
Peter Baumgartner

CDCL as Saturation

Research Interest: Automated Deduction

2

Logics
First-order logic with equality / EPR
Theory reasoning, e.g., modulo LIA
CTL*(FO(LIA))

Calculi
Model evolution (first-order DPLL)
Hierarchic superposition

Reasoning services
Proving theorems
Disproving theorems

Systems
Darwin
Beagle Fitzroy

Example: Theory Reasoning

3

Theory reasoning

Lists over integers
 (l ≈ nil) ∨ (l ≈ cons(head(l), tail(l))
 ¬(cons(k, l) ≈ nil)
 head(cons(k, l)) ≈ k
 tail(cons(k, l)) ≈ l

The inRange predicate, e.g. inRange([1,0,5], 6)
 nRange(l, n) ↔ (l ≈ nil ∨ (0 ≤ head(l) < n ∧ inRange(tail(l), n)))

Conjecture
 ∀ l:list n:int (¬(l ≈ nil) → (inRange(l, n) → inRange(cons(head(l), l), n)))

LIA + Lists/Arrays + Hypotheses ⊨ Conjecture ?

LIA + Lists/Arrays + Hypotheses ⊭ Conjecture ?

Example: Theory Reasoning

3

Theory reasoning

Lists over integers
 (l ≈ nil) ∨ (l ≈ cons(head(l), tail(l))
 ¬(cons(k, l) ≈ nil)
 head(cons(k, l)) ≈ k
 tail(cons(k, l)) ≈ l

The inRange predicate, e.g. inRange([1,0,5], 6)
 nRange(l, n) ↔ (l ≈ nil ∨ (0 ≤ head(l) < n ∧ inRange(tail(l), n)))

Conjecture
 ∀ l:list n:int (¬(l ≈ nil) → (inRange(l, n) → inRange(cons(head(l), l), n)))

LIA + Lists/Arrays + Hypotheses ⊨ Conjecture ?

LIA + Lists/Arrays + Hypotheses ⊭ Conjecture ?

Injective
Not surjective

Example: Theory Reasoning

3

Theory reasoning

Lists over integers
 (l ≈ nil) ∨ (l ≈ cons(head(l), tail(l))
 ¬(cons(k, l) ≈ nil)
 head(cons(k, l)) ≈ k
 tail(cons(k, l)) ≈ l

The inRange predicate, e.g. inRange([1,0,5], 6)
 nRange(l, n) ↔ (l ≈ nil ∨ (0 ≤ head(l) < n ∧ inRange(tail(l), n)))

Conjecture
 ∀ l:list n:int (¬(l ≈ nil) → (inRange(l, n) → inRange(cons(head(l), l), n)))

LIA + Lists/Arrays + Hypotheses ⊨ Conjecture ?

LIA + Lists/Arrays + Hypotheses ⊭ Conjecture ?

“Proving infinite
 satisfiability”

Injective
Not surjective

CDCL as Saturation - Motivation

4

Background
Conflict driven clause learning (CDCL) for building SAT solvers
Superposition/Resolution (Saturation) for building FOL theorem provers

This talk
Modelling the essence of CDCL in a saturation based framework
Technical difficulty: modelling context switches (backjumping)

Goals
Scientific curiosity: relationship between CDCL and saturation?
(Building SAT solvers)
Building FO theorem provers

Instance-based methods: [Plaisted], [Korovin], [BTinelli],…
More recently: [AlagiWeidenbach], [BonacinaPlaisted]

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

 A (10 by 6,5)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

 A (10 by 6,5)
¬D (11 by 10,9)

Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

 A (10 by 6,5)
¬D (11 by 10,9)

Backjump
Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

 ¬D (11)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

 A (10 by 6,5)
¬D (11 by 10,9)

Backjump
Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

 ¬D (11)
 F (by 0,¬D)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

 A (10 by 6,5)
¬D (11 by 10,9)

Backjump
Backjump

Example CDCL Derivation

5

 F ∨ D (0)
 G ∨ E ∨ ¬D (1)
 B ∨ ¬A (2)
 C ∨ ¬B (3)

¬D ∨ ¬C ∨ ¬A (4)
¬C ∨ A (5)
 C ∨ A (6)
 D ∨ ¬F (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B (by 2,[A])
 C (by 3,B)
 (conflict 4)

 [D]
 [E]
¬A (by 9,[D])
 C (by 6,¬A)
 (conflict 5)

 ¬D (11)
 F (by 0,¬D)
 □ (FAIL 7)

¬D ∨ ¬B ∨ ¬A (8 by 4,3)
¬D ∨ ¬A (9 by 8,2)

 A (10 by 6,5)
¬D (11 by 10,9)

Backjump
Backjump

CDCL as Saturation - Alternatives

6

(1) Nothing to be done
Every CDCL refutation induces a resolution refutation
⇒ Closure under resolution inferences will find that refutation

Problem: ignores search space
Clause recombination problem [Plaisted]:

F ∨ D
¬A ∨ D ¬D ∨ E ∨ G

¬D ∨ ¬C ∨ ¬A

|D| × |¬D| resolvents
… …

Resolution CDCL

¬D
|D| clauses

[D]
|¬D| clauses

CDCL as Saturation - Alternatives

7

(2) Add a split rule to resolution

Problems
Nothing new
Lifting to first-order logic? (But see Model Evolution)

(3) Approach taken here
Explained in the rest of this talk

N

D
simplify(N,D)

¬D
simplify(N,¬D)

Data Structures

8

Data Structures

8

Syntax
Decision literal, e.g., [A], [B]
Constraint clause, e.g., ¬D ∨ C ← [B], [A]

 Ordinary clause, e.g., ¬D ∨ C ←

 Unit clause, e.g., C ← [B], [A]
State: M•N where

M is a set of decision literals
N is a set of constraint clauses, unit or ordinary

Data Structures

8

Syntax
Decision literal, e.g., [A], [B]
Constraint clause, e.g., ¬D ∨ C ← [B], [A]

 Ordinary clause, e.g., ¬D ∨ C ←

 Unit clause, e.g., C ← [B], [A]
State: M•N where

M is a set of decision literals
N is a set of constraint clauses, unit or ordinary

“Derivation of ¬D ∨ C 
 depends on [B] and [A]”

Data Structures

8

Syntax
Decision literal, e.g., [A], [B]
Constraint clause, e.g., ¬D ∨ C ← [B], [A]

 Ordinary clause, e.g., ¬D ∨ C ←

 Unit clause, e.g., C ← [B], [A]
State: M•N where

M is a set of decision literals
N is a set of constraint clauses, unit or ordinary

“Derivation of ¬D ∨ C 
 depends on [B] and [A]”

Input clauses

Data Structures

8

Syntax
Decision literal, e.g., [A], [B]
Constraint clause, e.g., ¬D ∨ C ← [B], [A]

 Ordinary clause, e.g., ¬D ∨ C ←

 Unit clause, e.g., C ← [B], [A]
State: M•N where

M is a set of decision literals
N is a set of constraint clauses, unit or ordinary

“Derivation of ¬D ∨ C 
 depends on [B] and [A]”

Input clauses

By Propagate/
 Backjump

Data Structures

8

Syntax
Decision literal, e.g., [A], [B]
Constraint clause, e.g., ¬D ∨ C ← [B], [A]

 Ordinary clause, e.g., ¬D ∨ C ←

 Unit clause, e.g., C ← [B], [A]
State: M•N where

M is a set of decision literals
N is a set of constraint clauses, unit or ordinary

“Derivation of ¬D ∨ C 
 depends on [B] and [A]”

Input clauses

By Propagate/
 Backjump

≠ CDCL

Data Structures

8

Syntax
Decision literal, e.g., [A], [B]
Constraint clause, e.g., ¬D ∨ C ← [B], [A]

 Ordinary clause, e.g., ¬D ∨ C ←

 Unit clause, e.g., C ← [B], [A]
State: M•N where

M is a set of decision literals
N is a set of constraint clauses, unit or ordinary

Semantics
 [C] C is true by default
¬C ← [B], [A] C is false if A and B are true by default, overriding [C]
 C ← [B], [A] C is true if A and B are true by default, overriding [C]

“Derivation of ¬D ∨ C 
 depends on [B] and [A]”

Input clauses

By Propagate/
 Backjump

≠ CDCL

Inference Rules by Example

9

Propagate

Decide

Backjump Fail

Inference Rules by Example

9

Propagate

Decide

Backjump

A ∨ ¬B ∨ C ←

Fail

Inference Rules by Example

9

Propagate

Decide

Backjump

¬C ← [D]

A ∨ ¬B ∨ C ←

Fail

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←

Fail

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←

A ← [B], [D]

Fail

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←

A ← [B], [D]

Fail

Positive

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

Fail

Positive

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

¬E ∨ A ∨ ¬B ∨ C ←

Fail

Positive

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

Fail

Positive

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

Fail

Positive

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

Fail

Positive

[E]

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

Positive

[E]

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

¬E ∨ A ∨ ¬B ∨ C ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

¬A ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[E] ¬A ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

¬E ← [B], [D]

[E] ¬A ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

¬E ← [B], [D]
if ¬E ≻ A ∨ ¬B ∨ C

[E] ¬A ←

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

¬E ← [B], [D]
if ¬E ≻ A ∨ ¬B ∨ C

[E] ¬A ← Also for unit
clauses

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]
Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

¬E ← [B], [D]
if ¬E ≻ A ∨ ¬B ∨ C

[E] ¬A ← …Also for unit
clauses

Inference Rules by Example

9

Propagate

Decide

Backjump

[B] ¬C ← [D]

A ∨ ¬B ∨ C ←
if A ≻ ¬B ∨ C

A ← [B], [D]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

[A]

Invariant: clauses head ← body are ordered: min(head) ≻ max(body)

Fail

if ¬E ≻ A ≻ ¬B ∨ C

Positive

[E]

[B] ¬C ← [D]

¬E ∨ A ∨ ¬B ∨ C ←

¬E ← [B], [D]
if ¬E ≻ A ∨ ¬B ∨ C

[E] ¬A ← …Also for unit
clauses

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

[A] overridden by ¬A ← [D] and [D]

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

[A] overridden by ¬A ← [D] and [D]

 C ← [D] (12 by 6,11)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

[A] overridden by ¬A ← [D] and [D]

 C ← [D] (12 by 6,11)
 (conflict 5,11,12)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

[A] overridden by ¬A ← [D] and [D]

 C ← [D] (12 by 6,11)
 (conflict 5,11,12)
¬D ← (13 by Backjump)

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

[A] overridden by ¬A ← [D] and [D]

 C ← [D] (12 by 6,11)
 (conflict 5,11,12)
¬D ← (13 by Backjump)

[D] overridden by ¬D ←
[A] no longer overridden

 by ¬A ← [D] and [D]

Example CDCL-as-Saturation Derivation

10

 F ∨ D ← (0)
 G ∨ E ∨ ¬D ← (1)
 B ∨ ¬A ← (2)
 C ∨ ¬B ← (3)

¬D ∨ ¬C ∨ ¬A ← (4)
¬C ∨ A ← (5)
 C ∨ A ← (6)
 D ∨ ¬F ← (7)

 [D] (Decide)
 [E] (Decide)
 [A] (Decide)
 B ← [A] (9 by 2,[A])
 C ← [A] (10 by 3,9)
 (conflict 4,10,[D],[A])
¬A ← [D] (11 by Backjump)

[A] overridden by ¬A ← [D] and [D]

 C ← [D] (12 by 6,11)
 (conflict 5,11,12)
¬D ← (13 by Backjump)

[D] overridden by ¬D ←
[A] no longer overridden

 by ¬A ← [D] and [D]

 F ← (14 by 0,13)
 □ ← (FAIL 7)

Overriding

11

[A]

[B] ¬B

¬A

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[A]
[B]

¬B ← [A]

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[A]
[B]

¬B ← [A]
¬A ←

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[A]
[B]

¬B ← [A]
¬A ←

[A]
[B]

¬B ← [A]
¬A ←

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[A]
[B]

¬B ← [A]
¬A ←

[A]
[B]

¬B ← [A]
¬A ←
¬B ←

[B] ¬B

Switching interpretations by increasing clause sets

Overriding

11

[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[A]
[B]

¬B ← [A]
¬A ←

[A]
[B]

¬B ← [A]
¬A ←
¬B ←

[B] ¬B

Switching interpretations by increasing clause sets

Clauses are ordered
⇒ overriding is well-founded

Redundant Decision Literals and Clauses

12

Let A ≻ B ≻ C ≻ D ≻ E ⇒ (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E] (1)
¬D ← [E] (2)
 [D] (3)
 [C] (4)
 [B] (5)
 A ← [D] (6)
 A ← [D], [E] (7)
 A ← [C], [E] (8)
 A ← [B] (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context

Redundant Decision Literals and Clauses

12

Let A ≻ B ≻ C ≻ D ≻ E ⇒ (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E] (1)
¬D ← [E] (2)
 [D] (3)
 [C] (4)
 [B] (5)
 A ← [D] (6)
 A ← [D], [E] (7)
 A ← [C], [E] (8)
 A ← [B] (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context

(3) locally redundant, as overridden by (2)

Redundant Decision Literals and Clauses

12

Let A ≻ B ≻ C ≻ D ≻ E ⇒ (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E] (1)
¬D ← [E] (2)
 [D] (3)
 [C] (4)
 [B] (5)
 A ← [D] (6)
 A ← [D], [E] (7)
 A ← [C], [E] (8)
 A ← [B] (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant

Redundant Decision Literals and Clauses

12

Let A ≻ B ≻ C ≻ D ≻ E ⇒ (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E] (1)
¬D ← [E] (2)
 [D] (3)
 [C] (4)
 [B] (5)
 A ← [D] (6)
 A ← [D], [E] (7)
 A ← [C], [E] (8)
 A ← [B] (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant
(7) globally redundant, as subsumed by (6)

Redundant Decision Literals and Clauses

12

Let A ≻ B ≻ C ≻ D ≻ E ⇒ (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E] (1)
¬D ← [E] (2)
 [D] (3)
 [C] (4)
 [B] (5)
 A ← [D] (6)
 A ← [D], [E] (7)
 A ← [C], [E] (8)
 A ← [B] (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant
(7) globally redundant, as subsumed by (6)

(9) locally redundant by (8)

Redundant Decision Literals and Clauses

12

Let A ≻ B ≻ C ≻ D ≻ E ⇒ (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E] (1)
¬D ← [E] (2)
 [D] (3)
 [C] (4)
 [B] (5)
 A ← [D] (6)
 A ← [D], [E] (7)
 A ← [C], [E] (8)
 A ← [B] (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context

⇒ at any time ≤ 1 locally non-redundant unit clauses with same head (here A)

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant
(7) globally redundant, as subsumed by (6)

(9) locally redundant by (8)

Redundant Inferences

13

Inferences from locally redundant clauses can be deferred
⇒ avoids clause recombination problem, e.g., for Backjump:

¬A ← D2

¬A ← D1

… …

A ← C1

A ← C2

Redundant Inferences

13

Inferences from locally redundant clauses can be deferred
⇒ avoids clause recombination problem, e.g., for Backjump:

¬A ← D2

¬A ← D1

… …

A ← C1

A ← C2

≤ 1 locally non-redundant
clauses A ← Ci

Redundant Inferences

13

Inferences from locally redundant clauses can be deferred
⇒ avoids clause recombination problem, e.g., for Backjump:

¬A ← D2

¬A ← D1

… …

A ← C1

A ← C2

≤ 1 locally non-redundant
clauses A ← Ci

≤ 1 locally non-redundant
clauses ¬A ← Di

Redundant Inferences

13

Inferences from locally redundant clauses can be deferred
⇒ avoids clause recombination problem, e.g., for Backjump:

¬A ← D2

¬A ← D1

… …

A ← C1

A ← C2

≤ 1 locally non-redundant
clauses A ← Ci

≤ 1 locally non-redundant
clauses ¬A ← Di

≤ 1 locally non-redundant conclusions

Redundant Inferences

13

Inferences from locally redundant clauses can be deferred
⇒ avoids clause recombination problem, e.g., for Backjump:

¬A ← D2

¬A ← D1

… …

A ← C1

A ← C2

≤ 1 locally non-redundant
clauses A ← Ci

≤ 1 locally non-redundant
clauses ¬A ← Di

≤ 1 locally non-redundant conclusions

Similarly for Propagate

Model Construction I(M•N)

14

Let M•N be a state
Let e ∈ M ∪ N be the next expression considered

Suppose set of literals Je has been defined for all f with e ≻ f

Extend Je as follows

Je ∪ {A} if
 (1) A ∉ Je
 (2) ¬A ∉ Je

e = [A]

Je ∪ {A} if
 (1) D ⊆ MN
 (2) A ∉ Je

e = A ← D e = ¬A ← D

Je ∪ {¬A} if
 (1) D ⊆ MN
 (2) ¬A ∉ Je
 (3) A ∉ Je

Case

Result

where MN = { [A] ∈ M | [A] is not locally redundant wrt. M•N }

Define I(M • N) as the interpretation obtained from the final set J

≺ ≺

Completeness

15

Inference is locally redundant ≈ some premise or conclusion is locally redundant
State M•N is saturated iff every inference from M•N is locally redundant
Satisfaction relation

(M, I) ⊨ C ← D iff D ⊈ M or I ⊨ C

Theorem (static completeness)
Let M•N be a saturated state such that 
for all C ← D ∈ N, |C| = 1 or D = {} (i.e., unit or ordinary clauses only).
If □ ← ∉ N then (MN, I(M • N)) ⊨ N.

Dynamic completeness result with simplification (straightforward?)

First-Order Logic

16

Lifting
Local redundancy: semantics is straightforward, via ground instances

Inference rules: straightforward

 [Q(x)]
 [P(x)]
¬P(a) ← [Q(a)]

Q(a), Q(b), …
 P(b), …

 P(x) ∨ Q(x) ← (1)

¬Q(a) ← (2)
 P(a) ← (3 by 1,2)
 [Q(x)] ← (Decide)

Conclusion: Issues

17

Differences to CDCL
Backjumping

Does not remove clauses, only makes them locally redundant
Use of ordering

In general need Decide even in Horn case
Fix: construct/modify ordering on-the-fly (compatible with local redundancy)

Local redundancy
How to compute l.r. effectively/efficiently?

Watch 1 clause per decision literal [A] that overrides [A], if any
However, for first-order logic:

l.r. is optional - graceful degradation with decreasing precision
l.r. acts as interface to model representation:  
can use whatever suits best, e.g., contexts, DIGs, constraint literals,…

