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Goal 
Automated deduction in hierarchic combinations of specifications 

Previous work: calculus 
Hierarchic superposition [BachmairGanzingerWaldmann94] 
Hierarchic superposition with weak abstraction [BW14] 

This work: implementation  
Beagle theorem prover  

This talk 
HSPWA summary 
Beagle design and features 
Experiments 
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Background (BG) specification consists of 
Sorts, e.g., { int } 
Operators, e.g., { 0, 1, -1, 2, -2, …, α1, α2, …, -, +, >, ≈ } 
Models, e.g., linear integer arithmetic (LIA) 

Foreground (FG) specification extends BG specification by 
New sorts, e.g., { list } 
New operators, e.g.,  

{ cons: int × list ↦ list, empty: list, length: list ↦ int, a: list } 
First-order clauses, e.g., 

{ length(a) ≥ 1, length(cons(x, y)) ≈ length(y) + 1 } 

Deduction problem 
Check whether a given clause set N has a hierarchic model, i.e., 
a model that extends one of the models of the BG specification
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Superposition 
Abstraction for pulling out certain BG terms t:   C[t]   ↝  C[x] ∨ x ≉ t 

Superposition inference rules on FG literals of abstracted clauses 

Interface to BG reasoner 

if C1,…,Cn are BG clauses and { C1,…,Cn } is BG-unsatisfiable 

Simplification 
Tautologies, subsumption, demodulation 
Specific BG simplification see below

C1 ⋯ Cn

□
Close

α<0   α≈5
□

CloseE.g.,

l ≈ r ∨ C        s[u] ≉ t ∨ D

(s[r] ≉ t ∨ C ∨ D)σ
Sup



Hierarchic Superposition

5

Refutational completeness 
Hierarchic superposition is refutationally complete for clauses sets N s.th. 

N is (weakly) abstracted 
N is sufficiently complete  
BG specification is compact 

http://s.th


Hierarchic Superposition

6

Two kinds of BG variables 
Abstraction variables X: mapped only to BG terms 
Ordinary variables x: mapped to BG terms or BG-sorted FG terms 

Tradeoff sufficient completeness 
{ length(a) ≉ X } not sufficiently complete, no refutation 

{ length(a) ≉ x } sufficiently complete, refutation 

Tradeoff search space 
length(a) ≈ X is ordered from left to right 
length(a) ≈ x is not ordered 

Lemmas 
X + 0 ≈ X is redundant 
x + 0 ≈ x can be useful
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Define inference rule 
Replaces a ground BG-sorted FG term by a fresh BG constant α  

Purpose: establish sufficient completeness during derivations 

Similar to preprocessing steps in [NelsonOppen79] and [KruglovWeidenbach12] 
However in hierarchic superposition ground terms can show up in the middle 
of derivations, hence an inference rule 

length(a) > 5
α > 5            length(a) ≈ α

Define



Beagle Structure

8

BG solver 
Quantifier elim 
Ground solver 

(Close) 
Simplification

LIALRA

TPTP TF0 / SMT-LIB

CNF Trafo

Main loop 
(Discount)

Refutation 
Proof

Saturation 
Unknown

Saturation 
Satisfiable

Derivation rules 
Superposition 
Simplification
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Quantifier elimination 
During CNF transformation 

∀ x (P(x) ∨ ∃ y (x < y ∧ y < 3))    ↝   ∀ x (P(x) ∨ x < 2) 

(better than ∀ x (P(x) ∨ (x < f(x) ∧ f(x) < 3)) by Skolemization) 

During derivations 
α < x ∨ x < β   ↝   α < β   cached for BG ground solver calls 

LIA: Cooper’s algorithm 
+ subsumption: { α < 5, α < 3, … } ↝ { α < 3, … } 
+ resolution: { …, si < α, …, …, α < tj, …, … } ↝ { …, si + 1 < tj, …, … } 

LRA: Fourier-Motzkin
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Ground solver 
Implements the Close inference rule 
Called whenever a new BG clause is derived 
Primitive algorithm around it for determining minimal unsat core  

LIA 
Cooper’s algorithm 

OR 
Z3 or CVC4 

via SMT-LIB interface 
Z3 provides unsat core natively 

LRA 
Simplex
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BG Simplification 
Two options: “cautious” or “aggressive” 

Cautious BG simplification 
Evaluation of arithmetic subterms  

f(x)+(1+1) > f(x)+2   ↝    
f(x)+2       > f(x)+2   ↝    
false  

Unabstraction of BG domain elements 
C ∨ x ≉ 5   ↝   C{x ↦ 5} 

Preserves sufficient completeness 
However, for many problems “aggressive” simplification fares better
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Aggressive BG simplification 
Eliminate operators >, ≥ and ≤ in terms of < 
BG-sorted subterms are brought into a polynomial-like form 

  5⋅α + f(3+6, α⋅4) - α⋅3   ↝   2⋅α + f(9, 4⋅α) 

Unique for pure BG formulas (modulo associativity of +) 
Move around polynomials between lhs and rhs of (dis/in)equations  
                 s - t ≈ u  ↝  s ≈ u + t                                  (eliminate -)  
    length(a) + -5 ≈ 0   ↝   length(a) ≈ 5                   (eliminate number) 

Aggressive BG simplification may destroy sufficient completeness 
{ P(1 + (2 + f(x))), ¬P(1 + (x + f(x))) } is sufficiently complete 
{ P(       3 + f(x) ), ¬P(1 + (x + f(x)))} is not sufficiently complete 
However may also install sufficient completeness
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Discount loop 
I.e., set of unprocessed clauses is not interreduced 

Split rule 
Split clause into variable disjoint subsets 
Alternatives e.g. never/only split BG subclauses 
Dependency-directed backtracking 

Fairness 
weight-age-ratio n: select n lightest clauses, then an oldest one 
Can also emphasise use of clauses derived from the conjecture 

Auto mode  
Aggressive simplification 
Exhaustive splitting 
First 50% of available time use abstraction variables, then ordinary variables
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Implementation language: Scala 
Class hierarchy for terms and formulas, most data structures immutable 
Parser library for TPTP TF0 input, SMTtoTPTP for SMT-LIB input 

Primitive term indexing 
Mapping { op ↦ pos, … } for every op-subterm at every position pos 
Used for superposition inferences and for demodulation 

Scala specific features 
Libraries: List, Vector, Map, Set, … 

Extensive use of very effective lazy val (deferred computation of values)   

E.g.  lazy val maximalLits = “some costly computation” 

Often clause is deleted before maximalLits is accessed, so don’t compute 

Availability 
GPL’ed source/jar at https://bitbucket.org/peba123/beagle

https://bitbucket.org/peba123/beagle
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TPTP 
TPTP Version 6.1.0, MacBook Pro 2.3GHz Core i7, 16GB 
Time limit 180 sec, auto strategy 

“Theorem” problems by category 

HWV: too much combinatorial search - currently out of reach 
DAT: many problems require ordinary variables (s.c. issue otherwise) 
SWW: very sensitive to parameter settings, e.g., weight-age-ratio 

Cooper vs Z3 
Four configs: splitting BG subclauses on/off vs BG solver Cooper/Z3 
Result: splitting BG subclauses on is almost always better 
Result: Z3 or Cooper makes no difference (BG proof tasks too easy?) 

6 Performance

TPTP. We tried Beagle on the first-order problems from the TPTP–v6.1.0 problem
library [17] that involve some form of arithmetic, including non-linear, rational and real
arithmetics. The experiments were carried out on a MacBook Pro with a 2.3 GHz Intel
Core i7 processor and 16 GB of main memory. The CPU time limit was 180 seconds.

Although Beagle detected countersatisfiabilty of some of the (73) non-theorem
problems, we discuss in the following the performance on the problems with a “the-
orem” or “unsatisfiable” status only. Of these 972 problems in total Beagle was able to
prove 781 using automatic strategy selection. The backup strategy was attempted a total
of 21 times and was successful in 15 cases, thereof 13 times in the TPTP DAT category.

Table 1 summarizes the results. Broken down by the TPTP problem category we see
that Beagle’s best performance was on ARI, DAT and NUM. These are characterized
by smaller problem sizes with an arithmetic reasoning component. On the other hand
performance was much worse on those problems which involve large problem sizes
such as SWW and SWV (translations of model-checking problems). Beagle failed to
solve any HWV problems (large EPR encodings of bounded model-checking) due to
the size of the formulas and emphasis on boolean reasoning. The remaining easy (rated
< 0.1) problems that Beagle failed to solve were all non-theorems, most involving mul-
tiplication operators. The two solvable problems with a rating of 1.0 are ARI536=2.p
and DAT086=1.p.

Category ARI DAT GEG HWV MSC NUM PUZ SEV SWV SWW SYN SYO
Total 539 103 5 88 2 43 1 6 2 177 1 3
Solved 531 98 5 0 2 41 1 2 2 97 0 2

Rating � 0.0 � 0.1 � 0.2 � 0.3 � 0.4 � 0.5 � 0.6 � 0.7 � 0.8 � 0.9 1.0
Total 972 853 771 527 391 343 253 180 129 97 97
Solved 781 666 584 340 210 162 85 29 12 2 2

Table 1: Beagle performance on the TPTP “theorem” or “unsatisfiable” problems. The
first table breaks down the number of solved problems by category. The second table
filters by problem rating. The column � 0.6, for instance, means “all problems with a
rating 0.6 or higher.”

We have also coupled the SMT solver Z3 [12] as an alternative to the built-in LIA
solver. In our experiments we also tried a modified split rule that leaves BG subclauses
unsplit. In particular, BG clauses are never split then. The rationale is that letting the
SMT solver deal with (non-unit) BG clauses might be better than the default FG split-
ting into sets of unit clauses. As an alternative to the built-in LIA solver and using the
modified split rule or not hence gives four base configurations.

We ran Beagle in all four base configurations and several additional flag settings.
But, surprisingly, Z3 does not give better results than the built-in solver. We found that
the default split rule is superior to the modified one, both in conjunction with Z3 and
the built-in solver. Over all settings, however, almost exactly the same problems are

8
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SMT-LIB 
SMT-lib 2014, Difficulty ratings from SMT-comp 2014 
Time limit 120 sec, auto strategy 

Results 

QF means QF_(previous category) 
Skipped LIA as it only had TPTP problems 
89 UFLIA/sledgehammer problems solved by Beagle, not by any SMT solver 
1391 'trivial' rated problems not solved by Beagle 

solvable with any of the two solvers and in roughly the same time. This finding might
not carry over to problems that require more complex BG reasoning than those in the
TPTP.

SMT-LIB. We tested Beagle on the 2014 release of SMT-LIB [16] focusing on the
logics with an arithmetic component. Specifically these were ALIA, AUFLIA, UFLIA,
UF IDL (integer di↵erence logic) and the corresponding quantifier free problem sets,
including QF LIA. (The LIA category was ignored as it contains only problems from
the TPTP). We selected only those problems indicated as unsatisfiable in the problem
description and Beagle was run with automatic strategy selection (as described above).
We found a mix of results: Beagle was able to solve a few problems unsolved by SMT
solvers8 yet there were also quite a few problems that were marked as ‘trivial’ (all SMT
solvers in the SMT-Eval 2013 can solve them in under five seconds), which Beagle
could not solve. Overall Beagle solved the following problems by category (QF refers
to the quantifier free fragment of the logic to the left):

Logic ALIA QF AUFLIA QF UFLIA QF UFIDL QF QF IDL QF LIA
Total 41 72 4 516 6602 195 62 335 694 2610
Solved 31 40 4 205 1736 155 42 29 24 28

In total Beagle solved 89 problems not solved by SMT solvers and these were divided
among the following subcategories of ‘UFLIA/sledgehammer’:

Category Arrow Order FFT FTA Hoare StrongNorm TwoSquares
Solved 17 2 34 20 2 14

There were many problems which Beagle could not parse, as it is not optimized for
large problem sets. In total there were 1,391 trivial problems not solved by Beagle.

It was not possible to draw broad conclusions about which categories Beagle is
best suited to. For example, all of the hardest problems Beagle solved were among the
UFLIA benchmarks, but there were also at least 200 trivial problems from that category
were unsolved (in the ‘simplify’ and ‘simplify2’ subcategories). Also it was hypothe-
sised that Beagle would perform much worse in the quantifier free fragment, and that
was the case for QF IDL and QF LIA, but not so for QF UFLIA and QF AUFLIA.

CASC-J7. Most recently Beagle participated in the CASC-J7 competition [18]. in the
TFA division (Typed First-order Arithmetic theorems). For this division the problem
set consists of typed first-order problems with an arithmetic component over integers,
rationals, or reals, of which roughly half were previously unseen by competitors.

Other solvers entered in the TFA category were CVC4 [3], SPASS+T [13], Zip-
perposition (see [18]), and Princess [15]. In terms of overall problems solved Beagle
placed third equal with 173/200 solutions, only three fewer than the winning solver
CVC4. Beagle performed quite well in terms of mean e�ciency (solutions per second
multiplied by number of solutions); it was outperformed only by CVC4 9.

8 For this we used the di�culty ratings given for SMT-Comp 2014.
9 For an explanation of how mean e�ciency is computed see the CASC-J7 proceedings [18].
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(Weak) abstraction 
Removes certain BG subterms from FG terms 
C[t]   ↝  C[X] ∨ X ≉ t   if t is a pure BG term (only “abstraction” variables) 

                    and … 

C[t]   ↝  C[x] ∨ x ≉ t    if t is an impure BG term and … 

Goal is to remove as few BG subterms as possible, yet preserve s.c. 

Weak abstraction examples 

cons(2, empty)) ≉ cons(x + y, empty) ↝ 

cons(2, empty)) ≉ cons(z, empty) ∨ z ≉ x + y 

length(cons(x, y)) ≈ length(y) + 1  is already weakly abstracted 

(Inference rule conclusions may require weak abstraction)


