CDCL as **Saturation**

Peter Baumgartner

Research Interest: Automated Deduction

Logics

```
First-order logic with equality / EPR
```

```
Theory reasoning, e.g., modulo LIA
```

```
CTL*(FO(LIA))
```

Calculi

```
Model evolution (first-order DPLL)
```

Hierarchic superposition

Reasoning services

```
Proving theorems
```

```
Disproving theorems
```

Systems

Darwin

Beagle Fitzroy

Example: Theory Reasoning

Theory reasoning

```
Lists over integers

(l \approx \text{nil}) \lor (l \approx \text{cons}(\text{head}(l), \text{tail}(l))

\neg(\text{cons}(k, l) \approx \text{nil})

\text{head}(\text{cons}(k, l)) \approx k

\text{tail}(\text{cons}(k, l)) \approx l
```

```
The inRange predicate, e.g. inRange([1,0,5], 6)

nRange(I, n) \leftrightarrow (I \approx nil \lor (0 \leq head(I) < n \land inRange(tail(I), n)))
```

```
Conjecture \forall I:list n:int (\neg(I \approx nil) \rightarrow (inRange(I, n) \rightarrow inRange(cons(head(I), I), n)))
```

LIA + Lists/Arrays + Hypotheses \models Conjecture ? LIA + Lists/Arrays + Hypotheses \nvDash Conjecture ?

Example: Theory Reasoning

Theory reasoning

```
Lists over integers

(l \approx \text{nil}) \lor (l \approx \cos(\text{head}(l), \text{tail}(l))

\neg(\cos(k, l) \approx \text{nil})

head(\cos(k, l) \approx k

tail(\cos(k, l)) \approx k

tail(\cos(k, l)) \approx l

The inRange predicate, e.g. inRange([1,0,5], 6)

nRange(l, n) \leftrightarrow (l \approx \text{nil} \lor (0 \le \text{head}(l) < n \land \text{inRange}(\text{tail}(l), n)))

Conjecture

\forall l:list n:int (\neg(l \approx \text{nil}) \rightarrow (\text{inRange}(l, n) \rightarrow \text{inRange}(\cos(\text{head}(l), l), n)))
```

LIA + Lists/Arrays + Hypotheses \models Conjecture ? LIA + Lists/Arrays + Hypotheses \nvDash Conjecture ?

Example: Theory Reasoning

Theory reasoning

```
Lists over integers
                                                          Injective
   (I \approx \text{nil}) \lor (I \approx \text{cons}(\text{head}(I), \text{tail}(I))
                                                         Not surjective
   \neg(cons(k, l) \approx nil)
   head(cons(k, l)) \approx k
  tail(cons(k, I)) \approx I
The inRange predicate, e.g. inRange([1,0,5], 6)
   nRange(I, n) \leftrightarrow (I \approx nil \lor (0 \le head(I) < n \land inRange(tail(I), n)))
Conjecture
   \forall l:list n:int (\neg(I \approx nil) \rightarrow (inRange(I, n) \rightarrow inRange(cons(head(I), I), n)))
                                      "Proving infinite
```

LIA + Lists/A satisfiability" es \models Conjecture ? LIA + Lists/Arrays + Hypotheses \nvDash Conjecture ?

CDCL as Saturation - Motivation

Background

Conflict driven clause learning (CDCL) for building SAT solvers

Superposition/Resolution (Saturation) for building FOL theorem provers

This talk

Modelling the essence of CDCL in a saturation based framework Technical difficulty: modelling context switches (backjumping)

Goals

Scientific curiosity: relationship between CDCL and saturation?

(Building SAT solvers)

Building FO theorem provers

Instance-based methods: [Plaisted], [Korovin], [BTinelli],...

More recently: [AlagiWeidenbach], [BonacinaPlaisted]

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

[D]	(Decide)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

[D]	(Decide)
[E]	(Decide)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
$B \lor \neg A$	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	D ∨ ¬F	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
В	(by 2,[A])

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
$B \lor \neg A$	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
В	(by 2,[A])
С	(by 3,B)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

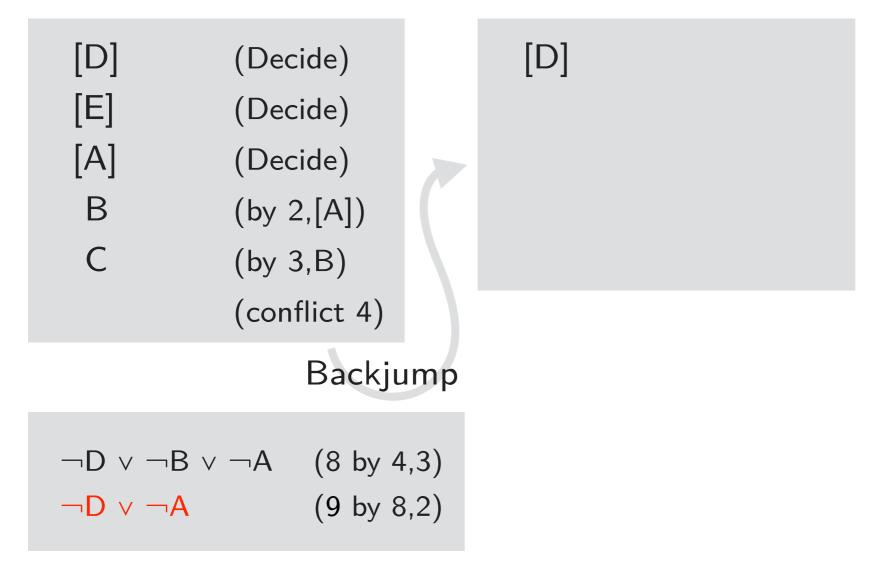
[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
В	(by 2,[A])
С	(by 3,B)
	(conflict 4)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
$B \lor \neg A$	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

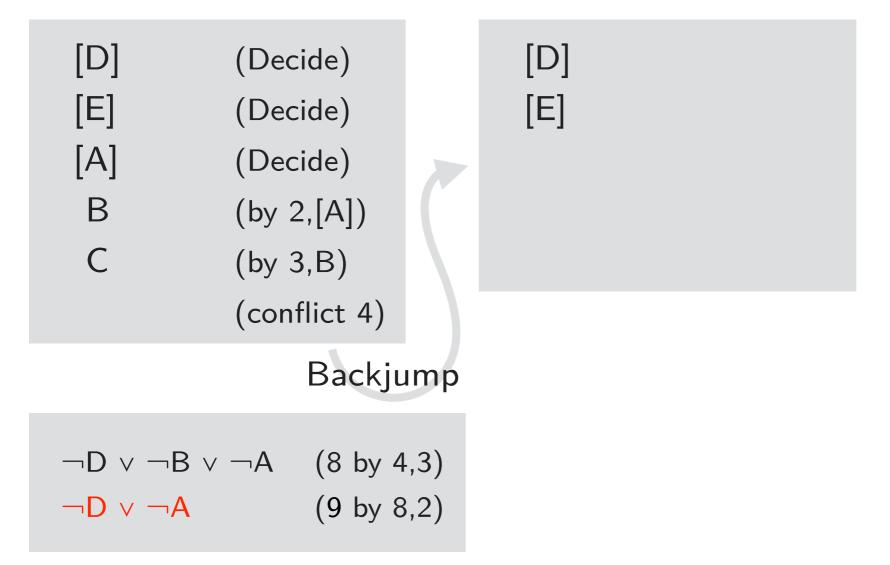
[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
В	(by 2,[A])
С	(by 3,B)
	(conflict 4)

 $\neg D \lor \neg B \lor \neg A$ (8 by 4,3)

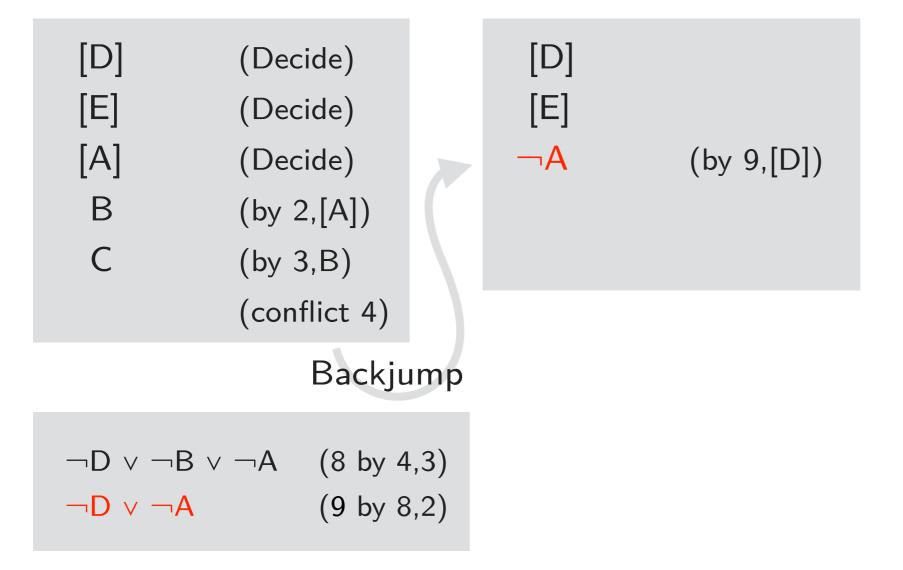
$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
$B \lor \neg A$	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

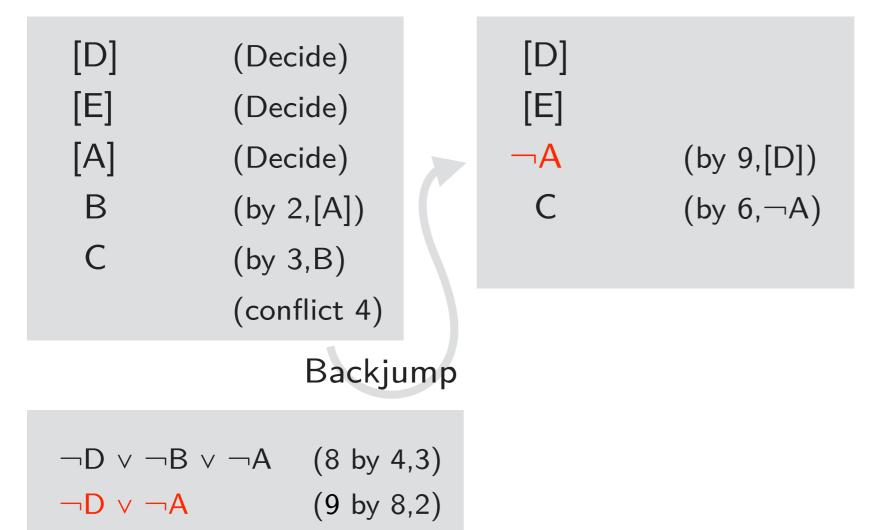

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
В	(by 2,[A])
С	(by 3,B)
	(conflict 4)

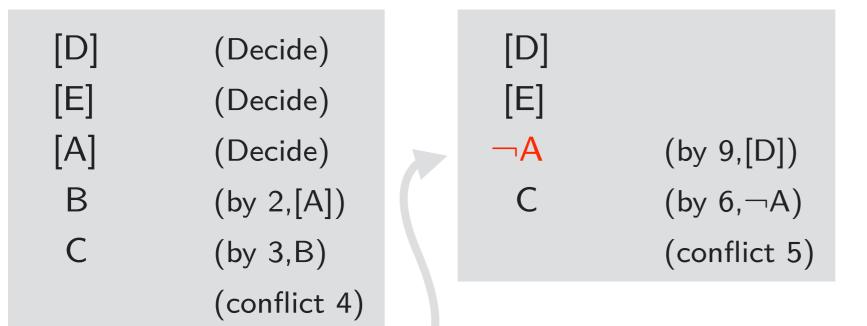
$\neg D \lor \neg B \lor \neg A$	(8 by 4,3)
$\neg D \lor \neg A$	(9 by 8,2)


$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
$B \lor \neg A$	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	D v ¬F	(7)

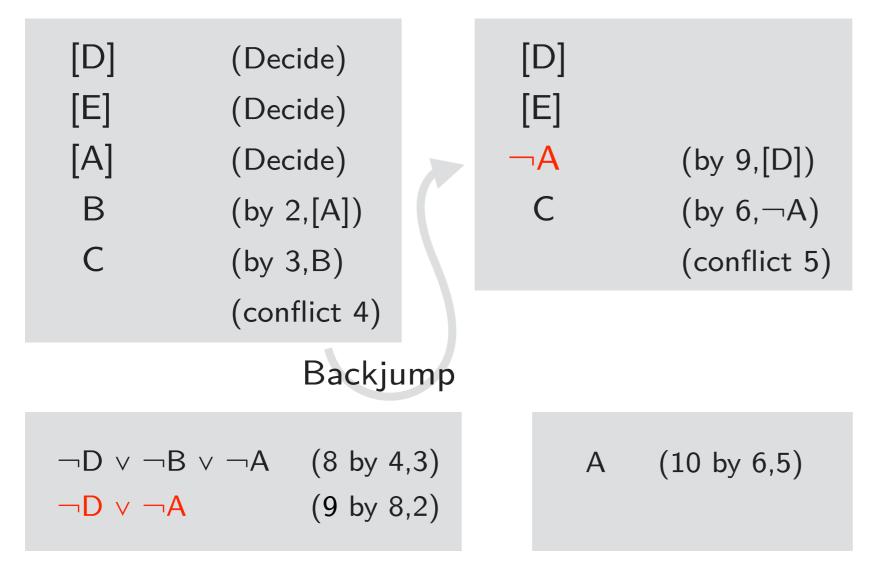
[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
В	(by 2,[A])
С	(by 3,B)
	(conflict 4)
	Backjump
¬D ∨ ¬ ¬D ∨ ¬,	

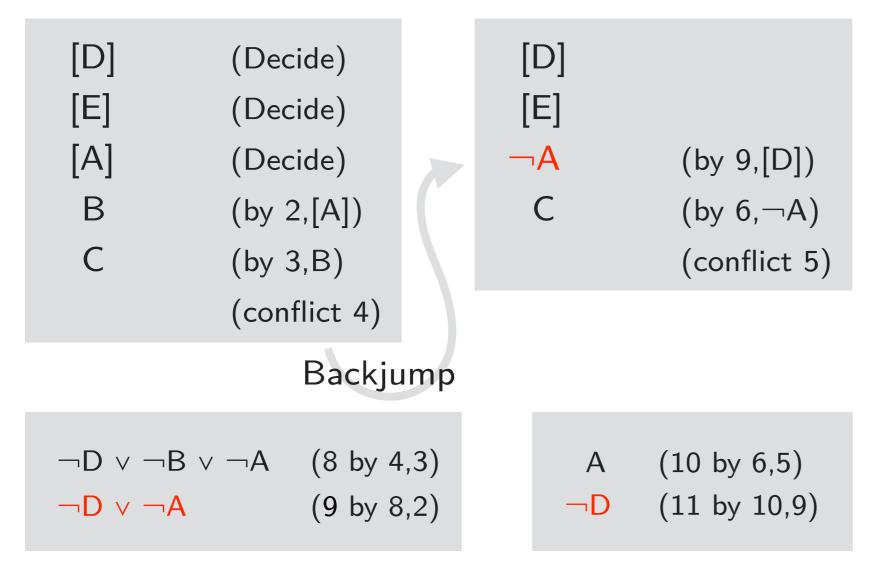

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	D v ¬F	(7)


$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	D v ¬F	(7)

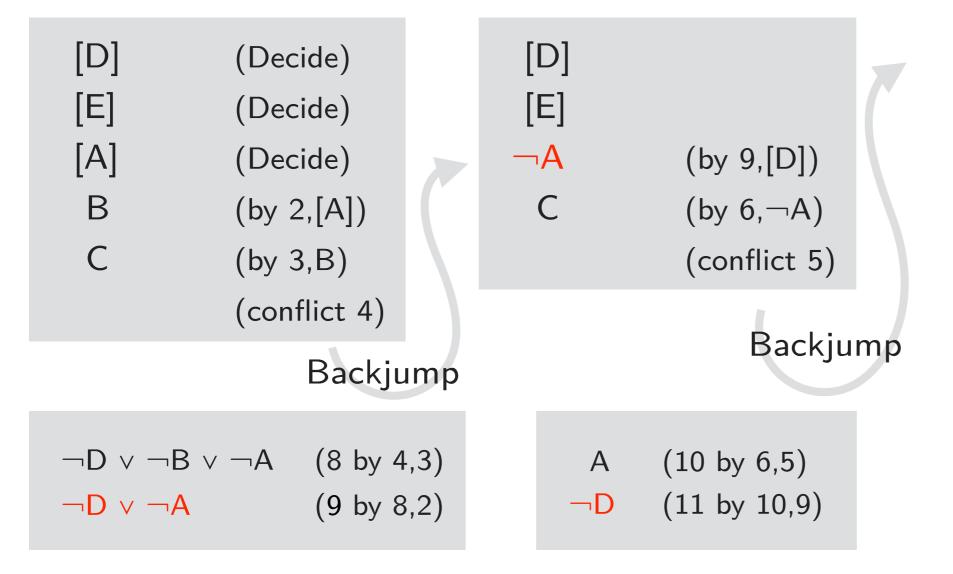

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)


$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)


Backjump

$\neg D \lor \neg B \lor \neg A$	(8 by 4,3)
$\neg D \lor \neg A$	(9 by 8,2)


F v D	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

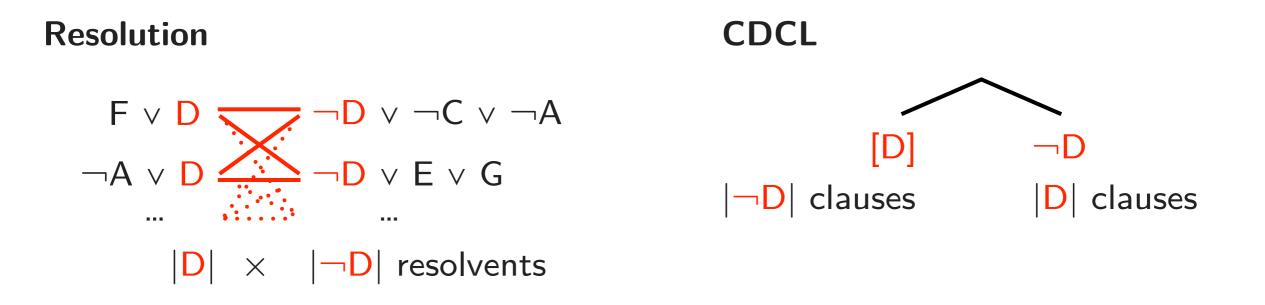
$F \lor D$	(0)	$\neg D \lor \neg C \lor \neg A$	(4)
$G \lor E \lor \neg D$	(1)	$\neg C \lor A$	(5)
B ∨ ¬A	(2)	$C \lor A$	(6)
C ∨ ¬B	(3)	$D \lor \neg F$	(7)

$F \lor D$ $G \lor E \lor \neg D$ $B \lor \neg A$ $C \lor \neg B$	(0) (1) (2) (3)		$\neg D \lor \neg C$ $\neg C \lor A$ $C \lor A$ $D \lor \neg F$	∨ ¬A	 (4) (5) (6) (7)
[E] (De [A] (De B (by C (by	cide) cide) 2,[A]) 3,B) nflict 4) Backjump	[D] [E] A C	(by 9,[D]) (by 6,¬A) (conflict 5) Backjum	ΠD	(11)
¬D v ¬B v ¬A ¬D v ¬A	(8 by 4,3)	A ¬D	(10 by 6,5) (11 by 10,9)		

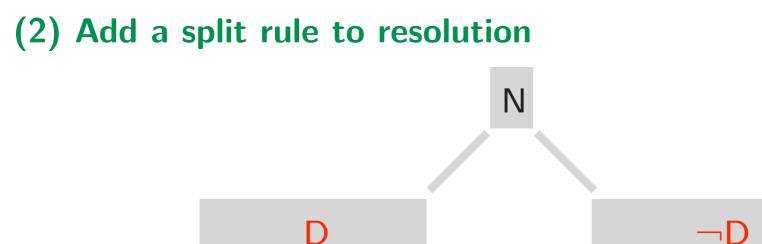
F ∨ D G ∨ E B ∨ ¬/ C ∨ ¬[Д	(0) (1) (2) (3)		¬D ∨ ¬0 ¬C ∨ A C ∨ A D ∨ ¬F		(4) (5) (6) (7)	
[D] [E] [A] B C	(Decide) (Decide) (Decide) (by 2,[A]) (by 3,B) (conflict 4		[D] [E] - A C	(by 9,[D]) (by 6,¬A) (conflict 5)	¬D F		(11) (by 0,¬D)
	Bac	kjump		Backju	пр		
	∨ ¬A (8 k (9 k	-	A ¬D	(10 by 6,5) (11 by 10,9)			

F ∨ D G ∨ E ∨ B ∨ ¬A C ∨ ¬E	Ą	(0) (1) (2) (3)		¬D ∨ ¬0 ¬C ∨ A C ∨ A D ∨ ¬F		(4) (5) (6) (7)	
[D] [E] [A] B C	(Decide) (Decide) (Decide) (by 2,[A]) (by 3,B) (conflict 4		[D] [E] A C	(by 9,[D]) (by 6,¬A) (conflict 5)	− D F □		(11) (by 0,¬D) (FAIL 7)
	Bac	kjump		Backju	пр		
	∨ ¬A (8 b) (9 b)	-	A ¬D	(10 by 6,5) (11 by 10,9)			

CDCL as **Saturation** - **Alternatives**


(1) Nothing to be done

Every CDCL refutation induces a resolution refutation


 \Rightarrow Closure under resolution inferences will find that refutation

Problem: ignores search space

Clause recombination problem [Plaisted]:

CDCL as **Saturation** - **Alternatives**

simplify(N,D) $\neg D$

Problems

Nothing new

Lifting to first-order logic? (But see Model Evolution)

(3) Approach taken here

Explained in the rest of this talk

Data Structures

Data Structures

Syntax

Decision literal, e.g., [A], [B]

Constraint clause, e.g., $\neg D \lor C \leftarrow [B]$, [A]

Ordinary clause, e.g., $\neg D \lor C \leftarrow$

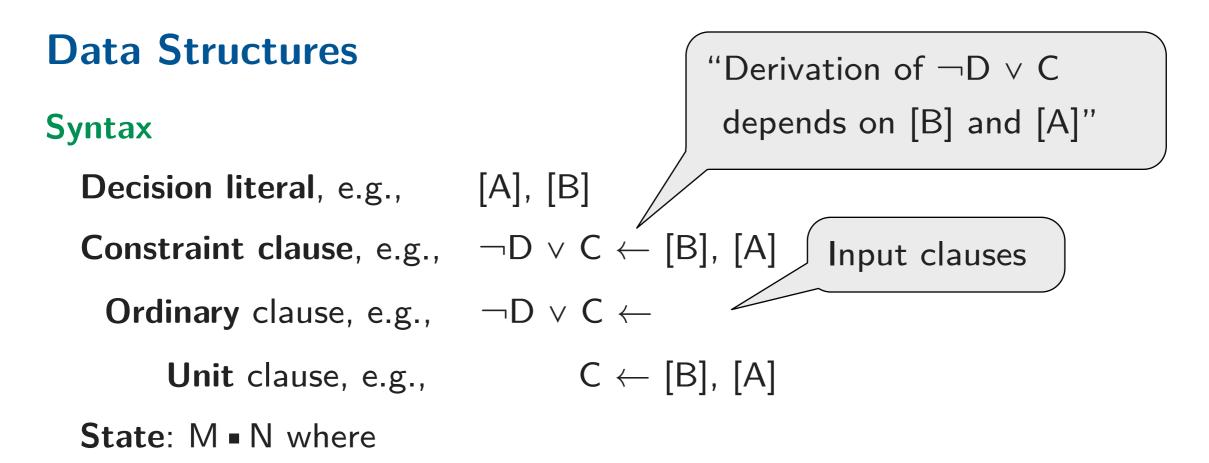
Unit clause, e.g., $C \leftarrow [B], [A]$

State: M • N where

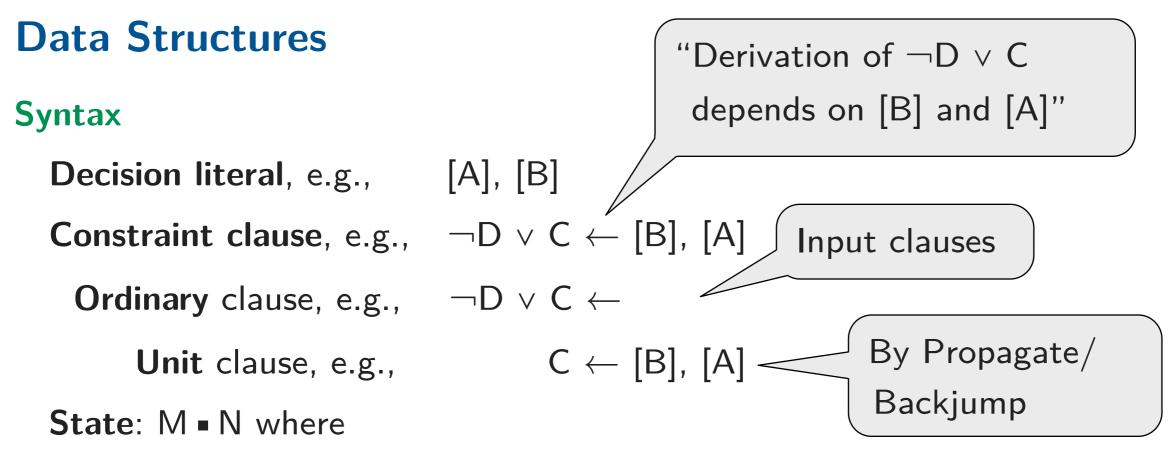
M is a set of *decision* literals

Data Structures

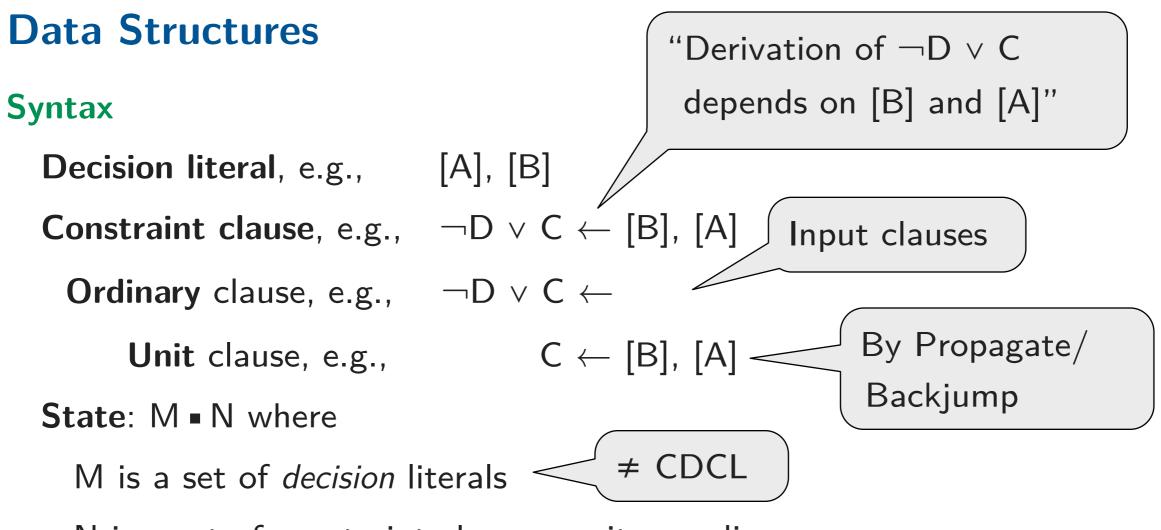
Syntax

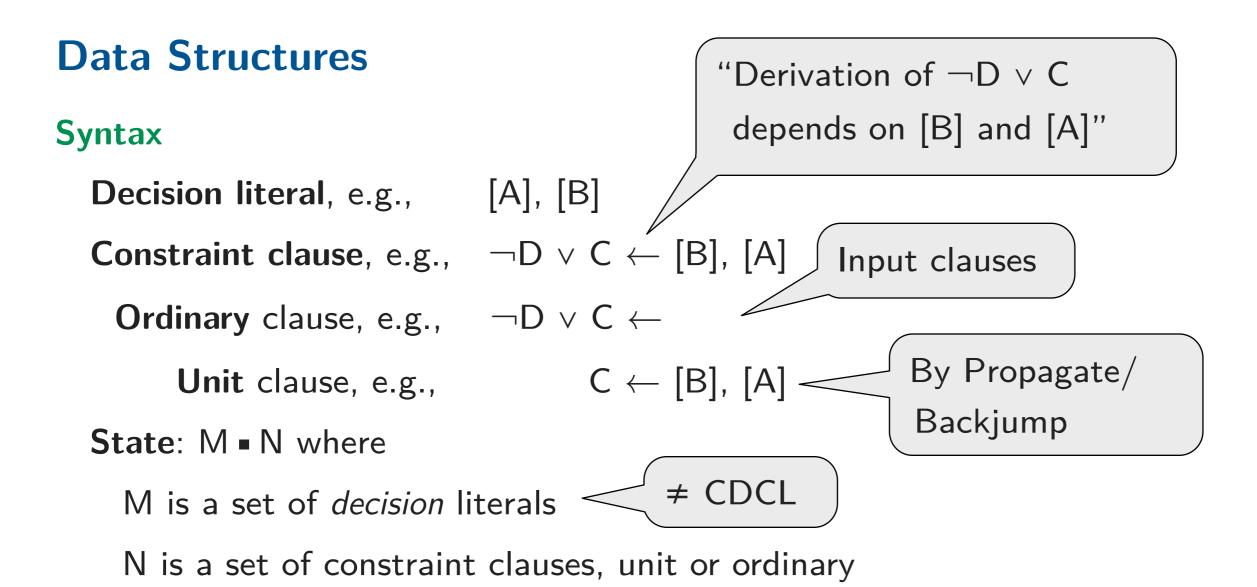

Decision literal, e.g., [A], [B]

Constraint clause, e.g., $\neg D \lor C \leftarrow [B]$, [A]


Ordinary clause, e.g., $\neg D \lor C \leftarrow$

- Unit clause, e.g., $C \leftarrow [B], [A]$
- State: M N where
 - M is a set of *decision* literals
 - N is a set of constraint clauses, unit or ordinary


"Derivation of ¬D ∨ C depends on [B] and [A]"



M is a set of *decision* literals

M is a set of *decision* literals

Semantics

- [C] C is true by **default**
- $\neg C \leftarrow [B], [A] \qquad C \text{ is false if A and B are true by default, overriding [C]}$ $C \leftarrow [B], [A] \qquad C \text{ is true if A and B are true by default, overriding [C]}$

Propagate

Decide

Backjump

Propagate

 $A \lor \neg B \lor \quad C \leftarrow$

Decide

Backjump

Propagate $\neg C \leftarrow [D]$ $A \lor \neg B \lor C \leftarrow$

Decide

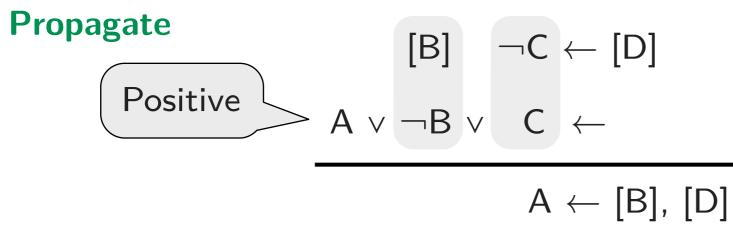
Backjump

Propagate

$$\begin{bmatrix} \mathsf{B} \end{bmatrix} \neg \mathsf{C} \leftarrow \begin{bmatrix} \mathsf{D} \end{bmatrix}$$
$$\mathsf{A} \lor \neg \mathsf{B} \lor \mathsf{C} \leftarrow$$

Decide

Backjump


Propagate

$$[B] \neg C \leftarrow [D]$$
$$A \lor \neg B \lor C \leftarrow$$

 $\mathsf{A} \leftarrow [\mathsf{B}], \, [\mathsf{D}]$

Decide

Backjump

Decide

Backjump

Propagate
$$[B]$$
 $\neg C \leftarrow [D]$ Positive $A \lor \neg B \lor C \leftarrow$ $A \lor \neg B \lor C \leftarrow$ $A \leftarrow [B], [D]$ if $A \succ \neg B \lor C$

Decide

Backjump

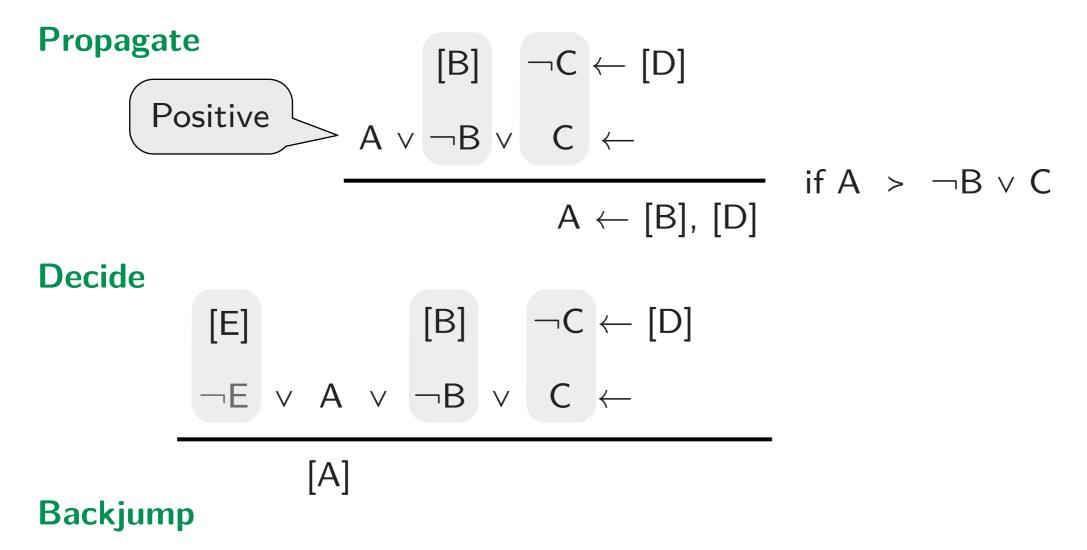
Propagate
$$[B]$$
 $\neg C \leftarrow [D]$ Positive $A \lor \neg B \lor C \leftarrow$ $A \lor \neg B \lor C \leftarrow$ $A \leftarrow [B], [D]$

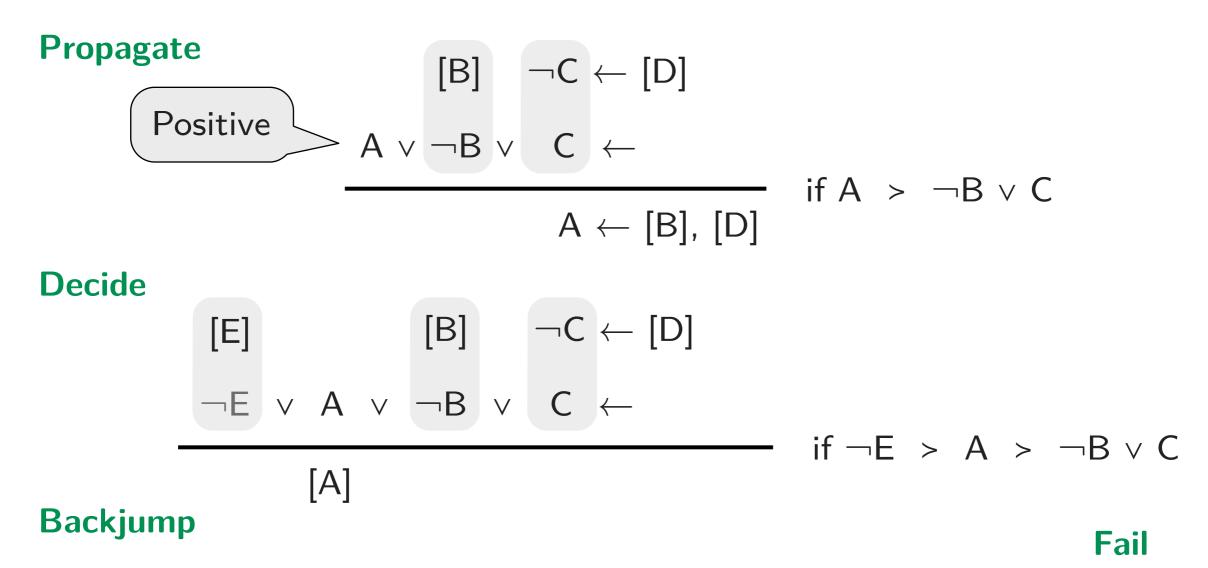
Decide

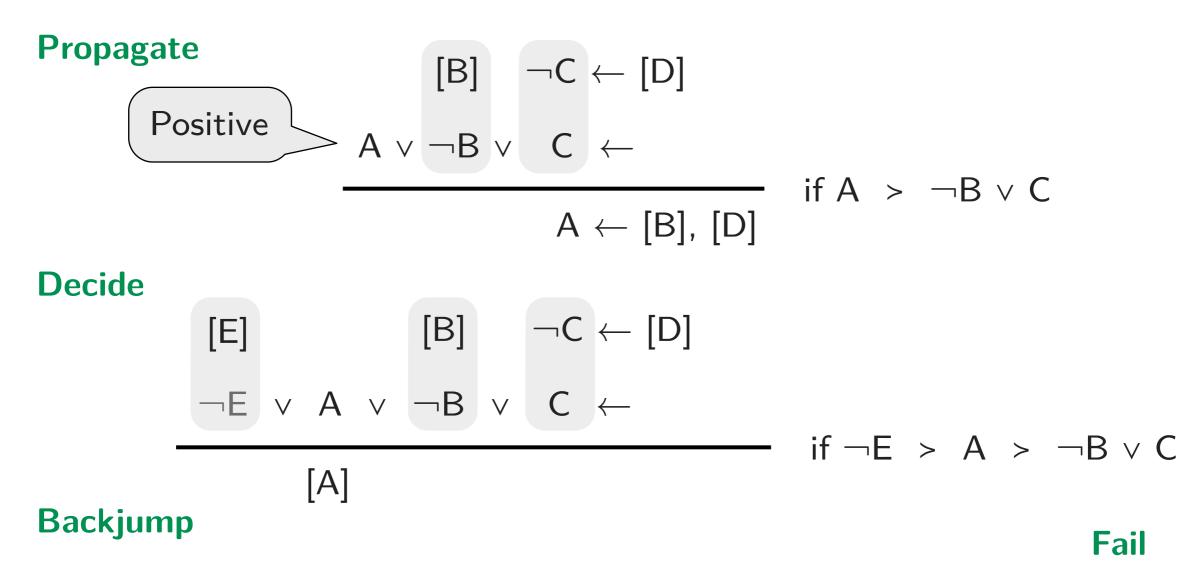
$$\neg E \lor A \lor \neg B \lor C \leftarrow$$

Backjump

Propagate
$$[B]$$
 $\neg C \leftarrow [D]$ Positive $A \lor \neg B \lor C$ \leftarrow A $\leftarrow [B], [D]$ if $A > \neg B \lor C$ Decide $\neg C \leftarrow [D]$ $\neg E \lor A \lor \neg B \lor C \leftarrow$


Backjump


Propagate
$$[B]$$
 $\neg C \leftarrow [D]$ Positive $A \lor \neg B \lor C$ \leftarrow A \leftarrow [B], [D]if $A \succ \neg B \lor C$ A $\leftarrow [B], [D]$ Decide $[B]$ $\neg C \leftarrow [D]$ $\neg E \lor A \lor \neg B \lor C \leftarrow$


Backjump

Propagate
$$[B]$$
 $\neg C \leftarrow [D]$ Positive $A \lor \neg B \lor C$ \leftarrow A $\leftarrow [B], [D]$ if $A > \neg B \lor C$ Decide $[E]$ $[B]$ $\neg C \leftarrow [D]$ $\neg E \lor A \lor \neg B \lor C \leftarrow$

Backjump

 $\neg E \lor A \lor \neg B \lor C \leftarrow$

Propagate
$$[B] \neg C \leftarrow [D]$$

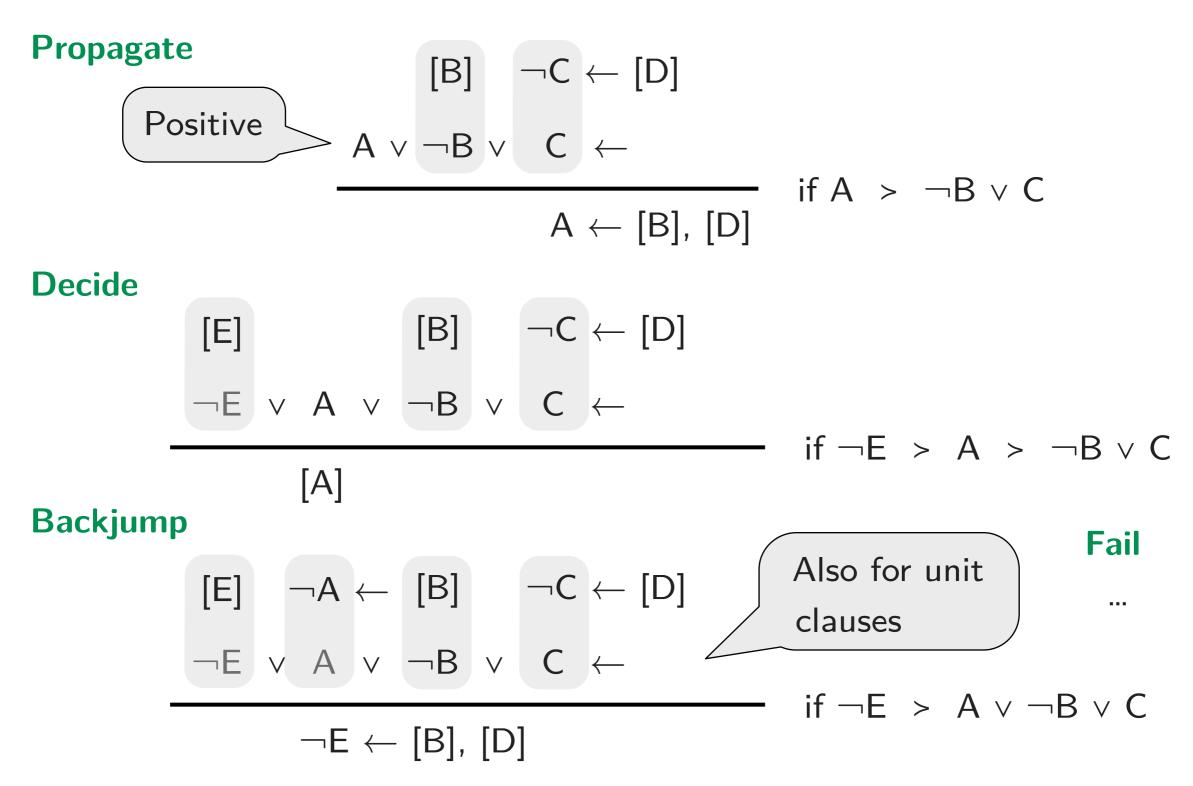
Positive $A \lor \neg B \lor C \leftarrow$
 $A \leftarrow [B], [D]$ if $A \succ \neg B \lor C$
Decide $[E] \qquad [B] \neg C \leftarrow [D]$
 $\neg E \lor A \lor \neg B \lor C \leftarrow$
 $[A]$ if $\neg E \succ A \succ \neg B \lor C$
 $a \leftarrow [D]$
 $\neg C \leftarrow [D]$
 $a \leftarrow$

Propagate
$$[B] \neg C \leftarrow [D]$$

Positive $A \lor \neg B \lor C \leftarrow$
 $A \leftarrow [B], [D]$ if $A \succ \neg B \lor C$
Decide $[E] \qquad [B] \neg C \leftarrow [D]$
 $\neg E \lor A \lor \neg B \lor C \leftarrow$
 $[A]$ if $\neg E \succ A \succ \neg B \lor C$
 $[A]$ Fail
 $\neg E \lor A \lor \neg B \lor C \leftarrow$

Propagate
$$[B] \neg C \leftarrow [D]$$

Positive $A \lor \neg B \lor C \leftarrow$
 $A \leftarrow [B], [D]$ if $A > \neg B \lor C$
Decide $[E] \qquad [B] \neg C \leftarrow [D]$
 $\neg E \lor A \lor \neg B \lor C \leftarrow$
 $[A]$ $if \neg E > A > \neg B \lor C$
Fail
 $\neg A \leftarrow [B] \neg C \leftarrow [D]$
 $\neg E \lor A \lor \neg B \lor C \leftarrow$


Propagate
$$[B] \neg C \leftarrow [D]$$

Positive $A \lor \neg B \lor C \leftarrow$
 $A \leftarrow [B], [D]$ if $A \succ \neg B \lor C$
Decide $[E] \qquad [B] \neg C \leftarrow [D]$
 $\neg E \lor A \lor \neg B \lor C \leftarrow$
 $[A]$ if $\neg E \succ A \succ \neg B \lor C$
 $[A]$ Fail
 $[E] \neg A \leftarrow [B] \neg C \leftarrow [D]$
 $\neg E \lor A \lor \neg B \lor C \leftarrow$

$$\begin{array}{c|c} \textbf{Propagate} & [B] \neg C \leftarrow [D] \\ \hline \textbf{Positive} & \textbf{A} \lor \neg B \lor C \leftarrow \\ \hline \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{A} \leftarrow [B], [D] \end{array} & \text{if } \textbf{A} \succ \neg B \lor C \\ \hline \textbf{Decide} & [E] & [B] \neg C \leftarrow [D] \\ \neg E \lor \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{[A]} & \text{if } \neg E \succ \textbf{A} \succ \neg B \lor C \\\hline \textbf{Backjump} & \textbf{If } \neg C \leftarrow [D] \\ \hline \textbf{Backjump} & \textbf{Fail} \\\hline \textbf{E} \lor \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \neg E \leftarrow [B], [D] \end{array} \end{array}$$

$$\begin{array}{c|c} \textbf{Propagate} & [B] \neg C \leftarrow [D] \\ \hline \textbf{Positive} & \textbf{A} \lor \neg B \lor C \leftarrow \\ \hline \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{A} \leftarrow [B], [D] \end{array} & \text{if } \textbf{A} \succ \neg B \lor C \\ \hline \textbf{Decide} & [E] & [B] \neg C \leftarrow [D] \\ \neg E \lor \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{[A]} & \text{if } \neg E \succ \textbf{A} \succ \neg B \lor C \\\hline \textbf{Backjump} & \textbf{Fail} \\ \hline \textbf{E} \lor \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{Decide} & \textbf{Fail} \\\hline \textbf{Decide} & \textbf{Fail} \\\hline \textbf{Backjump} & \textbf{Fail} \\\hline \textbf{C} \leftarrow [D] & \textbf{Fail} \\\hline \textbf{Fail} & \textbf{Fail} \\\hline \textbf{C} \leftarrow [B], [D] & \text{if } \neg E \succ \textbf{A} \lor \neg B \lor C \\\hline \textbf{C} \leftarrow \textbf{B} \lor \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \hline \textbf{C} \hline \textbf{C} \leftarrow \hline \textbf{C} \hline \textbf{C} \leftarrow \hline \textbf{C} \hline \textbf{$$

$$\begin{array}{c|c} \textbf{Propagate} & [B] & \neg C \leftarrow [D] \\ \hline \textbf{Positive} & \textbf{A} \lor \neg B \lor C \leftarrow \\ \hline \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{A} \leftarrow [B], [D] \end{array} & \text{if } \textbf{A} \succ \neg B \lor C \\ \hline \textbf{Decide} & [E] & [B] & \neg C \leftarrow [D] \\ \hline \neg E \lor \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{[A]} & \text{if } \neg E \succ \textbf{A} \succ \neg B \lor C \\\hline \textbf{Backjump} & \textbf{I} & \textbf{C} \leftarrow \\\hline \textbf{Backjump} & \textbf{I} & \textbf{C} \leftarrow \\\hline \textbf{Backjump} & \textbf{I} & \textbf{C} \leftarrow \\\hline \textbf{Backjump} & \textbf{I} & \textbf{I} & \textbf{C} \leftarrow \\\hline \textbf{Backjump} & \textbf{I} & \textbf{I} & \textbf{I} \\ \hline \textbf{Backjump} & \textbf{I} & \textbf{I} & \textbf{I} \\\hline \textbf{Backjump} & \textbf{I} & \textbf{I} & \textbf{I} \\\hline \textbf{I} & \textbf{I} & \textbf{I} \\\hline \textbf{I} & \textbf{I} & \textbf{I} \\\hline \textbf{I} & \textbf{I} & \textbf{I} & \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline\hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline\hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline\hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline\hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I} \hline \textbf{I} \hline\hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I} \hline \textbf{I} \hline \textbf{I} \hline \textbf{I} \\\hline \textbf{I} & \textbf{I} \hline \textbf{I$$

$$\begin{array}{c|c} \textbf{Propagate} & [B] & \neg C \leftarrow [D] \\ \hline \textbf{Positive} & \textbf{A} \lor \neg B \lor C \leftarrow \\ \hline \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{A} \leftarrow [B], [D] \end{array} & \text{if } \textbf{A} \succ \neg B \lor C \\ \hline \textbf{Decide} & [E] & [B] & \neg C \leftarrow [D] \\ \hline \neg E \lor \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{[A]} & \text{if } \neg E \succ \textbf{A} \succ \neg B \lor C \\\hline \textbf{Backjump} & \textbf{I} \leftarrow [B] & \neg C \leftarrow [D] & \textbf{Also for unit} \\ \hline \textbf{C} \vdash \textbf{A} \lor \neg B \lor C \leftarrow \\\hline \textbf{I} \leftarrow \textbf{B} \vdash \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \\\hline \textbf{C} \leftarrow \hline \textbf{C} \leftarrow \\\hline \textbf{C} \hline \textbf{C$$

Invariant: clauses *head* \leftarrow *body* are ordered: min(*head*) > max(*body*)

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow $	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)

[D] (Decide)

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)

[D]	(Decide)
[E]	(Decide)

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \neg F \leftarrow$	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \neg F \leftarrow$	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
$B \leftarrow [A]$	(9 by 2,[A])

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
B ← [A]	(9 by 2,[A])
$C \gets [A]$	(10 by 3,9)

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)

[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
$B \leftarrow [A]$	(9 by 2,[A])
$C \gets [A]$	(10 by 3,9)
	(conflict 4,10,[D],[A])

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D \leftarrow$	(1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)

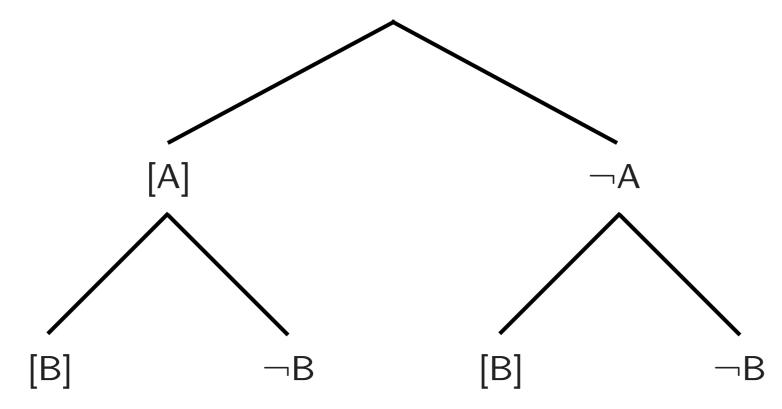
[D]	(Decide)
[E]	(Decide)
[A]	(Decide)
$B \leftarrow [A]$	(9 by 2,[A])
$C \gets [A]$	(10 by 3,9)
	(conflict 4,10,[D],[A])
$\neg A \leftarrow [D]$	(11 by Backjump

$F \lor D \leftarrow$	(0)	$\neg D \lor \neg C \lor \neg A \leftarrow$	(4)
$G \lor E \lor \neg D$	\leftarrow (1)	$\neg C \lor A \leftarrow$	(5)
$B \lor \neg A \leftarrow$	(2)	$C \lor A \leftarrow$	(6)
$C \lor \neg B \leftarrow$	(3)	$D \lor \negF \leftarrow$	(7)
[D]	(Decide)		

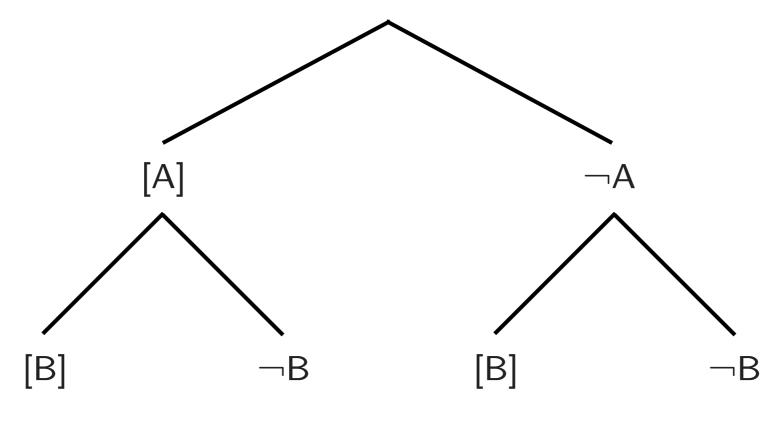
[E]	(Decide)
[A]	(Decide)
$B \leftarrow [A]$	(9 by 2,[A])
$C \gets [A]$	(10 by 3,9)
	(conflict 4,10,[D],[A])
$\neg A \leftarrow [D]$	(11 by Backjump)

$F \lor D \leftarrow$ $G \lor E \lor \neg D \leftarrow$ $B \lor \neg A \leftarrow$ $C \lor \neg B \leftarrow$	 (0) (1) (2) (3) 	$\neg D \lor \neg C \lor \neg A$ $\neg C \lor A \leftarrow$ $C \lor A \leftarrow$ $D \lor \neg F \leftarrow$	$A \leftarrow (4)$ (5) (6) (7)
$\begin{bmatrix} E \end{bmatrix} \qquad (De \\ \begin{bmatrix} A \end{bmatrix} \qquad (De \\ \\ B \leftarrow \begin{bmatrix} A \end{bmatrix} \qquad (De \\ \\ \\ C \leftarrow \begin{bmatrix} A \end{bmatrix} \qquad (9 \\ (10 \\ conflict) \end{bmatrix}$	/	C ← [D]	(12 by 6,11)

$F \lor D \leftarrow$ $G \lor E \lor \neg D$ $B \lor \neg A \leftarrow$ $C \lor \neg B \leftarrow$	$\begin{array}{c} (0) \\ \leftarrow & (1) \\ (2) \\ (3) \end{array}$	$\neg D \lor \neg C \lor \neg$ $\neg C \lor A \leftarrow$ $C \lor A \leftarrow$ $D \lor \neg F \leftarrow$	$A \leftarrow (4)$ (5) (6) (7)
[D] [E] [A] B ← [A]	(Decide) (Decide) (Decide) (9 by 2,[A])	C ← [D]	(12 by 6,11) (conflict 5,11,12)
$C \leftarrow [A]$	(10 by 3,9) onflict 4,10,[D],[A]) (11 by Backjump)		

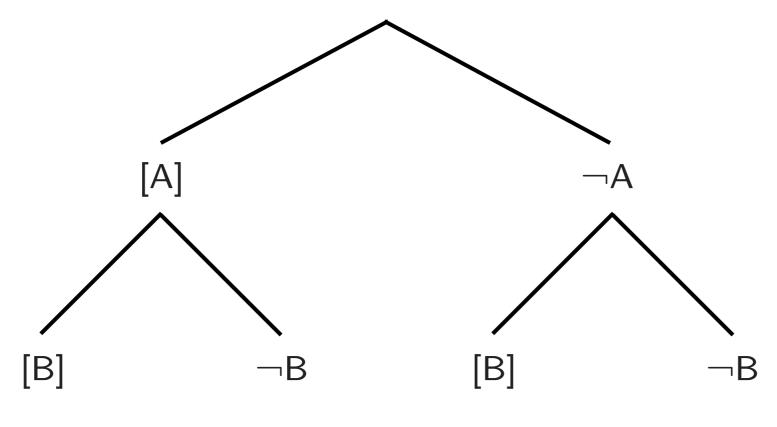

$F \lor D \leftarrow$ $G \lor E \lor \neg$ $B \lor \neg A \leftarrow$ $C \lor \neg B \leftarrow$	(2)	$\neg D \lor \neg C \lor -$ $\neg C \lor A \leftarrow$ $C \lor A \leftarrow$ $D \lor \neg F \leftarrow$	$\neg A \leftarrow (4)$ (5) (6) (7)
[D] [E] [A] B ← [A]	(Decide) (Decide) (Decide) (9 by 2,[A])	$C \leftarrow [D]$ $\neg D \leftarrow$	(12 by 6,11) (conflict 5,11,12) (13 by Backjump)
$C \leftarrow [A]$	(10 by 3,9) (conflict 4,10,[D],[A]) (11 by Backjump)		

$F \lor D \leftarrow$ $G \lor E \lor \neg D$ $B \lor \neg A \leftarrow$ $C \lor \neg B \leftarrow$	(0) (1) (2) (3)	$\neg D \lor \neg C \lor \neg A \leftarrow (4)$ $\neg C \lor A \leftarrow (5)$ $C \lor A \leftarrow (6)$ $D \lor \neg F \leftarrow (7)$
[D] [E] [A] B ← [A]	(Decide) (Decide) (Decide) (9 by 2,[A])	$C \leftarrow [D] \qquad (12 \text{ by } 6,11) \\ (\text{conflict } 5,11,12) \\ \neg D \leftarrow \qquad (13 \text{ by Backjump})$
C ← [A]	(10 by 3,9) conflict 4,10,[D],[A]) (11 by Backjump)	 [D] overridden by ¬D ← [A] no longer overridden by ¬A ← [D] and [D]

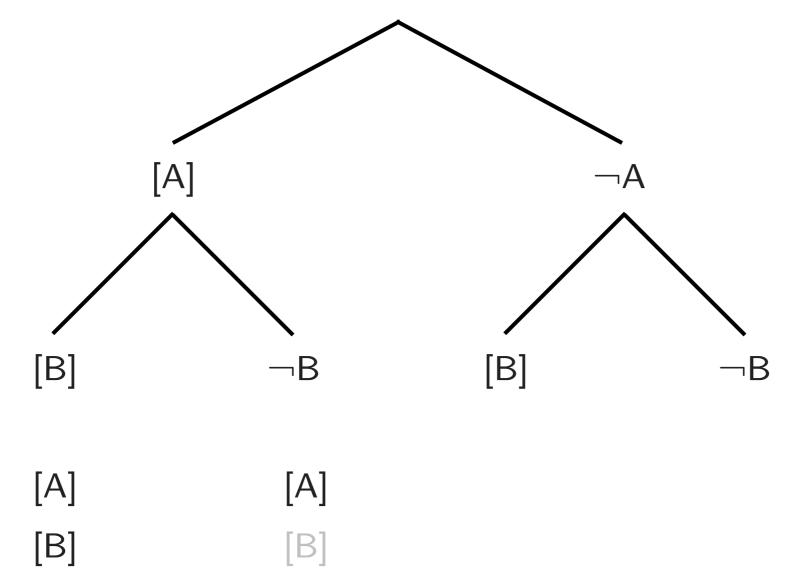

Example CDCL-as-Saturation Derivation

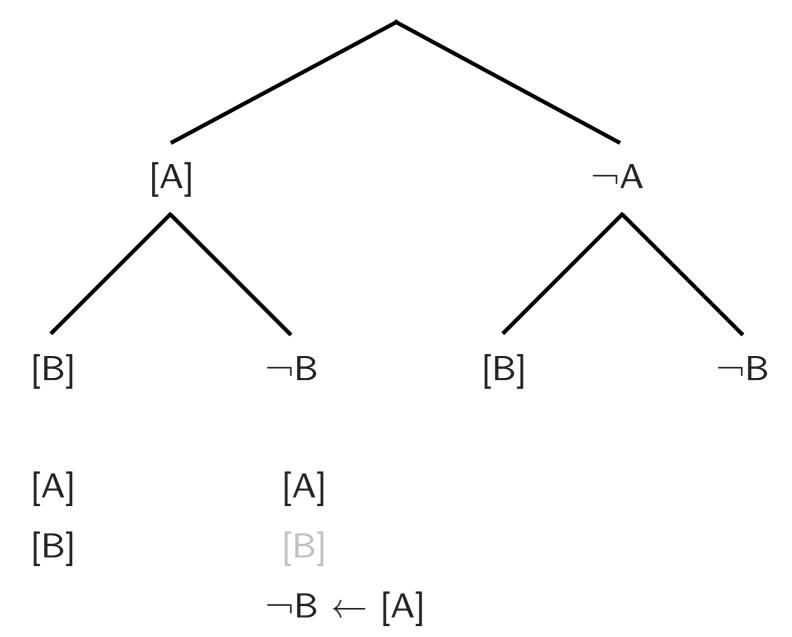
$F \lor D \leftarrow$ (0) $G \lor E \lor \neg D \leftarrow$ (1) $B \lor \neg A \leftarrow$ (2) $C \lor \neg B \leftarrow$ (3)	$\neg D \lor \neg C \lor \neg A \leftarrow (4)$ $\neg C \lor A \leftarrow (5)$ $C \lor A \leftarrow (6)$ $D \lor \neg F \leftarrow (7)$	
$\begin{bmatrix} D \end{bmatrix} \qquad (Decide) \\ \begin{bmatrix} E \end{bmatrix} \qquad (Decide) \\ \begin{bmatrix} A \end{bmatrix} \qquad (Decide) \\ \begin{bmatrix} A \end{bmatrix} \qquad (Decide) \\ \begin{bmatrix} A \end{bmatrix} \qquad (0 \text{ by } 2 \begin{bmatrix} A \end{bmatrix}) \end{bmatrix}$	$C \leftarrow [D] \qquad (12 \text{ by } 6,11) \\ (\text{conflict } 5,11,12) \\ \neg D \leftarrow \qquad (13 \text{ by Backjump})$	
$\begin{array}{ll} B \leftarrow [A] & (9 \text{ by } 2, [A]) \\ C \leftarrow [A] & (10 \text{ by } 3, 9) \\ & (\text{conflict } 4, 10, [D], [A]) \\ \neg A \leftarrow [D] & (11 \text{ by Backjump}) \end{array}$	[D] overridden by ¬D ← [A] no longer overridden by ¬A ← [D] and [D]	
[A] overridden by $\neg A \leftarrow [D]$ and [D]	$F \leftarrow (14 \text{ by } 0, 13)$	

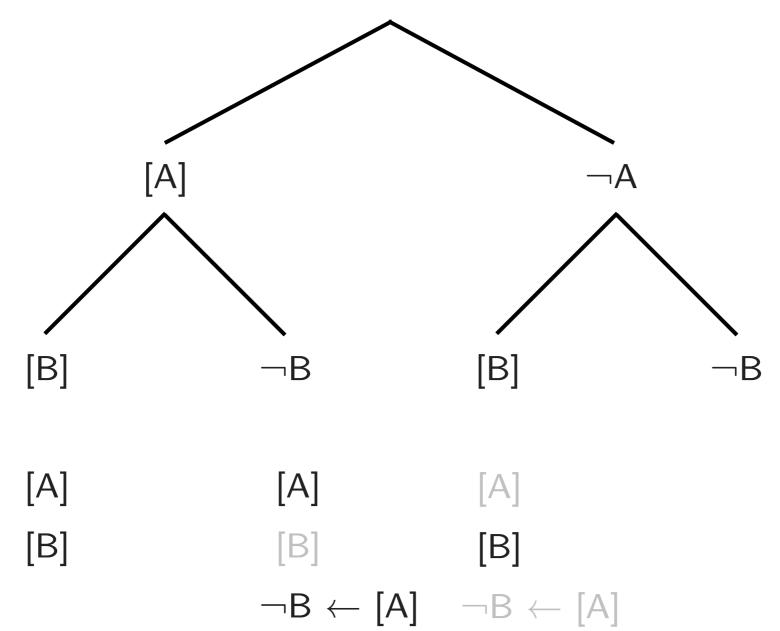
 $\Box \leftarrow (FAIL 7)$

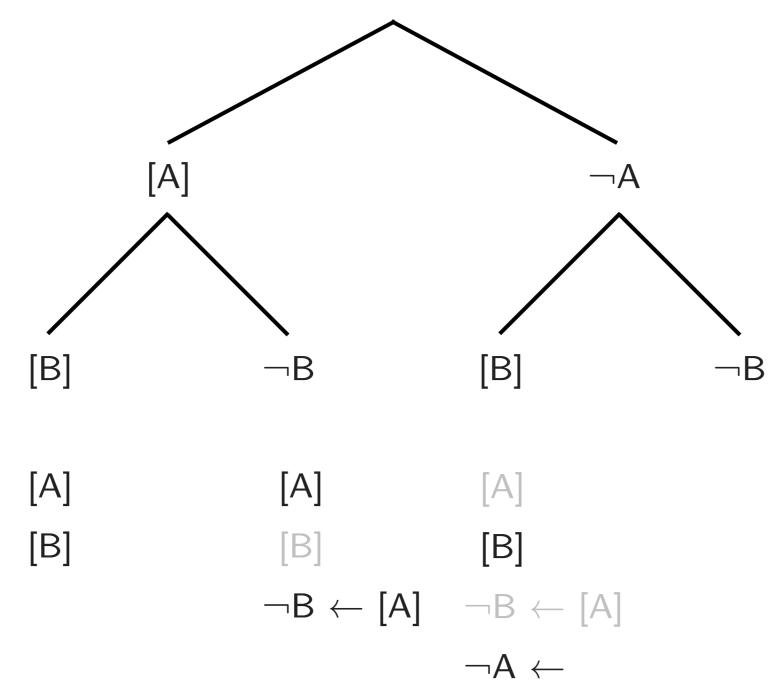


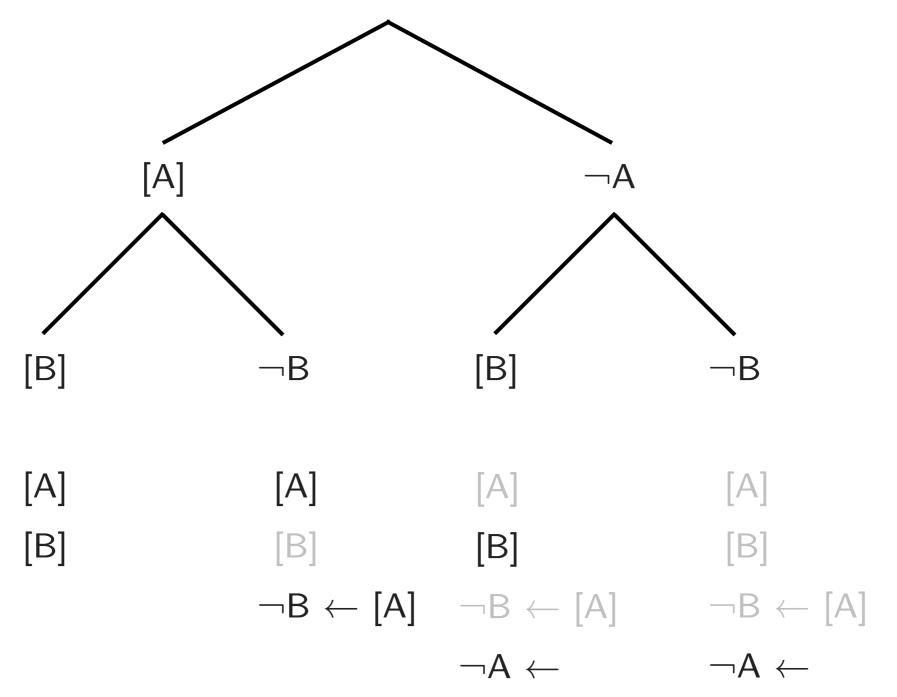
Switching interpretations by increasing clause sets

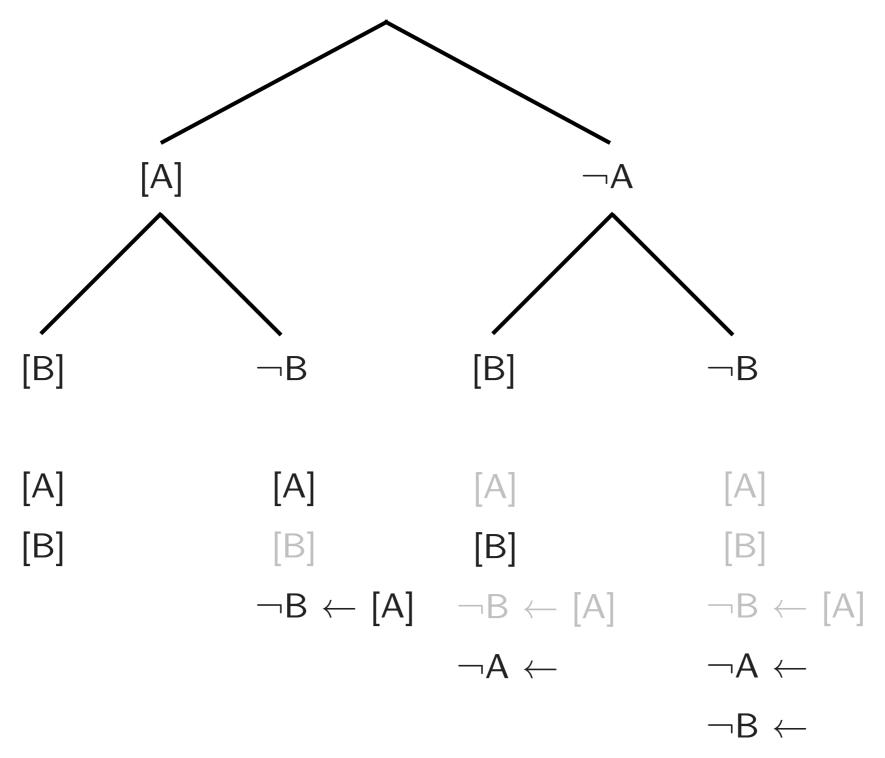


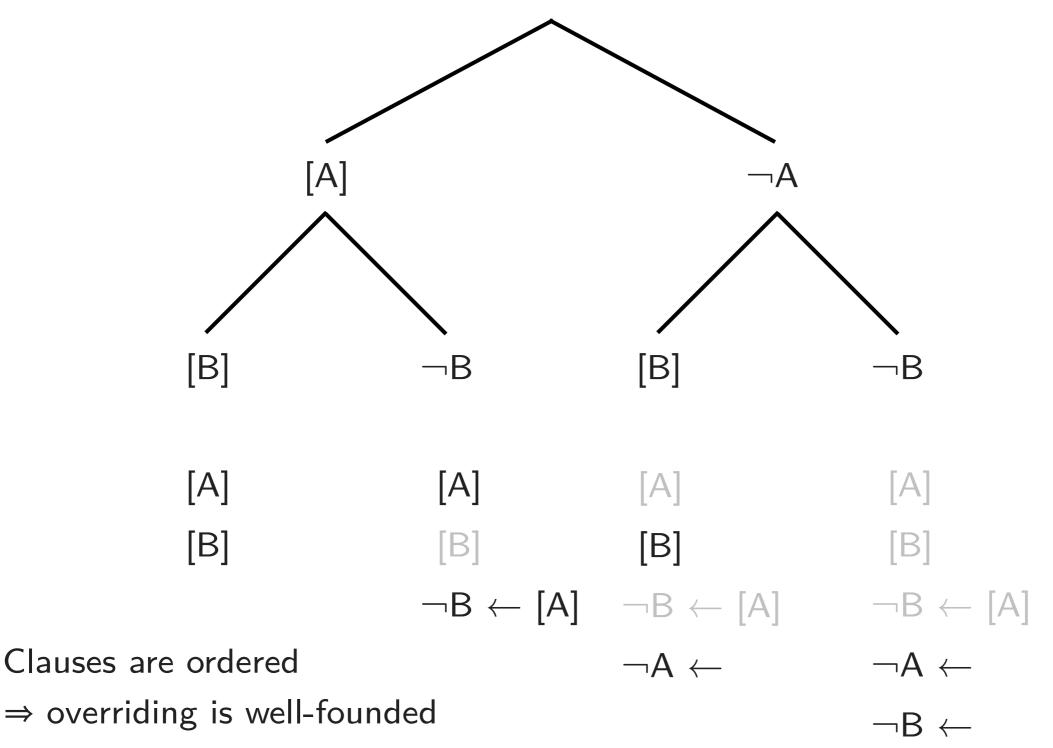

[A]


Switching interpretations by increasing clause sets




[A] [B]





Locally redundant \approx redundancy dependent on decision literal context **Global** redundant \approx redundancy independent of decision literal context Let A > B > C > D > E \Rightarrow (9) > (8) > ... > (1)

$[B]$ $A \leftarrow [D]$	 (4) (5) (6)

Locally redundant \approx redundancy dependent on decision literal context **Global** redundant \approx redundancy independent of decision literal context Let A > B > C > D > E \Rightarrow (9) > (8) > ... > (1)

$[E] \\ \neg D \leftarrow [E] \\ [D] \\ [C] \\ [B] \\ A \leftarrow [D] \\ A \leftarrow [D], [E] \\ A \leftarrow [C], [E]$	 (1) (2) (3) (4) (5) (6) (7)
A ← [C], [E] A ← [B]	(8) (9)
	(\mathbf{J})

(3) locally redundant, as overridden by (2)

Locally redundant \approx redundancy dependent on decision literal context **Global** redundant \approx redundancy independent of decision literal context Let A > B > C > D > E \Rightarrow (9) > (8) > ... > (1)

$\begin{array}{l} [E] \\ \neg D \leftarrow [E] \\ [D] \\ [C] \\ [B] \\ A \leftarrow [D] \\ A \leftarrow [D], \ [E] \\ A \leftarrow [C], \ [E] \end{array}$	 (1) (2) (3) (4) (5) (6) (7) (8)
A ← [C], [E] A ← [B]	(8) (9)

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant

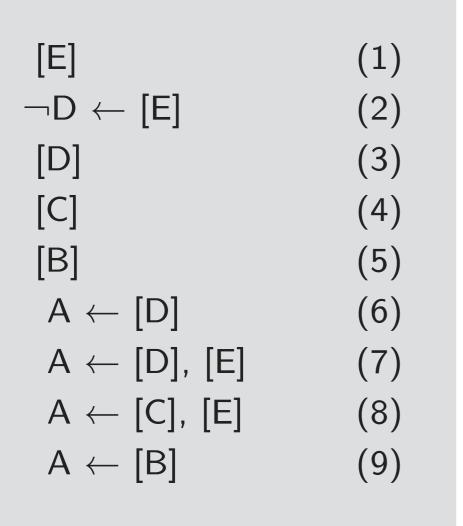
Locally redundant \approx redundancy dependent on decision literal context **Global** redundant \approx redundancy independent of decision literal context Let A > B > C > D > E \Rightarrow (9) > (8) > ... > (1)

$\begin{array}{l} [E] \\ \neg D \leftarrow [E] \\ [D] \\ [C] \\ [B] \\ A \leftarrow [D] \\ A \leftarrow [D], [E] \\ A \leftarrow [C], [E] \end{array}$	 (1) (2) (3) (4) (5) (6) (7) (8)
A ← [C], [E] A ← [B]	(8) (9)

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant(7) globally redundant, as subsumed by (6)

Locally redundant \approx redundancy dependent on decision literal context **Global** redundant \approx redundancy independent of decision literal context Let A > B > C > D > E \Rightarrow (9) > (8) > ... > (1)

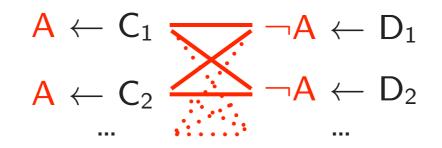

$[E] \\ \neg D \leftarrow [E] \\ [D] \\ [C] \\ [B] \\ $	 (1) (2) (3) (4) (5) (6)
[B] A ← [D] A ← [D], [E]	(5) (6) (7)
$A \leftarrow [C], [E]$ $A \leftarrow [B]$	(8) (9)

(3) locally redundant, as overridden by (2)

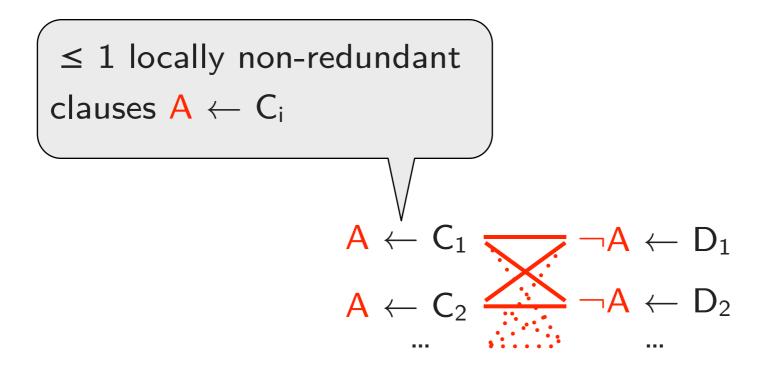
(6) locally redundant, as [D] locally redundant(7) globally redundant, as subsumed by (6)

(9) locally redundant by (8)

Locally redundant \approx redundancy dependent on decision literal context **Global** redundant \approx redundancy independent of decision literal context Let A > B > C > D > E \Rightarrow (9) > (8) > ... > (1)

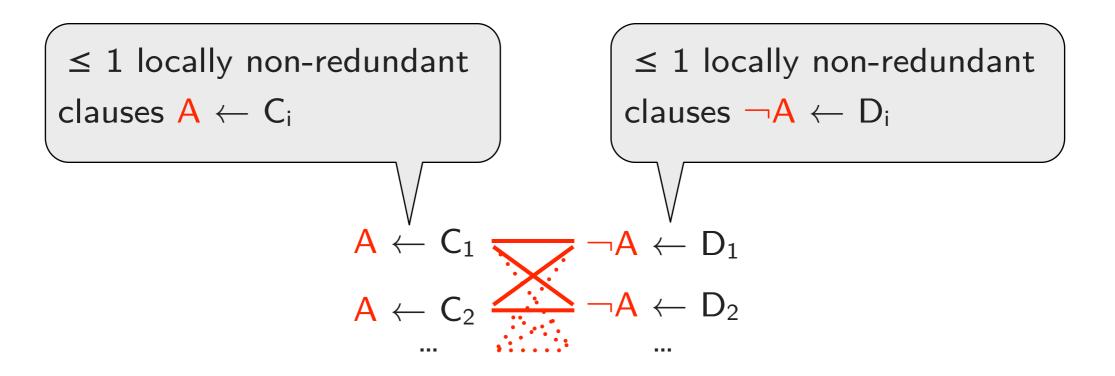

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant(7) globally redundant, as subsumed by (6)

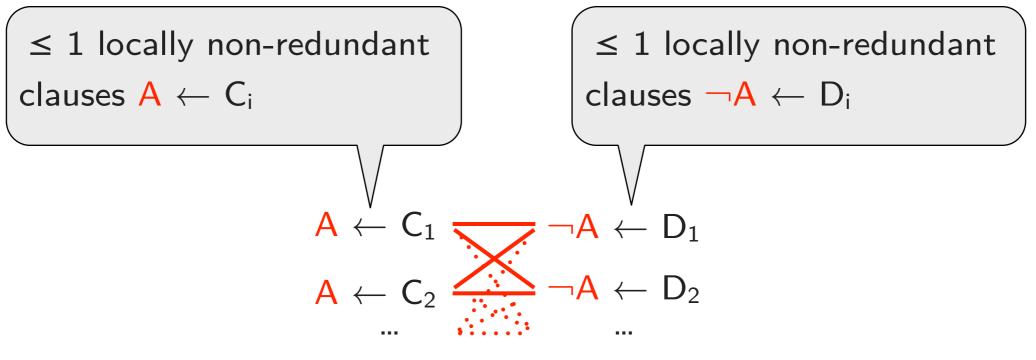

(9) locally redundant by (8)

 \Rightarrow at any time ≤ 1 locally non-redundant unit clauses with same head (here A)

Inferences from locally redundant clauses can be deferred ⇒ avoids clause recombination problem, e.g., for Backjump:

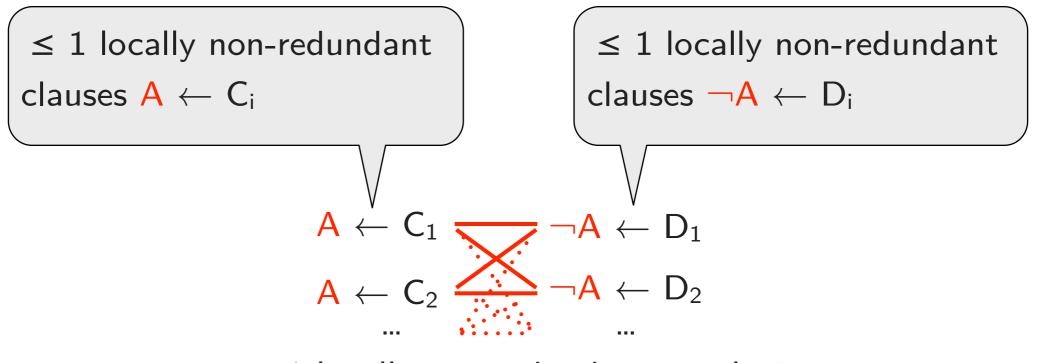


Inferences from locally redundant clauses can be deferred ⇒ avoids clause recombination problem, e.g., for Backjump:


Inferences from locally redundant clauses can be deferred

 \Rightarrow avoids clause recombination problem, e.g., for Backjump:

Inferences from locally redundant clauses can be deferred


 \Rightarrow avoids clause recombination problem, e.g., for Backjump:

 \leq 1 locally non-redundant conclusions

Inferences from locally redundant clauses can be deferred

 \Rightarrow avoids clause recombination problem, e.g., for Backjump:

 \leq 1 locally non-redundant conclusions

Similarly for Propagate

Model Construction I(M • N)

Let M • N be a state

Let $e \in M \, \cup \, N$ be the next expression considered

Suppose set of literals J_e has been defined for all f with e > f

Extend J_e as follows

Case	$e = A \leftarrow D <$	$e = \neg A \leftarrow D <$	e = [A]
Result	$J_e \cup \left\{A\right\} if$	$J_e \cup \{ \neg A \} \text{if} $	$J_e \cup \{A\}$ if
	(1) D \subseteq M _N	(1) D \subseteq M _N	(1) A $\not\in$ J _e
	(2) A ∉ J _e	(2) ¬A ∉ J _e	(2) ¬A ∉ J _e
		(3) A ∉ J _e	

where $M_N = \{ [A] \in M \mid [A] \text{ is not locally redundant wrt. } M \bullet N \}$

Define I(M • N) as the interpretation obtained from the final set J

Completeness

Inference is **locally redundant** \approx some premise or conclusion is locally redundant State M • N is **saturated** iff every inference from M • N is locally redundant Satisfaction relation

 $(M, I) \vDash C \leftarrow D$ iff $D \not\subseteq M$ or $I \vDash C$

Theorem (static completeness)

Let $M \bullet N$ be a saturated state such that for all $C \leftarrow D \in N$, |C| = 1 or $D = \{\}$ (i.e., unit or ordinary clauses only). If $\Box \leftarrow \notin N$ then $(M_N, I(M \bullet N)) \models N$.

Dynamic completeness result with simplification (straightforward?)

First-Order Logic

Lifting

Local redundancy: semantics is straightforward, via ground instances

[Q(x)]	Q(a), Q(b),
[P(x)]	P(b),
$\negP(a) \gets [Q(a)]$	

Inference rules: straightforward

$P(x) \lor Q(x) \leftarrow$	(1)
$\neg Q(a) \leftarrow$	(2)
$P(a) \leftarrow$	(3 by 1,2)
$[Q(x)] \leftarrow$	(Decide)

Conclusion: Issues

Differences to CDCL

Backjumping

Does not remove clauses, only makes them locally redundant

Use of ordering

In general need Decide even in Horn case

Fix: construct/modify ordering on-the-fly (compatible with *local* redundancy)

Local redundancy

How to compute I.r. effectively/efficiently?

Watch 1 clause per decision literal [A] that overrides [A], if any

However, for first-order logic:

I.r. is optional - graceful degradation with decreasing precision

I.r. acts as interface to model representation:

can use whatever suits best, e.g., contexts, DIGs, constraint literals,...