Beagle -

A Hierarchic Superposition Theorem Prover

Peter Baumgartner

Joshua Bax

~+| Australian
(Je ’AJ National
NICTA =

=2y University

Uwe Waldmann

lllpll

max planck institut
informatik

Introduction

Goal

Automated deduction in hierarchic combinations of specifications

Previous work: calculus

Hierarchic superposition [BachmairGanzingerWaldmann94]

Hierarchic superposition with weak abstraction [BW14]

This work: implementation

Beagle theorem prover

This talk
HSPWA summary
Beagle design and features

Experiments

Hierarchic Specifications

Background (BG) specification consists of
Sorts, e.g., { int }
Operators, e.g., { 0, 1, -1, 2, -2 . 0Oy, O, .., -, +, >,

U
——

Models, e.g., linear integer arithmetic (LIA)

Foreground (FG) specification extends BG specification by
New sorts, e.g., { list }
New operators, e.g.,
{ cons: int X list » list, empty: list, length: list ~ int, a: list }
First-order clauses, e.g.,

{ length(a) = 1, length(cons(x, y)) = length(y) + 1 }

Deduction problem

Check whether a given clause set N has a hierarchic model, i.e.,

a model that extends one of the models of the BG specification

Hierarchic Superposition

Superposition
Abstraction for pulling out certain BG terms t: C[t] ~ C[x] v

Superposition inference rules on FG literals of abstracted clauses

l=rvC sful =t v D

(s[r] #t v Cv D)o

Sup

Interface to BG reasoner

Close E.g., Close

O

if are BG clauses and is BG-unsatisfiable

Simplification
Tautologies, subsumption, demodulation

Specific BG simplification see below

Hierarchic Superposition

Refutational completeness
Hierarchic superposition is refutationally complete for clauses sets N s.th.
N is (weakly) abstracted
N is sufficiently complete

BG specification is compact

http://s.th

Hierarchic Superposition

Two kinds of BG variables
Abstraction variables X: mapped only to BG terms

Ordinary variables x: mapped to BG terms or BG-sorted FG terms

Tradeoff sufficient completeness

{ length(a) = X } not sufficiently complete, no refutation

{ length(a) = x } sufficiently complete, refutation

Tradeoff search space

length(a) = X is ordered from left to right

length(a) = x is not ordered

Lemmas

X -+ 0 = Xis redundant

X + 0 = x can be useful

Hierarchic Superposition

Define inference rule

Replaces a ground BG-sorted FG term by a fresh BG constant &

length(a)
length(a)

Define

Purpose: establish sufficient completeness during derivations

Similar to preprocessing steps in [NelsonOppen79] and [KruglovWeidenbach12]

However in hierarchic superposition ground terms can show up in the middle

of derivations, hence an inference rule

Beagle Structure

-

-

TPTP TFO / SMT-LIB

|

[CNF Trafo j

l

~N

N
Derivation rules 4 _

Main loop

Superposition
— (D|scount)

Simplification

y

Refutation Saturatlon
Proof Unknown

\
/

Saturation
Satisfiable

/BG solver
Quantifier elim

Ground solver

(Close)

N Slmpllflcatlon

~

J

(LRAJ (LIAJ

BG Solver

Quantifier elimination

During CNF transformation
Vv x (P(x) v
(better than v x (P(x) v (

During derivations

V ~

LIA: Cooper's algorithm

+ subsumption:

<+ resolution:

LRA: Fourier-Motzkin

) ~ Vx(P(x)v)
f(x) A f(x))) by Skolemization)

cached for BG ground solver calls

BG Solver

Ground solver
Implements the Close inference rule
Called whenever a new BG clause is derived

Primitive algorithm around it for determining minimal unsat core

LIA
Cooper's algorithm
OR
/3 or CV(C4
via SMT-LIB interface

/3 provides unsat core natively

LRA

Simplex

10

BG Solver

BG Simplification

Two options: “cautious” or “aggressive”

Cautious BG simplification

Evaluation of arithmetic subterms

f(x) f(x) ~
f(x) f(x) ~
false

Unabstraction of BG domain elements
Cv ~ C{xw+» 5}

Preserves sufficient completeness

However, for many problems “aggressive” simplification fares better

11

BG Solver

Aggressive BG simplification
Eliminate operators >, = and = in terms of
BG-sorted subterms are brought into a polynomial-like form
f() ~ f()
Unique for pure BG formulas (modulo associativity of +)
Move around polynomials between |hs and rhs of (dis/in)equations
s-t=~u ~s~=u-+t (eliminate -)

length(a) ~ length(a) (eliminate number)

Aggressive BG simplification may destroy sufficient completeness

{ P(f(x))), —P(f(x))) } is sufficiently complete
{ P(f(x)), —P(f(x)))} is not sufficiently complete
However may also install sufficient completeness

12

Main Loop

Discount loop
|.e., set of unprocessed clauses is not interreduced
Split rule
Split clause into variable disjoint subsets
Alternatives e.g. never/only split BG subclauses
Dependency-directed backtracking

Fairness

weight-age-ratio n: select n lightest clauses, then an oldest one

Can also emphasise use of clauses derived from the conjecture
Auto mode

Aggressive simplification

Exhaustive splitting

First 50% of available time use abstraction variables, then ordinary variables

13

Implementation

Implementation language: Scala

Class hierarchy for terms and formulas, most data structures immutable
Parser library for TPTP TFO input, SMTtoTPTP for SMT-LIB input

Primitive term indexing

Mapping { op » pos, .. } for every op-subterm at every position pos
Used for superposition inferences and for demodulation

Scala specific features

Libraries: List, Vector, Map, Set, ..
Extensive use of very effective lazy val (deferred computation of values)
E.g. lazy val maximallits = “some costly computation”
Often clause is deleted before maximallits is accessed, so don't compute
Availability
GPL'ed source/jar at https://bitbucket.org/pebal23/beagle

14

https://bitbucket.org/peba123/beagle

Experiments

TPTP

TPTP Version 6.1.0, MacBook Pro 2.3GHz Core i7, 16GB
Time limit 180 sec, auto strategy

“Theorem” problems by category

Category ARI DAT GEG HWV MSC NUM PUZ SEV SWV SWW SYN SYO
Total 539 103 5 88 2 43 1 6 2 177 1 3
Solved 531 98 5 0 2 41 1 2 2 97 0 2

HWV: too much combinatorial search - currently out of reach

DAT: many problems require ordinary variables (s.c. issue otherwise)

SWW: very sensitive to parameter settings, e.g., weight-age-ratio

Cooper vs Z3

~our configs: splitting BG subclauses on /off vs BG solver Cooper/Z3

Result: splitting BG subclauses on is almost always better

Result: Z3 or Cooper makes no difference (BG proof tasks too easy?)

Experiments

SMT-LIB

SMT-lib 2014, Difficulty ratings from SMT-comp 2014
Time limit 120 sec, auto strategy

Results

Logic ALIA QF AUFLIA QF UFLIA QF UFIDL QF QF.IDL QF_LIA
Total 41 72 4 516 6602 195 62 335 694 2610
Solved 31 40 4 205 1736 155 42 29 24 28

QF means QF_(previous category)
Skipped LIA as it only had TPTP problems

89 UFLIA /sledgehammer problems solved by Beagle, not by any SMT solver
1391 'trivial' rated problems not solved by Beagle

16

Hierarchic Superposition

(Weak) abstraction
Removes certain BG subterms from FG terms

Clt] ~ C[A]v if t is a pure BG term (only “abstraction” variables)

and ...

Clt] ~ C[x] vx=zt iftisanimpure BG term and ..

Goal is to remove as few BG subterms as possible, yet preserve s.c.

Weak abstraction examples

cons(2, empty)) # cons(x + y, empty) ~

cons(2, empty)) = cons(z, empty) vz # X +y

length(cons(x, y)) = length(y) is already weakly abstracted

(Inference rule conclusions may require weak abstraction)

17

