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1 Introduction

Software verification is known to be a notoriously difficult applioatiarea for auto-
mated theorem provers. Consequently, this is the domain of interags$itenss, such as
KIV [Reifet al, 1997, HOL [Gordon and Melham, 1993 sabellg{Nipkow and Paul-
son, 1992 and PV Owreet al, 1992. The work described here aims to demonstrate
that automated theorem provers (ATPs) can be successfully incorporateddhteys-
tems in order to relieve the user from some interactions. More spegifieadidescribe
our approach of coupling the interactive program verification system[Riif et al,
1997 with our automated theorem prover PROTEB&umgartner and Furbach, 1994

The KIV system[Reif et al, 1997 is a professionally engineered software veri-
fication system based on dynamic logic. Verification usually is done inteehcby
constructing a proof tree in a respective sequent calculus. Howeversé¢hean de-
cide to attempt automated proofs for proof obligations which are “simgrhough. As
a preliminary step then, a relevancy analysis tries to minimize theula@mecessary
to prove the obligation submitted to the automated prover. Unjigeeal benchmark
problems used in ATP, these problems quite often contain redundamsyand hence
having a goal-oriented prover like PROTEIN better supports fogusimthe relevant
ones than bottom-up methods.

Currently there are two ways of proof automatization in KIV. The firajis to call
an external prover (currently only 3TAP is fully coupled). Proof gations are sorted
first-order formulae with equality then. The second, built-in wayyisinplifier rules
these are Gentzen sequents which, by a special syntax, contain inforimatiom use
them, namely as conditional rewrite rules. It is assumed and pragmaticstifjgd that
simplifier rules are a terminating, but not necessarily confluent resygtem. Simpli-
fier rules are conditional equations, conditional implications or eqemeds. They are
used from left to right, based on matching.

One useful application of simplifier rules is to expreséinitionlike in Xs < Ys <
(Xs < YsV Xs = Ys). By this rule, all occurrences of<"-literals can be eliminated.
Besides lemmas, quite often axioms are treated as simplifier rules.

Simplifier rules are used teducea goal sequent to a normal form, either at the
predicate or term level, depending on the type of the rule. At best, ieduatrives at
an axiom in order to have a proof. Simplifier rules usually dominagérthut clause set
by far, they are user given, carefully selected and a highlight in KIV. Tthayed out
to be very useful and efficient in practice, but still “too incomplete”; henceetlsethe
need to substitute user interactions by calls to an ATP.

* Both authors are funded by the DFG within the research progra “Deduction” under grant
Fu 263/2-2



It is obvious that an ATP should deal with simplifier rules properly, as condi-
tional rewrite rules, but not as ordinary clauses. The main technicallootion of this
paper is thus the extension of the calculus underlying PROTEIN — natidghation —
to handle simplifier rules properly (Section 3).

Related work. First, there is related work concerning automated theorem proving cal-
culi. Of course, rewriting is around for many years nbwt mainly in resolution based
systemg[Bachmair and Ganzinger, 1998 a good starting point to enter this huge
area). Unfortunately, goal-oriented calculi like model elimination arerahtly incom-
patible to rewriting. There is only few work in this direction:[iAstrachan, 199Punit
equations (demodulators) are used to simplify lemma clauses only, didiining,
1995 equivalences are exploited for an extended regularity check (a kind of loop
check), but not for rewriting purposes. In sum, we conclude that ‘iicgtion” as
defined below extends previous work in this direction.

Second, there are many interactive systems around that typically contagrf@aom
of automated deduction. Related work comes from two directions. The rmmefire-
search could be described by the tdromogeneous architecturaghere proof autom-
atization was developed as constituent of the system and is tightly caopleel logic
of the system. This includes systems IIROL [Gordon and Melham, 1993Isabelle
[Nipkow and Paulson, 1992 Kromodimoeljoet al, 1994, PVS[Owreet al,, 1997,
ACL2[Kaufmann and Moore, 199aNgthm[Boyer and Moore, 1948

Another line of research could be callbégterogeneous architectureshere the
ATPs were developed as general-purpose systems outside of the corsysite, or
can be identified as clearly separated subsystems. Examples hésalskecoupled
with LeanTAP[Beckert and Posegga, 1998_F, ProofPadDahnet al,, 1997, STEP
[Bjoerneret al., 1996a; Bjoerneet al., 1996H, andKIV which is already fully coupled
with the 3STAPprover[Beckertet al., 19942,

A concrete point is this: “Simplification” by means of conditional reemiules is
a widespread idea. To our impression, in many systeongpletenessf the automated
prover is not considered as a primary goal, and indeed they are not (thissappe.g.
Ngthm, at least as far as we could figure out from the system descriptions)

When looking at this related work we observe that now quite a few sygstam
around which are similar to ours. We think, however, that our appreauhtisubsumed
by any one of these, as any system has its strength/weaknesses and mdstaguitah
cation domain(s) with respective knowledge. To our impression, @xmgahis knowl-
edge is a challenge for every individual combination of the interactigees and the
ATP. In particular, the rewrite rules are highly domain-dependentnaaidng best use
of them might differ in every case.

The rest of this paper is structured as follows: in the next sectionrigélyoreview
the model elimination (ME) calculus. Section 3 then describes our extensioME
with rewriting. We present both a “static” version, which is a transfation on the input
clause set, and a “dynamic” version which operates during proof time. @bemglss is

1 0ne of the reasons that 3TAP did not show optimal performamas its lack of goal-
orientedness (PROTEIN is based on Model Elimination and&éngoal-oriented).



discussed as well. Section 4 reports on experiments carried out with esafrph the
KIV environment.

2 Model elimination

We assume the reader to be familiar with the basic concepts of first omgier(&g.
[Chang and Lee, 1978

A clause Cis an implicitly universally quantified disjunctidmy V - -- Vv Ly of liter-
als, also written as the multisét s, --- ,Lx}. A connection(Ly,L?) is a pair of literals
which can be made complementary by application of a substitatidssually we are
interested in connections wheteis a most general unifier (MGU). A most general
unifier for two multisets of literals is also referred to by the term MGU.

We use “” as the complement-operator for literals. It extends to conjunctions of
literals asL; A... ALy = L1 V... VL, and, similarly, to disjunctions of literals as ex-
pected.

The following presentation of model elimination follofaumgartneet al., 1997
and differs from the original chain notationfdfoveland, 1969by using a path-multiset
notation. Formally, gpathis a sequence of literals written as= (Lj,---,Lpn). Ly IS
called theleaf of pwhich is also indicated bjeaf(p). The symbolo stands for the
append function of sequences, the symbébr membership in a sequence.

The path sets we construct below can best be visualized as trees.

This also explains the connection to semantic tableaux[@tang,

199d). For example, consider the semantic tableaux on the right. It /\
contains the clausesv B and—AvV C. Since the leftmost branch con-

tains a pair of complementary literals ité®sed which is indicated /\
by the “”". The other two branches ampen We represent semantic

tableaux by path setbut keep only the open branché&#$ws, this tree ﬁ*A ¢
would be the path s€{A,C), (B)}.

For the following definition we assume as given a set of clauses
and acomputation rulewhich selects from a given path set one ele-
ment; we write® U {p} to indicate thap is the selected path in this path set; the letter
P always denotes a path set, gnd path.

B

Definition 1 (Model elimination (ME)). The model elimination calculus consists of
two inference rules:

— The inference rulextensiortransforms a path multiset set and a clause into a path
multiset and is defined as follows:

Pu{p} LVC
(PU{po{Li)|LieC})o

if (L,leaf(p)) is a connection with MG &

lllustration, at the ground level:



The selected path p is extended

by the literals of an input clause.

+ PvQ — The resulting path containing the
AN connection is deleted, which is

P Q marked by a.

— The inference ruleeductionis defined as follows:

PuU{p}

7 if (L,leaf(p)) is a connection with MG, for some L€ p
o

lllustration, at the ground level:

A path containing a connection with its leaf may be closed.

P
A sequencé€Py,--- ,Pp) is called a(model elimination) derivatiofrom a clause set
M iff
1. P1={{L1),...,{Lk)} for some clause G {Ly,---,Lg} from M. C is called the
goal clausef the derivation.
2. P11 is obtained fronfP; by an extension step applied® and some new variant
C of a clause from M, o1 is obtained fronfP; by a reduction step.

A model elimination derivation consists of successive applicatidredhference rules.
A (model elimination) refutatiors a derivation wheré, = 0.

It is well-known that ME is complete for any computation rule, provitleat the goal
clause stems from a minimal unsatisfiable subskt.ofarious refinements and variants
for model elimination are known in the meantime. égaumgartneet al,, 1997; Letz
et al, 1994. For the purpose of the present paper, however, it suffices to stitieto t
very basic form just defined.

Model elimination is implemented e.g. in the Setheo proketzet al, 1994 and in
our PROTEIN PROver with aTheoryExtensionNterface)l Baumgartner and Furbach,
1994, which we used for the experiments below.

3 Simplification in model elimination

The idea of “simplification” is to replace formulae by equivalent ones waretsmaller
wrt. some well-founded ordering. Doing so would substitutedeterministic search by
deterministic computation. Simplification at the term level and at tkedipate level is
well known and discussed in the literature (¢lgee and Plaisted, 1989; Bjoerredral.,
1996b; Bronsard and Reddy, 199t the context of saturating, bottom-up calculi like
resolution.

Unfortunately, there is a principal difficulty in combining model dliattion (and
related calculi, such as linear resolution) with “rewriting”. We brieflyiogade why: a



central idea in model elimination is its goal-orientedness, i.e. that éméagence is
connected to the goal to be proved. At the same time, inferences among thnes axes
forbidden. As a trivial example consider the task to prove {fdatA — B,B«+ C} =B
(for some propositional formulae as stated, whgke C is considered as a rewrite rule,
ordered from left to right). Now, rewriting the goBlwith B <> C yields the new goal
C which would be unprovable. This is only a trivial example, and thereremey more
traps.

In principle there are several solutions: first, one could also parfemwriting on
the axioms. In the example, one would therefore rewhites B to A — C. The thus
simplified proof task then i§A, A — C, B & C} = C, which is provable by model
elimination. We propose such a scheme below and call it “static simplditathecause
it is performed as a preprocessing step before the proof search with mindiekgion
is begun. A general treatment of this idea, however, would amount td-fefddjed
superposition calculus (see e[@achmair and Ganzinger, 1998Since termination
then is undecidable and preprocessing should not be too complex, viet mstselves
to a simple procedure (see Sections 3.1).

A second solution is to considbothrewriting the goal anahot rewriting it during
the proof search. In order to make this meaningful, one would giveepete of the
simplified goal over the non-simplified one. In the example, one wthud first con-
sider the simplified goaC, and therB upon failure to proveC. This idea is present in
the “model elimination with dynamic simplification” (Section 3.2).

Example 1 (ME refutation)/e initiate a running example to illustrate the subsequent
definitions. We take an excerpt from a KIV case study “end8chellhorn and Reif,
1997. The specification deals with three sorts: natural numbgrthe sort of the el-
ementsD and the sort of the finite enumeratiosThe functions: N — N denotes

the successor function for natural numbefss a constant denoting the empty enu-
meration. The operatap : £ x D — £ adds an element to an enumeration. The size
function # :£ — N gives the number of elements in a finite enumeration. The predicate
€: D x & — B tests for membership of an element in a finite enumeration. For one spe-
cific (very simple) problem, th-10, we need the following formulaatisg is written
using subscripts as indicated):

ax-2  YNy,My:s(N) =s(M) & N=M

ax-03 VDp:DgO0

ax-06 #=0

ax-07 VDop,Eg :D ¢ E— #E@® D) = S(#E)

th-10 VDo : #(0® D) = 5(0)

The specification of the problem contains many more formulae which aredeft
for simplicity. The goal is to prove that th-10 follows from thesst.

For ease of description, we leave away sort information from nowrmtead of
s=tandd € D we writes# t andd ¢ D, respectively. Further, we will use the clausal
normal form of these formulas, which should be easy to identify.okailg Prolog
syntax, variables are written then in capital letters, and functions andacisdtegin
with lowercase letters. For instance, the negated and skolemised theot®mwhich
is the goal clause of our model elimination refutations (B&d) # s(0).



KIV's simplifier rules are used in Model Elimination in a preprocessstep for
static simplificatiorof the input clause set, and during proof searchyagamic simpli-
fication As a preliminary step, we introduce some definitions common to. both

Definition 2 (Simplification rules). In the following, L is a literal, andp is a conjunc-
tion of literals, calledconditionin the following context; the casg being the empty
conjunction (being true in every interpretation) is allowed and witenp = true then.
A rewrite ruleis a formula of the formp — 11 = 12 wheret; and 1, are terms and
Var(t2) C Var(t1). Areplacement rulés a formula of the formp — (L opX), where L
is a literal, op € {+», —} andy is a either a disjunction or a conjunction of literals,
with Var(x) C Var(L). In caseop =+ the replacement rule is called aquivalence
rule, else arimplication rule Instead of true» @ we simply writep. By the term “sim-
plification rule” we refer to both rewrite rules and replacement rulesn@ification
rules are considered implicitly as universally quantified.

A simplification rule is labeled asafeif (1) Y = true and (2) it is either a rewrite
rule or an equivalence rule.

For instance, ax-2 from Example 1 is an unconditional equivalence rule af@d ax
conditional rewrite rule. All simplification rules from Example 1 asafe, with the
single exception ax-07.

For easy of defining inference rules dealing with simplification rules #&dgan-
tageous to have a canonical representation of simplification rules. We isafbtm
implication normal form and it is defined as follows:

Definition 3 (Implication normal form). Let R be a simplification rule; the set ifR)
is defined as follows:

1. inf(y = (LX) =inf(P—= (L= x))Uinf(W— (L—=X))

2. infly—= (L = (KiA---AKm))) ={P—= (L= K1), -, = (L>Kn)},
where K, 1<i < m literals

3.infl—= (L= (KeV---VKm)) ={p = (L= (KiV---VKn)},
where K, 1<i < m literals

4. inffY-11=T) ={Y->T11 =12}

The label “safe” is inherited by this transformation. Finallyhéimplication normal
form of a set N of simplification rules is i) = Ugen inf(R).

Notice that after transformation to implication normal form an implmatrule may

also be labeled as safe, namely if case 1 was applied as the first step. For exafiple, ax
from Example 1 which is a safe replacement rule, results in the two salecatipn
ruless(N) = s(M) - N =M and(s(N) = s(M)) — (N =M) in implication normal
form. The name “safe” is explained by the circumstance that if safe rules pliedp

for rewriting then it is “safe” — i.e. completeness preserving — to deletelduse to be
rewritten.

2 There is another motivation for this transformation: in Kgimplifier rules with quantifiers
are allowed, e.gvX (p(X) « 3Y (X,Y)). Implication normal form and Skolemisation then
yields the two simplifier rulep(X) — q(X,f (X)) and—-p(X) — —q(X,Y), which can not be
expressed as one single universally quantified equivalence



From now on we will only consider sets of simplification rules inliogion normal
form, and N always denotes such a set.

Next we turn to inference rules of the forﬁ%, whereL is a literal andR € N.

Definition 4 (Simplification). The inference rulesewriting and replacemenére de-
fined as follows:

Lt ¢—(11=T12) S L y=(1-X
{L[t20]} Uo Xo do

ifL=10o.

If one of these inference rules is applicable to L and R, yielding A anehBre A and B
are sets of literals. We say th@h, B) is asimplificationof (L, R). A simplification issafe
iff R is safe. Literal L is calledhaximally simplified (wrtN) if there is no simplification
of (L,R), for every Re N. Similarly, a clause C isnaximally simplifiedif every Le C
is maximally simplified.

Thatis, if (A,B) is a simplification of(L,R), A is the “simplified” version oL andB is
the condition coming from the simplification rule; the needAdo be a multiset, rather
than a literal, is explained by the possibility of simplificationkeswith disjunctions in
the head (cf. case 3 in Def. 3); semantically,B) is just the claus& U B.

For illustration take ax-07 in Example 1 as a simplification rule. THe{#0) #
5(0), d € 0) is a simplification of #(0 & d) # s(0), D ¢ E — #(E® D) = S(#E)).

3.1 Static simplification

Static simplificationapplies simplification rules to input clauses as long as possible,
modulo subsumption. Thereby, the conditions of the simplificatides are added to
the simplified clauses. This yields a maximally simplified clause set.

Definition 5 (Static simplification step). The inference ruletatic simplification step
takes a clause C and a simplification rule R and is defined as follows:
LvC R . P
—— if (A,B) is a simplification of L, R)
CUAUB
We apply simplification to clauses by replacing the literal to sifpfily its simpler set

of literals A and the negated condition B. We write & Cs to indicate that a static
simplification step is applicable to C and R and yields I€a clause G is derived from

a clause C by a chain of simplification stepé 01%---%% with R € N we
write C=% Cs. Such a chain is calledafeiff every underlying simplification is safe. In
the case that €in C=N>Cs is maximal simplified we write %}XCS.



ax—07

For instance, when taking the axioms in Example#(0 & d) # s(0) =
as simplification rules and converting them to implicas(#@) +s(0)vde0 ax-06
tion normal forn?, the maximal simplification of the 0 9
query {#(0®d) # s(0)} results in{0 # 0}. The un- SO #s(O)vde i
derlying chain of simplification steps is depicted t&§(0) # S(0) =

the right. With the new quer9 # 0 model elimina- 0# 0
tion would find the proof in one step now using the
reflexivity axiomX = X.
Based on this, static simplification on a set of clauses with certain preguiitl be
defined.

Definition 6 (Static simplification). By CC D we denote subsumption among clauses,
i.e. CC Diff 30 Co C D. For a clause C we mean by $static simplification of C wrt.
N) any clause set satisfying the following conditions:

1. &£ C({Cs| (C==Ce)}U{C))
(& consists only of clauses obtained by applying maximal static giogtion
steps to C and optionally includes C)

2. For all Cs such that %Cs there is a G € Sc such that GC Cs

(all maximal simplified clausesd®f C are included in &)
3. Forall Cs€ S thereis no G € & such that GC Cs
(S is minimal wrt subsumption)

4, For all Cs such that C:Cs if C => Csis safe, then & &
(clauses with only safe S|mpI|f|cat|ons are deleted frggh S

Now let M be a set of clauses. Batic simplification (wrtN) is Ms= | <.
CeM

We are going to discuss and motivate Definition 6 now. Notice thattdte simpli-
fication & of clauseC is not uniquely defined; the definition states only neccessary
conditions (which we found quite natural) of what a static simplifarats. In partic-
ular, it gives some freedom whether to include the original cl&lise S or not. This
non-uniqueness allows to define various concrete static simplificatmeegures, as
long as they satisfy the requirements stated in the definition.

What about termination? We tacitly assume that the simplifier rules aea guch
that static simplification terminates! In all our examples from the Kévingin this was
the case. Clearly, a more systematic approach should be taken in the future.

For a large number of simplification rules or clauses the operation canthetess
to unconditional simplification rules or to simplification of the quelause, only.

Subsumption isot carried out across all clauses handled during simplification, be-
cause we observed that more exhaustive subsumption tests would theeéconsum-
ing.

Notice that we keep the maximally simplified clauses only, but not tlesrimtdiate
stages. But the reader might wonder why according &l 2naximal simplifications
of a clause have to be kept. For example, the unit claduseuld be simplified to

8 Units, such a® ¢ 0 (ax-03) are treated d3 ¢ 0 < true.



the two clausesB and C in presence of the simplification rulés« B and A « C.

Any resolution based system (appropriate ordering presupposed)l wawmtite A to

B (or C) and deleteA afterwards. Resolution can afford this due to saturation of the
simplification rules towards eonfluentsystem. However, our situation is different: we
can neither assume in our KIV domain that the simplification rules formndlent
system, nor do we want to do a resolution-like saturation (it igitne consuming for

a preprocessing step, possibly nonterminating). Hence, for completerassms, we
have to do all simplifications and can delete the simplified claismly in special
“safe” situations (cf. Condition 4).

Alltogether, we get the following important property:

Theorem 1 (Completeness of static simplification)Let M be a clause set and N be
a set of simplification rules. Suppose thag id the static simplification of M wrt. N. If
MU N is unsatisfiable, then MUN is also unsatisfiable.

In some situations the theorem can be strengthened by repladigig N” with “ Mg”,
e.g. in case of “definitions”, when all occurrences of a predicate symbol arenatiqi
by a safe simplification, and, furthermore, the rewrite rules do wetlap (i.e. there are
no critical pairs among the lefthand sides). Details, as well as proofs, ataiwed in
[Schafer, 199B

Static simplification sometimes is quite effective to speed up progfsfeantly.
For example, proving that set union is associative from the axibqgz: xe yuz+
(xeyVvxez andVy,z: (y=2) < Vu: (U€EY <+ uE€ Z)), static simplification will
eliminate equality when the second axiom is turned into rewrite rules proof can be
found then in a few steps, while it is a hard problem without sifigaltion (more than
5 hours for PROTEIN, other provers have difficulties as well).

3.2 Dynamic simplification

In order to take advantage of simplification rules during proof time exiend ME
(Def. 1) by the following inference rule:

Definition 7 (Simplification inference rule). The inference rulémodel elimination)
simplification steptransforms a path multiset, a simplification rule R and n clauses
(n > 0) into a path multiset:

1. (A,B) is a simplification of

leaf(p),R), and
PU R LVC - LavC ( »R), and.
{p} 1t "t it 2.Bo=({Ly, - ,La} UX)o,

and MGUo.

lllustration, at the ground level:



A leaf is extended by its
simplification. The condition
has to be fulfilled. Therefore
AAQ—= (P+ R path literals or literals from
+ — ;
QVS P input clauses may be used.
P N For the latter the leaf is addi-
S R tionally extended by the rest

_ _ - literals of the clauses.
The case = 0 is calledstrict, else it is calledhonstrict We extend the notion of

derivation(Def. 1) in a natural way, namely by assuming as given a set N of sim-
plification rules in implication normal form, and adding this ea® the definition of
derivation:
3. Piy1 is obtained fromP; by an ME simplification step applied B, some new
variant R of a simplification rule from N andn0 new variants LV Cy,--- ,LaVCy
of clauses from M.

fe>

The new calculus is calleME with dynamic simplification (SimME)The termME

with simplificationrefers to SImMME applied to a clause set which was obtained from
the original clause set and some set of simplification rules bycssatplification (cf.
Def. 6).

An operational description: the ME simplification step first simplifiels Def. 4) the
leaf literalleaf(p) using simplification ruldR, yielding the simpler set of literals. The
condition ofR, a literal set, has to be resolved away by taking a combinatiofiiterals
from p, and literalsL1,...,L, from input clauses. The rationale for this strategy is to
restrict application of rewrite rules more than it would be the case wheoonditions
would be taken without resolving them away immedidately

We continue on Example 1 and take the ax-
ioms as simplification rules, just as was done for

static simplification above (cf. the text after Defini- #0ad) # s(0)

tion 6). The figure on the right depicts the refutation e ;X/_\O; ~ <

in a tableau notation. Dashed lines indicate simpli- - ~
fication steps. The first (topmost) simplification step ?0 S(#0) ?é 0
with ax-07 as simplification rule branches to the right E ax-03 : ax-2
with the simplified leaf literal, and it branches to the, ¢0 H0+£0
left with the (instantiated) conditiod € 0, which * ax-06
is closed within this step by the input clause ax-03

(thus, this is a nonstrict inference). Since ax-03 is a #0=0
unit clause, no more proof obligations arise here. *

Due to the simplification rules no equality axioms are needed to find theateh.
In this example simplification directs the proof process immediatdtytime right di-
rection. In this example PROTEIN needed only 5 inferences for the whotd pearch.
This means that the prover did not have to backtrack.

Why do we need both, static and dynamic simplification? The staticorevgorks
bottom up, whereas dynamic simplification works top down. Becauseeoftfal-
orientedness of model elimination we need both. Consider the folipatampleyX :

4 This resembles the situation of hyper resolution vs. bimesplution.



malg X) «+ —femal&X). The dynamic simplification inference rule translates every pos-
itive (negative)maleleaf immediately into a negative (positivimaleliteral. Hence,
extension steps with clauses with negative (or positiwa)eliterals would no longer
exist. On the other hand, with static simplification as preprocesiagituation can be
repaired by replacing thealeliterals in the input clauses by complementéeynale
literals.

We tested PROTEIN with SimME with examples from the TPTP libré8utcliffe
et al, 1994). We manually scanned the input specification for formulas which seemed
to be suitable for simplification rules. For many puzzles we used fasmpecifying
something belonging exactly to one of two groups. Lké: malgX) + —femaléX)
mentioned above. Using this formulae as the sole simplification rulegs the search
space dramatically. SimME with this single simplification rule had aimietter per-
formance than plain model elimination. For example, the TPTP-ExampE086-1
could not be solved in reasonable time by PROTEIN in its model elinoinatetting
but PROTEIN with SimME found a proof within 13 seconds.

Typically, simplification techniques such as term rewriting, are not adibie to
goal-oriented, linear calculi like model elimination. Hence, special care neutstden
not to loose completeness (see ¢Ryiining, 199%). It is in general not even complete
to rewrite a leaf, saf?(f (a)), usingf (X) = X to P(a). However, in our case, the dynamic
simplification inference rule does not preclude the other inference rudes Iheing
applied. One might be tempted to think that SimME is not useful at ait.tklowever,
simplification can be used agpaeferencestrategy which allows to find shorter proofs
first (see the experimental results in Section 4 below). We concludsdhtmn with
the following trivial, nethertheless important theorem:

Theorem 2 (Completeness of SimME)Let M be a clause set and N be a set of sim-
plification rules. If M is unsatisfiable then there is a SImME retiotaof M and N.

4 The ENUM case study

The new SImMME calculus was mainly tested with the KIV “Enumeration” (ensen
ries, which is described in detail [Schellhorn and Reif, 1997The goal of that series

is to prove 52 consequences of a specification of finite enumerations. Thee@laring

an interactive session with KIV. They are formulated in first orderdagth equality
and sort8. Hence they can be passed to any suitable first order prover. Before tiat, Kl
performs an axiom reduction, which deletes many irrelevant axioms froravibell
specification.

In [Schellhorn and Reif, 1997results for the non-inductive theorems of the enum
series are reported for the tableaux prover 3TBEckertet al,, 1994, the resolution
prover OttefMcCune, 199%and the model elimination prover SETHHOCetz et al,,
1994. The results for Otter and SETHEO differ to some degree, as they are tvased
very different calculi, but the overall performance is comparable. 3TAP seetygstio

5 In PROTEIN, sorts are handled by transforming them awayp¥dahg the approach ifSchmitt
and Wernecke, 1989To treat equality, adding the equality axioms turned oltet®est.



be fully optimized. The SETHEO results are quite comparable to tke we obtained
with our PROTEIN prover.

Table 1 summarizes our results. Missing “Thm.” numbers indicate indgutteo-
rems, which cannot be proven by first-order provers. The first colkitiwhgives the
number of interactions needed by an experienced KIV user to direct therbsitpli-
fier to a proof. In sum, these are 51. The next column contains thesésuPROTEIN
in its default setting without simplification (s¢Baumgartner and Furbach, 1994r
a system descriptionYotal is the overall time in seconds and includes reading in and
preprocessing the source file. Blank entries mean that no proof was fotind thie
time limit of two minutes (we used a SUN Ultra 1 for our experimgnts

Similarly to the PROTEIN entries, the last two columns S-PROTEdblibe PRO-
TEIN with its simplification extension as described in Section 3.1 and@e8t2. To
state it explicitly, we first applied static simplification to the inglause set, and then
used also dynamic simplification during proof search (theorems 1 and argaarthe
completeness of the approach). As simplification rules we used thosefgiverthe
KIV system.

KIV PROTEIN S-PROTEIN KIV PROTEIN S-PROTEIN
Thm #Int. Total Proof Total Thm #Int. Total Proof Total
th-01 O 22 00 45 th-31 1 41 00 87
th-02 0 09 00 15 th-32 0 42 00 89
th-04 1 20 64 80 th-33 0 44 01 87
th-05 2 09 01 17 th-34 3 30 00 6.2
th-06 2 09 00 17 th-35 1 41 00 90
th-09 4 th-36 0 47 01 90
th-10 O 11 00 22 th-37 1 4.6 01 91
th-11 0 17 03 24 th-38 11
th-12 0 13 03 26 th-39 0 31 00 6.3
th-14 1 th-40 0 2.0 00 37
th-16 3 th-41 0 4.4 00 96
th-17 1 09 35 th-42 4 83 92
th-18 0 21 00 43 th-43 0 44 00 96
th-19 2 106 86 18 th-44 1 2.3 12 49
th-20 1 33 58 96 th-45 1
th-21 0 23 00 47 th-46 0 27 29 6.7
th-24 0 39 32 12 th-47 0 2.3 12 51
th-25 0 43 01 83 th-48 0 21 00 42
th-26 0 43 18 10 th-49 1 58 75 16
th-27 0 20 00 34 th-50 5
th-28 0 41 01 86 th-51 0 28 14 56
th-29 0 43 00 90 th-52 5
th-30 O 11 40 2 #int. 51 35 30

Table 1.Results for PROTEIN and S-PROTEIN for the enum series. Sete#t for explanations
of the entries.



The S-PROTEIN values for very easy problems are higher than those for PR

TEIN. The simple explanation is that reading in and preparing thelgiogpion rules
takes some time. This time, however, is not prohibitively high. &teeme case 8.6
seconds for the large specification th-41 (85 first-order formulae asgmfiifier rules)
with almost zero proof search time.

Some of the easy problems could be almost solved during preproceysatatic
simplification, but in most cases dynamic simplification steps are ald@apje. How-
ever, during the experiments we found that one better does not oveasinplhe role
of simplification. For the static simplification we applied simplifioatonly to the the-
orem to be proven, because otherwise it would be too time consuminipeffmore,
only unconditional rules were allowed. In this setting, the timestatic simplification
alone was neglectable:(1 sec.).

For dynamic simplification we added all simplification rules as “ordinémythulae
to the input clause set (some few cases, however, had to be treated sliffatently).
In order to make this meaningful, dynamic simplification inferences hateong pref-
erence over “usual” extension inferences (cf. Def. 1).

Throughout the experiments we used #tict version of dynamic simplification
(cf. Def. 7), and only rewrite rules (i.e. rules with equality in the heddDef. 2) with
an empty condition or one literal condition were allowed. This was madedar not
to spend too much time for the simplification inferences. Replacement roNésusly
cannot be applied at term positions and thus do not tend to broaden the seacetas
much as rewrite rules. Hence we used no restriction on the length of tititions for
such rules.

We tried various flag combinations. As an outcome of these experimbatgjst
described flag settings was identified as the most successful one in average.

With this setup, we draw the conclusion that simplification pays Tfiis holds
in particular for the more difficult problems (th-04, th-19, th-&@d th-42), while no
simpler ones are lost by the overhead (there are some cases listed in ¢hevhiabé
proof time increases for S-PROTEIN, but not in an unacceptable way).

The last line in Table 1 (right) sums up interactions. In KI¥ column it is the
total number of interactions needed by the KIV user to solve all 52 prabnusing
the built-in simplifier. The other two values for PROTEIN, (resg?PBOTEIN) sum up

the remainingnumber of interactions needed by the KIV user, under the assumption

that PROTEIN (resp. S-PROTEIN) was tried on the theorems. With STERN, the
number of interactions decreases from 51 to 30.

5 Conclusions

In this paper we extended model elimination (ME) in a new way to take adgardf
“simplification by rewriting”, as it is used so successfully in the ratioh paradigm.
Unfortunately, rewriting cannot be incorporated to such a high degree as in res-
olution calculi. This is not specific to ME, it is rather more generally hice to be
paid for goal-oriented linear calculi. Nevertheless, from our practical @xpats we
conclude that simplification pays off.



Quite often, the overhead of simplification and the breadthening obtia search
space was overcompensated by shorter proofs and shorter proof timesdcéses,
the prover could even find a proof where ordinary model elimination biail/e up.

We understand this paper as a first investigation into the potentiahpfiication in
the context of software verification domains. The implementationldhmiimproved
by making rewriting operations faster (they are unnecessarily slove atttment). This
will allow us to stronger emphasize the role of simplification then.

In general, more improvements and fine tuning will be investigatedarfuture,
and the coupling of PROTEIN and KIV will be fully implemented. Thigeh would
allow to apply the method in real verification scenarios.
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