
Situational Awareness for Industrial Operations

Peter Baumgartner and Patrik Haslum

Research School of Computer Science

Problem Context

Factory Floor
– Are the operations carried out according to the

schedule?

Food Supply Chain
– Are the tomatos delivered within 3 hours and

stored below 25℃?
– Is “sold milk quantity” ≤ “produced milk

quantity”?

Data Cleansing
– Does the database have complete, correct,

accurate and relevant data?

 2

This Work
 A situational awareness approach to answer such questions

Situational Awareness

 3

Events
Aggregate
Comprehend
Project

Corrective
Action

Situational Awareness

 3

Events
Aggregate
Comprehend
Project

Corrective
Action

Situational Awareness

Situational Awareness

 3

Events
Aggregate
Comprehend
Project

Corrective
Action

Situational Awareness

E.g. Given a truck’s GPS trace,

why has the truck stopped?

Weighbridge? Loading? Delay? Break?

Situational Awareness

 3

Situational Awareness System Design Issues
• Want re-usability across domains
• What is an appropriate general system modelling language?
• How to derive situational awareness from events + model?
• How to deal with incomplete/noisy/erroneous/absent events

Events
Aggregate
Comprehend
Project

Corrective
Action

Situational Awareness

E.g. Given a truck’s GPS trace,

why has the truck stopped?

Weighbridge? Loading? Delay? Break?

Situational Awareness

 3

Situational Awareness System Design Issues
• Want re-usability across domains
• What is an appropriate general system modelling language?
• How to derive situational awareness from events + model?
• How to deal with incomplete/noisy/erroneous/absent events

Events
Aggregate
Comprehend
Project

Corrective
Action

Situational Awareness

This Talk
• System Architecture
• Modelling Language
• Inference Engine and State Maintenance
• Implementation on top of Scala

E.g. Given a truck’s GPS trace,

why has the truck stopped?

Weighbridge? Loading? Delay? Break?

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

Execution

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler

Execution

(1)

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events

Execution

(1)

(2)

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

Execution

(1)

(2)(3)

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

(4) Raw messages preprocessed and  
fed into Inference Engine

Execution

(1)

(2)(3)
(4)

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

(4) Raw messages preprocessed and  
fed into Inference Engine

Execution (5) Inference Engine and State Maintenance 
aggregate recent messages for  
comprehending current state

(1)

(2)(3)
(4) (5)

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

(4) Raw messages preprocessed and  
fed into Inference Engine

Execution (5) Inference Engine and State Maintenance 
aggregate recent messages for  
comprehending current state

(6) Forecasting projects into near future

(1)

(2)(3)
(4) (5)

(6)
Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

(4) Raw messages preprocessed and  
fed into Inference Engine

Execution (5) Inference Engine and State Maintenance 
aggregate recent messages for  
comprehending current state

(6) Forecasting projects into near future
(7) Inference engine sends expected state  

and current state to Alarm generation  
which asses Alarm-worthiness

(1)

(2)(3)
(4) (5)

(6) (7)
Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

(4) Raw messages preprocessed and  
fed into Inference Engine

Execution (5) Inference Engine and State Maintenance 
aggregate recent messages for  
comprehending current state

(6) Forecasting projects into near future
(7) Inference engine sends expected state  

and current state to Alarm generation  
which asses Alarm-worthiness

(8) Human Operator may reconcile/correct 
current state

(1)

(2)(3)
(4) (5)

(6) (7)

(8)

Why?

Separation of concerns!

System Architecture

 4

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports

(1) Human Operator invokes Scheduler
(2) Schedule given to Inference Engine  

defining expected course of events
(3) Collect messages from external world  

e.g. event reports and sensor output

(4) Raw messages preprocessed and  
fed into Inference Engine

Execution (5) Inference Engine and State Maintenance 
aggregate recent messages for  
comprehending current state

(6) Forecasting projects into near future
(7) Inference engine sends expected state  

and current state to Alarm generation  
which asses Alarm-worthiness

(8) Human Operator may reconcile/correct 
current state

(1)

(2)(3)
(4) (5)

(6) (7)

(8)

Rest of this talk:

- Modelling Language

- Semantics

- ImplementationWhy?

Separation of concerns!

System Model

P1

P2

P3

Processes
• Codify logic of an actor of the model
• Process state = set of pairs (variable, value)
• System state = set of its process states
• Run in parallel and act on messages

 5

Model = processes + channels + state maintenance

Truck and
its load

System Model

P1

P2

P3

Processes
• Codify logic of an actor of the model
• Process state = set of pairs (variable, value)
• System state = set of its process states
• Run in parallel and act on messages

 5

Model = processes + channels + state maintenance

Why?

Supports

dynamically

adding/removing

actors

Truck and
its load

System Model

P1

P2

P3

C0

Message …

C1

C3

C2

Processes
• Codify logic of an actor of the model
• Process state = set of pairs (variable, value)
• System state = set of its process states
• Run in parallel and act on messages

 5

Model = processes + channels + state maintenance

Channels and Messages
• Internal: m-to-n inter-process comms
• External: channels for input/output
• Interface to state maintenance module

Why?

Supports

dynamically

adding/removing

actors

Truck and
its load

System Model

P1

P2

P3

C0

Message …

C1

C3

C2

Processes
• Codify logic of an actor of the model
• Process state = set of pairs (variable, value)
• System state = set of its process states
• Run in parallel and act on messages

 5

Model = processes + channels + state maintenance

Channels and Messages
• Internal: m-to-n inter-process comms
• External: channels for input/output
• Interface to state maintenance module

State Maintenance Model
• Analysis and amends system states
• “Global view” - has system state history, e.g. 

RTV based on (probabilistic) temporal logic,  
Conflict-directed diagnosis

State
Maintenance

Model

Why?

Supports

dynamically

adding/removing

actors

Truck and
its load

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine

 6

In
fe

re
nc

e
En

gi
ne

The main loop

St
at

e
M

ai
nt

en
an

ce

S0

S1

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in

 6

In
fe

re
nc

e
En

gi
ne

The main loop

St
at

e
M

ai
nt

en
an

ce

S0

S1

(1)

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

St
at

e
M

ai
nt

en
an

ce

S0

S1

(2)

(1)

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)
(3) Results in derived possible system states (!)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

St
at

e
M

ai
nt

en
an

ce

S0

S1

(3)

(2)

(1)

S2, S3

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)
(3) Results in derived possible system states (!)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

State Maintenance

St
at

e
M

ai
nt

en
an

ce

S0

S1

(3)

(2)

(1)

S2, S3

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)
(3) Results in derived possible system states (!)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

State Maintenance
(4) Derived possible system states are sent to

state maintenance

St
at

e
M

ai
nt

en
an

ce

S0

S1

S2 S3

(4)

(3)

(2)

(1)

S2, S3

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)
(3) Results in derived possible system states (!)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

State Maintenance
(4) Derived possible system states are sent to

state maintenance
(5) State maintenance computes a next current

state from derived possible states and state
history

St
at

e
M

ai
nt

en
an

ce

S0

S1

S2(5)

(4)

(3)

(2)

(1)

S2, S3

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)
(3) Results in derived possible system states (!)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

State Maintenance
(4) Derived possible system states are sent to

state maintenance
(5) State maintenance computes a next current

state from derived possible states and state
history

(6) Next current state is sent back to inference
engine as current system state St

at
e

M
ai

nt
en

an
ce

S0

S1

S2(5)

(4)

(3)

(2)

(1)

S2, S3

(6)

S2

System Model Execution

P1

P2

P3

C0

Message …

C1

C3

C2

Inference Engine
(1) Next external message comes in
(2) Processes run until exhaustion 

(No more messages sent around)
(3) Results in derived possible system states (!)

State

 6

In
fe

re
nc

e
En

gi
ne

The main loop

State Maintenance
(4) Derived possible system states are sent to

state maintenance
(5) State maintenance computes a next current

state from derived possible states and state
history

(6) Next current state is sent back to inference
engine as current system state

(7) Continue with (1)

St
at

e
M

ai
nt

en
an

ce

S0

S1

S2(5)

(4)

(3)

(2)

(1)

S2, S3

(6)

S2

Example - Food Supply Chain

 7

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Concrete Events
Certain trucks are loaded with certain goods that are moved between certain warehouses

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Situational Awareness Task
• What trucks are where at what time?
• What goods of what origin are where?

Concrete Events
Certain trucks are loaded with certain goods that are moved between certain warehouses

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Situational Awareness Task
• What trucks are where at what time?
• What goods of what origin are where?

Concrete Events
Certain trucks are loaded with certain goods that are moved between certain warehouses

Complication
• Some waypoints are missing  

Recover from other messages?
• Origin of some goods is missing 

Informed guess?

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Situational Awareness Task
• What trucks are where at what time?
• What goods of what origin are where?

Concrete Events
Certain trucks are loaded with certain goods that are moved between certain warehouses

Complication
• Some waypoints are missing  

Recover from other messages?
• Origin of some goods is missing 

Informed guess?

 …
 { "time": "2018-02-18T02:00",
 "type": "Waypoint",
 "truck": "TruckB",
 "location": “Goulburn" }
 …
 { "time": "2018-02-18T06:45",
 "type": "Loading",
 "truck": "TruckB",
 "location": "Canberra",
 "goods": "Oranges",
 "origin": “unknown" }

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Situational Awareness Task
• What trucks are where at what time?
• What goods of what origin are where?

Concrete Events
Certain trucks are loaded with certain goods that are moved between certain warehouses

Complication
• Some waypoints are missing  

Recover from other messages?
• Origin of some goods is missing 

Informed guess?

 …
 { "time": "2018-02-18T02:00",
 "type": "Waypoint",
 "truck": "TruckB",
 "location": “Goulburn" }
 …
 { "time": "2018-02-18T06:45",
 "type": "Loading",
 "truck": "TruckB",
 "location": "Canberra",
 "goods": "Oranges",
 "origin": “unknown" }

Infer Waypoint message  
from Loading message
and broadcast it

Example - Food Supply Chain

 7

Model
• Goods (apples and oranges) of specific origin (Riverina and Batlow)
• Warehouses (Sydney, Goulburn, Canberra)
• Trucks (TruckA, TruckB and TruckC)
• Waypoints for trucks in terms of time and location (GPS)
• Dockets for loading goods on trucks at warehouses (EPCIS)

Messages

Processes

Situational Awareness Task
• What trucks are where at what time?
• What goods of what origin are where?

Concrete Events
Certain trucks are loaded with certain goods that are moved between certain warehouses

Complication
• Some waypoints are missing  

Recover from other messages?
• Origin of some goods is missing 

Informed guess?

 …
 { "time": "2018-02-18T02:00",
 "type": "Waypoint",
 "truck": "TruckB",
 "location": “Goulburn" }
 …
 { "time": "2018-02-18T06:45",
 "type": "Loading",
 "truck": "TruckB",
 "location": "Canberra",
 "goods": "Oranges",
 "origin": “unknown" }

Infer Waypoint message  
from Loading message
and broadcast it Guess

origin = “Riverina” OR
origin = “Batlow”

Implementation - Shallow Embedding in Scala

 8

Scala
• Scala combines object-oriented and functional programming in one concise,  

high-level language (www.scala-lang.org)
• Runs on JVM
• Static type system, type inference, pattern matching, call-by-name/call-by-value, libraries
• Syntactic sugar  

unless (x == 0) { println(“One over x is “ + 1/x) }

Shallow Embedding
• Modelling language =  

 Scala + syntactic sugar + class definitions for “Process” and “Channel”
• Scheduler is library function
• Why?

• Full power of host language
• Existing libraries for DB connectivity, RabbitMQ, JSon, …
• Easy to implement

http://www.scala-lang.org

Food Supply Chain Example

 9

Message Data Structures
abstract class Message
case class Waypoint(time: DateTime, truck: String, location: String) extends Message
case class Loading(time: DateTime, truck: String, location: String, 
 goods: String, origin: String) extends Message

Channels
object Input extends Channel[JsObject]("Input", withInputPort = 5554, window = 1)
// For receiving messages from the external world
object Broadcast extends Channel[Message](“Broadcast”)
// For inter-process comunication

I_am_a_modelling_language_expression
Processes
object Dispatch extends Process(“Dispatch") { … }
class Truck(Id: String) extends Process(“Truck”) { … }
class Warehouse(Location: String) extends Process(“Warehouse”) { … }

Food Supply Chain Example

 10

object Dispatch extends Process("Dispatcher") {
 import collection.mutable.Set
 val trucks = Set.empty[String]
 rules (
 Input --> { msg =>
 (msg \ "type").as[String] match {
 case "Waypoint" =>
 val wp = msg.toWaypoint
 if (! (trucks contains wp.truck)) {
 Scheduler.schedule(new Truck(wp.truck))
 trucks += wp.truck
 }
 Broadcast <— wp
 case "Loading" => … //similar
 case _ => error(s"Dispatch: cannot handle message $msg")
 }
 }
)

Dispatcher process:
- Receive external messages
- Broadcasts messages to  

all processes
- Creates new Truck processes 

on the fly

Dsp

WHTruck

Input

{ … } { … } …

…

Broadcast

Dispacth Process

Food Supply Chain Example

 11

Truck Process

class Truck(Id: Int) extends Process("Truck") {

val broadcast = Broadcast.subscribe()

var location = “unknown”
var load = Set.empty[(String, String)]

// Externally visible state variables
stateVar("id", …, …)
stateVar("location", …, …)
stateVar("load", …, …)

rules(
… // next slide

)

{ id = “TruckA”,
location = “Sydney”
load = [(“Oranges”, “Batlow”)]

}

⇒ Automatic mapping to/from Json

Food Supply Chain Example

 12

Truck process (cont’d)

var location = “unknown”
var load = Set.empty[(String, String)]

// This rule infers a missing Waypoint message from a Loading message
rules (

 broadcast --> {
 case msg @ Loading(time, Id, loc, goods, origin) if location != loc =>

 Broadcast <-- Waypoint(time, id, loc) // Infer Waypoint
 Broadcast <-- msg
 … // (cont’d)

 }

Food Supply Chain Example

 13

Truck process (cont’d)

var location = “unknown”
var load = Set.empty[(String, String)]

// This rule updates the load on this truck
rules (

 broadcast --> {
 case msg @ Loading(time, Id, loc, goods, origin) if origin != “unknown” =>

 load += (goods, origin)

 // Disjunctive rule to resolve “unknown”
 case msg @ Loading(time, Id, loc, goods, origin) if origin == “unknown” =>

 or({ Broadcast <-- Loading(time, Id, loc, goods, “Riverina”) },
 { Broadcast <-- Loading(time, Id, loc, goods, “Batlow”) })
 }
)

Food Supply Chain Example

 13

Truck process (cont’d)

var location = “unknown”
var load = Set.empty[(String, String)]

// This rule updates the load on this truck
rules (

 broadcast --> {
 case msg @ Loading(time, Id, loc, goods, origin) if origin != “unknown” =>

 load += (goods, origin)

 // Disjunctive rule to resolve “unknown”
 case msg @ Loading(time, Id, loc, goods, origin) if origin == “unknown” =>

 or({ Broadcast <-- Loading(time, Id, loc, goods, “Riverina”) },
 { Broadcast <-- Loading(time, Id, loc, goods, “Batlow”) })
 }
)

Rules are allowed to “fail”

Food Supply Chain Example

 13

Truck process (cont’d)

var location = “unknown”
var load = Set.empty[(String, String)]

// This rule updates the load on this truck
rules (

 broadcast --> {
 case msg @ Loading(time, Id, loc, goods, origin) if origin != “unknown” =>

 load += (goods, origin)

 // Disjunctive rule to resolve “unknown”
 case msg @ Loading(time, Id, loc, goods, origin) if origin == “unknown” =>

 or({ Broadcast <-- Loading(time, Id, loc, goods, “Riverina”) },
 { Broadcast <-- Loading(time, Id, loc, goods, “Batlow”) })
 }
)

Rules are allowed to “fail”

What else?

• State Maintenance:  

“no oranges from Batlow”

• Inference engine algorithm  

and implementation

• Scheduler algorithm  

and implementation

Next Steps

– Improve and complete implementation
– Realistic food supply chain based on EPCIS events
– Probabilistic state transitions
– State maintenance trees
– State maintenance declaratively specified by temporal logic constraints

– G (truck(id, “Sydney”, load) → ¬F (truck(id, “Canberra”, load))

 14

S0

S1 S2

S3 S4 S3 S4

0.3 0.7

truck(id, “Sydney”, load)

truck(id, “Canberra”, load)

❌

Next Steps

– Improve and complete implementation
– Realistic food supply chain based on EPCIS events
– Probabilistic state transitions
– State maintenance trees
– State maintenance declaratively specified by temporal logic constraints

– G (truck(id, “Sydney”, load) → ¬F (truck(id, “Canberra”, load))

 14

S0

S1 S2

S3 S4 S3 S4

0.3 0.7

truck(id, “Sydney”, load)

truck(id, “Canberra”, load)

❌

Requires diagnosis

