## **Splitting an operator**

# An algebraic modularity result and its application to logic programming

Joost Vennekens David Gilis Marc Denecker

KU Leuven, Belgium

Slides by Peter Baumgartner MPII Saarbrücken, Germany



#### Various Logic Program Semantics

- Assign "meaning" to a program / knowledge base: perfect model, stable models, well-founded model
- Sormal (logic) programs: negation in rule body allowed.

$$win(X) \leftarrow move(X, Y), not win(Y)$$
 (1)

$$move(c,d) \leftarrow$$
 (2)

$$move(a, b) \leftarrow$$
 (3  
 $move(b, a) \leftarrow$  (4

|    |                        | True   | Undefined | False  |
|----|------------------------|--------|-----------|--------|
| ∮Т | he well-founded model: | win(c) | win(a)    | win(d) |
|    |                        |        | win(b)    |        |

**Two** stable models:

|     | True   | False  |      | True   | False  |
|-----|--------|--------|------|--------|--------|
| (i) | win(c) | win(d) | (ii) | win(c) | win(d) |
|     | win(a) | win(b) |      | win(b) | win(a) |

Splitting an operator – Vennekens - Gilis - Denecker – p.2

#### **More About Well-Founded Models**

- See [VanGelder/Ross/Schlipf 89, Przymusinski 91]
- Generally accepted for "reasonable" sceptical reasoning
- "well-behaved":
  - always exists, stratification not required
  - unique model
  - goal-oriented procedure exists
  - quadratic complexity
- Indef is assigned to atoms which negatively depend on themselves, and for which no independent "well-founded" derivation exists
- SSB-Prolog system (Warren et. al., top-down system)
- SModels (Niemelä et. al., bottom-up system, also for stable model semantics)

## "Building in" Information into Programs

| ٩        | Program P                             | $\begin{array}{c} q \leftarrow \\ p \leftarrow \end{array}$             | not q,s   | $r \leftarrow p \leftarrow$            | not s<br>not p |
|----------|---------------------------------------|-------------------------------------------------------------------------|-----------|----------------------------------------|----------------|
| ٩        | Partial interpretation ${\mathcal J}$ |                                                                         | True<br>q | Undefined p, r                         | False<br>s     |
| <b>_</b> | Quotient program $\frac{P}{\partial}$ | $\begin{array}{c} q & \leftarrow & p \\ p & \leftarrow & q \end{array}$ | false, s  | $r \leftarrow tr$<br>$p \leftarrow ur$ |                |

- J is a partial model of  $\frac{P}{J}$  iff for all Head ← Body in  $\frac{P}{J}$ :
  - If  $\mathcal{I}(Body) = true$  then  $\mathcal{I}(Head) = true$
  - If  $\mathcal{I}(Head) = false$  then  $\mathcal{I}(Body) = false$
- **Least** partial model  $LPM(\frac{P}{4})$ 
  - $\ensuremath{\mathbb J}$  minimizes  $\ensuremath{\textit{true}}$  atoms, and
  - $\mathcal{I}$  maximizes *false* atoms

| True                | Undefined | False |
|---------------------|-----------|-------|
| <i>q</i> , <i>r</i> | p         | S     |

#### **Well-Founded Models as Fixpoint Iteration**



Solution Maintain two sets to represent  $\mathcal{I}_i$ :

- The "true" atoms
- The "true or undef" atoms

Set  $\mathcal{I}_0 =$  "all *undef*" and do  $\mathcal{I}_{i+1} = LPM(\frac{P}{\mathcal{I}_i})$  until fixpoint, where

sequence (\$\mathcal{J}\_0 = "all false"), \$\mathcal{J}\_1, \dots, \$\mathcal{J}\_{n-1}, (\$\mathcal{J}\_n = \$\mathcal{J}\_{n+1} = LPM(\$\frac{P}{\mathcal{J}\_i}\$))\$ obtained with operator associated to (Head \$\lefta Body\$) \$\in \$\frac{P}{\mathcal{J}\_i}\$:
(i) If \$\mathcal{J}\_k(Body\$) = true\$ then \$\mathcal{J}\_{k+1}(Head\$) = true\$

(ii) If  $\mathcal{J}_{k+1}(\text{Head}) = \text{false}$  then  $\mathcal{J}_k(\text{Body}) = \text{false}$ If  $\underbrace{\mathcal{J}_k(\text{Body}) \neq \text{false}}_{\mathcal{J}_k(\text{Body}) \in \{\text{true}, \text{undef}\}}$  then  $\underbrace{\mathcal{J}_{k+1}(\text{Head}) \neq \text{false}}_{\mathcal{J}_{k+1}(\text{Head}) \in \{\text{true}, \text{undef}\}}$ 

iff

| Р                                 |  |
|-----------------------------------|--|
| $a \leftarrow$                    |  |
| $c \leftarrow \textit{not } b, a$ |  |
| $b \leftarrow not c$              |  |
| $e \leftarrow \textit{not } d$    |  |
| $f \leftarrow e$                  |  |
| $f \leftarrow not a$              |  |



| <i>P</i>                       | (i) build P/ <mark>a,b,c,d,e,f</mark> |
|--------------------------------|---------------------------------------|
| $a \leftarrow$                 | $a \leftarrow$                        |
| $c \leftarrow not b, a$        | $c \leftarrow undef, a$               |
| $b \leftarrow not c$           | $b \leftarrow undef$                  |
| $e \leftarrow \textit{not } d$ | $e \leftarrow undef$                  |
| $f \leftarrow e$               | $f \leftarrow e$                      |
| $f \leftarrow not a$           | $f \leftarrow undef$                  |



| P                       | (i) build P/ a, b, c, d, e, f |
|-------------------------|-------------------------------|
| $a \leftarrow$          | $a \leftarrow$                |
| $c \leftarrow not b, a$ | $c \leftarrow undef, a$       |
| $b \leftarrow not c$    | $b \leftarrow undef$          |
| $e \leftarrow not d$    | $e \leftarrow undef$          |
| $f \leftarrow e$        | $f \leftarrow e$              |
| $f \leftarrow not a$    | $f \leftarrow undef$          |

(ii) derive new *true* atoms *a* 



| P                       | (i) build <i>P</i> / <b>a</b> , <i>b</i> , <i>c</i> , <i>d</i> , <i>e</i> , <i>f</i> |
|-------------------------|--------------------------------------------------------------------------------------|
| $a \leftarrow$          | $a \leftarrow$                                                                       |
| $c \leftarrow not b, a$ | $c \leftarrow undef, a$                                                              |
| $b \leftarrow not c$    | $b \leftarrow undef$                                                                 |
| $e \leftarrow not d$    | $e \leftarrow undef$                                                                 |
| $f \leftarrow e$        | $f \leftarrow e$                                                                     |
| $f \leftarrow not a$    | $f \leftarrow undef$                                                                 |

(ii) derive new *true* atoms *a*(iii) derive new *true* or *undef* atoms *a b*, *c*, *e*, *f*

false undef = a, b, c, d, e, f true = b, c, e, f a = b, c, e, fa = b, c

Splitting an operator – Vennekens - Gilis - Denecker – p.6

| <i>P</i>                          | (i) build P/ <mark>a,b,c,d,e,f</mark> |
|-----------------------------------|---------------------------------------|
| $a \leftarrow$                    | $a \leftarrow$                        |
| $c \leftarrow \textit{not } b, a$ | $c \leftarrow undef, a$               |
| $b \leftarrow not c$              | $b \leftarrow undef$                  |
| $e \leftarrow not d$              | $e \leftarrow undef$                  |
| $f \leftarrow e$                  | $f \leftarrow e$                      |
| $f \leftarrow not a$              | $f \leftarrow undef$                  |



Splitting an operator – Vennekens - Gilis - Denecker – p.6

| Р                                 |  |
|-----------------------------------|--|
| a ←                               |  |
| $c \leftarrow \textit{not } b, a$ |  |
| $b \leftarrow not c$              |  |
| $e \leftarrow \textit{not } d$    |  |
| $f \leftarrow e$                  |  |
| $f \leftarrow not a$              |  |



| <i>P</i>                       | (i) build <i>P/<mark>a</mark>b,c,e,fd</i> |
|--------------------------------|-------------------------------------------|
| $a \leftarrow$                 | $a \leftarrow$                            |
| $c \leftarrow not b, a$        | $c \leftarrow undef, a$                   |
| $b \leftarrow not c$           | $b \leftarrow undef$                      |
| $e \leftarrow \textit{not } d$ | $e \leftarrow true$                       |
| $f \leftarrow e$               | $f \leftarrow e$                          |
| $f \leftarrow not a$           | $f \leftarrow false$                      |



| P                                 | (i) build <i>P/<mark>a</mark>b,c,e,fd</i> |
|-----------------------------------|-------------------------------------------|
| $a \leftarrow$                    | $a \leftarrow$                            |
| $c \leftarrow \textit{not } b, a$ | $c \leftarrow undef, a$                   |
| $b \leftarrow \textit{not } c$    | $b \leftarrow undef$                      |
| $e \leftarrow \textit{not } d$    | $e \leftarrow true$                       |
| $f \leftarrow e$                  | $f \leftarrow e$                          |
| $f \leftarrow not a$              | $f \leftarrow false$                      |

(ii) derive new *true* atoms *a*,*e*,*f* 



| P                                 | (i) build <i>P/<mark>a</mark>b,c,e,fd</i> |
|-----------------------------------|-------------------------------------------|
| $a \leftarrow$                    | $a \leftarrow$                            |
| $c \leftarrow \textit{not } b, a$ | $c \leftarrow undef, a$                   |
| $b \leftarrow not c$              | $b \leftarrow undef$                      |
| $e \leftarrow \textit{not } d$    | $e \leftarrow true$                       |
| $f \leftarrow e$                  | $f \leftarrow e$                          |
| $f \leftarrow not a$              | $f \leftarrow false$                      |

(ii) derive new *true* atoms *a, e, f*(iii) derive new *true* or *undef* atoms *a, e, f b, c*



| P                              | (i) build <i>P/<mark>a</mark>b,c,e,fd</i> |
|--------------------------------|-------------------------------------------|
| $a \leftarrow$                 | $a \leftarrow$                            |
| $c \leftarrow not b, a$        | $c \leftarrow undef, a$                   |
| $b \leftarrow not c$           | $b \leftarrow undef$                      |
| $e \leftarrow \textit{not } d$ | $e \leftarrow true$                       |
| $f \leftarrow e$               | $f \leftarrow e$                          |
| $f \leftarrow not a$           | $f \leftarrow false$                      |

(ii) derive new *true* atoms a, e, f(iii) derive new *true* or *undef* atoms a, e, f b, c(iv) conclude new *false* atoms d false d false d b, c, e, f a, e, f true a false 1 false d b, c false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, f false atom b, c, e, f a, e, ffalse atom b, c, e, f a, e, f

Step 2 Splitting an operator – Vennekens - Gilis - Denecker – p.7

#### Abstraction Theory (Denecker, Marek and Truszczynsk

Recall Fitting operator for logic programs:

(i) If  $\mathcal{I}_k(Body) = true$  then  $\mathcal{I}_{k+1}(Head) = true$ 

(ii) If If  $\mathfrak{I}_k(Body) \neq false$  then  $\mathfrak{I}_{k+1}(Head) \neq false$ 

Fitting: Semantics as fixpoints of certain derived operators

#### **Abstraction Theory**

- Operator (i) alone is sufficient, (ii) is derived (minor issue)
- Other major knowledge representation formalisms (Autoepistemic Logic, Default Logic) can be described by operators comparable to (i) with same monotonicity properties
- Conclusion: Develop theory on an abstract level.

#### Applications:

 Comparable (new) semantics for AEL and DL Logic as in logic programming

- Abstract results on stratification Splitting an operator - Vennekens - Gilis - Denecker - p.8

## **Ordering Interpretations**

Ordering of truth values:

 $\geq_k$  knowledge (precision, information) ordering  $\geq_t$  truth ordering



Maintain two sets  $(X, Y) \in 2^{\Sigma} \times 2^{\Sigma}$  to represent an interpretation:

- The "true" atoms X
- The "true or undef" atoms Y

Further notions:

- (X,X) is exact
- (X, Y) is **consistent** iff  $X \subseteq Y$

Ordering interpretations, bilattices  $(2^{\Sigma} \times 2^{\Sigma}, \leq_k)$  and  $(2^{\Sigma} \times 2^{\Sigma}, \leq_t)$ :

 $(X, Y) \leq_k (X', Y')$  iff  $X \subseteq X'$  and  $Y' \subseteq Y$ (Knowledge ordering) $(X, Y) \leq_t (X', Y')$  iff  $X \subseteq X'$  and  $Y \subseteq Y'$ (Truth ordering)

#### **Evaluation of Formulas**

 $H_{(X,Y)}(\phi) = \begin{cases} t & \phi \text{ is true in the interpretation defined by } (X,Y) \\ f & \text{otherwise} \end{cases}$ 

$$H_{(X,Y)}(p) = \begin{cases} t & \text{if } p \in X \quad (p \text{ an atom}) \\ f & \text{otherwise} \end{cases}$$
$$H_{(X,Y)}(\phi \land / \lor \psi) = \begin{cases} t & \text{if } H_{(X,Y)}(\phi) = t \text{ and/or } H_{(X,Y)}(\phi) = t \\ f & \text{otherwise} \end{cases}$$
$$H_{(X,Y)}(\neg \phi) = \begin{cases} t & \text{if } H_{(Y,X)}(\phi) = f \\ f & \text{otherwise} \end{cases}$$

#### **Associating Operators to Programs**

Let P be a Program. Define operator  $U_P : 2^{\Sigma} \times 2^{\Sigma} \mapsto 2^{\Sigma}$ :

 $U_P(X,Y) = \{ p \in \Sigma \mid \text{there is } (p \leftarrow q, \neg r) \in P \text{ with } H_{X,Y}(q \land \neg r) = t \}$ 

Note:  $H_{X,Y}(q \wedge \neg r) = t$  iff q is *true* and r is *false* in (X, Y)

#### **Special case**

Well known two-valued operator  $T_P: 2^{\Sigma} \mapsto 2^{\Sigma}:$ 

 $X \mapsto U_P(X,X)$ 

Properties

- Fixpoints of  $T_P$  need not exist, take  $P = \{p \leftarrow \neg p\}$
- Fixpoints of  $T_P$  are two-valued supported models E.g. fixpoints of  $T_{\{p \leftarrow p\}}$  are  $\{\}$  and  $\{p\}$
- If P is definite then  $T_P$  is monotone; LFP is minimal model

#### Fitting Operator as Symmetric Application of $U_P$

Recall (X, Y) means ("*true* atoms", "*true* or *undef* atoms") Recall

 $U_P(X,Y) = \{ p \in \Sigma \mid \text{there is } (p \leftarrow q, \neg r) \in P \text{ with } H_{X,Y}(q \land \neg r) = \mathbf{t} \}$  $H_{X,Y}(q \land \neg r) = \mathbf{t} \text{ iff } q \text{ is } true \text{ and } r \text{ is } false \text{ in } (X,Y)$ Now swap X and Y:

 $U_P(Y,X) = \{ p \in \Sigma \mid \text{there is } (p \leftarrow q, \neg r) \in P \text{ with } H_{Y,X}(q \land \neg r) = t \}$  $H_{Y,X}(q \land \neg r) = t \text{ iff } q \text{ is } true \text{ or } undef \text{ and } r \text{ is } false \text{ or } undef \text{ in } (X,Y)$ 

Define Fitting operator  $\mathcal{T}_P(X, Y) = (U_P(X, Y), U_P(Y, X))$  $\mathcal{T}_P$  is  $\leq_k$ -monotone:

if  $X \subseteq X'$  and  $Y' \subseteq Y$ then  $U_P(X, Y) \subseteq U_P(X', Y')$  and  $U_P(Y', X') \subseteq U_P(Y, X)$ 

## Intuition for $\mathcal{T}_P$

|                                                     | true                        | if there is $(p \leftarrow q, \neg r) \in P$ where<br>$q$ and $\neg r$ are <i>true</i> in $(X, Y)$<br>if there is $(p \leftarrow q, \neg r) \in P$ where<br>$q$ and $\neg r$ are <i>true</i> or <i>undef</i> in $(X, Y)$<br>otherwise<br>if there is $(p \leftarrow q, \neg r) \in P$ where |
|-----------------------------------------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathfrak{T}_{P}(X,Y)(p) = \langle$                | true or undef               | if there is $(p \leftarrow q, \neg r) \in P$ where<br><i>q</i> and $\neg r$ are <i>true</i> or <i>undef</i> in $(X, Y)$                                                                                                                                                                     |
|                                                     | false                       | otherwise                                                                                                                                                                                                                                                                                   |
| Equivalently:                                       |                             |                                                                                                                                                                                                                                                                                             |
|                                                     | true                        | if there is $(p \leftarrow q, \neg r) \in P$ where $q$ and $\neg r$ are <i>true</i> in $(X, Y)$                                                                                                                                                                                             |
| Equivalently:<br>$\mathfrak{T}_P(X,Y)(p) = \langle$ | false                       | if for all $(p \leftarrow q, \neg r) \in P$ it holds $q$ or $\neg r$ is <i>false</i> in $(X, Y)$                                                                                                                                                                                            |
|                                                     | <i>true</i> or <i>undef</i> | otherwise                                                                                                                                                                                                                                                                                   |

#### **Properties of** $\mathcal{T}_P$

Examples

| Program               | Fixpoint iteration                                                     |
|-----------------------|------------------------------------------------------------------------|
| $p \leftarrow \neg q$ | $(\{\}, \{p,q\}) \rightarrow (\{\}, \{p\}) \rightarrow (\{p\}, \{p\})$ |
| $p \leftarrow \neg p$ | $(\{\}, \{p, q\}) \rightarrow (\{\}, \{p\})$                           |
| $p \leftarrow p$      | $(\{\}, \{p, q\}) \rightarrow (\{\}, \{p\})$                           |

#### **Abstraction Theory (1)**

- **●** Given a lattice  $(L, \leq)$  concrete case  $(2^{\Sigma}, \subseteq)$
- Bilattice (L × L, ≤<sub>p</sub>) − concrete case (2<sup>Σ</sup> × 2<sup>Σ</sup>, ≤<sub>k</sub>)
- ▲ Approximation: any  $\leq_p$ -monotone operator  $A: L \times L + \rightarrow L \times L$ A can be written as

$$\underbrace{A(X,Y)}_{\mathcal{T}_{P}(X,Y)} = (\underbrace{A_{1}(X,Y)}_{U_{P}(X,Y)}, \underbrace{A_{2}(X,Y)}_{U_{P}(Y,X)})$$

Derived operators (1) - holding an argument as parameter:

 $A^{1}(\cdot, Y) = \lambda X.A_{1}(X, Y) - \text{concrete case } A^{1}(\cdot, Y) = \lambda X.U_{p}(X, Y)$  $A^{2}(X, \cdot) = \lambda Y.A_{2}(X, Y) - \text{concrete case } A^{2}(X, \cdot) = \lambda Y.U_{p}(Y, X)$ 

Both  $A_1$  and  $A_2$  are  $\leq$ -monotone

#### **Abstraction Theory (2)**

Derived operators (2):
  $(C^{\downarrow}_{\mathcal{T}_{P}}(Y), C^{\uparrow}_{\mathcal{T}_{P}}(X)) = LPM(\frac{P}{(X,Y)})$ 

$$C_{A}^{\downarrow}(Y) = LFP(A^{1}(\cdot, Y))$$
$$C_{A}^{\uparrow}(X) = LFP(A^{2}(X, \cdot))$$

Both  $C_A^{\downarrow}$  and  $C_A^{\uparrow}$  are  $\leq$ -antimonotone

Partial stable operator of A:

$$\mathcal{C}_{\mathcal{A}}(X,Y) = (C_{\mathcal{A}}^{\downarrow}(Y), C_{\mathcal{A}}^{\uparrow}(X))$$

Because  $C_A^{\downarrow}$  and  $C_A^{\uparrow}$  are  $\leq$ -antimonotone,  $\mathcal{C}_A$  is  $\leq_p$ -monotone  $LFP(\mathcal{C}_{\mathcal{T}_P})$  (wrt.  $\leq_k$ ) is the **well-founded model** Two-valued fixpoints of  $\mathcal{C}_{\mathcal{T}_P}$  are the **stable models** 

#### Summary - Abstraction Theory -> Logic Programming

Start with an operator O – concrete case  $U_P$ . Semantics of derived operators:

- $T_P(X) = U_P(X,X)$ 
  - Fixpoints: 2-valued supported models
- $\mathcal{T}_P(X,Y) = (U_P(X,Y), U_P(Y,X))$ 
  - Fixpoints: 3-valued supported models
  - LFP: Kripke-Kleene semantics
- ▶ Let  $A = \mathcal{T}_P$ . Partial stable operator  $\mathcal{C}_A(X, Y) = (C_A^{\downarrow}(Y), C_A^{\uparrow}(X))$ 
  - Fixpoints: (partial) stable models
  - LFP: well-founded model

#### Application to Default Logic and Autoepistemic Logic

Default Logic and Autoepistemic Logic semantics can be described by suitable operators *O*. Then:

- Usual Moore semantics for AEL is given by 2-valued supported models (" $X \mapsto U_P(X, X)$ ")
- Usual Reiter semantics for DL is given by 2-valued stable models
- Intuitive mapping from DL to AEL: Default logic inference rule:
  Logic:

$$\frac{\alpha : \beta_1, \dots, \beta_n}{\gamma} \qquad \qquad \mathbf{L}\alpha \wedge \neg \mathbf{L} \neg \beta_1 \wedge \dots \wedge \neg \mathbf{L} \neg \beta_n \to \gamma$$

Reiter semantics for DL is the same as the 2-valued stable model semantics for the translation!

#### **Dependency Graph leads to Stratification**



Suggests splitting  $\Sigma = \Sigma_0 \stackrel{.}{\cup} \Sigma_1 \stackrel{.}{\cup} \Sigma_2$ 

**Contribution:** The program *P* is not stratified in the standard sense, but models can still be constructed in a stratified way  $\Sigma_0 \rightarrow \Sigma_1 \rightarrow \Sigma_2$ .

#### **Stratification in Abstraction Theory - Product Lattices**

So far: lattice  $(2^{\Sigma}, \subseteq)$  and bilattice  $(2^{\Sigma} \times 2^{\Sigma}, \leq_k)$ Now:

Product lattice (\$\overline{\overline{i=0,...,n}} 2^{\Sigma\_i}, \lequiverbrace\$), where
(\$\overline{\overline{i=0,...,n}} 2^{\Sigma\_i}, \lequiverbrace\$) = (2^{\Sigma\_0}, ..., 2^{\Sigma\_n}), and
(\$x\_0, ..., x\_n\$) = \$x \lequiverbrace \$y = (y\_0, ..., y\_n\$) iff\$
\$x\_0 \lequiverbrace \$y\_0\$ and ... and \$x\_n \lequiverbrace \$y\_n\$

Example: \$\Sigma = \{r\} \cdot \frace \$\overline{p}, q\} \cdot \$\overline{\overline{s}}\$
\$\overline{\Sigma}\$
\$x = (\{r\}, \{p\}, \{\}) \in \$\overline{\overline{s}}\$
\$\overline{\Sigma}\$
\$x = (\{r\}, \{p\}, \{\}) \in \$\overline{\Sigma}\$
\$x = (\{r\}, \{p\}, \{r\}) \in \$\overline{\Sigma}\$
\$x = (\{r\}, \{r\}, \{r\

 $y = (\{r\}, \{p, q\}, \{s\}) \in \bigotimes_{i=0,1,2} 2^{\Sigma_i}$ It holds  $x \subseteq y$ 

- Bilattice of product lattices  $(\bigotimes_{i=0,...,n} 2^{\sum_i} \times \bigotimes_{i=0,...,n} 2^{\sum_i}, ``\leq_k'')$
- Product lattice of bilattices ( $\bigotimes_{i=0,...,n}(2^{\Sigma_i} \times 2^{\Sigma_i}), "≤_k")$

#### **Stratification in Abstraction Theory - Results**

Notation: e.g.  $x = (\{r\}, \{p\}, \{\})$ . Then  $x|_{\leq 1} = (\{r\}, \{p\})$ 

**Definition:** ("Applying O at stratum *i* does not depend from strata > i.")

Operator O on a product lattice L is stratifiable iff for all  $x, y \in L$  and all i = 0, ..., n: if  $x|_{\leq i} = y|_{\leq i}$  then  $O(x)|_{\leq i} = O(y)|_{\leq i}$ .

**Theorem:** ("Logic programming: splitting results in stratification")

Let *P* be a logic program and  $(\Sigma_i)_{i=0,...,n}$  a splitting. Then the operator  $\mathcal{T}_P$  on the bilattice of the product lattice  $(\bigotimes_{i=0,...,n} 2^{\Sigma_i} \times \bigotimes_{i=0,...,n} 2^{\Sigma_i}, `\leq_k")$  is stratifiable.

**Theorem:** ("Stratum-wise computation of fixpoints")

Let *L* be a product lattice, *O* a stratifiable operator and  $x \in L$ . Then *x* is a fixpoint of *O* iff for all i = 0, ..., n:  $x|_i$  is a fixpoint of  $O(x)|_i$   $(x|_i$  fixpoint of  $O_i^{x|_{<i}}$ ).

 $\rightarrow$  similar result for least fixpoints

#### Stratification: Example

O is  $\mathcal{T}_P$ , where

P:

$$s \leftarrow p, q$$
 (1)

$$p \leftarrow \neg q, \neg r$$
 (2)

$$q \leftarrow \neg p, \neg r \tag{3}$$

Task: compute well-founded model x of P (i.e. least fixpoint of  $\mathcal{T}_P$ ) Construct well-founded models of  $P_0^{x|_{<0}}$ ,  $P_1^{x|_{<1}}$ ,  $P_2^{x|_{<2}}$  $\Sigma_0 = \{r\}, P_0 = \emptyset, P_0^{x|_{<0}} = \emptyset$ , well-founded model is  $x|_{<1} = (\{\}, \{\})$  $\Sigma_1 = \{p, q\}, P_1 = \{(2), (3)\},$  with  $x|_{<1}(r) = false$  have

$$P_1^{X|<1}: \qquad p \leftarrow \neg q, t \qquad (2')$$
$$q \leftarrow \neg p, t \qquad (3')$$

Well-founded model is  $x|_{<2} = ((\{\}, \{\}), (\{\}, \{p, q\}))$ 

#### Stratification: Example

O is  $\mathcal{T}_P$ , where

P:

$$s \leftarrow p, q$$
 (1)

$$p \leftarrow \neg q, \neg r$$
 (2)

$$q \leftarrow \neg p, \neg r \tag{3}$$

Recall well-founded model  $x|_{<2} = ((\{\}, \{\}), (\{\}, \{p, q\}))$ 

$$\Sigma_{2} = \{s\}, P_{2} = \{(1)\},$$
with  $x|_{<2}(r) = false, x|_{<2}(p) = undef$  and  $x|_{<2}(q) = undef$  have
$$P_{2}^{x|_{<2}}:$$
 $s \leftarrow u, u$ 
(1')

Well-founded model is  $x|_{<3} = ((\{\}, \{\}, \{\}), (\{\}, \{p, q\}, \{s\}))$ 

This is the well-founded model of P

#### Conclusions

- Abstraction theory: framework to explain and construct semantics of knowledge representation formalism in a uniform way
- Abstract concept of stratification: useful for own work