Logical Engineering with
Instance Based Methods

Peter Baumgartner

Logic and Computation Computer Science Lab
NICTA Australian National
University

()@

J . - ; - .-I -';'. l:: G __.:' L b
3 ':,\.F i = .:.\.'H. 3 - < i
N I CTA THE AUSTRALIAN MATIONAL UNIVERSITY

Collaborators: Alexander Fuchs, Christoph Sticksel, Cesare Tinelli



An early IM - The DPLL Procedure
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Obvious problem: how to control the grounding?
Modern IMs address this (and other weaknesses)
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Why Instance Based Methods?

IMs are different to Resolution, Tableaux, Connection Methods ...
« Conceptually
« Search space

« Decidable classes

IMs capitalize on advances in SAT solving

« Some IMs include "the best" SAT solvers as subroutines

« Some IMs lift successful SAT technigues to the first-order level

« All IMs apply successful first-order theorem proving techniques

Logical Engineering

« Exploit strengths of IMs by suitable mapping of application problems

 In particular for SW verification
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Why Instance Based Methods?

« Conceptually
» Search space Two-level IMs
« Decidable classes One-level IMs

IMs capitalize on advances in SAT solving

« Some IMs include "the best" SAT solvers as subroutines

« Some IMs lift successful SAT techniques to the first-order level

All IMs apply successful first-order theorem proving techniques

Exploit strengths of IMs by suitable mapping of application problems

In particular for SW verification
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Two-Level vs One-Level IMs

Two-Level IMs

« Strict separation between instance generation and SAT solving phase

« Uses (arbitrary) propositional SAT solver as a subroutine

« DPLL, HL, SHL, OSHL [Plaisted et al], PPl [Hooker], InstGen[Ganzinger&
Korovin], Equinox [Claessen] comparison paper [Jacobs&Waldmann]

Current clauses

Add instances <

4 C [ ] ) 4 C [$] )
12 round !
Colws] > Ca§
‘ . ) . )
guide Propositionally

Unsatisfiable?

InstGen: guide adding instances by model of $-clause set and unification
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Inst-Gen [Ganzinger&Korovin]

Current clauses

P@.VAE) | gownd | PES.9VAE
—P(z,a) V -Q(2) W -P($,a) v -Q($)

Model: {P(f($),$), ~P($,a)}

Model determines literals selection in current clauses for InstGen inference:

P(f(x),z) V Q(x) —P(z,a) V =Q(z2)
P(f(a),a) VQ(a)  —P(f(a),a) v ~Q(f(a))

InstGen

Conclusions are obtained by unifying selected literals
Add conclusions to "current clauses” and start over

This is just the very basic calculus
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Two-Level vs One-Level IMs

One-Level IMs
« Monolithic: one single base calculus, two modes of operation
— First-order mode: first-order calculus

— Propositional mode: temporarily replace all variables by $

HyperTableauxNG [B], DCTP[Letz&Stenz], OSHT [Plaisted&Yahya], FDPLL [B], ME [B&Tinelli]
. ™ - ™

T
Lq1[$]
ground /I\
L2 [$] L2[$]

| \ ) \ )
Extend

Branch unsatisfiable?

‘ Next: One-level IM FDPLL / Model Evolution \
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Model Evolution - Motivation

 The best modern SAT solvers (satz, MiniSat, zChaff) are based on the
Davis-Putnam-Logemann-Loveland procedure [DPLL 1960-1963]

« Can DPLL be lifted to the first-order level?
How to combine

— DPLL techniques

(unit propagation, backjumping, lemma learning,...)
— first-order techniques?

(unification, subsumption, superposition rule,...)?

« Qur approach: Model Evolution

— Directly lifts DPLL. Not: DPLL as a subroutine, i.e. one-level method

— Satisfies additional desirable properties
(proof confluence, model computation, ...)
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DPLL procedure

Input: Propositional clause set
Output: Model or ,unsatisfiable”

Algorithm components:

A A
B - B
- Propositional semantic tree /\
tes int tati
enumera. es Interpretations C S0

- Propagation

- Split ?

- Backjumping 4, By p=AV=BYV OV D

{A,B,C} E=AN =BV CVD

ME - lifting this idea to first-order level
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ME as First-Order DPLL

Input: First-order clause set
Output: Model or ,unsatisfiable”
If termination

VvV is a "parameter” -
not quite a variable

Algorithm components: P(v) P (v)
- First-order semantic tree
enumerates interpretations /\
> . —P(a) P(a)
- Propagation
- Split
- Backjumping {P(v),-P(a)} = P(z) VvV Q(x)

Interpretation induced by a branch?
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Interpretation Induced by a Branch

Branch B Interpretation Ip
| 4 )
P(z,y)
P(a, a) P(b, a)
P(a, b) P (b, b)
- /

e A branch literal specifies a truth value for all its ground instances,
unless there is a more specific literal specifying the opposite truth value
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Interpretation Induced by a Branch

Branch B Interpretation Ip
| 4 )
4 )
P(z,y)
| ~P(a, a) P(b,a)
—P(a,y)
—P(a, b) P (b, b)
- J
- /

e A branch literal specifies a truth value for all its ground instances,
unless there is a more specific literal specifying the opposite truth value
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Interpretation Induced by a Branch

Branch B Interpretation Ip
| 4 )
4 )
P(z,y)
| ~P(a, a) P(b,a)
—P(a, y)
| 4 )
=P (b, b)
—P(a, b) =P (b, b)
N - J - J y

e A branch literal specifies a truth value for all its ground instances,
unless there is a more specific literal specifying the opposite truth value
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Interpretation Induced by a Branch

Branch B Interpretation Ip
4 )
| 4 )
P(z,y)
| ~P(a, a) P(b,a)
—P(a, y)
| 4 ) 4 )
—P(b,b
( | ) P(aa b) _'P(b7 b)
P(a’ b) :k\ // - J
- /

e A branch literal specifies a truth value for all its ground instances,
unless there is a more specific literal specifying the opposite truth value
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Interpretation Induced by a Branch

Branch B Interpretation Ip
4 )
4 )
{ P(z,9),
—P(a, a) P(b, a)
_'P(aay) 9
4 ) 4 )
—P(b,b),
( ) P(aa b) _'P(b7 b)
P(a,b) } \\ // N Y,
- /

e A branch literal specifies a truth value for all its ground instances,
unless there is a more specific literal specifying the opposite truth value

e The order of the literals on the branch is irrelevant
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Inference Rule: Split

=Y Branch:

/\ True:

P(v) —P(v) False:

~P(a) P(a) Branch:
True:

/\ Works also with False:
Q(a) —Q(a)\_ function symbols '

170, P(v), =P(a)}

Pb)
—P(a), ~Q(a), ~Q(b)

{—v,P(v),—P(a),Q(a)}
P(b), Q(a)
—P(a), =Q(b)

Context Unifier

{70, P(v),=P(a)} = P(z) v Q(z)
170, P(v),=P(a),Q(a)} = P(z) vV Q(x)

> P(a) v Q(a)
Split

Split - detect falsified instances and repair interpretation
Additional rules: Close, Assert, Compact, Resolve, Subsume

P. Baumgartner
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Example - Detecting Functional Dependencies

Graph 3-colorability

-

Vn R(n) V G(n) V B(n) \
vn (R(n) — =G(n)) A (R(n) — =B(n)) A (B(n) — —G(n))
Vm,n (R(m) A R(n) — —edge(m,n)) A

(G(m) A G(n) — —edge(m,n)) A (B(m) AB(n) — —edge(m,n)) )

Application in

Y e

y <«
v v

B depends on R and G B does not depend on R

NICTA's
G12 platform

~X

(Dis-)prove functional (non-)dependance
Demo: Darwin theorem prover
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ME - Achievements so far

« FDPLL [CADE-17]
— Basic ideas, predecessor of ME
« ME Calculus [CADE-19, Al Journal]
— Proper treatment of universal variables and unit propagation
— Semantically justified redundancy criteria
« ME+Equality [CADE-20]
— Superposition inference rules, currently being implemented
« ME+Lemmas [LPAR 2006]

« Darwin prover [JAIT 2006]
http://combination.cs.uiowa.edu/Darwin/

— Won CASC-J3 and CASC-21 EPR division
« FM-Darwin: finite model computation [JAL 2007]

P. Baumgartner CADE-21 - Logical Engineering with Instance Based Methods 18



Resolution vs IMs

Resolution Instance Based Methods
Rec CVvVL L'VD netGen CV L £VD /\
(C'V D)o (Cv Lo (L’'VD)o L - L
e Inefficient in propositional case e Efficient in propositional case
e Clauses can grow in length e Clauses do not grow in length
e Recombination of clauses e No recombination of clauses
e Subsumption deletion e Limited subsumption deletion
e Selection by A-ordering e Selection by interpretation
e Difficult to extract model e Easy to extract model

e Decides many classes
e Wins CASC FOF

e Decides Bernays-Schonfinkel Class
e Does not win CASC FOF

Complementary methods

P. Baumgartner
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Why Instance Based Methods?

« Conceptually
« Search space

« Decidable classes

« Some IMs include "the best" SAT solvers as subroutines

« Some IMs lift successful SAT techniques to the first-order level

« All IMs apply successful first-order theorem proving techniques

Briefly
Logical Engineering

« Exploit strengths of IMs by suitable mapping of application problems

 In particular for SW verification
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Exploiting Strengths of IMs

.. In particular as decision procedures for the Bernays-Schdnfinkel class:

« CASC-competition: EPR category
« Optimized functional translation of modal logics [Ohlbach&Schmidt]
« DQBF satisfiability VP, 3Q1(P1) VP> 3Q2(Fe) -
« LTL model checking [Navarro-Pérez&Voronkov CADE-21]
« Planning [Voronkov et al CP 2007]
« CEGAR [Klaessen]
« Back-end for DL reasoning (SHOIQ), cf [Motik et al])
« Strong equivalence (under answer sets semantics) of logic programs
« Finite model computation (FM-Darwin)
« Within constraint modelling
— Analysis of constraint models (functional dependencies ...)

— Model expansion [Ternovska&Mitchell]
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Application for SW Verification

Applications of formal methods often rely on proving or disproving first-
order logic formulas over a fixed (background) theory 7

— E.g. proving properties of programs involving arrays and integers
Core Problem: SMT - Satisfiability Modulo Theories
— |Is a given formula satisfiable modulo a given theory 77
One Main Approach: DPLL(7)
— Prop. DPLL + solver for conjunctions of ground 7-literals (7-solver)
— Issue: works inherently with propositional abstractions

« DPLL cannot analyze term structure

« Non-ground formulas grounded by "external" heuristic
— Still a hot topic (cf. SMT session, R. Leino talk @ CADE-21)

— Here: contribution from the viewpoint of First-Order ATP

Plan: address issues by using "ME(7)" instead of DPLL(7)
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DPLL(7) Approach to SMT

« DPLL computes candidate model of propositional abstraction

« Check candidate model with 7-solver /\

Treated as

propositional . D /\
variables < c>b VvV ... (1) 5>d —(5>d)
5>d Vv --- (2)
~(c>d) V Pl) () /\
N\ J =(c>d) c>d

Refinements * \

e Incremental 7-solver

. Closed by 7-solver
e 7 -solver reports relevant literals
e Theory propagation (7-solver computes unit consequences)

‘ Lifting DPLL(7) to ME(7) ? \
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ME(7) - Basic Approach

« Replace DPLL by ME /\

 Rename all theory literals as positive literals c>5 —(c>DH)

e (5> 3) becomes 5 ¥ 3 /\

e Turn args of negative non-theory literals intovars  5>d —(5>d)

e ~P(5) becomes z # 5V —P(z) /\

N ckd —(cFd)
Ground FO-literals T 7 (7
c>5 V .- (1) |
5>d VvV - (2) | =(c>d) Byll
z, y FO variables ) © 7d VvV P(c) ) * \
<
"Theory lemma" | —(xz>y)V -(z #y) (L1) Closed by 7-solver
)

ME(7) proper generalization of DPLL(7)
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Theory Lemmas Application I: Theory Propagation

e Theory propagation - important efficiency improvement for DPLL(7)

e 7-solver computes 7-implied literals which avoids branching

e Approximated in ME(7) by theory lemmas

e Doesn't rely on 7-solver in any way

/ e o o \
|nput c>5 V (1)
clause set 3>d V (2)
c*d V P(c) (3)
- /
4 )
Theory | =(z > y) V —=(z # v) (L1)
lemmas | =(z>y)V-o(y>2)Vae >z (L2)
- J

Cheap implementation of e.g. "ME(DL)"
Also: avoids learning of subsumed clauses

P. Baumgartner

N\

c>5 —(c>5)

N

5>d —(5>d)

By L2

By 3
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Theory Lemmas Application Il: Problem Reduction

To prove: (z + y)* = 22 + 2xy + y* (Binom)
Sufficient set of axioms:

XY = Yx rT+y=y+x (Comm)
r(yz) = (zy)z r+(y+z2)=(@+y) +=2 (Assoc)
le =2« O+x==x (Neutral)
r(y+z2)=xy+xz 2r=x+=x (Distrib,2)

FO theorem proving, axioms above: very easy e.g. for SPASS, KeY
DPLL(T), T=UFLIA, left column axioms+(2): CVC3 fails

ME(T), T=UFLIA, left column axioms+(2) as theory lemmas:

reduce (Binom) to (zz + zy) + (xy + yy) = zx + ((xy + zy) + yy),
then complete proof with call to UFLIA-solver

Can (E.g.) KeY taclets modeled as clauses, for contextual rewriting?
Related to [Bonacina&Echenim] this CADE
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Theory Lemmas Application Ill: Non-ground Input

Typical scenario
e 7 = Linear arithmetic + Arrays + ...
e Uninterpreted function and/or predicate symbols

The theory of arrays
N
select(store(a, 1, j,€e),1,7) =€ (A1)
select(store(a, i, j,e),1', ") = select(a,i’, j") «— —(i = 1) (A2)
select(store(a, i, j,¢e),4’,7') = select(a,i’, j') «— —=(j = j') (A3)
J
Challenging example problem [Ranise]
Define
Ya,n symmetric(a,n) < (Vi,j 1 <1i,j < n — select(a,,j) = select(a, j,%))
Prove {symmetric(a,n)} al0,0]:=eqg;...;alk,k]:=ex {symmetric(a,n)}

Results in non-ground clause set
Required instances are not obvious
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Theory Lemmas = Array Axioms Relational Translation

Array axioms (1-dimensional, for simplicity)

select(store(a,¢,¢e),i) =€ (Al)
select(store(a, ¢, ¢e),j) = select(a,j) «— —(i = j (A2)
. . select(h,i) = e «—

Relational translaﬁon | store(a, Z-’e))
select(h, i, e) < store(a, i, e, h) (Al)
select(h, j,r) « store(a, i,e, h) A select(a,j, ) A =(t = j) (A2)

rl = r2 « select(a,i,r1) A select(a, i, r2) (Func-1)
rl = r2 « store(a, i,e,r1l) A store(a, i, e,r2) (Func-2)
select(a, i, skf(a, 7)) « (Totality)

(Totality) is problematic
e Generates a huge search space

e Without it all function symbols have gone (good for ME)
o Approximate (Totality) by
select(a, ¢, skf(a, 7)) < index(7) (Definedness)
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Controlling the Search Space with the index Predicate

Relational translation of array axioms

select(h, i, e) < store(a, i, e, h) (A1)
select(h, j,r) < store(a, i,e, h) A select(a, j,r) A =(t = J) (A2)

rl = r2 « select(a,i,r1) A select(a, i, 72) (Func-1)

rl = r2 < store(a,,e,r1l) A store(a,,e,12) (Func-2)

select(a, i, skf(a, %)) < index(z) (Definedness)

Options for defining the index predicate
(1) add a clause "index(2)" - select is total
(2) add a clause "—~index(z)" - select is partial
(3) add clauses "index(t)" for all input ground terms t
(4) add clauses "index(z) « H...1,..)" for all/some predicate symbols P

Options (2) - (4) are incomplete

But target logic LIA + free predicate symbols is incomplete anyways
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Experiments with Symmetric Array Problem

Definition of "symmetric array":
Va,n symmetric(a,n) < (Vi,j 1 < 1,7 < n — select(a,,j) = select(a, j,7))

Prove {symmetric(a,n)} al0,0]:=eg;...;alk,k]:=ex {symmetric(a,n)}

Systems tried

CVC3: DPLL(7) prover (with instantiation heuristics) - cannot solve

KeY: Interactive verification system, "taclets" - cannot solve

SPASS: Hyper-resolution setting, equality array axioms (performed best)
Darwin: Relational array axioms, heuristics (4)

k  SPASS Darwin
2 <1 <1
3 142 3
4 > 5h /
5 > 5h 20
6 > 5h 63

To be fair:
no arithmetic in this example:
SPASS is a complete prover, whereas
Darwin setup is incomplete
but allows good control of search space

P. Baumgartner
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ME(7)- Conclusion (1)

e« View from DPLL(7)
— Proper extension of DPLL(7) by integrating FO reasoning
« Advantages derive from being able to analyze term structure
- New way to handle non-ground formulas

e Implemented by theory lemmas instead of meta-logical:
"Points of definedness" (cf. "select" above) computed by calculus
itself, by first-order reasoning, in a by need fashion

e View from First-Order Theorem Proving

— This is "total theory reasoning" + "partial theory reasoning"
(7-propagation by theory lemmas)

— Goal: better functionality of ATP systems Message
« Useful explanation for failure, e.g. a model of the day

« Reasoning with integers
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Conclusion (2)

« Related Work

— Big engines approach [Armando&Bonacina&Ranise&Schulz]:
E.g. DPLL(7) where 7 is implemented by a first-order theorem prover

— SPASS+ 7 [Prevosto&Waldmann]:
two-level architecture with SMT-solver as black box

 Future
— Implement the coupling ME + CV(C3
— Experiments
* In particular proof obligations from KeY

— MEs - non-ground 7-interpretations
Pv)|v<d — =Pv)|v<bH
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