
Model Elimination with Simplification and
its Application to Software Verification

Peter Baumgartner� Dorothea Schäfer
�

1 Introduction

Software verification is known to be a notoriously difficult application area for auto-
mated theorem provers. Consequently, this is the domain of interactive systems, such as
KIV [Reif et al., 1997], HOL [Gordon and Melham, 1993], Isabelle[Nipkow and Paul-
son, 1992] and PVS[Owreet al., 1992]. The work described here aims to demonstrate
that automated theorem provers (ATPs) can be successfully incorporated intosuch sys-
tems in order to relieve the user from some interactions. More specifically, we describe
our approach of coupling the interactive program verification system KIV[Reif et al.,
1997] with our automated theorem prover PROTEIN[Baumgartner and Furbach, 1994].

The KIV system[Reif et al., 1997] is a professionally engineered software veri-
fication system based on dynamic logic. Verification usually is done interactively by
constructing a proof tree in a respective sequent calculus. However, the user can de-
cide to attempt automated proofs for proof obligations which are “simple” enough. As
a preliminary step then, a relevancy analysis tries to minimize the formulae necessary
to prove the obligation submitted to the automated prover. Unlike typical benchmark
problems used in ATP, these problems quite often contain redundant axioms, and hence
having a goal-oriented prover like PROTEIN better supports focusing on the relevant
ones than bottom-up methods.

Currently there are two ways of proof automatization in KIV. The first way is to call
an external prover (currently only 3TAP is fully coupled). Proof obligations are sorted
first-order formulae with equality then. The second, built-in way is by simplifier rules:
these are Gentzen sequents which, by a special syntax, contain informationhow to use
them, namely as conditional rewrite rules. It is assumed and pragmatically justified that
simplifier rules are a terminating, but not necessarily confluent rewritesystem. Simpli-
fier rules are conditional equations, conditional implications or equivalences. They are
used from left to right, based on matching.

One useful application of simplifier rules is to express adefinitionlike in XS
�

YS��
XS � YS� XS � YS�. By this rule, all occurrences of “

�
”-literals can be eliminated.

Besides lemmas, quite often axioms are treated as simplifier rules.
Simplifier rules are used toreducea goal sequent to a normal form, either at the

predicate or term level, depending on the type of the rule. At best, reduction arrives at
an axiom in order to have a proof. Simplifier rules usually dominate the input clause set
by far, they are user given, carefully selected and a highlight in KIV. Theyturned out
to be very useful and efficient in practice, but still “too incomplete”; hence, there is the
need to substitute user interactions by calls to an ATP.
	

Both authors are funded by the DFG within the research programme “Deduction” under grant
Fu 263/2-2

It is obvious that an ATP should deal with simplifier rules properly, i.e. as condi-
tional rewrite rules, but not as ordinary clauses. The main technical contribution of this
paper is thus the extension of the calculus underlying PROTEIN – modelelimination –
to handle simplifier rules properly (Section 3).

Related work. First, there is related work concerning automated theorem proving cal-
culi. Of course, rewriting is around for many years now,but mainly in resolution based
systems([Bachmair and Ganzinger, 1998] is a good starting point to enter this huge
area). Unfortunately, goal-oriented calculi like model elimination are inherently incom-
patible to rewriting. There is only few work in this direction: in[Astrachan, 1992] unit
equations (demodulators) are used to simplify lemma clauses only, and in[Brüning,
1995] equivalences are exploited for an extended regularity check (a kind of loop
check), but not for rewriting purposes. In sum, we conclude that “simplification” as
defined below extends previous work in this direction.

Second, there are many interactive systems around that typically contain some form
of automated deduction. Related work comes from two directions. The one line of re-
search could be described by the termhomogeneous architectures, where proof autom-
atization was developed as constituent of the system and is tightly coupledto the logic
of the system. This includes systems likeHOL [Gordon and Melham, 1993], Isabelle
[Nipkow and Paulson, 1992], [Kromodimoeljoet al., 1992], PVS[Owreet al., 1992],
ACL2[Kaufmann and Moore, 1996], Nqthm[Boyer and Moore, 1988].

Another line of research could be calledheterogeneous architectures, where the
ATPs were developed as general-purpose systems outside of the combinedsystem, or
can be identified as clearly separated subsystems. Examples here areIsabellecoupled
with LeanTAP[Beckert and Posegga, 1995], ILF , ProofPad[Dahnet al., 1997], STEP
[Bjoerneret al., 1996a; Bjoerneret al., 1996b], andKIV which is already fully coupled
with the3TAPprover[Beckertet al., 1996]1.

A concrete point is this: “Simplification” by means of conditional rewrite rules is
a widespread idea. To our impression, in many systemscompletenessof the automated
prover is not considered as a primary goal, and indeed they are not (this applies to e.g.
Nqthm, at least as far as we could figure out from the system descriptions).

When looking at this related work we observe that now quite a few systems are
around which are similar to ours. We think, however, that our approach is not subsumed
by any one of these, as any system has its strength/weaknesses and most suitable appli-
cation domain(s) with respective knowledge. To our impression, exploiting this knowl-
edge is a challenge for every individual combination of the interactive system and the
ATP. In particular, the rewrite rules are highly domain-dependent, andmaking best use
of them might differ in every case.

The rest of this paper is structured as follows: in the next section we briefly review
the model elimination (ME) calculus. Section 3 then describes our extensions of ME
with rewriting. We present both a “static” version, which is a transformation on the input
clause set, and a “dynamic” version which operates during proof time. Completeness is

1 One of the reasons that 3TAP did not show optimal performancewas its lack of goal-
orientedness (PROTEIN is based on Model Elimination and hence is goal-oriented).

discussed as well. Section 4 reports on experiments carried out with examples from the
KIV environment.

2 Model elimination

We assume the reader to be familiar with the basic concepts of first order logic (e.g.
[Chang and Lee, 1973]).

A clause Cis an implicitly universally quantified disjunctionL1 � � � � � Lk of liter-
als, also written as the multiset�L1 � � � � �Lk�. A connection

�
L1 �L2� is a pair of literals

which can be made complementary by application of a substitutionσ. Usually we are
interested in connections whereσ is a most general unifier (MGU). A most general
unifier for two multisets of literals is also referred to by the term MGU.

We use “ ” as the complement-operator for literals. It extends to conjunctions of
literals asL1 � � � � � Ln � L1 � � � � � Ln, and, similarly, to disjunctions of literals as ex-
pected.

The following presentation of model elimination follows[Baumgartneret al., 1997]
and differs from the original chain notation of[Loveland, 1969] by using a path-multiset
notation. Formally, apath is a sequence of literals written asp � �L1 � � � � �Ln�. Ln is
called theleaf of p which is also indicated byleaf

�
p�. The symbol� stands for the

append function of sequences, the symbol�̇ for membership in a sequence.

A B

	A C

The path sets we construct below can best be visualized as trees.
This also explains the connection to semantic tableaux (see[Fitting,
1990]). For example, consider the semantic tableaux on the right. It
contains the clausesA� B and�A� C. Since the leftmost branch con-
tains a pair of complementary literals it isclosed, which is indicated
by the “�”. The other two branches areopen. We represent semantic
tableaux by path sets,but keep only the open branches.Thus, this tree
would be the path set��A�C� � �B��.

For the following definition we assume as given a set of clauses
and acomputation rulewhich selects from a given path set one ele-
ment; we write
 � �p� to indicate thatp is the selected path in this path set; the letter

 always denotes a path set, andp a path.

Definition 1 (Model elimination (ME)). The model elimination calculus consists of
two inference rules:

– The inference ruleextensiontransforms a path multiset set and a clause into a path
multiset and is defined as follows:

 � �p� L � C�
 � �p � �Li � � Li
� C��σ

if
�
L � leaf

�
p�� is a connection with MGUσ

Illustration, at the ground level:

P

�
P� Q �

�
P

*
QP

The selected path p is extended
by the literals of an input clause.
The resulting path containing the
connection is deleted, which is
marked by a�.

– The inference rulereductionis defined as follows:

 � �p�

σ

if
�
L � leaf

�
p�� is a connection with MGUσ, for some L̇�p

Illustration, at the ground level:

P
*

P A path containing a connection with its leaf may be closed.

A sequence�
1 � � � � �
n� is called a(model elimination) derivationfrom a clause set
M iff

1.
1 � ��L1� � � � � � �Lk�� for some clause C� �L1 � � � � �Lk� from M. C is called the
goal clauseof the derivation.

2.
 i�1 is obtained from
 i by an extension step applied to
 i and some new variant
C of a clause from M, or
 i�1 is obtained from
 i by a reduction step.

A model elimination derivation consists of successive application of the inference rules.
A (model elimination) refutationis a derivation where
n � /0.

It is well-known that ME is complete for any computation rule, providedthat the goal
clause stems from a minimal unsatisfiable subset ofM. Various refinements and variants
for model elimination are known in the meantime. e.g.[Baumgartneret al., 1997; Letz
et al., 1994]. For the purpose of the present paper, however, it suffices to stick to the
very basic form just defined.

Model elimination is implemented e.g. in the Setheo prover[Letzet al., 1994] and in
our PROTEIN (PROver with aTheoryExtensionINterface)[Baumgartner and Furbach,
1994], which we used for the experiments below.

3 Simplification in model elimination

The idea of “simplification” is to replace formulae by equivalent ones whichare smaller
wrt. some well-founded ordering. Doing so would substitute nondeterministic search by
deterministic computation. Simplification at the term level and at the predicate level is
well known and discussed in the literature (e.g.[Lee and Plaisted, 1989; Bjoerneret al.,
1996b; Bronsard and Reddy, 1992]) in the context of saturating, bottom-up calculi like
resolution.

Unfortunately, there is a principal difficulty in combining model elimination (and
related calculi, such as linear resolution) with “rewriting”. We briefly indicate why: a

central idea in model elimination is its goal-orientedness, i.e. that everyinference is
connected to the goal to be proved. At the same time, inferences among the axioms are
forbidden. As a trivial example consider the task to prove that�A� A� B� B � C� �� B
(for some propositional formulae as stated, whereB� C is considered as a rewrite rule,
ordered from left to right). Now, rewriting the goalB with B � C yields the new goal
C which would be unprovable. This is only a trivial example, and there aremany more
traps.

In principle there are several solutions: first, one could also perform rewriting on
the axioms. In the example, one would therefore rewriteA � B to A � C. The thus
simplified proof task then is�A� A � C� B � C� �� C, which is provable by model
elimination. We propose such a scheme below and call it “static simplification”, because
it is performed as a preprocessing step before the proof search with model elimination
is begun. A general treatment of this idea, however, would amount to a full-fledged
superposition calculus (see e.g.[Bachmair and Ganzinger, 1998]). Since termination
then is undecidable and preprocessing should not be too complex, we restrict ourselves
to a simple procedure (see Sections 3.1).

A second solution is to considerbothrewriting the goal andnot rewriting it during
the proof search. In order to make this meaningful, one would give preference of the
simplified goal over the non-simplified one. In the example, one wouldthus first con-
sider the simplified goalC, and thenB upon failure to proveC. This idea is present in
the “model elimination with dynamic simplification” (Section 3.2).

Example 1 (ME refutation).We initiate a running example to illustrate the subsequent
definitions. We take an excerpt from a KIV case study “enum”[Schellhorn and Reif,
1997]. The specification deals with three sorts: natural numbers� , the sort of the el-
ements� and the sort of the finite enumerations�. The functions : � � � denotes
the successor function for natural numbers;/0 is a constant denoting the empty enu-
meration. The operator� : � � � � � adds an element to an enumeration. The size
function # :� � � gives the number of elements in a finite enumeration. The predicate�: � �� � � tests for membership of an element in a finite enumeration. For one spe-
cific (very simple) problem, th-10, we need the following formulae (sorting is written
using subscripts as indicated):
ax-2 �N� �M� : s

�
N� � s

�
M� � N � M

ax-03 �D� : D 	� /0
ax-06 #/0 � 0
ax-07 �D� �E
 : D 	� E � #

�
E� D� � s

�
#E�

th-10 �D� : #
�
/0 � D� � s

�
0�

The specification of the problem contains many more formulae which are leftout
for simplicity. The goal is to prove that th-10 follows from the rest.

For ease of description, we leave away sort information from now on; instead of
s� t andd

�
D we writes 	� t andd 	� D, respectively. Further, we will use the clausal

normal form of these formulas, which should be easy to identify. Following Prolog
syntax, variables are written then in capital letters, and functions and constants begin
with lowercase letters. For instance, the negated and skolemised theorem th-10, which
is the goal clause of our model elimination refutations, is #

�
/0 � d� 	� s

�
0�.

KIV’s simplifier rules are used in Model Elimination in a preprocessingstep for
static simplificationof the input clause set, and during proof search asdynamic simpli-
fication. As a preliminary step, we introduce some definitions common to both.

Definition 2 (Simplification rules). In the following, L is a literal, andψ is a conjunc-
tion of literals, calledcondition in the following context; the caseψ being the empty
conjunction (being true in every interpretation) is allowed and we write ψ � true then.
A rewrite ruleis a formula of the formψ � τ1 � τ2 whereτ1 and τ2 are terms and
Var

�
τ2� � Var

�
τ1�. A replacement ruleis a formula of the formψ � �

L opχ�, where L
is a literal, op � �� � � � andχ is a either a disjunction or a conjunction of literals,
with Var

�
χ� � Var

�
L�. In caseop �� the replacement rule is called anequivalence

rule, else animplication rule. Instead of true� φ we simply writeφ. By the term “sim-
plification rule” we refer to both rewrite rules and replacement rules. Simplification
rules are considered implicitly as universally quantified.

A simplification rule is labeled assafeif (1) ψ � true and (2) it is either a rewrite
rule or an equivalence rule.

For instance, ax-2 from Example 1 is an unconditional equivalence rule and ax-07 a
conditional rewrite rule. All simplification rules from Example 1 aresafe, with the
single exception ax-07.

For easy of defining inference rules dealing with simplification rules it isadvan-
tageous to have a canonical representation of simplification rules. We call this form
implication normal form2 and it is defined as follows:

Definition 3 (Implication normal form). Let R be a simplification rule; the set inf
�
R�

is defined as follows:

1. inf
�
ψ � �

L � χ�� � inf
�
ψ � �

L � χ�� � inf
�
ψ � �

L � χ��
2. inf

�
ψ � �

L �
�
K1 � � � �� Km��� � �ψ � �

L � K1� � � � � �ψ � �
L � Km��,

where Ki , 1
�

i
�

m literals
3. inf

�
ψ � �

L �
�
K1 � � � � � Km��� � �ψ � �

L �
�
K1 � � � � � Km���,

where Ki , 1
�

i
�

m literals
4. inf

�
ψ � τ1 � τ2� � �ψ � τ1 � τ2�

The label “safe” is inherited by this transformation. Finally, the implication normal
form of a set N of simplification rules is inf

�
N� � �R�N inf

�
R�.

Notice that after transformation to implication normal form an implication rule may
also be labeled as safe, namely if case 1 was applied as the first step. For example, ax-2
from Example 1 which is a safe replacement rule, results in the two safe implication
ruless

�
N� � s

�
M� � N � M and

�
s
�
N� � s

�
M�� � �

N � M� in implication normal
form. The name “safe” is explained by the circumstance that if safe rules are applied
for rewriting then it is “safe” – i.e. completeness preserving – to delete the clause to be
rewritten.
2 There is another motivation for this transformation: in KIV, simplifier rules with quantifiers

are allowed, e.g.�X �p�X� � �Y q�X�Y��. Implication normal form and Skolemisation then
yields the two simplifier rulesp�X� 	 q�X�f �X�� and
p�X� 	
q�X�Y�, which can not be
expressed as one single universally quantified equivalence.

From now on we will only consider sets of simplification rules in implication normal
form, and N always denotes such a set.

Next we turn to inference rules of the formL R
A B, whereL is a literal andR �

N.

Definition 4 (Simplification). The inference rulesrewriting and replacementare de-
fined as follows:

L �τ� ψ � �
τ1 � τ2�

�L �τ2σ�� ψσ
if τ � τ1σ

L ψ � �
I � χ�

χσ ψσ
if L � Iσ.

If one of these inference rules is applicable to L and R, yielding A and B, where A and B
are sets of literals. We say that

�
A�B� is asimplificationof

�
L �R�. A simplification issafe

iff R is safe. Literal L is calledmaximally simplified (wrt.N) if there is no simplification
of

�
L �R�, for every R

�
N. Similarly, a clause C ismaximally simplifiedif every L

�
C

is maximally simplified.

That is, if
�
A�B� is a simplification of

�
L �R�, A is the “simplified” version ofL andB is

the condition coming from the simplification rule; the need forA to be a multiset, rather
than a literal, is explained by the possibility of simplifications rules with disjunctions in
the head (cf. case 3 in Def. 3); semantically,

�
A�B� is just the clauseA� B.

For illustration take ax-07 in Example 1 as a simplification rule. Then,
�
s
�
#/0� 	�

s
�
0� � d � /0� is a simplification of

�
#
�
/0 � d� 	� s

�
0� � D 	� E � #

�
E� D� � s

�
#E��.

3.1 Static simplification

Static simplificationapplies simplification rules to input clauses as long as possible,
modulo subsumption. Thereby, the conditions of the simplification rules are added to
the simplified clauses. This yields a maximally simplified clause set.

Definition 5 (Static simplification step).The inference rulestatic simplification step
takes a clause C and a simplification rule R and is defined as follows:

L � C R

C� A� B
if
�
A�B� is a simplification of

�
L �R�

We apply simplification to clauses by replacing the literal to simplify by its simpler set

of literals A and the negated condition B. We write C
R�� CS to indicate that a static

simplification step is applicable to C and R and yields CS. If a clause CS is derived from

a clause C by a chain of simplification steps C
R1�� C1

R2�� � � � Rn�� CS with Ri
�

N we

write C
N�� CS. Such a chain is calledsafeiff every underlying simplification is safe. In

the case that CS in C
N�� CS is maximal simplified we write C

N��
max

CS.

#
�
/0 � d� 	� s

�
0� ax�07��

s
�
#/0� 	� s

�
0� � d

� /0 ax�06��
s
�
0� 	� s

�
0� � d � /0 ax�03��

s
�
0� 	� s

�
0� ax�2��

0 	� 0

For instance, when taking the axioms in Example 1
as simplification rules and converting them to implica-
tion normal form3, the maximal simplification of the
query �#� /0 � d� 	� s

�
0�� results in�0 	� 0�. The un-

derlying chain of simplification steps is depicted to
the right. With the new query0 	� 0 model elimina-
tion would find the proof in one step now using the
reflexivity axiomX � X.

Based on this, static simplification on a set of clauses with certain properties will be
defined.

Definition 6 (Static simplification). By C
�

D we denote subsumption among clauses,
i.e. C

�
D iff �σ Cσ � D. For a clause C we mean by SC (static simplification of C wrt.

N) any clause set satisfying the following conditions:

1. SC �
��CS � �C N��

max
CS�� � �C��

(SC consists only of clauses obtained by applying maximal static simplification
steps to C and optionally includes C)

2. For all CS such that C
N��

max
CS there is a C�S

� SC such that C�S
�

CS

(all maximal simplified clauses CS of C are included in SC)
3. For all CS

� SC there is no C�S
� SC such that C�S

�
CS

(SC is minimal wrt subsumption)

4. For all CS such that C
N��

max
CS: if C

N��
max

CS is safe, then C	� SC

(clauses with only safe simplifications are deleted from SC)

Now let M be a set of clauses. Itsstatic simplification (wrt.N) is MS � �
C�M

SC.

We are going to discuss and motivate Definition 6 now. Notice that the static simpli-
fication SC of clauseC is not uniquely defined; the definition states only neccessary
conditions (which we found quite natural) of what a static simplification is. In partic-
ular, it gives some freedom whether to include the original clauseC in SC or not. This
non-uniqueness allows to define various concrete static simplification procedures, as
long as they satisfy the requirements stated in the definition.

What about termination? We tacitly assume that the simplifier rules are given such
that static simplification terminates! In all our examples from the KIV domain this was
the case. Clearly, a more systematic approach should be taken in the future.

For a large number of simplification rules or clauses the operation can be restricted
to unconditional simplification rules or to simplification of the query clause, only.

Subsumption isnot carried out across all clauses handled during simplification, be-
cause we observed that more exhaustive subsumption tests would be too time consum-
ing.

Notice that we keep the maximally simplified clauses only, but not the intermediate
stages. But the reader might wonder why according to 2all maximal simplifications
of a clause have to be kept. For example, the unit clauseA would be simplified to

3 Units, such asD �� /0 (ax-03) are treated asD �� /0 � true.

the two clausesB and C in presence of the simplification rulesA � B and A � C.
Any resolution based system (appropriate ordering presupposed) would rewriteA to
B (or C) and deleteA afterwards. Resolution can afford this due to saturation of the
simplification rules towards aconfluentsystem. However, our situation is different: we
can neither assume in our KIV domain that the simplification rules form a confluent
system, nor do we want to do a resolution-like saturation (it is tootime consuming for
a preprocessing step, possibly nonterminating). Hence, for completenessreasons, we
have to do all simplifications and can delete the simplified clauseC only in special
“safe” situations (cf. Condition 4).

Alltogether, we get the following important property:

Theorem 1 (Completeness of static simplification).Let M be a clause set and N be
a set of simplification rules. Suppose that MS is the static simplification of M wrt. N. If
M � N is unsatisfiable, then MS� N is also unsatisfiable.

In some situations the theorem can be strengthened by replacing “MS� N” with “ MS”,
e.g. in case of “definitions”, when all occurrences of a predicate symbol are eliminated
by a safe simplification, and, furthermore, the rewrite rules do not overlap (i.e. there are
no critical pairs among the lefthand sides). Details, as well as proofs, are contained in
[Schäfer, 1998].

Static simplification sometimes is quite effective to speed up proofs signifcantly.
For example, proving that set union is associative from the axioms�x�y�z : x

�
y� z��

x
�

y� x
�

z� and�y�z :
��

y � z� � �u :
�
u

�
y � u

�
z��, static simplification will

eliminate equality when the second axiom is turned into rewrite rules. The proof can be
found then in a few steps, while it is a hard problem without simplification (more than
5 hours for PROTEIN, other provers have difficulties as well).

3.2 Dynamic simplification

In order to take advantage of simplification rules during proof time, weextend ME
(Def. 1) by the following inference rule:

Definition 7 (Simplification inference rule). The inference rule(model elimination)
simplification steptransforms a path multiset, a simplification rule R and n clauses
(n � 0) into a path multiset:

 � �p� R L1 � C1
� � � Ln � Cn�
 � �p � �L� � L �

C1 � � � � � Cn � A��σ
if

������
�����

1.
�
A�B� is a simplification of�
leaf

�
p� �R�, and

2. Bσ � ��L1 � � � � �Ln� � X�σ,
for some X� �L � L�̇p�
and MGUσ.

Illustration, at the ground level:

P

Q1
� Q1 � Q2

� �
P � R�

Q2 � S
�
�

P

RS

P

RS

Q1

A leaf is extended by its
simplification. The condition
has to be fulfilled. Therefore
path literals or literals from
input clauses may be used.
For the latter the leaf is addi-
tionally extended by the rest
literals of the clauses.

The case n� 0 is calledstrict, else it is callednonstrict. We extend the notion of
derivation(Def. 1) in a natural way, namely by assuming as given a set N of sim-
plification rules in implication normal form, and adding this case to the definition of
derivation:
3.
 i�1 is obtained from
 i by an ME simplification step applied to
 i , some new

variant R of a simplification rule from N and n� 0 new variants L1�C1 � � � � �Ln�Cn

of clauses from M.

The new calculus is calledME with dynamic simplification (SimME). The termME
with simplificationrefers to SimME applied to a clause set which was obtained from
the original clause set and some set of simplification rules by static simplification (cf.
Def. 6).

An operational description: the ME simplification step first simplifies(cf. Def. 4) the
leaf literalleaf

�
p� using simplification ruleR, yielding the simpler set of literalsA. The

condition ofR, a literal set, has to be resolved away by taking a combinationX of literals
from p, and literalsL1 � � � � �Ln from input clauses. The rationale for this strategy is to
restrict application of rewrite rules more than it would be the case whenthe conditions
would be taken without resolving them away immediately4.

#�/0� d� �� s�0�
ax-07

d � /0 s�#/0� �� s�0�
ax-03 ax-2

d �� /0
�

#/0 �� 0

ax-06

#/0 � 0
�

We continue on Example 1 and take the ax-
ioms as simplification rules, just as was done for
static simplification above (cf. the text after Defini-
tion 6). The figure on the right depicts the refutation
in a tableau notation. Dashed lines indicate simpli-
fication steps. The first (topmost) simplification step
with ax-07 as simplification rule branches to the right
with the simplified leaf literal, and it branches to the
left with the (instantiated) conditiond � /0, which
is closed within this step by the input clause ax-03
(thus, this is a nonstrict inference). Since ax-03 is a
unit clause, no more proof obligations arise here.

Due to the simplification rules no equality axioms are needed to find the refutation.
In this example simplification directs the proof process immediately into the right di-
rection. In this example PROTEIN needed only 5 inferences for the whole proof search.
This means that the prover did not have to backtrack.

Why do we need both, static and dynamic simplification? The static version works
bottom up, whereas dynamic simplification works top down. Because of the goal-
orientedness of model elimination we need both. Consider the following example�X :

4 This resembles the situation of hyper resolution vs. binaryresolution.

male
�
X� � �female

�
X�. The dynamic simplification inference rule translates every pos-

itive (negative)male-leaf immediately into a negative (positive)femaleliteral. Hence,
extension steps with clauses with negative (or positive)male literals would no longer
exist. On the other hand, with static simplification as preprocessing,the situation can be
repaired by replacing themale-literals in the input clauses by complementaryfemale-
literals.

We tested PROTEIN with SimME with examples from the TPTP library ([Sutcliffe
et al., 1994]). We manually scanned the input specification for formulas which seemed
to be suitable for simplification rules. For many puzzles we used formulas specifying
something belonging exactly to one of two groups. Like�X : male

�
X� � �female

�
X�

mentioned above. Using this formulae as the sole simplification rule prunes the search
space dramatically. SimME with this single simplification rule had a much better per-
formance than plain model elimination. For example, the TPTP-Example PUZ006-1
could not be solved in reasonable time by PROTEIN in its model elimination setting
but PROTEIN with SimME found a proof within 13 seconds.

Typically, simplification techniques such as term rewriting, are not compatible to
goal-oriented, linear calculi like model elimination. Hence, special care must be taken
not to loose completeness (see e.g.[Brüning, 1995]). It is in general not even complete
to rewrite a leaf, sayP

�
f
�
a��, usingf

�
X� � X to P

�
a�. However, in our case, the dynamic

simplification inference rule does not preclude the other inference rules from being
applied. One might be tempted to think that SimME is not useful at all then. However,
simplification can be used as apreferencestrategy which allows to find shorter proofs
first (see the experimental results in Section 4 below). We conclude thissection with
the following trivial, nethertheless important theorem:

Theorem 2 (Completeness of SimME).Let M be a clause set and N be a set of sim-
plification rules. If M is unsatisfiable then there is a SimME refutation of M and N.

4 The ENUM case study

The new SimME calculus was mainly tested with the KIV “Enumeration” (enum) se-
ries, which is described in detail in[Schellhorn and Reif, 1997]. The goal of that series
is to prove 52 consequences of a specification of finite enumerations. These arose during
an interactive session with KIV. They are formulated in first order logic with equality
and sorts5. Hence they can be passed to any suitable first order prover. Before that, KIV
performs an axiom reduction, which deletes many irrelevant axioms from theoverall
specification.

In [Schellhorn and Reif, 1997], results for the non-inductive theorems of the enum
series are reported for the tableaux prover 3TAP[Beckertet al., 1996], the resolution
prover Otter[McCune, 1994] and the model elimination prover SETHEO[Letz et al.,
1994]. The results for Otter and SETHEO differ to some degree, as they are basedon
very different calculi, but the overall performance is comparable. 3TAP seems not yet to

5 In PROTEIN, sorts are handled by transforming them away following the approach in[Schmitt
and Wernecke, 1989]. To treat equality, adding the equality axioms turned out tobe best.

be fully optimized. The SETHEO results are quite comparable to the ones we obtained
with our PROTEIN prover.

Table 1 summarizes our results. Missing “Thm.” numbers indicate inductive theo-
rems, which cannot be proven by first-order provers. The first columnKIV gives the
number of interactions needed by an experienced KIV user to direct the built-in simpli-
fier to a proof. In sum, these are 51. The next column contains the results for PROTEIN
in its default setting without simplification (see[Baumgartner and Furbach, 1994] for
a system description);Total is the overall time in seconds and includes reading in and
preprocessing the source file. Blank entries mean that no proof was found within the
time limit of two minutes (we used a SUN Ultra 1 for our experiments).

Similarly to the PROTEIN entries, the last two columns S-PROTEIN describe PRO-
TEIN with its simplification extension as described in Section 3.1 and Section 3.2. To
state it explicitly, we first applied static simplification to the input clause set, and then
used also dynamic simplification during proof search (theorems 1 and 2 guarantee the
completeness of the approach). As simplification rules we used those givenfrom the
KIV system.

KIV PROTEIN S-PROTEIN
Thm #Int. Total Proof Total
th-01 0 2�2 0�0 4�5
th-02 0 0�9 0�0 1�5
th-04 1 20 6�4 8�0
th-05 2 0�9 0�1 1�7
th-06 2 0�9 0�0 1�7
th-09 4
th-10 0 1�1 0�0 2�2
th-11 0 1�7 0�3 2�4
th-12 0 1�3 0�3 2�6
th-14 1
th-16 3
th-17 1 0�9 3�5
th-18 0 2�1 0�0 4�3
th-19 2 106 8�6 18
th-20 1 33 5�8 9�6
th-21 0 2�3 0�0 4�7
th-24 0 3�9 3�2 12
th-25 0 4�3 0�1 8�3
th-26 0 4�3 1�8 10
th-27 0 2�0 0�0 3�4
th-28 0 4�1 0�1 8�6
th-29 0 4�3 0�0 9�0
th-30 0 1�1 40

KIV PROTEIN S-PROTEIN
Thm #Int. Total Proof Total
th-31 1 4�1 0�0 8�7
th-32 0 4�2 0�0 8�9
th-33 0 4�4 0�1 8�7
th-34 3 3�0 0�0 6�2
th-35 1 4�1 0�0 9�0
th-36 0 4�7 0�1 9�0
th-37 1 4�6 0�1 9�1
th-38 11
th-39 0 3�1 0�0 6�3
th-40 0 2�0 0�0 3�7
th-41 0 4�4 0�0 9�6
th-42 4 83 92
th-43 0 4�4 0�0 9�6
th-44 1 2�3 1�2 4�9
th-45 1
th-46 0 2�7 2�9 6�7
th-47 0 2�3 1�2 5�1
th-48 0 2�1 0�0 4�2
th-49 1 5�8 7�5 16
th-50 5
th-51 0 2�8 1�4 5�6
th-52 5
Σ #Int. 51 35 30

Table 1.Results for PROTEIN and S-PROTEIN for the enum series. See the text for explanations
of the entries.

The S-PROTEIN values for very easy problems are higher than those for PRO-
TEIN. The simple explanation is that reading in and preparing the simplification rules
takes some time. This time, however, is not prohibitively high. Theextreme case is9�6
seconds for the large specification th-41 (85 first-order formulae and 77simplifier rules)
with almost zero proof search time.

Some of the easy problems could be almost solved during preprocessing by static
simplification, but in most cases dynamic simplification steps are also applicable. How-
ever, during the experiments we found that one better does not overemphasize the role
of simplification. For the static simplification we applied simplification only to the the-
orem to be proven, because otherwise it would be too time consuming. Furthermore,
only unconditional rules were allowed. In this setting, the time forstatic simplification
alone was neglectable (� 1 sec.).

For dynamic simplification we added all simplification rules as “ordinary”formulae
to the input clause set (some few cases, however, had to be treated slightly differently).
In order to make this meaningful, dynamic simplification inferences havea strong pref-
erence over “usual” extension inferences (cf. Def. 1).

Throughout the experiments we used thestrict version of dynamic simplification
(cf. Def. 7), and only rewrite rules (i.e. rules with equality in the head, cf. Def. 2) with
an empty condition or one literal condition were allowed. This was made inorder not
to spend too much time for the simplification inferences. Replacement rules obviously
cannot be applied at term positions and thus do not tend to broaden the searchspace as
much as rewrite rules. Hence we used no restriction on the length of the conditions for
such rules.

We tried various flag combinations. As an outcome of these experiments, the just
described flag settings was identified as the most successful one in average.

With this setup, we draw the conclusion that simplification pays off.This holds
in particular for the more difficult problems (th-04, th-19, th-20and th-42), while no
simpler ones are lost by the overhead (there are some cases listed in the table where
proof time increases for S-PROTEIN, but not in an unacceptable way).

The last line in Table 1 (right) sums up interactions. In theKIV column it is the
total number of interactions needed by the KIV user to solve all 52 problems by using
the built-in simplifier. The other two values for PROTEIN, (resp. S-PROTEIN) sum up
the remainingnumber of interactions needed by the KIV user, under the assumption
that PROTEIN (resp. S-PROTEIN) was tried on the theorems. With S-PROTEIN, the
number of interactions decreases from 51 to 30.

5 Conclusions

In this paper we extended model elimination (ME) in a new way to take advantage of
“simplification by rewriting”, as it is used so successfully in the resolution paradigm.
Unfortunately, rewriting cannot be incorporated to such a high degreein ME as in res-
olution calculi. This is not specific to ME, it is rather more generally the price to be
paid for goal-oriented linear calculi. Nevertheless, from our practical experiments we
conclude that simplification pays off.

Quite often, the overhead of simplification and the breadthening of the local search
space was overcompensated by shorter proofs and shorter proof times. In three cases,
the prover could even find a proof where ordinary model elimination had to give up.

We understand this paper as a first investigation into the potential of simplification in
the context of software verification domains. The implementation should be improved
by making rewriting operations faster (they are unnecessarily slow at the moment). This
will allow us to stronger emphasize the role of simplification then.

In general, more improvements and fine tuning will be investigated in the future,
and the coupling of PROTEIN and KIV will be fully implemented. This then would
allow to apply the method in real verification scenarios.

Acknowledgments:We would like to thank the reviewers for their helpful comments.

References

[Astrachan, 1992] Owen L. Astrachan.Investigations in Model Elimination based Theorem
Proving. PhD thesis, Duke University, 1992. Technical Report CS-1992-21.

[Bachmair and Ganzinger, 1998] Leo Bachmair and Harald Ganzinger. Chapter 11: Equational
Reasoning in Saturation-Based Theorem Proving. In Wolfgang Bibel and Peter H. Schmitt,
editors,Automated Deduction. A Basis for Applications, volume I: Foundations. Calculi and
Refinements, pages 353–398. Kluwer Academic Publishers, 1998.

[Baumgartner and Furbach, 1994] Peter Baumgartner and Ulrich Furbach. PRO-
TEIN: A PROver with a Theory Extension Interface. In A. Bundy, editor,Au-
tomated Deduction – CADE-12, volume 814 of Lecture Notes in Artificial In-
telligence, pages 769–773. Springer, 1994. Available in the WWW, URL:
http://www.uni-koblenz.de/ag-ki/Systems/PROTEIN/.

[Baumgartneret al., 1997] Peter Baumgartner, Ulrich Furbach, and Frieder Stolzenburg. Com-
puting Answers with Model Elimination.Artificial Intelligence, 90(1–2):135–176, 1997.

[Beckert and Posegga, 1995] Bernhard Beckert and Joachim Posegga. leanTAP: Lean tableau-
based deduction.Journal of Automated Reasoning, 15(3):339–358, 1995.

[Beckertet al., 1996] Bernhard Beckert, Reiner Hähnle, Peter Oel, and Martin Sulzmann. The
tableau-based theorem prover3TAP, version 4.0. In M.A. McRobbie and J.K. Slaney, editors,
Automated Deduction — CADE 13, LNAI 1104, pages 303–307, New Brunswick, NJ, USA,
July 1996. Springer-Verlag.

[Bjoerneret al., 1996a] Nikolaj Bjoerner, Ance Brown, Eddie Chang, MichaelColon, Arjun Ka-
pur, Zohar Manna, Henny Sipma, and Tomas Uribe. Step: Deductive-algorithmic verification
of reactive and real-time systems. In8th International Conference on Computer Aided Verifi-
cation, Lecture Notes in Computer Science. Springer, 1996.

[Bjoerneret al., 1996b] Nikolay Bjoerner, Mark Stickel, and Tomás Uribe. APractical Integra-
tion of First-Order Reasoning and Decision Procederes. In M.A. McRobbie and J.K. Slaney,
editors,Automated Deduction — CADE 13, LNAI 1104, New Brunswick, NJ, USA, July 1996.
Springer-Verlag.

[Boyer and Moore, 1988] R.S. Boyer and J.S. Moore.A Computational Logic. Academic Press,
1988.

[Bronsard and Reddy, 1992] Francois Bronsard and Uday S. Reddy. Reduction Techniques for
First-Order Reasoning. In M. Rusinowitch and J.L. Rémy, editors, Proceedings of the Third
International Workshop on Conditional Term Rewriting Systems, pages 242–256. Springer-
Verlag, July 1992. LNCS 656.

[Brüning, 1995] S. Brüning. Exploiting Equivalences in Connection Calculi. Journal of the
IGPL, 3(6):857–886, 1995.

[Chang and Lee, 1973] C. Chang and R. Lee.Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[Dahnet al., 1997] B.I. Dahn, J. Gehne, Th. Honigmann, and A. Wolf. Integration of Automated
and Interactive Theorem Proving in ILF. In W. McCune, editor, Automated Deduction — CADE
14, LNAI 1249, pages 57–60, Townsville, North Queensland, Australia, July 1997. Springer-
Verlag.

[Fitting, 1990] M. Fitting.First Order Logic and Automated Theorem Proving. Texts and Mono-
graphs in Computer Science. Springer, 1990.

[Gordon and Melham, 1993] M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge University Press, 1993.

[Kaufmann and Moore, 1996] M. Kaufmann and J.S. Moore. Acl2:An industrial strength ver-
sion of nqthm. InProceedings of Eleventh Annual Conference on Computer Assurance
(COMPASS-96), pages 23–34. IEEE Computer Society Press, 1996.

[Kromodimoeljoet al., 1992] Sentot Kromodimoeljo, Bill Pase, Mark Saaltink, DanCraigen,
and Irwin Meisels. The eves system. InProceedings of the International Lecture Series on
Functional Programming, Concurrency, Simulation and Automated Reasoning (FPCSAR). Mc-
Master University, 1992.

[Lee and Plaisted, 1989] Shie-Jue Lee and David A. Plaisted.Reasoning with Predicate Re-
placement, 1989.

[Letz et al., 1994] R. Letz, K. Mayr, and C. Goller. Controlled Integrations of the Cut Rule into
Connection Tableau Calculi.Journal of Automated Reasoning, 13, 1994.

[Loveland, 1969] D. Loveland. A Simplified Version for the Model Elimination Theorem Prov-
ing Procedure.JACM, 16(3), 1969.

[McCune, 1994] William W. McCune. OTTER 3.0 reference manual and guide. Technical
Report ANL-94/6, National Laboratory, Argonne, IL, 1994.

[Nipkow and Paulson, 1992] Tobias Nipkow and Lawrence C. Paulson. Isabelle-91. In D. Kapur,
editor,Proceedings of the 11th International Conference on Automated Deduction, pages 673–
676, Saratoga Springs, NY, 1992. Springer-Verlag LNAI 607.System abstract.

[Owreet al., 1992] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototypeverification sys-
tem. In Deepak Kapur, editor,11th International Conference on Automated Deduction, LNAI
607, pages 748–752. Springer-Verlag, 1992.

[Reif et al., 1997] Wolfgang Reif, Gerhard Schellhorn, and Kurt Stenzel. Proving System Cor-
rectness with KIV 3.0. In W. McCune, editor,Automated Deduction — CADE 14, LNAI 1249,
pages 69–72, Townsville, North Queensland, Australia, July 1997. Springer-Verlag.

[Schäfer, 1998] Dorothea Schäfer. Simplification in model elimination. Master’s thesis, Univer-
sität Koblenz, 1998. To appear.

[Schellhorn and Reif, 1997] Gerhard Schellhorn and Wolfgang Reif. Proving properties of
finite enumerations: A problem set for automated theorem provers. Technical report,
University of Ulm, Dept. of Computer Science, 1997. URL: http://www.informatik.uni-
ulm.de/pm/kiv/setheo/enum.ps.

[Schmitt and Wernecke, 1989] P.H. Schmitt and W. Wernecke. Tableau calculus for sorted log-
ics. In Sorts and Types in Artificial Intelligence, volume 418 ofLecture Notes in Artificial
Intelligence, pages 49–60. Springer, 1989.

[Sutcliffe et al., 1994] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In
Alan Bundy, editor,Automated Deduction — CADE 12, LNAI 814, Nancy, France, June 1994.
Springer-Verlag.

