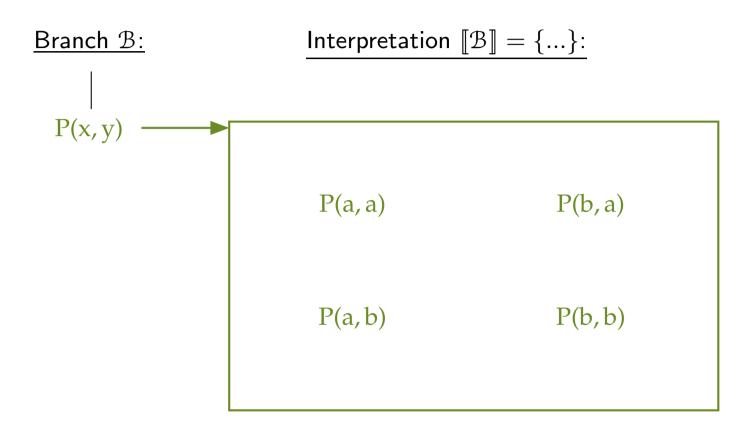


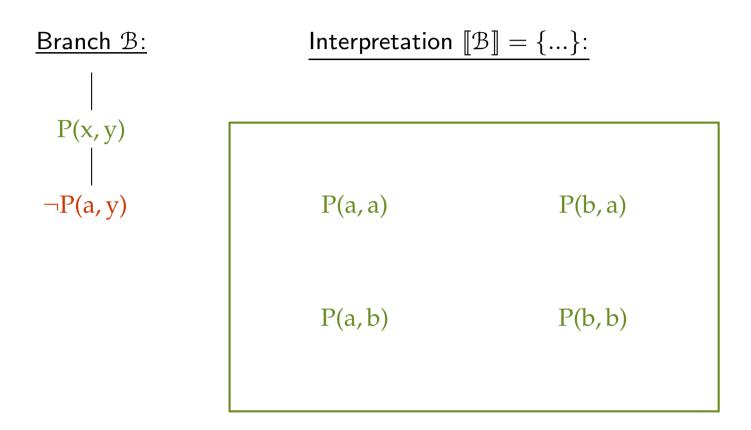
Issues:

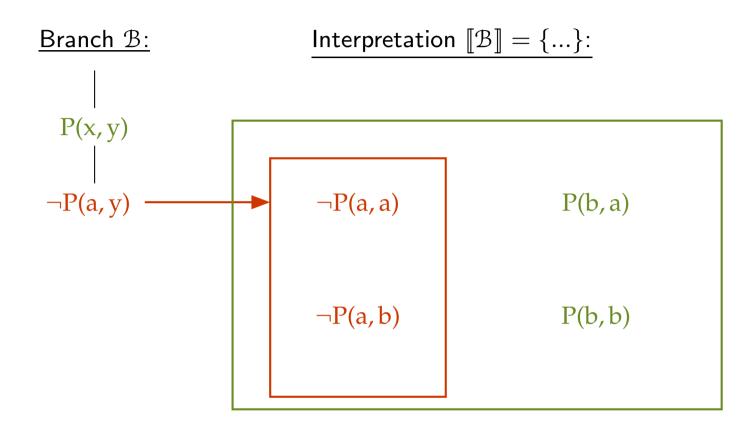
- One-branch-at-a-time approach desired
- How are variables treated?

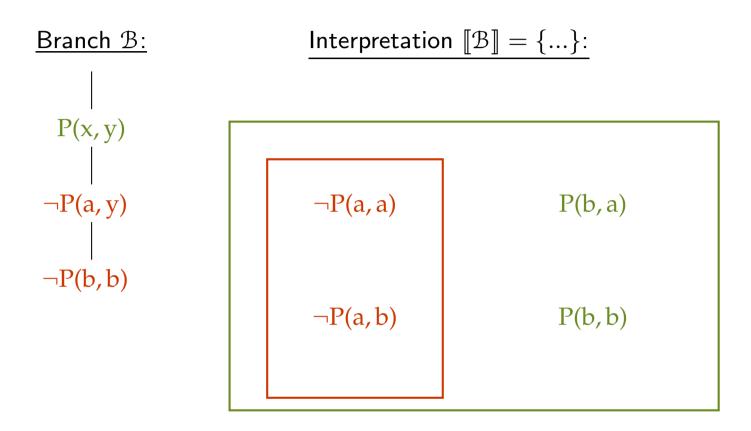
- How to extract an interpretation from a branch?
- When is a branch closed?
- How to construct such trees (calculus)?

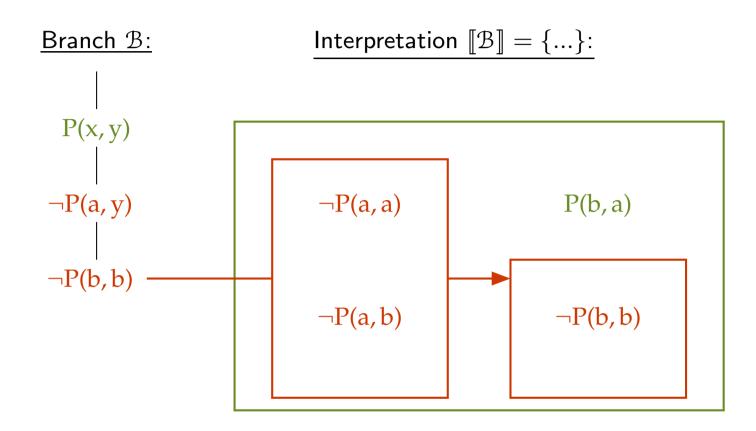


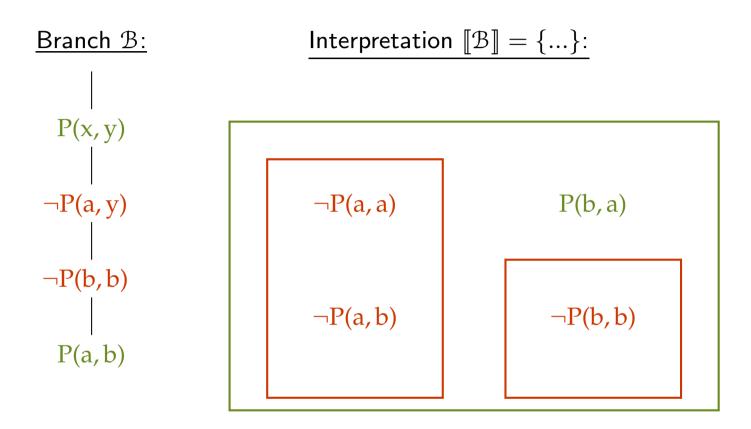


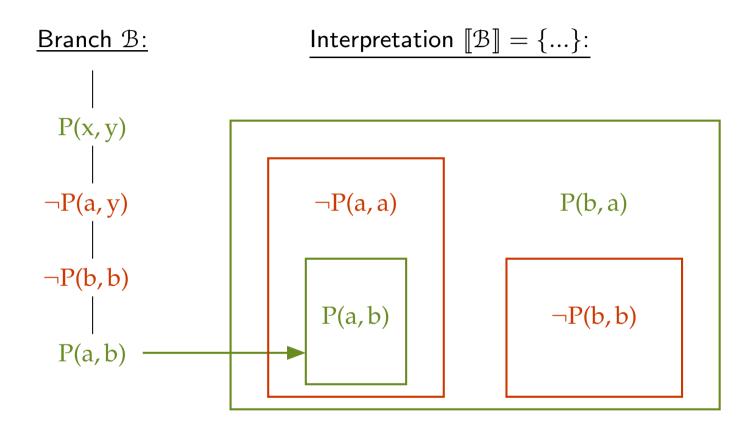


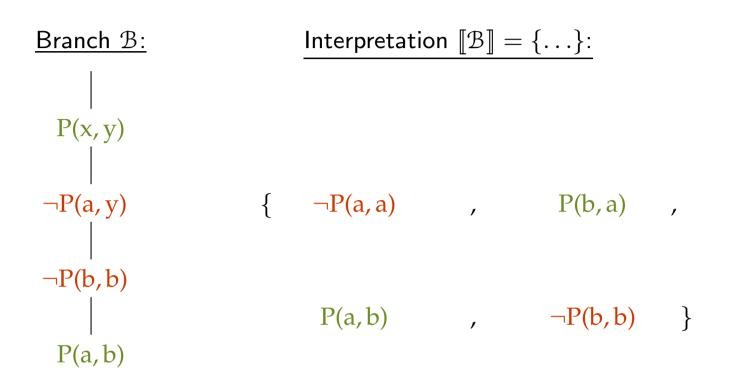




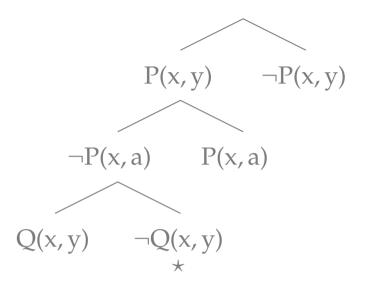








- A branch literal specifies the truth values for all its ground instances, unless there is a more specific literal specifying opposite truth values.
- The order of literals does not matter.

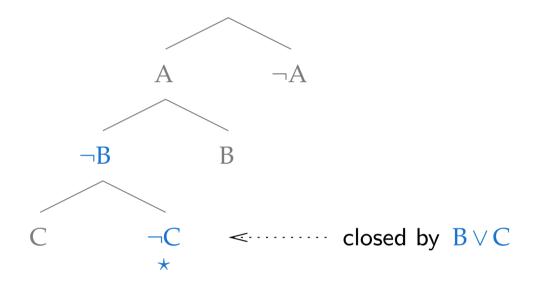


Issues:

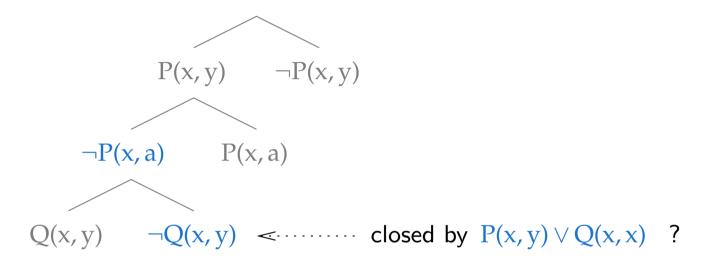
- One-branch-at-a-time approach desired
- How are variables treated?

- 🔎 How to extract an interpretation from a branch? 🖌
- When is a branch closed?
- How to construct such trees (calculus)?

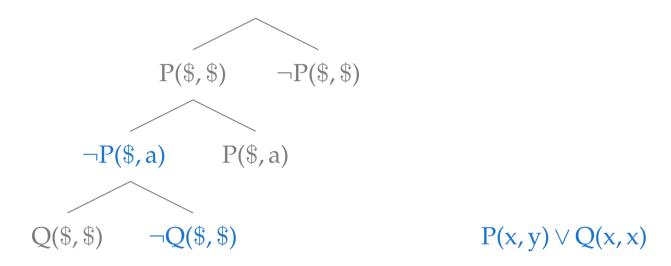
Purpose: Determine if branch elementary contradicts an input clause. Propositional case:



Purpose: Determine if branch elementary contradicts an input clause. FDPLL case:



Purpose: Determine if branch elementary contradicts an input clause. FDPLL case:

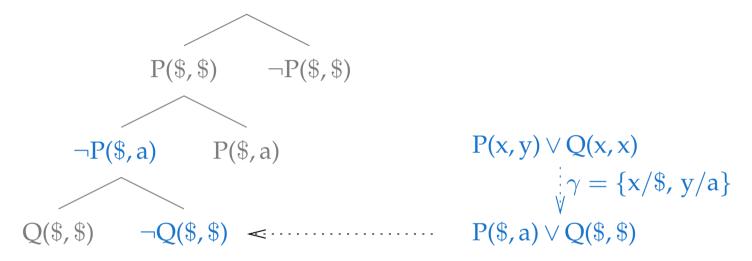


1. Replace all variables in tree by a constant \$. Gives propositional tree

2.

3.

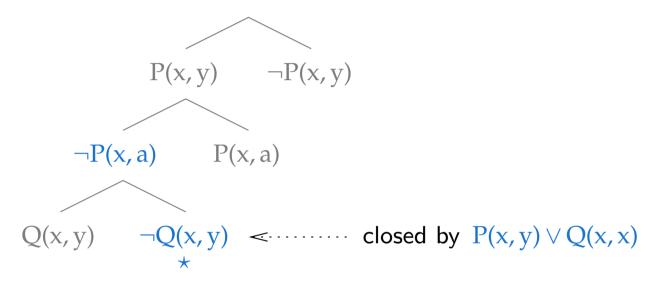
Purpose: Determine if branch elementary contradicts an input clause. FDPLL case:



- 1. Replace all variables in tree by a constant \$. Gives propositional tree
- 2. Compute matcher γ to propositionally close branch

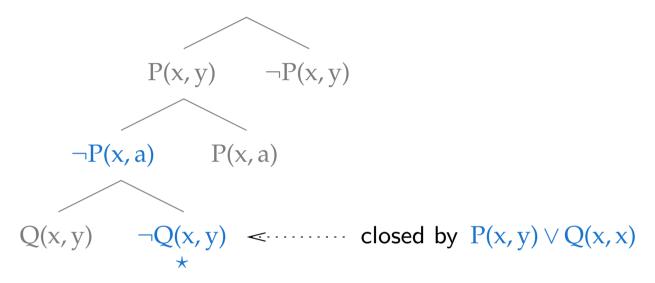
3.

Purpose: Determine if branch elementary contradicts an input clause. FDPLL case:

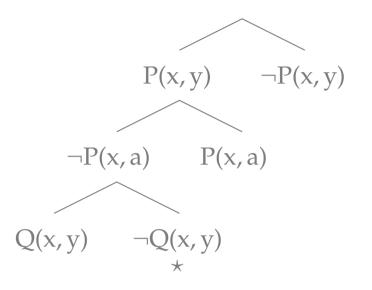


- 1. Replace all variables in tree by a constant \$. Gives propositional tree
- 2. Compute matcher γ to propositionally close branch
- 3. Mark branch as closed (\star)

Purpose: Determine if branch elementary contradicts an input clause. FDPLL case:



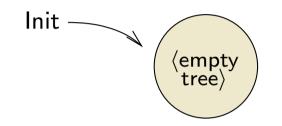
- 1. Replace all variables in tree by a constant \$. Gives propositional tree
- 2. Compute matcher γ to propositionally close branch
- 3. Mark branch as closed (\star)
- **Theorem:** FDPLL is sound (because propositional DPLL is sound), and splitting can be done with arbitrary literal.

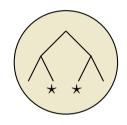


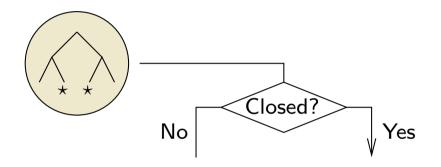
Issues:

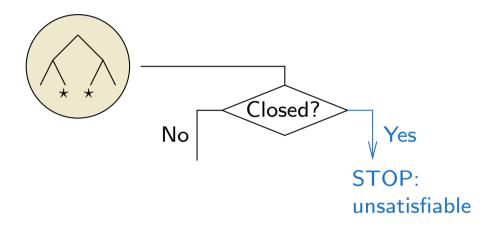
How are variables treated?

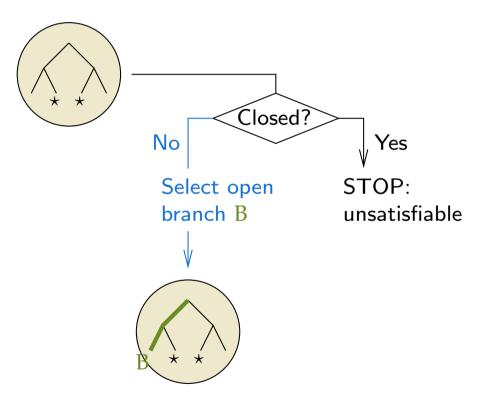
- 🔎 How to extract an interpretation from a branch? 🖌
- 🔎 When is a branch closed? 🖌
- How to construct such trees (calculus)?

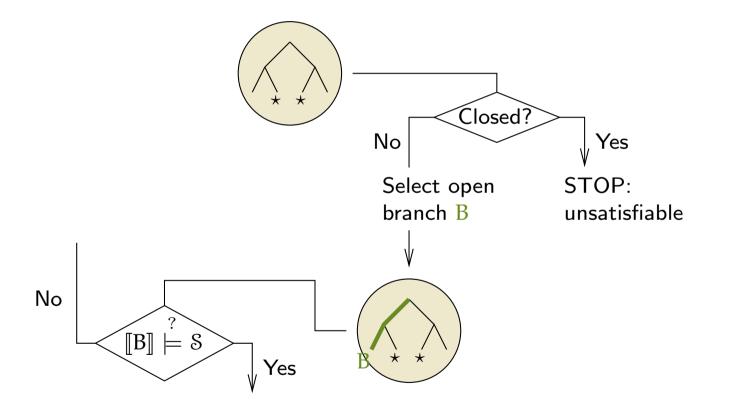


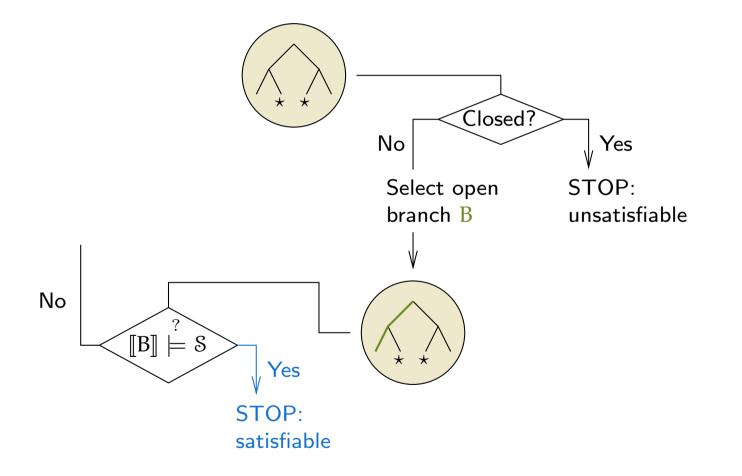






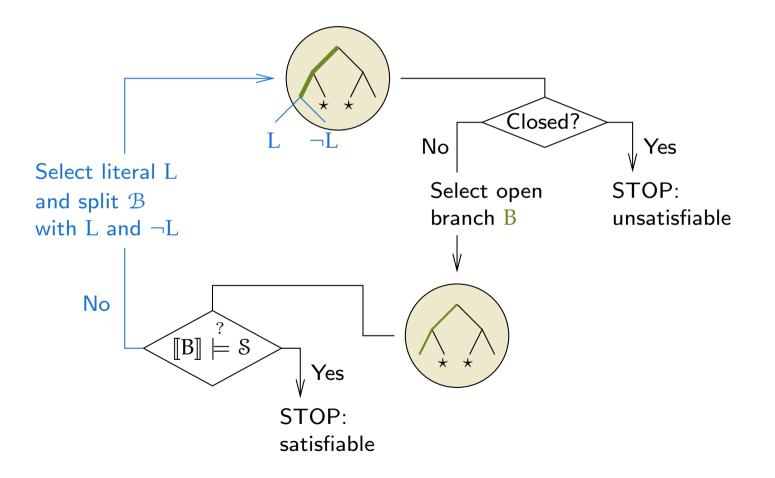






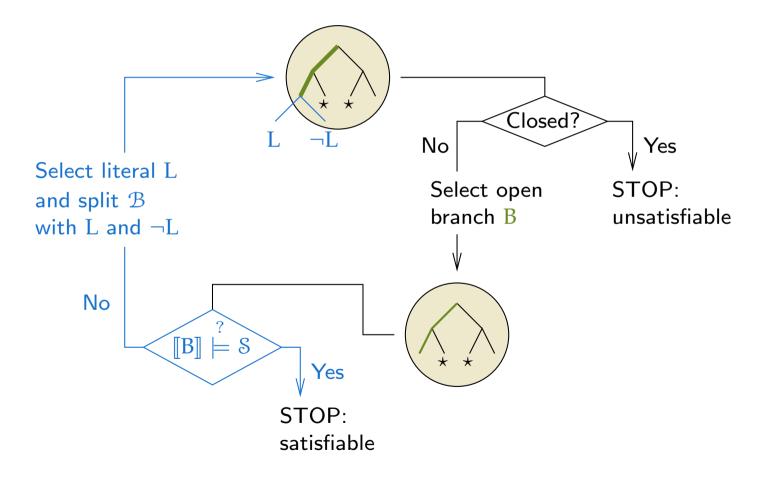
FDPLL Calculus

Input: a clause set S Output: "unsatisfiable" or "satisfiable" (if terminates) Note: Strategy much like in inner loop of propositional DPLL:



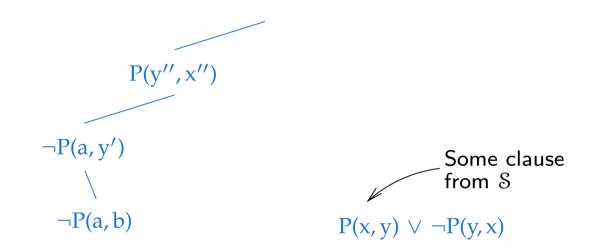
FDPLL Calculus

Input: a clause set S Output: "unsatisfiable" or "satisfiable" (if terminates) Note: Strategy much like in inner loop of propositional DPLL:

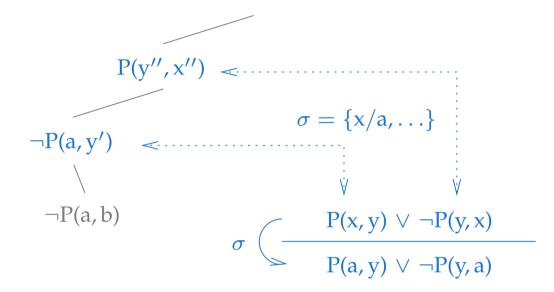


Next: Testing $[B] \models S$ and splitting

Purpose: Satisfy a clause that is currently "false"



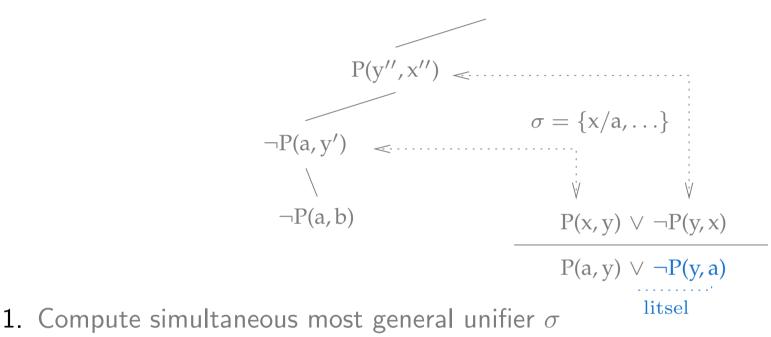
Purpose: Satisfy a clause that is currently "false"



- 1. Compute simultaneous most general unifier σ
- 2.

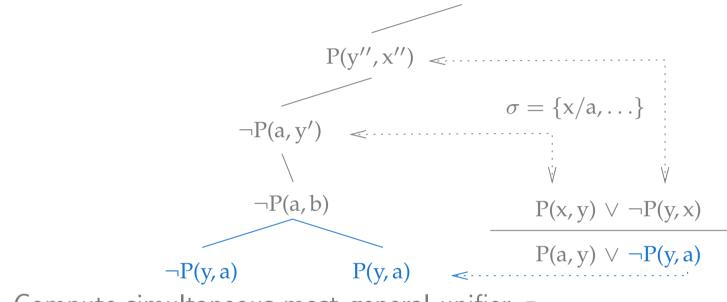
3.

Purpose: Satisfy a clause that is currently "false"



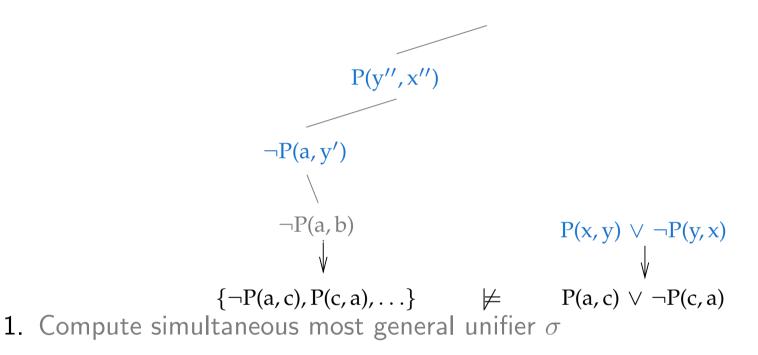
- 2. Select from clause instance a literal not on branch
- 3.

Purpose: Satisfy a clause that is currently "false"



- 1. Compute simultaneous most general unifier σ
- 2. Select from clause instance a literal not on branch
- 3. Split with this literal

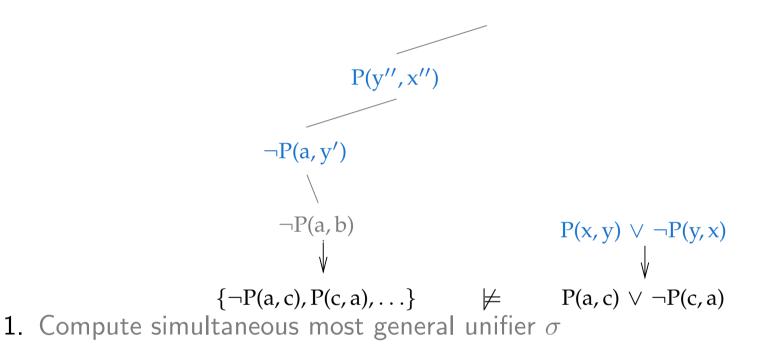
Purpose: Satisfy a clause that is currently "false"



- 2. Select from clause instance a literal not on branch
- 3. Split with this literal

This split was really necessary!

Purpose: Satisfy a clause that is currently "false"

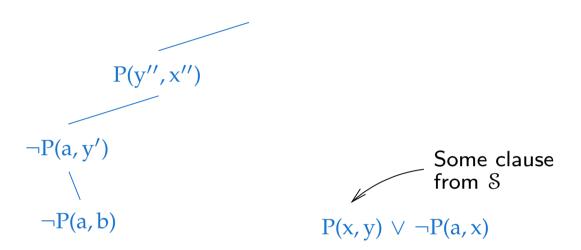


- 2. Select from clause instance a literal not on branch
- 3. Split with this literal

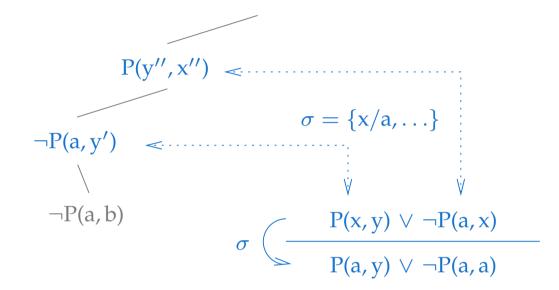
This split was really necessary!

Proposition: If $\llbracket \mathcal{B} \rrbracket \not\models S$, then split is applicable to some clause from S

Purpose: Satisfy a clause that is currently "false"



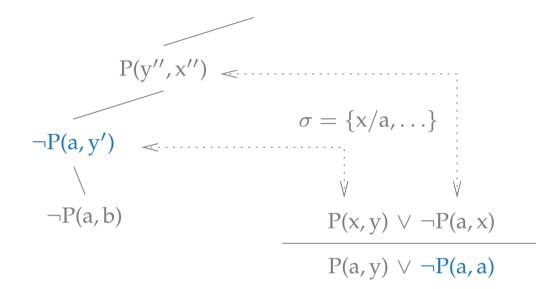
Purpose: Satisfy a clause that is currently "false"



1. Compute MGU σ of clause against branch literals

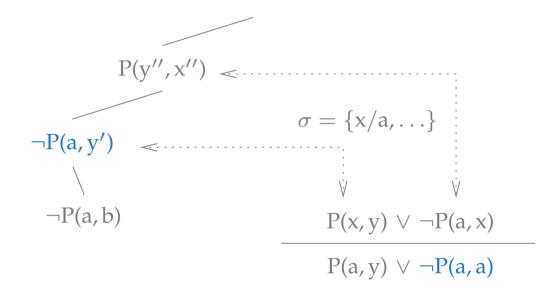
2.

Purpose: Satisfy a clause that is currently "false"



- 1. Compute MGU σ of clause against branch literals
- 2. If clause contains "true" literal, then split is not applicable

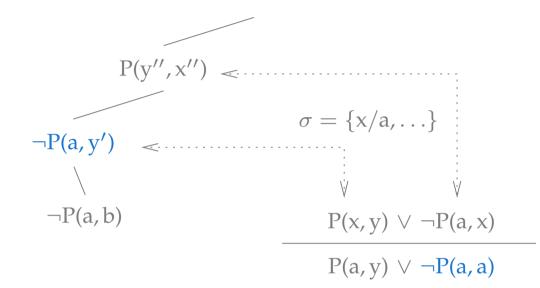
Purpose: Satisfy a clause that is currently "false"



- 1. Compute MGU σ of clause against branch literals
- 2. If clause contains "true" literal, then split is not applicable

Non-applicability is a redundancy test

Purpose: Satisfy a clause that is currently "false"

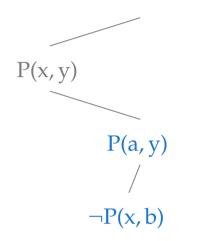


- 1. Compute MGU σ of clause against branch literals
- 2. If clause contains "true" literal, then split is not applicable

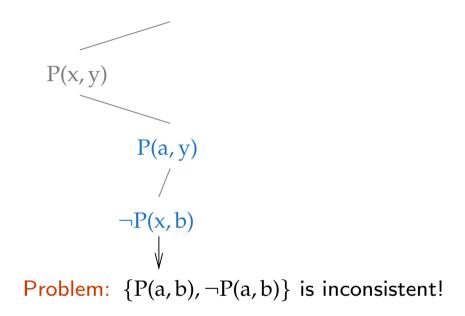
Non-applicability is a redundancy test

Proposition: If for no clause split is applicable, $\llbracket \mathcal{B} \rrbracket \models S$ holds

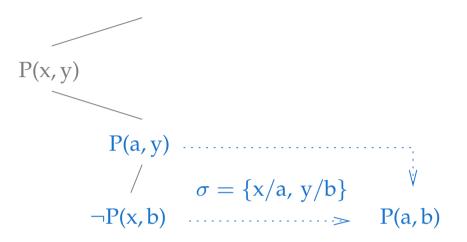
Purpose: Achieve consistency of interpretation associated to branch



Purpose: Achieve consistency of interpretation associated to branch



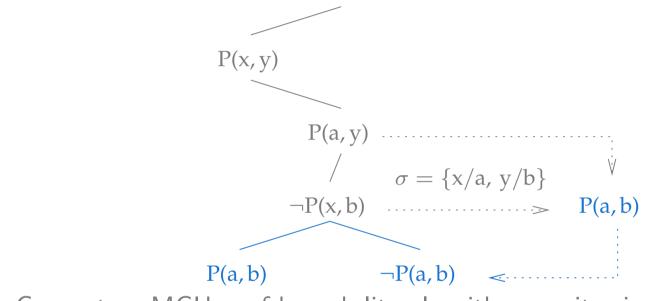
Purpose: Achieve consistency of interpretation associated to branch



1. Compute a MGU σ of branch literals with opposite sign

2.

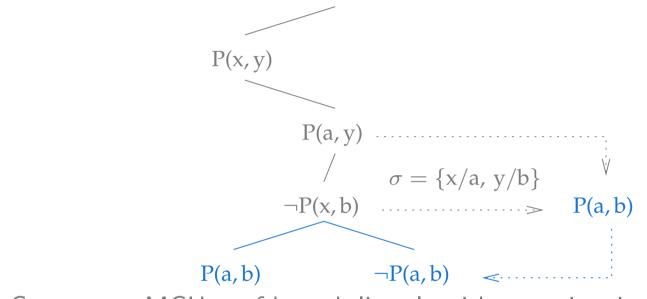
Purpose: Achieve consistency of interpretation associated to branch



1. Compute a MGU σ of branch literals with opposite sign

2. Split with instance, if not on branch

Purpose: Achieve consistency of interpretation associated to branch



1. Compute a MGU σ of branch literals with opposite sign

2. Split with instance, if not on branch

Now have removed the inconsistency

FDPLL Complete Example

- (1) train(X, Y); flight(X, Y).
- (2) -flight(koblenz,X).
- (3) flight(X,Y) := flight(Y,X).
- (4) connect(X, Y) :- flight(X, Y).
- (5) $\operatorname{connect}(X,Y) := \operatorname{train}(X,Y)$.
- (6) $\operatorname{connect}(X,Z) := \operatorname{connect}(X,Y),$ $\operatorname{connect}(Y,Z).$

- %% train from X to Y or flight from X to Y.
- %% no flight from koblenz to anywhere.
- %% flight is symmetric.
- %% a flight is a connection.
- %% a train is a connection.
- %% connection is a transitive relation.

FDPLL Complete Example

- train(X,Y); flight(X,Y). (1)
- -flight(koblenz,X). (2)
- flight(X,Y) :- flight(Y,X). %% flight is symmetric. (3)
- connect(X,Y) :- flight(X,Y). %% a flight is a connection. (4)
- connect(X,Y) := train(X,Y). % a train is a connection. (5)
- connect(X,Z) := connect(X,Y),(6) connect(Y,Z).

- %% train from X to Y or flight from X to Y.
- %% no flight from koblenz to anywhere.

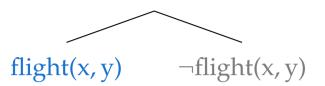
- %% connection is a transitive relation.

Computed Model (as output by implementation)

- + flight(X, Y)
- flight(koblenz, X)
- flight(X, koblenz)
- + train(koblenz, Y)
- + train(Y, koblenz)
- + connect(X, Y)

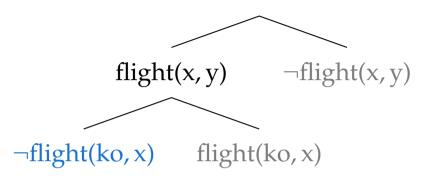
 $\langle empyty tree \rangle$

Clause instance used in inference: $train(x, y) \lor flight(x, y)$

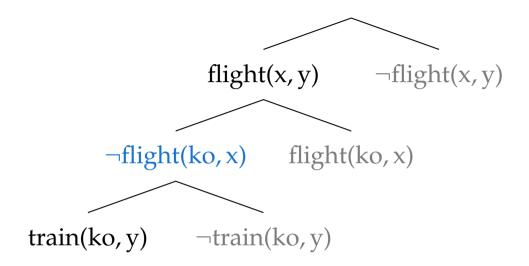


Clause instance used in inference: \neg flight(ko, x)

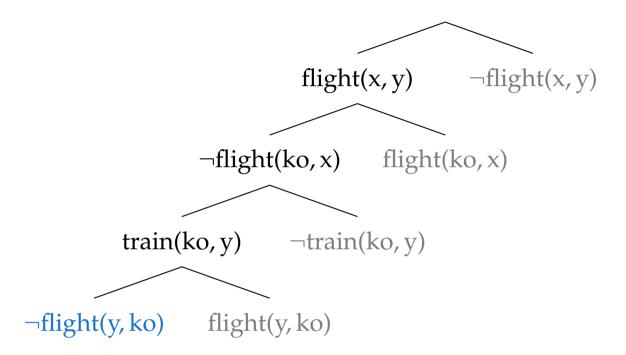
FDPLL – A First-Order Davis-Putnam-Logemann-Loveland Procedure – P. Baumgartner – p.27



Clause instance used in inference: $train(ko, y) \lor flight(ko, y)$

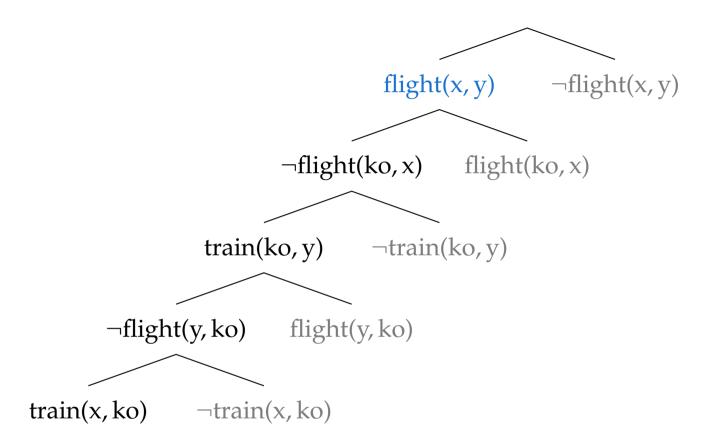


Clause instance used in inference: $flight(ko, y) \lor \neg flight(y, ko)$



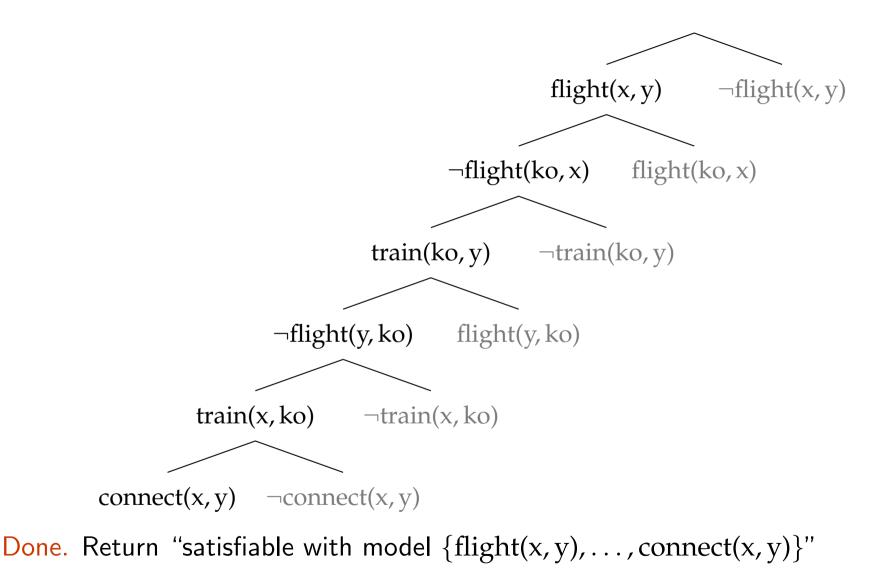
Clause instance used in inference:

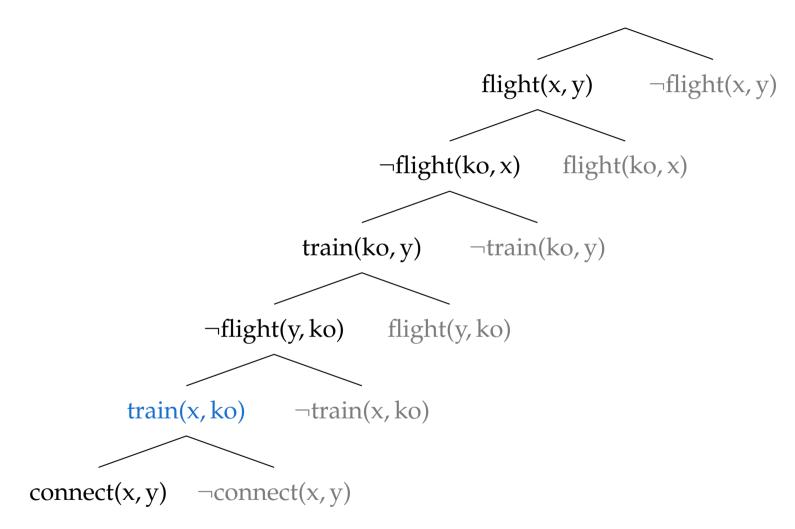
train(x, ko) \lor flight(x, ko)



Clause instance used in inference:

connect(x, y) $\lor \neg$ flight(x, y).



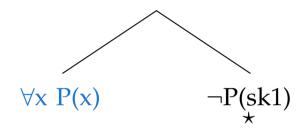


Done. Return "satisfiable with model {flight(x, y), ..., connect(x, y)}" Redundancy: Instance not used in inference: connect(x, ko) $\lor \neg$ train(x, ko)

Optional Inference Rule – Universal Splits

(1) P(x) (2) $\neg P(x) \lor Q(x)$

Split based on tautology $\forall x \ P(x) \lor \neg \forall x \ P(x)$:



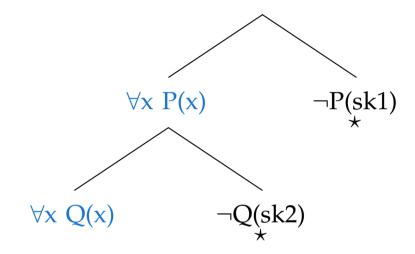
Sources for Universal Splits

Unit input clauses

Optional Inference Rule – Universal Splits

(1) P(x) (2) $\neg P(x) \lor Q(x)$

Split based on tautology $\forall x \ P(x) \lor \neg \forall x \ P(x)$:



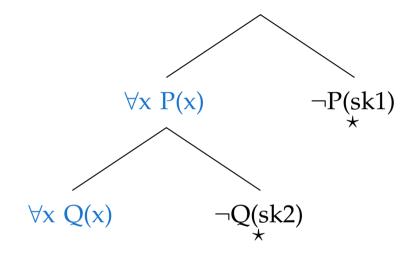
Sources for Universal Splits

- Unit input clauses
- Second terms and n = 1 literals from an n-literal clause (UR-Resolution)

Optional Inference Rule – Universal Splits

(1) P(x) (2) $\neg P(x) \lor Q(x)$

Split based on tautology $\forall x \ P(x) \lor \neg \forall x \ P(x)$:



Sources for Universal Splits

- Unit input clauses
- Similar Resolving away n 1 literals from an n-literal clause (UR-Resolution)

Advantages: – No "exceptions" permitted, hence much better efficiency – Subsumption

Calculus: Summary / Properties

Summary

- DPLL data structure lifted to first-order logic level
- Two simple inference rules, controlled by unification
- Computes with interpretations/models
- Semantical redundancy criterion

Calculus: Summary / Properties

Summary

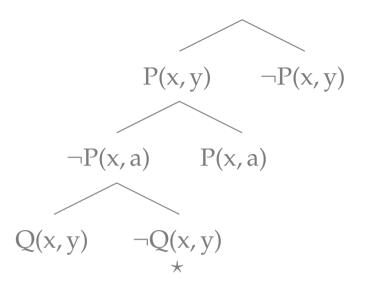
- DPLL data structure lifted to first-order logic level
- Two simple inference rules, controlled by unification
- Computes with interpretations/models
- Semantical redundancy criterion

Properties

- Soundness and completeness (with fair strategy).
- Solution: More efficient reasoning with unit clauses (e.g. $\forall x P(x, a)$)
- Proof convergence (avoids backtracking the semantics trees)
- Decides function-free clause logic (Bernays-Schönfinkel class) Covers e.g. Basic modal logic, Description logic, DataLog Returns model in satisfiable case
 - But: Resolution better on other classes!

[Fermüller et. al. Handbook AR 2001 (e.g. Gödel class, Monadic class, Guarded Fragment,...)]

First-Order Semantic Trees



Issues:

How are variables treated?

(a) Universal, as in Resolution?, (b) Rigid, as in Tableaux? (c) Schema!

- 🔎 How to extract an interpretation from a branch? 🖌
- 🔎 When is a branch closed? 🖌
- How to construct such trees (calculus)?

Overview

Propositional DPLL as a semantic tree method

First-Order DPLL so far 🖌

FDPLL 🖌

Relation to other calculi

Families of First-Order Logic Calculi

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$.

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$. Resolution:

 $\begin{array}{l} P(x,z') \ \leftarrow \ P(x,y) \land P(y,z) \land P(z,z') \\ P(x,z'') \ \leftarrow \ P(x,y) \land P(y,z) \land P(z,z') \land P(z',z'') \end{array}$

[Bachmair & Ganzinger, Handbook AR 2001], [Fermüller et. al., Handbook AR 2001]

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$. Resolution:

 $P(x, z') \leftarrow P(x, y) \land P(y, z) \land P(z, z')$ $P(x, z'') \leftarrow P(x, y) \land P(y, z) \land P(z, z') \land P(z', z'')$

Does not terminate for function-free clause sets Complicated to extract model Very good on other classes, Equality [Bachmair & Ganzinger, Handbook AR 2001], [Fermüller et. al., Handbook AR 2001]

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$. Resolution:

$$P(x, z') \leftarrow P(x, y) \land P(y, z) \land P(z, z')$$
$$P(x, z'') \leftarrow P(x, y) \land P(y, z) \land P(z, z') \land P(z', z'')$$

Does not terminate for function-free clause sets Complicated to extract model Very good on other classes, Equality

Rigid Variable Approaches:

 $P(x',z') \leftarrow P(x',y') \land P(y',z')$ $P(x'',z'') \leftarrow P(x'',y'') \land P(y'',z'')$

[Bachmair & Ganzinger, Handbook AR 2001], [Fermüller et. al., Handbook AR 2001]

FO-DPLL: [Chang&Lee 73] Tableaux and CM: [Peltier, IGPL 99], [Baumgartner et al, CADE 99], [Beckert, FTP 2000], [Giese, CADE 01]

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$. Resolution:

 $P(x, z') \leftarrow P(x, y) \land P(y, z) \land P(z, z')$ $P(x, z'') \leftarrow P(x, y) \land P(y, z) \land P(z, z') \land P(z', z'')$

Does not terminate for function-free clause sets Complicated to extract model Very good on other classes, Equality

Rigid Variable Approaches:

 $P(x',z') \leftarrow P(x',y') \land P(y',z')$ $P(x'',z'') \leftarrow P(x'',y'') \land P(y'',z'')$

[Bachmair & Ganzinger, Handbook AR 2001], [Fermüller et. al., Handbook AR 2001]

FO-DPLL: [Chang&Lee 73] Tableaux and CM: [Peltier, IGPL 99], [Baumgartner et al, CADE 99], [Beckert, FTP 2000], [Giese, CADE 01]

Unpredictable number of variants, weak redundancy test Difficult to avoid unnecessary (!) backtracking Difficult to extract model

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$.

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Instance Based Methods:

 $P(x, z) \leftarrow P(x, y) \land P(y, z)$ $P(a, z) \leftarrow P(a, y) \land P(y, b)$

HL [Lee&Plaisted, JAR 92], SHL [Chu&Plaisted, CADE 94], DM [Billon, TABLEAUX 96], OSHL [Plaisted & Zhu, AAAI 97], Hyper Tableaux NG [TABLEAUX 98], [van Eijck, CSL 01]

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Instance Based Methods:

 $P(x, z) \leftarrow P(x, y) \land P(y, z)$ $P(a, z) \leftarrow P(a, y) \land P(y, b)$

HL [Lee&Plaisted, JAR 92], SHL [Chu&Plaisted, CADE 94], DM [Billon, TABLEAUX 96], OSHL [Plaisted & Zhu, AAAI 97], Hyper Tableaux NG [TABLEAUX 98], [van Eijck, CSL 01]

Weak redundancy criterion (no subsumption) Need to keep clause instances (memory problem)

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Instance Based Methods:

 $P(x, z) \leftarrow P(x, y) \land P(y, z)$ $P(a, z) \leftarrow P(a, y) \land P(y, b)$

HL [Lee&Plaisted, JAR 92], SHL [Chu&Plaisted, CADE 94], DM [Billon, TABLEAUX 96], OSHL [Plaisted & Zhu, AAAI 97], Hyper Tableaux NG [TABLEAUX 98], [van Eijck, CSL 01]

Weak redundancy criterion (no subsumption)Need to keep clause instances (memory problem)Clauses do not become longer (cf. Resolution)May delete variant clauses (cf. Rigid Variable Approach)

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Instance Based Methods:

 $P(x, z) \leftarrow P(x, y) \land P(y, z)$ $P(a, z) \leftarrow P(a, y) \land P(y, b)$

HL [Lee&Plaisted, JAR 92], SHL [Chu&Plaisted, CADE 94], DM [Billon, TABLEAUX 96], OSHL [Plaisted & Zhu, AAAI 97], Hyper Tableaux NG [TABLEAUX 98], [van Eijck, CSL 01]

Weak redundancy criterion (no subsumption)
Need to keep clause instances (memory problem)
Clauses do not become longer (cf. Resolution)
May delete variant clauses (cf. Rigid Variable Approach)

FDPLL in this tradition, but

need not keep instances

Consider a transitivity clause $P(x, z) \leftarrow P(x, y) \land P(y, z)$

Instance Based Methods:

 $P(x, z) \leftarrow P(x, y) \land P(y, z)$ $P(a, z) \leftarrow P(a, y) \land P(y, b)$

HL [Lee&Plaisted, JAR 92], SHL [Chu&Plaisted, CADE 94], DM [Billon, TABLEAUX 96], OSHL [Plaisted & Zhu, AAAI 97], Hyper Tableaux NG [TABLEAUX 98], [van Eijck, CSL 01]

Weak redundancy criterion (no subsumption)Need to keep clause instances (memory problem)Clauses do not become longer (cf. Resolution)May delete variant clauses (cf. Rigid Variable Approach)

FDPLL in this tradition, but

- need not keep instances
- conceptually different: binary splitting

- based on first-order interpretations

Overview

Propositional DPLL as a semantic tree method \checkmark

First-Order DPLL so far 🖌

FDPLL 🖌

Relation to other calculi \checkmark

Implementation

\checkmark In Eclipse Prolog, \approx 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/

Implementation

- \square In Eclipse Prolog, \approx 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/
- Some improvements (Dependency directed backtracking) Still slow due to low inference rate and non-optimal algorithm

Implementation

- In Eclipse Prolog, \approx 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/
- Some improvements (Dependency directed backtracking) Still slow due to low inference rate and non-optimal algorithm

... on TPTP

Implementation

- In Eclipse Prolog, \approx 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/
- Some improvements (Dependency directed backtracking) Still slow due to low inference rate and non-optimal algorithm

... on TPTP

Solves some moderately difficult problems e.g. IVT
 3-move Rubik's cube problem (6⁵⁴ possible state predicate instances)

Implementation

- In Eclipse Prolog, \approx 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/
- Some improvements (Dependency directed backtracking) Still slow due to low inference rate and non-optimal algorithm

... on TPTP

- Solves some moderately difficult problems e.g. IVT
 3-move Rubik's cube problem (6⁵⁴ possible state predicate instances)
- Relative strength: non-Horn, satisfiable problems (Modal Logic)

Implementation

- In Eclipse Prolog, \approx 1300 LoC, http://www.uni-koblenz.de/~peter/FDPLL/
- Some improvements (Dependency directed backtracking) Still slow due to low inference rate and non-optimal algorithm

... on TPTP

- Solves some moderately difficult problems e.g. IVT
 3-move Rubik's cube problem (6⁵⁴ possible state predicate instances)
- Relative strength: non-Horn, satisfiable problems (Modal Logic)

Success rates:

State-of-the-art systems: \approx 55%, FDPLL: \approx 40% State-of-the-art Resolution systems, 70's technology: \approx 30%

Summary

Motivation: combine successful propositional and first-order techniques

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

Summary

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

Summary

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

Outlook

Sonmonotonic logic variant (document management application)

Summary

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

- Nonmonotonic logic variant (document management application)
- Improve model building capabilities

Summary

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

- Sonmonotonic logic variant (document management application)
- Improve model building capabilities
- Solution States (Equality, Decision procedures)

Summary

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

- Sonmonotonic logic variant (document management application)
- Improve model building capabilities
- Solution States (Equality, Decision procedures)
- Combine with other techniques (OSHL)

Summary

- Motivation: combine successful propositional and first-order techniques
- Directly lifts propositional DPLL to first-order level
- New concept: Schema variables
- Sound and complete

- Nonmonotonic logic variant (document management application)
- Improve model building capabilities
- Solution States (Equality, Decision procedures)
- Combine with other techniques (OSHL)
- Serious implementation (OCaml)