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Research Interest: Automated Deduction
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Logics 
First-order logic with equality / EPR 
Theory reasoning, e.g., modulo LIA 
CTL*(FO(LIA)) 

Calculi 
Model evolution (first-order DPLL) 
Hierarchic superposition 

Reasoning services 
Proving theorems 
Disproving theorems 

Systems 
Darwin 
Beagle    Fitzroy



Example: Theory Reasoning
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Theory reasoning 

Lists over integers 
   (l ≈ nil) ∨ (l ≈ cons(head(l), tail(l)) 
   ¬(cons(k, l) ≈ nil) 
   head(cons(k, l)) ≈ k 
   tail(cons(k, l)) ≈ l 

The inRange predicate, e.g. inRange([1,0,5], 6)  
   nRange(l, n) ↔ (l ≈ nil ∨ (0 ≤ head(l) < n ∧ inRange(tail(l), n)))  

Conjecture 
   ∀ l:list n:int (¬(l ≈ nil) → (inRange(l, n) → inRange(cons(head(l), l), n)))

LIA + Lists/Arrays + Hypotheses ⊨ Conjecture ?

LIA + Lists/Arrays + Hypotheses ⊭ Conjecture ?
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Theory reasoning 

Lists over integers 
   (l ≈ nil) ∨ (l ≈ cons(head(l), tail(l)) 
   ¬(cons(k, l) ≈ nil) 
   head(cons(k, l)) ≈ k 
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LIA + Lists/Arrays + Hypotheses ⊨ Conjecture ?

LIA + Lists/Arrays + Hypotheses ⊭ Conjecture ?

“Proving infinite 
  satisfiability”

Injective 
Not surjective



CDCL as Saturation - Motivation
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Background 
Conflict driven clause learning (CDCL) for building SAT solvers 
Superposition/Resolution (Saturation) for building FOL theorem provers 

This talk 
Modelling the essence of CDCL in a saturation based framework 
Technical difficulty: modelling context switches (backjumping)  

Goals 
Scientific curiosity: relationship between CDCL and saturation? 
(Building SAT solvers) 
Building FO theorem provers 

Instance-based methods: [Plaisted], [Korovin], [BTinelli],… 
More recently: [AlagiWeidenbach], [BonacinaPlaisted]
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  F ∨ D      (0)  
  G ∨ E ∨ ¬D   (1) 
  B ∨ ¬A     (2) 
  C ∨ ¬B     (3) 

¬D ∨ ¬C ∨ ¬A   (4) 
¬C ∨ A      (5)  
  C ∨ A      (6) 
  D ∨ ¬F     (7) 
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(1) Nothing to be done 
Every CDCL refutation induces a resolution refutation 
⇒ Closure under resolution inferences will find that refutation 

Problem: ignores search space 
Clause recombination problem [Plaisted]:

F ∨ D
¬A ∨ D ¬D ∨ E ∨ G

¬D ∨ ¬C ∨ ¬A

|D|  ×    |¬D| resolvents
… …

Resolution CDCL

¬D      
|D| clauses

[D] 
|¬D| clauses
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(2) Add a split rule to resolution 

Problems 
Nothing new 
Lifting to first-order logic? (But see Model Evolution) 

(3) Approach taken here 
Explained in the rest of this talk

N

D 
simplify(N,D)

¬D 
simplify(N,¬D)
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Syntax 
Decision literal, e.g.,      [A], [B]   
Constraint clause, e.g.,   ¬D ∨ C ← [B], [A] 

  Ordinary clause, e.g.,  ¬D ∨ C ← 

       Unit clause, e.g.,          C ← [B], [A] 
State: M•N where  

M is a set of decision literals 
N is a set of constraint clauses, unit or ordinary
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[A]

[B] ¬B

¬A

[A]
[B]

[A]
[B]

¬B ← [A]

[A]
[B]

¬B ← [A]
¬A ←

[A]
[B]

¬B ← [A]
¬A ←
¬B ←

[B] ¬B

Switching interpretations by increasing clause sets

Clauses are ordered 
⇒ overriding is well-founded
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Let A ≻ B ≻ C ≻ D ≻ E  ⇒  (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E]       (1) 
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 [D]       (3) 
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  A ← [C], [E]   (8) 
  A ← [B]     (9)

Locally redundant ≈ redundancy dependent on decision literal context
Global redundant ≈ redundancy independent of decision literal context
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Let A ≻ B ≻ C ≻ D ≻ E  ⇒  (9) ≻ (8) ≻ ⋯ ≻ (1)

 [E]       (1) 
¬D ← [E]     (2) 
 [D]       (3) 
 [C]       (4) 
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  A ← [D]     (6) 
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  A ← [C], [E]   (8) 
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Global redundant ≈ redundancy independent of decision literal context

⇒ at any time ≤ 1 locally non-redundant unit clauses with same head (here A)

(3) locally redundant, as overridden by (2)

(6) locally redundant, as [D] locally redundant
(7) globally redundant, as subsumed by (6)

(9) locally redundant by (8)
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Redundant Inferences

13

Inferences from locally redundant clauses can be deferred  
⇒ avoids clause recombination problem, e.g., for Backjump:

¬A ← D2

¬A ← D1

… …

A ← C1

A ← C2

≤ 1 locally non-redundant 
clauses A ← Ci

≤ 1 locally non-redundant 
clauses ¬A ← Di

≤ 1 locally non-redundant conclusions

Similarly for Propagate
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14

Let M•N be a state 
Let e ∈ M ∪ N be the next expression considered 

Suppose set of literals Je has been defined for all f with e ≻ f 

Extend Je as follows

Je ∪ {A} if 
 (1) A ∉ Je 
 (2) ¬A ∉ Je

e = [A]

Je ∪ {A} if 
 (1) D ⊆ MN 
 (2) A ∉ Je

e = A ← D e = ¬A ← D

Je ∪ {¬A} if 
 (1) D ⊆ MN 
 (2) ¬A ∉ Je 
 (3) A ∉ Je

Case

Result

where MN = { [A] ∈ M | [A] is not locally redundant wrt. M•N } 

Define I(M • N) as the interpretation obtained from the final set J 

≺ ≺



Completeness
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Inference is locally redundant ≈ some premise or conclusion is locally redundant  
State M•N is saturated iff every inference from M•N is locally redundant 
Satisfaction relation 

(M, I) ⊨ C ← D   iff   D ⊈ M or I ⊨ C 

Theorem (static completeness) 
Let M•N be a saturated state such that 
for all C ← D ∈ N, |C| = 1 or D = {} (i.e., unit or ordinary clauses only).  
If □ ← ∉ N then (MN, I(M • N)) ⊨ N. 

Dynamic completeness result with simplification (straightforward?)



First-Order Logic
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Lifting 
Local redundancy: semantics is straightforward, via ground instances 

Inference rules: straightforward

  [Q(x)] 
  [P(x)] 
¬P(a) ← [Q(a)]

Q(a), Q(b), …
        P(b), …

   P(x) ∨ Q(x) ←  (1) 

¬Q(a) ←     (2) 
   P(a) ←    (3 by 1,2) 
 [Q(x)] ←    (Decide)



Conclusion: Issues
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Differences to CDCL 
Backjumping 

Does not remove clauses, only makes them locally redundant 
Use of ordering 

In general need Decide even in Horn case 
Fix: construct/modify ordering on-the-fly (compatible with local redundancy)  

Local redundancy 
How to compute l.r. effectively/efficiently? 

Watch 1 clause per decision literal [A] that overrides [A], if any 
However, for first-order logic: 

l.r. is optional - graceful degradation with decreasing precision 
l.r. acts as interface to model representation:  
can use whatever suits best, e.g., contexts, DIGs, constraint literals,… 


