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Problem Context

Factory Floor 
– Are the operations carried out according to the 

schedule? 

Food Supply Chain 
– Are the tomatos delivered within 3 hours and 

stored below 25℃? 
– Is “sold milk quantity” ≤ “produced milk 

quantity”? 

Data Cleansing 
– Does the database have complete, correct, 

accurate and relevant data?
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This Work 
    A situational awareness approach to answer such questions
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Situational Awareness System Design Issues 
• Want re-usability across domains 
• What is an appropriate general system modelling language? 
• How to derive situational awareness from events + model? 
• How to deal with incomplete/noisy/erroneous/absent events

Events
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Corrective 
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Situational Awareness

This Talk 
• System Architecture 
• Modelling Language 
• Inference Engine and State Maintenance 
• Implementation on top of Scala

E.g. Given a truck’s GPS trace,

why has the truck stopped? 

Weighbridge? Loading? Delay? Break?
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- Modelling Language

- Semantics

- ImplementationWhy?
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Model = processes + channels + state maintenance

Channels and Messages 
• Internal: m-to-n inter-process comms 
• External: channels for input/output 
• Interface to state maintenance module

State Maintenance Model 
• Analysis and amends system states 
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Scala 
• Scala combines object-oriented and functional programming in one concise,  

high-level language                                                                                       (www.scala-lang.org) 
• Runs on JVM 
• Static type system, type inference, pattern matching, call-by-name/call-by-value, libraries 
• Syntactic sugar  

unless (x == 0) { println(“One over x is “ + 1/x) }

Shallow Embedding 
• Modelling language =  

    Scala + syntactic sugar + class definitions for “Process” and “Channel” 
• Scheduler is library function 
• Why? 

• Full power of host language 
• Existing libraries for DB connectivity, RabbitMQ, JSon, … 
• Easy to implement

http://www.scala-lang.org
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Message Data Structures 
abstract class Message 
case class Waypoint(time: DateTime, truck: String, location: String) extends Message 
case class Loading(time: DateTime, truck: String, location: String, 
       goods: String, origin: String) extends Message

Channels 
object Input extends Channel[JsObject]("Input", withInputPort = 5554, window = 1) 
// For receiving messages from the external world 
object Broadcast extends Channel[Message](“Broadcast”) 
// For inter-process comunication

I_am_a_modelling_language_expression
Processes 
object Dispatch extends Process(“Dispatch") { … } 
class Truck(Id: String) extends Process(“Truck”) { … } 
class Warehouse(Location: String) extends Process(“Warehouse”) { … }
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object Dispatch extends Process("Dispatcher") { 
  import collection.mutable.Set 
  val trucks = Set.empty[String]  
  rules ( 
    Input --> { msg => 
       (msg \ "type").as[String] match { 
          case "Waypoint" =>  
    val wp = msg.toWaypoint 
    if (! (trucks contains wp.truck)) { 
     Scheduler.schedule(new Truck(wp.truck)) 
     trucks += wp.truck 
    }  
    Broadcast <— wp 
          case "Loading" => … //similar 
          case _ => error(s"Dispatch: cannot handle message $msg") 
        } 
    } 
  ) 

Dispatcher process: 
- Receive external messages 
- Broadcasts messages to  

all processes 
- Creates new Truck processes 

on the fly

Dsp

WHTruck

Input

{ … } { … } … 

…

Broadcast

Dispacth Process
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Truck Process

class Truck(Id: Int) extends Process("Truck") { 

val broadcast = Broadcast.subscribe()  

var location = “unknown” 
var load = Set.empty[(String, String)] 

// Externally visible state variables 
stateVar("id", …, …) 
stateVar("location", …, …) 
stateVar("load", …, …) 

rules( 
… // next slide 

) 

{  id = “TruckA”, 
location = “Sydney” 
load = [ (“Oranges”, “Batlow”) ] 

}

⇒ Automatic mapping to/from Json
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Truck process (cont’d)

var location = “unknown” 
var load = Set.empty[(String, String)]  

// This rule infers a missing Waypoint message from a Loading message  
rules ( 

    broadcast --> { 
      case msg @ Loading(time, Id, loc, goods, origin) if location != loc => 

     Broadcast <-- Waypoint(time, id, loc)  // Infer Waypoint 
    Broadcast <-- msg 
   … // (cont’d) 

   } 
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Truck process (cont’d)

var location = “unknown” 
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// This rule updates the load on this truck  
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      case msg @ Loading(time, Id, loc, goods, origin) if origin != “unknown” => 

     load += (goods, origin) 

   // Disjunctive rule to resolve “unknown” 
      case msg @ Loading(time, Id, loc, goods, origin) if origin == “unknown” => 

     or( { Broadcast <-- Loading(time, Id, loc, goods, “Riverina”) }, 
      { Broadcast <-- Loading(time, Id, loc, goods, “Batlow”) } ) 
   } 
)
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Truck process (cont’d)

var location = “unknown” 
var load = Set.empty[(String, String)]  

// This rule updates the load on this truck  
rules ( 

    broadcast --> { 
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   } 
)

Rules are allowed to “fail”

What else?

• State Maintenance:  

“no oranges from Batlow”

• Inference engine algorithm  

and implementation

• Scheduler algorithm  

and implementation



Next Steps

– Improve and complete implementation 
– Realistic food supply chain based on EPCIS events 
– Probabilistic state transitions 
– State maintenance trees 
– State maintenance declaratively specified by temporal logic constraints 

– G (truck(id, “Sydney”, load) → ¬F (truck(id, “Canberra”, load))
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Requires diagnosis


