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An early IM - The DPLL Procedure

2

Preprocessing

Given

Outer loop:
grounding

Inner loop:
propositional
DPLL Satisfiable Unsatisfiable

Obvious problem: how to control the grounding?
Modern IMs address this (and other weaknesses)

∀x ∃y P(y, x)
∧ ∀z ¬P(z, a)

Clause form

P(f(x), x)
¬P(z, a)

P(f(a), a)
¬P(a, a)

P(f(a), a)
¬P(a, a)
¬P(f(a), a)
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Why Instance Based Methods?
IMs are different to Resolution, Tableaux, Connection Methods ...
• Conceptually
• Search space
• Decidable classes

IMs capitalize on advances in SAT solving
• Some IMs include "the best" SAT solvers as subroutines 
• Some IMs lift successful SAT techniques to the first-order level
• All IMs apply successful first-order theorem proving techniques  

Logical Engineering
• Exploit strengths of IMs by suitable mapping of application problems
• In particular for SW verification

Part I

Part II
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Why Instance Based Methods?
IMs are different to Resolution, Tableaux, Connection Methods ...
• Conceptually
• Search space
• Decidable classes

IMs capitalize on advances in SAT solving
• Some IMs include "the best" SAT solvers as subroutines 
• Some IMs lift successful SAT techniques to the first-order level
• All IMs apply successful first-order theorem proving techniques  

Logical Engineering
• Exploit strengths of IMs by suitable mapping of application problems
• In particular for SW verification

Two-level IMs
One-level IMs
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Two-Level vs One-Level IMs 
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Two-Level IMs
• Strict separation between instance generation and SAT solving phase
• Uses (arbitrary) propositional SAT solver as a subroutine
• DPLL, HL, SHL, OSHL [Plaisted et al], PPI [Hooker], InstGen[Ganzinger& 

Korovin], Equinox [Claessen] comparison paper [Jacobs&Waldmann]

Current clauses

C1[x1]
C2[x2]
· · ·

Add instances

C1[$]
C2[$]
· · ·

ground

Propositionally
Unsatisfiable?

InstGen: guide adding instances by model of $-clause set and unification 

guide
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Inst-Gen [Ganzinger&Korovin]
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Current clauses

Model determines literals selection in current clauses for InstGen inference:

Conclusions are obtained by unifying selected literals
Add conclusions to "current clauses" and start over

This is just the very basic calculus

ground

x,z → $

P(f(x), x) ∨ Q(x)
¬P(z, a) ∨ ¬Q(z)

P(f($), $) ∨ Q($)

¬P($, a) ∨ ¬Q($)

Model: {P(f($), $),¬P($, a)}

InstGen
P(f(x), x) ∨ Q(x) ¬P(z, a) ∨ ¬Q(z)

P(f(a), a) ∨ Q(a) ¬P(f(a), a) ∨ ¬Q(f(a))
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Two-Level vs One-Level IMs 
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One-Level IMs
• Monolithic: one single base calculus, two modes of operation

– First-order mode: first-order calculus
– Propositional mode: temporarily replace all variables by $  

• HyperTableauxNG [B], DCTP[Letz&Stenz], OSHT [Plaisted&Yahya], FDPLL [B], ME [B&Tinelli]

L1[x]

L2[x]
· · ·

L1[$]

L2[$]
· · ·

Extend

ground

Branch unsatisfiable?

Next: One-level IM FDPLL / Model Evolution

7
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Model Evolution - Motivation

• The best modern SAT solvers (satz, MiniSat, zChaff) are based on the 
Davis-Putnam-Logemann-Loveland procedure [DPLL 1960-1963]

• Can DPLL be lifted to the first-order level? 
How to combine

– DPLL techniques 
(unit propagation, backjumping, lemma learning,…) 

– first-order techniques?
(unification, subsumption, superposition rule,...)?

• Our approach: Model Evolution

– Directly lifts DPLL. Not: DPLL as a subroutine, i.e. one-level method

– Satisfies additional desirable properties
(proof confluence, model computation, ...) 

8
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DPLL procedure

Input:    Propositional clause set
Output: Model or „unsatisfiable”

Algorithm components:
 - Propositional semantic tree
    enumerates interpretations
 - Propagation
 - Split
 - Backjumping

A ¬A

B ¬B

C ¬C

{A,B}
?

|= ¬A ∨ ¬B ∨ C ∨D

{A,B, C}
?

|= ¬A ∨ ¬B ∨ C ∨D

ME - lifting this idea to first-order level





9
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ME as First-Order DPLL

Input:    First-order clause set
Output: Model or „unsatisfiable”
    if termination

Algorithm components:
 - First-order semantic tree
    enumerates interpretations
 - Propagation
 - Split
 - Backjumping

Interpretation induced by a branch?

P(a)¬ P(a)

¬ P(v)P(v)

v is a "parameter" -
not quite a variable

{P(v),¬P(a)}
?

|= P(x) ∨ Q(x)

10
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Interpretation Induced by a Branch
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Branch B Interpretation IB

• A branch literal specifies a truth value for all its ground instances, 
unless there is a more specific literal specifying the opposite truth value

P(x, y)
P(a, a) P(b, a)

P(a, b) P(b, b)

11
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Interpretation Induced by a Branch
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Branch B Interpretation IB

• A branch literal specifies a truth value for all its ground instances, 
unless there is a more specific literal specifying the opposite truth value

P(x, y)

¬P(a, y)
¬P(a, a)

¬P(a, b)

P(b, a)

P(b, b)
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Interpretation Induced by a Branch
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Branch B Interpretation IB

• A branch literal specifies a truth value for all its ground instances, 
unless there is a more specific literal specifying the opposite truth value

¬P(b, b)

¬P(a, a)

¬P(a, b)

P(b, a)

¬P(b, b)

¬P(a, y)

P(x, y)
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Interpretation Induced by a Branch
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Branch B Interpretation IB

• A branch literal specifies a truth value for all its ground instances, 
unless there is a more specific literal specifying the opposite truth value

P(x, y)

¬P(a, y)

¬P(b, b)

P(a, b)

¬P(a, a) P(b, a)

¬P(b, b)P(a, b)
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Interpretation Induced by a Branch
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Branch B Interpretation IB

• A branch literal specifies a truth value for all its ground instances, 
unless there is a more specific literal specifying the opposite truth value

• The order of the literals on the branch is irrelevant

{

}

,

,

,

P(x, y)

¬P(a, y)

¬P(b, b)

P(a, b)

¬P(a, a) P(b, a)

¬P(b, b)P(a, b)

15
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Inference Rule: Split

P(a)¬ P(a)

¬ P(v)P(v)

¬  v

¬ Q(a)Q(a)





Context Unifier

Split

Split - detect falsified instances and repair interpretation
Additional rules: Close, Assert, Compact, Resolve, Subsume

Branch: {¬v,P(v),¬P(a)}
True: P(b)
False: ¬P(a), ¬Q(a), ¬Q(b)

Branch: {¬v,P(v),¬P(a),Q(a)}
True: P(b), Q(a)
False: ¬P(a), ¬Q(b)

{¬v,P(v),¬P(a)}
?

|= P(x) ∨ Q(x)

{¬v,P(v),¬P(a),Q(a)}
?

|= P(x) ∨ Q(x)

P(a) ∨ Q(a)

Works also with
function symbols

16
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Example - Detecting Functional Dependencies
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∀n R(n) ∨ G(n) ∨ B(n)
∀n (R(n) → ¬G(n)) ∧ (R(n) → ¬B(n)) ∧ (B(n) → ¬G(n))
∀m,n (R(m) ∧ R(n) → ¬edge(m,n)) ∧

(G(m) ∧ G(n) → ¬edge(m,n)) ∧ (B(m) ∧ B(n) → ¬edge(m,n))

Graph 3-colorability

B  depends on R and G B does not depend on R

(Dis-)prove functional (non-)dependance
Demo: Darwin theorem prover

Application in
NICTA's

G12 platform

17
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ME - Achievements so far

• FDPLL [CADE-17]

– Basic ideas, predecessor of ME

• ME Calculus [CADE-19, AI Journal]

– Proper treatment of universal variables and unit propagation

– Semantically justified redundancy criteria

• ME+Equality [CADE-20]

– Superposition inference rules, currently being implemented

• ME+Lemmas [LPAR 2006] 

• Darwin prover [JAIT 2006] 
http://combination.cs.uiowa.edu/Darwin/

– Won CASC-J3 and CASC-21 EPR division

• FM-Darwin: finite model computation [JAL 2007]

18
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Resolution vs IMs
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Res
C ∨ L L′ ∨D

(C ∨D)σ L ¬L

• Inefficient in propositional case
• Clauses can grow in length
• Recombination of clauses
• Subsumption deletion
• Selection by A-ordering
• Difficult to extract model
• Decides many classes

Resolution Instance Based Methods

• Efficient in propositional case
• Clauses do not grow in length
• No recombination of clauses
• Limited subsumption deletion
• Selection by interpretation
• Easy to extract model
• Decides Bernays-Schönfinkel Class

Complementary methods

InstGen
C ∨ L L′ ∨D

(C ∨ L)σ (L′ ∨D)σ

• Wins CASC FOF • Does not win CASC FOF

19
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Why Instance Based Methods?
IMs are different to Resolution, Tableaux, Connection Methods ...
• Conceptually
• Search space
• Decidable classes

IMs capitalize on advances in SAT solving
• Some IMs include "the best" SAT solvers as subroutines 
• Some IMs lift successful SAT techniques to the first-order level
• All IMs apply successful first-order theorem proving techniques  

Logical Engineering
• Exploit strengths of IMs by suitable mapping of application problems
• In particular for SW verification

IdeasBriefly

20
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Exploiting Strengths of IMs

• CASC-competition: EPR category
• Optimized functional translation of modal logics [Ohlbach&Schmidt] 
• DQBF satisfiability 
• LTL model checking [Navarro-Pérez&Voronkov CADE-21]
• Planning [Voronkov et al CP 2007]
• CEGAR [Klaessen]
• Back-end for DL reasoning (SHOIQ), cf [Motik et al])
• Strong equivalence (under answer sets semantics) of logic programs
• Finite model computation (FM-Darwin) 
• Within constraint modelling

– Analysis of constraint models (functional dependencies ...)
– Model expansion [Ternovska&Mitchell]

21

∀P1 ∃Q1(P1) ∀P2 ∃Q2(P2) · · ·

... in particular as decision procedures for the Bernays-Schönfinkel class:

21
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Application for SW Verification
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Applications of formal methods often rely on proving or disproving first-
order logic formulas over a fixed (background) theory T

– E.g. proving properties of programs involving arrays and integers
Core Problem: SMT - Satisfiability Modulo Theories

– Is a given formula satisfiable modulo a given theory T?
One Main Approach: DPLL(T)

– Prop. DPLL + solver for conjunctions of ground T-literals (T-solver)
– Issue: works inherently with propositional abstractions

• DPLL cannot analyze term structure
• Non-ground formulas grounded by "external" heuristic

– Still a hot topic (cf. SMT session, R. Leino talk @ CADE-21)
– Here: contribution from the viewpoint of First-Order ATP 

Plan: address issues by using "ME(T)" instead of DPLL(T)

22
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DPLL(T) Approach to SMT

23

• DPLL computes candidate model of propositional abstraction
• Check candidate model with T-solver

*

Closed by T-solver

Lifting DPLL(T) to ME(T) ?

Refinements
• Incremental T-solver
• T -solver reports relevant literals
• Theory propagation (T-solver computes unit consequences)

c > 5

5 > d ¬(5 > d)

¬(c > 5)

¬(c > d) c > d

. . .
c > 5 ∨ · · · (1)
5 > d ∨ · · · (2)

¬(c > d) ∨ P(c) (3)

Treated as 
propositional 

variables

23
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ME(T) - Basic Approach

24

• Replace DPLL by ME

• Rename all theory literals as positive literals

•  

• Turn args of negative non-theory literals into vars

•  

Closed by T-solver

!

ME(T) proper generalization of DPLL(T) 

"Theory lemma" ¬(x > y) ∨ ¬(x "> y) (L1)

c !> d ¬(c !> d)

c > 5

5 > d ¬(5 > d)

¬(c > 5)

By L1¬(c > d)

¬(5 > 3) becomes 5 !> 3

¬P (5) becomes x != 5 ∨ ¬P (x)

. . .
c > 5 ∨ · · · (1)
5 > d ∨ · · · (2)
c "> d ∨ P(c) (3)

Ground FO-literals

x, y FO variables

24
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Theory Lemmas Application I:  Theory Propagation

25

• Theory propagation - important efficiency improvement for DPLL(T)

• T-solver computes T-implied literals which avoids branching

• Approximated in ME(T) by theory lemmas 

• Doesn't rely on T-solver in any way

Input 
clause set

Theory
lemmas

¬(x > y) ∨ ¬(x "> y) (L1)
¬(x > y) ∨ ¬(y > z) ∨ x > z (L2)

c > 5

5 > d ¬(5 > d)

¬(c > 5)

By L2c > d

By L1¬(c !> d)

. . .
c > 5 ∨ · · · (1)
5 > d ∨ · · · (2)
c "> d ∨ P(c) (3)

By 3P(c)
Cheap implementation of e.g. "ME(DL)"

Also: avoids learning of subsumed clauses

25
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Theory Lemmas Application II: Problem Reduction
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xy = yx x + y = y + x (Comm)
x(yz) = (xy)z x + (y + z) = (x + y) + z (Assoc)

1x = x 0 + x = x (Neutral)
x(y + z) = xy + xz 2x = x + x (Distrib,2)

Sufficient set of axioms:
To prove: (x + y)2 = x2 + 2xy + y2 (Binom)

Can (E.g.) KeY taclets modeled as clauses, for contextual rewriting? 
Related to [Bonacina&Echenim] this CADE

FO theorem proving, axioms above: very easy e.g. for SPASS, KeY

DPLL(T), T=UFLIA, left column axioms+(2): CVC3 fails

ME(T), T=UFLIA, left column axioms+(2) as theory lemmas:  
  reduce (Binom) to (xx + xy) + (xy + yy) = xx + ((xy + xy) + yy),
then complete proof with call to UFLIA-solver

26
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Theory Lemmas Application III: Non-ground Input 
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Typical scenario
• T = Linear arithmetic + Arrays + ...
• Uninterpreted function and/or predicate symbols

The theory of arrays

Challenging example problem [Ranise]
Define
∀a, n symmetric(a, n)↔ (∀i, j 1 ≤ i, j ≤ n→ select(a, i, j) = select(a, j, i))

Prove {symmetric(a, n)} a[0, 0] := e0 ; . . . ; a[k, k] := ek {symmetric(a, n)}

Results in non-ground clause set
Required instances are not obvious

select(store(a, i, j, e), i, j) = e (A1)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(i = i′) (A2)
select(store(a, i, j, e), i′, j′) = select(a, i′, j′)← ¬(j = j′) (A3)

27
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Theory Lemmas = Array Axioms Relational Translation
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Relational translation

select(store(a, i, e), i) = e (A1)
select(store(a, i, e), j) = select(a, j)← ¬(i = j) (A2)

Array axioms (1-dimensional, for simplicity)

 select(h, i) = e←
store(a, i, e) = h

index ?

(Totality) is problematic 
• Generates a huge search space

• Without it all function symbols have gone (good for ME)
• Approximate (Totality) by

select(a, i, skf(a, i))← index(i) (Definedness)

select(h, i, e)← store(a, i, e, h) (A1)
select(h, j, r)← store(a, i, e, h) ∧ select(a, j, r) ∧ ¬(i = j) (A2)

r1 = r2← select(a, i, r1) ∧ select(a, i, r2) (Func-1)
r1 = r2← store(a, i, e, r1) ∧ store(a, i, e, r2) (Func-2)

select(a, i, skf(a, i))← (Totality)

28
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Controlling the Search Space with the index Predicate

29

Relational translation of array axioms

Options for defining the index predicate
(1) add a clause "index(i)" - select is total
(2) add a clause "¬index(i)" - select is partial             
(3) add clauses "index(t)" for all input ground terms t 
(4) add clauses "index(i) ← P(...,i,...)"   for all/some predicate symbols P    

Options (2) - (4) are incomplete
But target logic LIA + free predicate symbols is incomplete anyways

select(h, i, e)← store(a, i, e, h) (A1)
select(h, j, r)← store(a, i, e, h) ∧ select(a, j, r) ∧ ¬(i = j) (A2)

r1 = r2← select(a, i, r1) ∧ select(a, i, r2) (Func-1)
r1 = r2← store(a, i, e, r1) ∧ store(a, i, e, r2) (Func-2)

select(a, i, skf(a, i))← index(i) (Definedness)

29
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Experiments with Symmetric Array Problem
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∀a, n symmetric(a, n)↔ (∀i, j 1 ≤ i, j ≤ n→ select(a, i, j) = select(a, j, i))

Prove {symmetric(a, n)} a[0, 0] := e0 ; . . . ; a[k, k] := ek {symmetric(a, n)}

 Definition of "symmetric array":

Systems tried 
CVC3: DPLL(T) prover (with instantiation heuristics) - cannot solve
KeY: Interactive verification system, "taclets" - cannot solve
SPASS: Hyper-resolution setting, equality array axioms (performed best)
Darwin:  Relational array axioms, heuristics (4) 

k SPASS Darwin
2 < 1 < 1
3 142 3
4 > 5h 7
5 > 5h 20
6 > 5h 63

To be fair: 
no arithmetic in this example: 

SPASS is a complete prover, whereas 
Darwin setup is incomplete

but allows good control of search space

30
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ME(T)- Conclusion (1)
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• View from DPLL(T)
– Proper extension of DPLL(T) by integrating FO reasoning

• Advantages derive from being able to analyze term structure 
– New way to handle non-ground formulas

• Implemented by theory lemmas instead of meta-logical:
"Points of definedness"  (cf. "select" above) computed by calculus
itself, by first-order reasoning, in a by need fashion 

• View from First-Order Theorem Proving
– This is "total theory reasoning" + "partial theory reasoning"

 (T-propagation by theory lemmas) 
– Goal: better functionality of ATP systems

• Useful explanation for failure, e.g. a model
• Reasoning with integers

Message 
of the day
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Conclusion (2)
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• Related Work
– Big engines approach [Armando&Bonacina&Ranise&Schulz]: 

E.g. DPLL(T) where T is implemented by a first-order theorem prover 
– SPASS+ T [Prevosto&Waldmann]:  

two-level architecture with SMT-solver as black box 
• Future

– Implement the coupling ME + CVC3
– Experiments

• In particular proof obligations from KeY
– MET - non-ground T-interpretations

P (v) | v < 5 — ¬P (v) | v < 5
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