Splitting an operator
 An algebraic modularity result and its application to logic programming

Joost Vennekens
David Gilis
Marc Denecker
KU Leuven, Belgium

Slides by Peter Baumgartner MPII Saarbrücken, Germany

Various Logic Program Semantics

- Assign "meaning" to a program / knowledge base: perfect model, stable models, well-founded model
- Normal (logic) programs: negation in rule body allowed.

$$
\begin{align*}
\operatorname{win}(X) & \leftarrow \operatorname{move}(X, Y), \text { not } \operatorname{win}(Y) \tag{1}\\
\operatorname{move}(c, d) & \leftarrow \tag{2}\\
\operatorname{move}(a, b) & \leftarrow \tag{3}\\
\operatorname{move}(b, a) & \leftarrow \tag{4}
\end{align*}
$$

- The well-founded model: | True | Undefined | False |
| :---: | :---: | :---: |
| | $\operatorname{win}(c)$ | $\begin{array}{c}\operatorname{win}(a) \\ \operatorname{win}(b)\end{array}$ |
- Two stable models:

(i)	True	False	(ii)	True	False
	win(c)	win(d)		win(c)	win(d)
	win(a)	win(b)		win(b)	win(a)

More About Well-Founded Models

- See [VanGelder/Ross/Schlipf 89, Przymusinski 91]
- Generally accepted for "reasonable" sceptical reasoning
- "well-behaved":
- always exists, stratification not required
- unique model
- goal-oriented procedure exists
- quadratic complexity
- undef is assigned to atoms which negatively depend on themselves, and for which no independent "well-founded" derivation exists
- XSB-Prolog system (Warren et. al., top-down system)
- SModels (Niemelä et. al., bottom-up system, also for stable model semantics)

"Building in" Information into Programs

- Program P
- Partial interpretation \mathcal{J}

$$
\begin{array}{ll}
q \leftarrow & r \leftarrow \operatorname{not} s \\
p \leftarrow \operatorname{not} q, s & p \leftarrow \operatorname{not} p
\end{array}
$$

True	Undefined	False
q	p, r	s

- Quotient program $\frac{P}{d}$

$q \leftarrow$	$r \leftarrow$ true
$p \leftarrow$ false,s	$p \leftarrow$ undef

- J is a partial model of $\frac{P}{d}$ iff for all Head \leftarrow Body in $\frac{P}{d}$:
- If $\mathcal{J}($ Body $)=$ true then $\mathcal{J}($ Head $)=$ true
- If $\mathcal{J}($ Head $)=$ false then $\mathcal{J}($ Body $)=$ false
- Least partial model $\operatorname{LPM}\left(\frac{P}{f}\right)$
- J minimizes true atoms, and

True	Undefined	False
q, r	p	s

- J maximizes false atoms

Well-Founded Models as Fixpoint Iteration

¢-increasing
\subseteq-increasing

- Maintain two sets to represent J_{i} :
- The "true" atoms
- The "true or undef" atoms
- Set $J_{0}=$ "all undef" and do $J_{i+1}=L P M\left(\frac{P}{J_{i}}\right)$ until fixpoint, where
- seqeuence ($\mathscr{J}_{0}=$ "all false" $), \mathscr{J}_{1}, \ldots, \mathscr{J}_{n-1},\left(\mathscr{J}_{n}=\mathscr{J}_{n+1}=\operatorname{LPM}\left(\frac{\mathrm{P}}{\mathcal{J}_{i}}\right)\right)$ obtained with operator associated to $($ Head \leftarrow Body $) \in \frac{P}{J_{i}}$:
(i) If $\mathcal{J}_{k}($ Body $)=$ true then $\mathfrak{J}_{k+1}($ Head $)=$ true
(ii) If $\mathscr{J}_{k+1}($ Head $)=$ false then $\mathscr{J}_{k}($ Body $)=$ false

If $\underbrace{\mathcal{J}_{k}(\text { Body }) \neq \text { false }}_{\mathcal{J}_{k}(\text { Body }) \in\{\text { true, undef }\}}$ then $\underbrace{\mathcal{J}_{k+1}(\text { Head }) \neq \text { false }}_{J_{k+1}(\text { Head }) \in\{\text { true, undef }\}}$

Computing Well-Founded Models, Step $0 \stackrel{\rightarrow}{ }$ Step 1

$$
\begin{aligned}
& P \\
& a \leftarrow \\
& c \leftarrow \operatorname{not} b, a \\
& b \leftarrow \operatorname{not} c \\
& e \leftarrow \operatorname{not} d \\
& f \leftarrow e \\
& f \leftarrow \operatorname{not} a
\end{aligned}
$$

Computing Well-Founded Models, Step $0 \stackrel{\rightarrow}{ }$ Step 1

P	(i) build $P /\lfloor a, b, c, d, e, f\rceil$
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ undef
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow \operatorname{not} a$	$f \leftarrow$ undef

false undef	$\begin{aligned} & a, b, c, d, \\ & e, f \end{aligned}$	d
		b, c, e, f
true		a
	Step 0	splitting Splitting an

Computing Well-Founded Models, Step $0 \stackrel{\rightarrow}{ }$ Step 1

P	(i) build $P / \boxed{a, b, c, d, e, f\rceil}$
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ undef
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow \operatorname{not} a$	$f \leftarrow$ undef

(ii) derive new true atoms a

false undef	$\begin{aligned} & a, b, c, d, \\ & e, f \end{aligned}$	d
		b, c, e, f
true		a
	Step 0	splitting at

Computing Well-Founded Models, Step $0 \upharpoonright \rightarrow$ Step 1

P	(i) build $P / \square a, b, c, d, e, f \rrbracket$
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ undef
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow$ not a	$f \leftarrow$ undef

(ii) derive new true atoms a

(iii) derive new true or undef atoms | a | b, c, e, f |
| :--- | :--- |

Computing Well-Founded Models, Step $0 \stackrel{\rightarrow}{ }$ Step 1

P	(i) build $P / \square a, b, c, d, e, f \rrbracket$
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ undef
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow$ not a	$f \leftarrow$ undef

(ii) derive new true atoms a

(iii) derive new true or undef atoms | a | b, c, e, f |
| :--- | :--- |

(iv) conclude new false atoms d

Computing Well-Founded Models, Step 1 • Step 2

$$
\begin{aligned}
& P \\
& a \leftarrow \\
& c \leftarrow \operatorname{not} b, a \\
& b \leftarrow \operatorname{not} c \\
& e \leftarrow \operatorname{not} d \\
& f \leftarrow e \\
& f \leftarrow \operatorname{not} a
\end{aligned}
$$

Computing Well-Founded Models, Step 1 \rightarrow Step 2

P	(i) build $\quad P / a \mid r, a, e, f$
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ true
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow$ not a	$f \leftarrow$ false

Computing Well-Founded Models, Step 1 \rightarrow Step 2

P	(i) build $P / a \mid b, c$,
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ true
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow$ not a	$f \leftarrow$ false

(ii) derive new true atoms a, e, f

Computing Well-Founded Models, Step 1 ! Step 2

P	(i) build $P / a \mid b, c$,
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ true
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow$ not a	$f \leftarrow$ false

(ii) derive new true atoms a, e, f

(iii) derive new true or undef atoms | a, e, f | b, c |
| :--- | :--- |

Computing Well-Founded Models, Step $1 \mapsto$ Step 2

P	(i) build $P / a \mid b, c$,
$a \leftarrow$	$a \leftarrow$
$c \leftarrow \operatorname{not} b, a$	$c \leftarrow$ undef,a
$b \leftarrow \operatorname{not} c$	$b \leftarrow$ undef
$e \leftarrow \operatorname{not} d$	$e \leftarrow$ true
$f \leftarrow e$	$f \leftarrow e$
$f \leftarrow$ not a	$f \leftarrow$ false

(ii) derive new true atoms a, e, f

(iii) derive new true or undef atoms | a, e, f | b, c |
| :--- | :--- |

(iv) conclude new false atoms d

Abstraction Theory (Denecker, Marek and Truszczynsł

Recall Fitting operator for logic programs:
(i) If $\mathfrak{J}_{k}($ Body $)=$ true then $\mathfrak{J}_{k+1}($ Head $)=$ true
(ii) If If J_{k} (Body) \neq false then J_{k+1} (Head) \neq false

Fitting: Semantics as fixpoints of certain derived operators

Abstraction Theory

(Operator (i) alone is sufficient, (ii) is derived (minor issue)

- Other major knowledge representation formalisms (Autoepistemic Logic, Default Logic) can be described by operators comparable to (i) with same monotonicity properties
(Conclusion: Develop theory on an abstract level.
- Applications:
- Comparable (new) semantics for AEL and DL Logic as in logic programming
- Abstract results on stratification spiltting an operator - venneekens - Gilis - Deneccer - $\mathrm{p} . \mathrm{s}$

Ordering Interpretations

Ordering of truth values:
\geq_{k} knowledge (precision, information) ordering \geq_{t} truth ordering

Maintain two sets $(X, Y) \in 2^{\Sigma} \times 2^{\Sigma}$ to represent an interpretation:

- The "true" atoms X
- The "true or undef" atoms Y

Further notions:

- (X, X) is exact
- (X, Y) is consistent iff $X \subseteq Y$

Ordering interpretations, bilattices $\left(2^{\Sigma} \times 2^{\Sigma}, \leq_{k}\right)$ and ($2^{\Sigma} \times 2^{\Sigma}, \leq_{t}$):
$(X, Y) \leq_{k}\left(X^{\prime}, Y^{\prime}\right)$ iff $X \subseteq X^{\prime}$ and $Y^{\prime} \subseteq Y$ $(X, Y) \leq_{t}\left(X^{\prime}, Y^{\prime}\right)$ iff $X \subseteq X^{\prime}$ and $Y \subseteq Y^{\prime}$
(Knowledge ordering)
(Truth ordering)

Evaluation of Formulas

$$
\begin{aligned}
& H_{(X, Y)}(\phi)= \begin{cases}\mathrm{t} & \phi \text { is true in the interpretation defined by }(X, Y) \\
\mathrm{f} & \text { otherwise }\end{cases} \\
& H_{(X, Y)}(p)= \begin{cases}\mathrm{t} & \text { if } p \in X \quad(p \text { an atom }) \\
\mathrm{f} & \text { otherwise }\end{cases} \\
& H_{(X, Y)}(\phi \wedge / V \psi)= \begin{cases}\mathrm{t} & \text { if } H_{(X, Y)}(\phi)=\mathrm{t} \text { and } / \text { or } H_{(X, Y)}(\phi)=\mathrm{t} \\
\mathrm{f} & \text { otherwise }\end{cases} \\
& H_{(X, Y)}(\neg \phi)= \begin{cases}\mathrm{l} & \text { if } H_{(Y, X)}(\phi)=\mathrm{f} \\
\mathrm{f} & \text { otherwise }\end{cases}
\end{aligned}
$$

Associating Operators to Programs

Let P be a Program. Define operator $U_{P}: 2^{\Sigma} \times 2^{\Sigma}{ }_{1} \rightarrow 2^{\Sigma}$:

$$
U_{P}(X, Y)=\left\{p \in \Sigma \mid \text { there is }(p \leftarrow q, \neg r) \in P \text { with } H_{X, Y}(q \wedge \neg r)=\mathrm{t}\right\}
$$

Note: $H_{X, Y}(q \wedge \neg r)=\mathrm{t}$ iff q is true and r is false in (X, Y)

Special case

Well known two-valued operator $T_{P}: 2^{\Sigma} \rightarrow 2^{\Sigma}$:

$$
X_{1} \rightarrow U_{P}(X, X)
$$

Properties

- Fixpoints of T_{P} need not exist, take $P=\{p \leftarrow \neg p\}$
- Fixpoints of T_{P} are two-valued supported models E.g. fixpoints of $T_{\{p \leftarrow p\}}$ are $\}$ and $\{p\}$
- If P is definite then T_{P} is monotone; LFP is minimal model

Fitting Operator as Symmetric Application of U_{P}

Recall (X, Y) means ("true atoms", "true or undef atoms")
Recall

$$
U_{P}(X, Y)=\left\{p \in \Sigma \mid \text { there is }(p \leftarrow q, \neg r) \in P \text { with } H_{X, Y}(q \wedge \neg r)=\mathrm{t}\right\}
$$

$H_{X, Y}(q \wedge \neg r)=\mathrm{t}$ iff q is true and r is false in (X, Y)
Now swap X and Y :

$$
U_{P}(Y, X)=\left\{p \in \Sigma \mid \text { there is }(p \leftarrow q, \neg r) \in P \text { with } H_{Y, X}(q \wedge \neg r)=\mathbf{t}\right\}
$$

$H_{Y, X}(a \wedge \neg r)=\mathbf{t}$ iff q is true or undef and r is false or undef in (X, Y)

Define Fitting operator $\mathcal{T}_{P}(X, Y)=\left(U_{P}(X, Y), U_{P}(Y, X)\right)$
\mathcal{T}_{P} is \leq_{k}-monotone:

$$
\begin{aligned}
& \text { if } X \subseteq X^{\prime} \text { and } Y^{\prime} \subseteq Y \\
& \text { then } U_{P}(X, Y) \subseteq U_{P}\left(X^{\prime}, Y^{\prime}\right) \text { and } U_{P}\left(Y^{\prime}, X^{\prime}\right) \subseteq U_{P}(Y, X)
\end{aligned}
$$

Intuition for \mathcal{T}_{P}

$\mathcal{J}_{P}(X, Y)(p)=\left\{\begin{array}{l}\text { true } \\ \text { true or undef } \\ \text { false }\end{array}\right.$
Equivalently:
$\mathcal{T}_{P}(X, Y)(p)= \begin{cases}\text { true } & \text { if there is } \\ \text { false } & q \text { and } \neg r \\ & \text { if for all } \\ \text { true or undef } & q \text { or } \neg r \text { is } \\ \text { otherwise }\end{cases}$

Properties of \mathcal{T}_{P}

(2 \mathcal{T}_{P} is \leq_{k}-monotone, thus least fixpoint exists;
Bottom element is ($\}, \Sigma$)
Gives Kripke-Kleene semantics, (or Fitting semantics)

- Examples

Program
$p \leftarrow \neg q \quad(\},\{p, q\}) \rightarrow(\},\{p\}) \rightarrow(\{p\},\{p\})$
$p \leftarrow \neg p$
$(\},\{p, q\}) \rightarrow(\},\{p\})$
$p \leftarrow p$
$(\},\{p, a\}) \rightarrow(\},\{p\})$

Abstraction Theory (1)

2 Given a lattice (L, \leq) - concrete case ($2^{\Sigma}, \subseteq$)

- Bilattice $\left(L \times L, \leq_{p}\right)$ - concrete case $\left(2^{\Sigma} \times 2^{\Sigma}, \leq_{k}\right)$
- Approximation: any \leq_{p}-monotone operator $A: L \times L_{1} \rightarrow L \times L$ A can be written as

$$
\underbrace{A(X, Y)}_{\mathcal{T}_{P}(X, Y)}=(\underbrace{A_{1}(X, Y)}_{U_{P}(X, Y)}, \underbrace{A_{2}(X, Y)}_{U_{P}(Y, X)})
$$

e Derived operators (1) - holding an argument as parameter:
$A^{1}(\cdot, Y)=\lambda X . A_{1}(X, Y)-$ concrete case $A^{1}(\cdot, Y)=\lambda X . U_{p}(X, Y)$
$A^{2}(X, \cdot)=\lambda Y . A_{2}(X, Y)-$ concrete case $A^{2}(X, \cdot)=\lambda Y . U_{p}(Y, X)$

Both A_{1} and A_{2} are \leq-monotone

Abstraction Theory (2)

- Derived operators (1) from above:
$A^{1}(\cdot, Y)=\lambda X \cdot A_{1}(X, Y)$
$A^{2}(X, \cdot)=\lambda Y . A_{2}(X, Y)$
- Derived operators (2):

$$
\left(C_{\mathcal{T}_{P}}^{\downarrow}(Y), C_{J_{P}}^{\uparrow}(X)\right)=\operatorname{LPM}\left(\frac{P}{(X, Y)}\right)
$$

$$
\begin{aligned}
& C_{A}^{\downarrow}(Y)=\operatorname{LFP}\left(A^{1}(\cdot, Y)\right) \\
& C_{A}^{\uparrow}(X)=\operatorname{LFP}\left(A^{2}(X, \cdot)\right)
\end{aligned}
$$

Both C_{A}^{\downarrow} and C_{A}^{\uparrow} are \leq-antimonotone

- Partial stable operator of A :

$$
\mathcal{C}_{A}(X, Y)=\left(C_{A}^{\downarrow}(Y), C_{A}^{\uparrow}(X)\right)
$$

Because C_{A}^{\downarrow} and C_{A}^{\uparrow} are \leq-antimonotone, C_{A} is \leq_{p}-monotone $\operatorname{LFP}\left(\mathrm{C}_{\mathcal{T}_{P}}\right)$ (wrt. \leq_{k}) is the well-founded model Two-valued fixpoints of $\mathcal{C}_{\mathcal{J}_{P}}$ are the stable models

Summary - Abstraction Theory \rightarrow Logic Programming

Start with an operator O - concrete case U_{P}.
Semantics of derived operators:

- $T_{P}(X)=U_{P}(X, X)$
- Fixpoints: 2-valued supported models
- $\mathcal{T}_{P}(X, Y)=\left(U_{P}(X, Y), U_{P}(Y, X)\right)$
- Fixpoints: 3-valued supported models
- LFP: Kripke-Kleene semantics
- Let $A=\mathcal{T}_{P}$. Partial stable operator $\mathcal{C}_{A}(X, Y)=\left(C_{A}^{\downarrow}(Y), C_{A}^{\dagger}(X)\right)$
- Fixpoints: (partial) stable models
- LFP: well-founded model

Application to Default Logic and Autoepistemic Logic

Default Logic and Autoepistemic Logic semantics can be described by suitable operators O. Then:

- Usual Moore semantics for AEL is given by 2-valued supported models ("Xı $\rightarrow U_{P}(X, X)$ ")
- Usual Reiter semantics for DL is given by 2-valued stable models
- Intuitive mapping from DL to AEL:

Default logic inference rule:

$$
\alpha: \beta_{1}, \ldots, \beta_{n}
$$

γ

Translation to Autoepistemic Logic:

$$
\mathbf{L} \alpha \wedge \neg \mathbf{L} \neg \beta_{1} \wedge \cdots \wedge \neg \mathbf{L} \neg \beta_{n} \rightarrow \gamma
$$

Reiter semantics for DL is the same as the 2-valued stable model semantics for the translation!

Dependency Graph leads to Stratification

Example, $\Sigma=\{p, q, r\}$:
P:

$$
\begin{align*}
& s \leftarrow p, q \tag{1}\\
& p \leftarrow \neg q, \neg r \tag{2}\\
& q \leftarrow \neg p, \neg r \tag{3}
\end{align*}
$$

Dependency graph:

$$
\begin{aligned}
& \Sigma_{2}=\{s\} \\
& \Sigma_{1}=\{p, a\} \\
& \Sigma_{0}=\{r\}
\end{aligned}
$$

Suggests splitting $\Sigma=\Sigma_{0} \dot{\cup} \Sigma_{1} \dot{\cup} \Sigma_{2}$
Contribution: The program P is not stratified in the standard sense, but models can still be constructed in a stratified way $\Sigma_{0} \rightarrow \Sigma_{1} \rightarrow \Sigma_{2}$.

Stratification in Abstraction Theory - Product Lattices

So far: lattice ($2^{\Sigma}, \subseteq$) and bilattice ($2^{\Sigma} \times 2^{\Sigma}, \leq_{k}$)
Now:

- Product lattice $\left(\otimes_{i=0, \ldots, n} 2^{\Sigma_{i}}, \subseteq\right)$, where
- $\left(\otimes_{i=0, \ldots, n} 2^{\Sigma_{i}}, \subseteq\right)=\left(2^{\Sigma_{0}}, \ldots, 2^{\Sigma_{n}}\right)$, and
- $\left(x_{0}, \ldots, x_{n}\right)=x \subseteq y=\left(y_{0}, \ldots, y_{n}\right)$ iff

$$
x_{0} \subseteq y_{0} \text { and } \ldots \text { and } x_{n} \subseteq y_{n}
$$

- Example: $\Sigma=\underbrace{\{r\}}_{\Sigma_{0}} \dot{\cup} \underbrace{\{p, q\}}_{\Sigma_{1}} \dot{\cup} \underbrace{\{s\}}_{\Sigma_{2}}$
$x=(\{r\},\{p\},\{ \}) \in \otimes_{i=0,1,2} 2^{\Sigma_{i}}$
$y=(\{r\},\{p, q\},\{s\}) \in \bigotimes_{i=0,1,2} 2^{\Sigma_{i}}$
It holds $x \subseteq y$
- Bilattice of product lattices $\left(\otimes_{i=0, \ldots, n} 2^{\Sigma_{i}} \times \otimes_{i=0, \ldots, n} 2^{\Sigma_{i}}, " \leq k_{k}\right.$ " $)$
- Product lattice of bilattices $\left(\otimes_{i=0, \ldots, n}\left(2^{\Sigma_{i}} \times 2^{\Sigma_{i}}\right)\right.$, " \leq_{k} " $)$

Stratification in Abstraction Theory - Results

Notation: e.g. $x=(\{r\},\{p\},\{ \})$. Then $\left.x\right|_{\leq 1}=(\{r\},\{p\})$
Definition: ("Applying O at stratum i does not depend from strata > i.")
Operator O on a product lattice L is stratifiable iff
for all $x, y \in L$ and all $i=0, \ldots, n$:

$$
\text { if }\left.x\right|_{\leq i}=\left.y\right|_{\leq i} \text { then }\left.O(x)\right|_{\leq i}=\left.O(y)\right|_{\leq i} .
$$

Theorem: ("Logic programming: splitting results in stratification")
Let P be a logic program and $\left(\Sigma_{i}\right)_{i=0, \ldots, n}$ a splitting.
Then the operator \mathcal{T}_{P} on the bilattice of the product lattice $\left(\otimes_{i=0, \ldots, n} 2^{\Sigma_{i}} \times \otimes_{i=0, \ldots, n} 2^{\Sigma_{i}}, ~ " \leq_{k} "\right)$ is stratifiable.
Theorem: ("Stratum-wise computation of fixpoints")
Let L be a product lattice, O a stratifiable operator and $x \in L$.
Then x is a fixpoint of O iff for all $i=0, \ldots, n$:
$\left.x\right|_{i}$ is a fixpoint of $\left.O(x)\right|_{i} \quad\left(\left.x\right|_{i}\right.$ fixpoint of $\left.O_{i}^{\left.x\right|_{<i}}\right)$.
\rightarrow similar result for least fixpoints

Stratification: Example

O is \mathcal{T}_{P}, where
P :

$$
\begin{align*}
& s \leftarrow p, q \tag{1}\\
& p \leftarrow \neg q, \neg r \tag{2}\\
& q \leftarrow \neg p, \neg r \tag{3}
\end{align*}
$$

Task: compute well-founded model x of P (i.e. least fixpoint of \mathcal{T}_{P}) Construct well-founded models of $P_{0}^{x \mid<0}, P_{1}^{x \mid<1}, P_{2}^{x \mid<2}$
$\Sigma_{0}=\{r\}, P_{0}=\emptyset, P_{0}^{x \mid<0}=\emptyset$, well-founded model is $\left.x\right|_{<1}=(\{ \},\{ \})$
$\Sigma_{1}=\{p, q\}, P_{1}=\{(2),(3)\}$, with $\left.x\right|_{<1}(r)=$ false have
$P_{1}^{x \mid<1}$:

$$
\begin{align*}
& p \leftarrow \neg q, \mathrm{t} \tag{2'}\\
& q \leftarrow \neg p, \mathrm{t} \tag{3'}
\end{align*}
$$

Well-founded model is $\left.x\right|_{<2}=((\{ \},\{ \}),(\{ \},\{p, q\}))$

Stratification: Example

O is \mathcal{T}_{P}, where
P :

$$
\begin{align*}
& s \leftarrow p, q \tag{1}\\
& p \leftarrow \neg q, \neg r \tag{2}\\
& q \leftarrow \neg p, \neg r \tag{3}
\end{align*}
$$

Recall well-founded model $\left.x\right|_{<2}=((\{ \},\{ \}),(\{ \},\{p, q\}))$
$\Sigma_{2}=\{s\}, P_{2}=\{(1)\}$,
with $\left.x\right|_{<2}(r)=$ false, $\left.x\right|_{<2}(p)=$ undef and $\left.x\right|_{<2}(q)=$ undef have
$P_{2}^{x \mid<2}$:

$$
\begin{equation*}
S \leftarrow \mathbf{u}, \mathbf{u} \tag{1'}
\end{equation*}
$$

Well-founded model is $\left.x\right|_{<3}=((\{ \},\{ \},\{ \}),(\{ \},\{p, q\},\{s\}))$
This is the well-founded model of P

Conclusions

- Abstraction theory: framework to explain and construct semantics of knowledge representation formalism in a uniform way
- Abstract concept of stratification: useful for own work

