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Abstract. Theory reasoning is a kind of two-level reasoning in automated theorem
proving, where the knowledge of a given domain or theory is separated and treated by
special purpose inference rules. We define a classification for the various approaches for
theory reasoning which is based on the syntactic concepts of literal level — term level
— variable level. The main part is a review of theory extensions of common calculi
(resolution, model elimination and a connection method). In order to see the relationships
among these calculi, we define a super-calculus called theory consolution. Completeness
of the various theory calculi is proven. Finally, due to its relevance in automated reasoning,
we describe current ways of equality handling.
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1 Introduction

One of the most traditional disciplines in AI is Theorem Proving. In the early days it was
concentrated mainly on developing general proof procedures for predicate logic. According to
the shift within wide parts of AI-research towards special domain dependent systems, automated
reasoning and theorem proving nowadays aim at incorporating specialized and efficient moduls,
which are suited for handling special parts or domains of knowledge. Whenever this is done
in a formal way we will understand those moduls as a means to built-in theories and speak of
“theory reasoning”.

A very prominent example for efficient handling of a theory is equality handling. There is a
simple way of specifying this theory, namely by stating the axioms of reflexivity, symmetry,
transitivity and by stating the substitutivity of function and predicate symbols. If these formulas
are added to the formulas to be proven by the system, the usual inference rules are able to
process this theory. A better approach is to supply special inference rules for handling the
equality predicate with respect to the equality theory, like e.g. paramodulation (Robinson and
Wos, 1969) or RUE-resolution (Digricoli and Harrison, 1986).

Another very well-investigated example for theory handling is the design of calculi and proof
procedures, which use many- or order-sorted logics (Bläsius and Bürckert, 1989). Here, the
aim is to take care of a sort hierarchy in a direct way, e.g. by using a special unification
procedure. This is in contrast to relativation approaches which transform the sort information
into formulas of the unsorted logics.

While the above two examples were concerned mainly with an efficient treatment of a theory,
there is as well a concern in the field of knowledge engineering of keeping different kinds
of knowledge apart. Often, one wants to separate taxonomical from assertional knowledge:
taxonomical knowledge is used as a special theory, which has to be handled outside the
deduction mechanism which processes the assertional knowledge. One of the most prominent
examples of those approaches is KRYPTON (Brachmann et al., 1983), where the semantic net
language KL-ONE is used as a theory defining language, which is combined with a theorem
prover for predicate logic. This system is based on the theory resolution calculus (Stickel,
1985), which will be discussed later on. Nowadays numerous works on defining concept
languages with well-understood semantics for the definition of taxonomical knowledge exist
(Hollunder, 1990).
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Viewpoint of this paper

The aim of this paper is twofold: Firstly, we want to classify the various kinds of treating
theories within deduction systems, and secondly, we want to compare a special subclass of
these methods. It is easier to compare the theory reasoning calculi if a common input language
can be presupposed. Fortunately, the calculi to be discussed operate on formulas in a standard
language, which is, of course, clause logic. Thus clause logic will serve us well as a common
input language, too. However there are minor differences: sometimes clauses are thought
of as sets of literals, sometimes of multisets and sometimes of sequences. Fortunately these
differences are not essential for the intuitive understanding of theory reasoning, and so the
discussion of these differences can be postponed to the formal section. As a coincidence most
work is done in a refutational setting, but not in an affirmative one. Due to their perfect
duality, it suffices to restrict attention to one of these concepts. This will be the more common
refutational setting.

Theory reasoning always deals with two kinds of reasoning: background reasoning for the
theory, and foreground reasoning for the actual problem specification. We are mostly interested
in studying the interface between foreground and background reasoning. We give a formal
description of this interface which applies to a wide class of theories. We will not focus on the
question of how to built dedicated background reasoners for special theories (equality will be
an exception).

It has to be said what kinds of theories we are interested in. The “upper bound” is given by
the universal theories, i.e. theories that can be axiomatized by a set of formulas that does not
contain

�
-quantifiers. Universal theories are expressive enough to formulate e.g. equality or

interesting taxonomic theories. Moreover, the restriction to universal theories is not essential.
A theory which contains existential quantifiers may be transformed by Skolemization into a
universal theory which is equivalent up to an extension of the signature by Skolem functions.
Universal theories also mark the limit of what can be built into a calculus preserving the
completeness of calculus (cf. (Petermann, 1991b)).

We do not treat reasoning in single models, like real numbers and their arithmetic, or classes
of models. Such extensions of theory reasoning have been investigated in (Bürckert, 1990a).

Due to the great variety of approaches for theory reasoning, we prefer to bring in structure by
classifying the various approaches. Of course there are plenty ways of doing. The classification
we use is by level of connection. In order to explain this term it is necessary to recall the nature
of theory reasoning as interfacing background reasoning and foreground reasoning. Now, by
“level of connection” we mean the common subpart of the foreground and the background
language, that is used for their interfacing. To be concrete, we will distinguish the three levels
literal level, term level and variable level. Figure (1) is a classification of the approaches to be
described with respect to level of connection. The literal level is the most general of all; it allows
for theory reasoning with literals with different predicate symbols (general theory reasoning
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Figure 1: Classification wrt. level of connection

approaches and equality). This is different to term level theory reasoning, where unification on
terms is replaced by some unification modulo a theory (typing, dedicated unification, universal
unification). A further specialization is the variable level theory reasoning which is bounded
to variables (typing of variables, constraints).

The methods subsumed by “theory reasoning” in figure (1) are subject to enormous research
activities and results. Thus it would be too a big task to give a deep overview of all of them.
Since there are excellent overviews of term level (usually known as “unification theory”) (e.g.
(Siekmann, 1989)) and constraints (see e.g. (Meseguer, 1989), or (Van Hentenryck, 1989) for
a textbook on constraints in logic programming), we will concentrate on the literal level.

Our strategy for describing the literal level is essentially as follows: we will define a formal
framework, called theory consolution, and show how it can be instantiated to the various known
theory calculi. By this technique, we hope to give an understanding of the similarities and
differences among the calculi. This technique of instantiating the consolution framework to
other calculi has been applied by two of the authors to non-theory cases before in (Baumgartner
and Furbach, 1992).

For a related overview of modifications to the resolution calculus, such as UR-resolution
(McCharen et al., 1976) and Hyperresolution, but also theory resolution, see (Eisinger and
Ohlbach, 1993). This work also covers various kinds of theories (equality, theories compiled
from the axioms, taxonomically represented theories).

This work is structured as follows: in the next section the various theory reasoning approaches
will be described informally. This tour touches all of them. In section 3 we will turn to a more
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formal presentation of the literal level. As just mentioned, this will be done on the basis of one
special calculus, namely the consolution calculus. It will be presented first in its non-theory
version and finally we define its total and its partial variant. This calculi will be used afterwards
to discuss theory resolution, theory model elimination and a theory connection method. The
completeness of these calculi is proven rigorously by mapping our presentation of the calculi
to corresponding representations, for which we have completeness results. Section 4 contains
a discussion on equality handling.

2 The Tour: Literal level – Term level – Variable level

In this section we will present several methods of theory reasoning according to our classifica-
tion. Consider again figure (1) in the introduction. The inner nodes can be briefly characterized
as follows:

Literal level: Certain literals from selected clauses are passed to the theory reasoner. For
example, if the theory is instantiated to “strict ordering” then the theory reasoner might
get the two literals (not the different predicate symbols) � � � and � � � and decide
that applying the substitution � � � � � to their conjunction gives a formula which is
unsatisfiable in the theory of strict orderings.

Term level: The argument terms of certain literals from selected clauses are passed to the
theory reasoner. Typically, two complementary literals are selected, and the theory
reasoner has to check for a pairwise theory-unifiability of the argument terms. For
example, if � is a commutative function symbol, then the theory reasoner might decide
that the arguments of 	 
 � 
 � � � � � and  	 
 � 
 � � � � � are unifiable by the substitution
� � � � � .

Variable level: Since variables are terms, this is a subcase of the previous case. Here, the
legal assignments for variables are restricted in some way, e.g. by domain restrictions.
For example if 	 
 � � and  	 
 � � are given, and the domain of � is � � � � � and the domain
of � is � � � � � then the substitution � � � � � � � � � is in accordance with the domains
and makes the above literal set unsatisfiable.

Obviously, the methods in the same level of connection deserve further structuring. Let us
start with general literal level theory reasoning.

2.1 Literal Level Theory Reasoning

The basic idea of literal level theory reasoning is at best explained in comparison to ordinary, i.e.
non-theory reasoning: in ordinary reasoning, clauses containing syntactically complementary
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Figure 2: Classification of “Literal level”

literals are used for inferences, whereas in theory reasoning this is done with semantically
complementary literals. Here “semantically complementary” means roughly “unsatisfiable in
the given theory”. A precise characterization is given in the next section.

Figure (2) depicts a classification of literal level theory reasoning. On the one hand we will
consider general theory reasoning approaches. There, no fixed theory is presupposed, and
these frameworks can be instantiated with a great variety of theories. On the other hand we
will devote an extra section to equality, i.e. general theory reasoning that is instantiated with
the theory of equality. This partition is motivated by the enormous research dedicated to
equality.

General literal level theory reasoning (simply called “theory reasoning” from now on in this
subsection) is the most general technique of all. It is a scheme of building in arbitrary universal
theories into first order calculi. Still on this very general level two variants can be distinguished
(figure 2):

Partial theory reasoning: Viewed operationally, in a partial reasoning step the background
reasoner is passed from the foreground reasoner a set of literals and returns a formula.
This formula is a new subgoal to be proved. It is also called residue. For example, if the
theory is “strict ordering” and we are given the literals � � � � � � � � � � � � � � � and
the “goal”  � � � . By transitivity of � the literal � � � is a logical consequence of � ,
and this literal immediately contradicts the goal. To show this fact with partial theory
reasoning the background reasoner might be passed the goal  � � � and the literal � � �
from � ; then it returns the residue  � � � . For the next step this residue plays the same
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role as the goal before. This kind of reasoning is repeated until a contradiction becomes
immediate.

Semantically, a residue states a logical consequence of the passed literals, or, in other
words, the negation of the residue together with the passed literals is unsatisfiable in the
theory. As usual, in the non-ground case substitutions are involved. See section (3) for
a precise treatment of residues and so-called “theory refuting substitutions”.

Total theory reasoning: Total theory reasoning is the same as partial theory reasoning, except
that the residue must be empty. Thus, the literal set passed to the background reasoner
must be unsatisfiable by itself. For example, the literals � � � and � � � are unsatisfiable
in the theory of strict orderings, and thus are subject to a total theory reasoning step.

The distinction between these kinds of theory reasoning is important for several reasons:
firstly, in partial theory reasoning we have the unique situation that the theory reasoner returns
a formula to the caller, and not just a substitution or a yes-no result. Thus the coupling is more
symmetric than the other approaches on the term level.
Secondly, for undecidable theories total theory reasoning requires too much from the theory
reasoner, i.e. the inference must neccessarily be undecidable. As a consequence, the notion of
“derivation” is undecidable — a highly undesirable property. This implies for implementations
that the background reasoner cannot be “called” as a procedure that is guaranteed to terminate.
But even if the theory is decidable there remain problems with total theory reasoning. For
example let us consider the theory of equality. Though this theory admits a decision procedure
for the background reasoner, as e.g. rigid � -unification (cf. (Gallier and Snyder, 1990) and
section 4 of the present paper), it cannot be predicted by the foreground reasoner how many
variants of literals from clauses constitute a contradictory set. In other words: it is hard to
find good candidates for contradictory sets. On the other hand, it may not be difficult for
the foreground reasoner to detect the potential kernel of a contradictory set. Moreover, the
theory reasoner might guide the search for literals which complete the kernel to a contradictory
set. This scheme of co-operation with a search guiding role of the theory reasoner is the idea
of partial theory reasoning. The residue returned by the partial reasoner gives advice to the
general reasoner for the search for appropriate literals.

The generality of theory reasoning is both a strength and a weakness: it is a strength, because it
subsumes all other techniques if an appropriate theory reasoner is given — and the generality
is a weakness because it cannot propose how to come to efficient theory reasoners, which are
usually domain dependent.

Since Stickel’s pioneering work for the resolution calculus (Stickel, 1985; Stickel, 1983),
the scheme was ported to many calculi. It was done for matrix methods in (Murray and
Rosenthal, 1987), for the connection method in (Petermann, 1990) and for model elimination
in (Baumgartner, 1992a). The latter two papers contain completeness results for the first-order
case. The primary concern of these works is the combination of the main calculus with the
theory reasoner; it is not the construction of efficient theory reasoners.
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2.2 Term Level Theory Reasoning

Term level theory reasoning is better known under the name unification modulo a theory, or
simply theory unification.

Since there are excellent overviews of this area, we will only supply a very brief description
here. The reader interested in this topic is referred to (Bläsius and Bürckert, 1989; Siekmann,
1989) for more details.

Like general theory reasoning it generalizes a syntactical concept to a semantical one, by
replacing the syntactical unification algorithm with a unification algorithm for the theory.

Theory unification differs from theory reasoning in two aspects:
� Theory reasoning is carried out on the literal level, whereas theory unification is carried

out on the term level. Thus, the predicate symbols of the literals selected for the theory
reasoning step may be different, while in the theory unification step they must be equal.

� The partial variant of theory reasoning computes with residues, i.e. the theory reasoner
may establish new subgoals and return them to the main procedure. In theory unification
such a concept is missing.

Figure (3) depicts a classification of theory unification, where the kind of theory is used as a
classification criterion:

Equational theories: Since equations (pairs of the form � � � ) occur so frequently in mathe-
matics and in nearly every form of reasoning, it is not surprising that much research has
been spent on the automatization of equational theories. Here the theory is axiomatized
by a set of (conditional)equations � . Only � -models are considered, i.e. models of the
theory of equality � (section (4)).
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Thus in equational unification the following � -unification problem has to be solved:

Given a set � of equations and some pairs � � � � � � � . Is there a substitution �
such that every � -model satisfying � also satisfies � � � � � � � , or shortly, that
all equations � � � � � � � are � -consequences of � .

Such a � is called � -unifier for � � � � � � � in the theory � . The � -unification problem can
equivalently be formulated in a more operational fashion. It is roughly as follows: in
order to solve the above problem, try to transform � � into � � by replacement of subterms
with equal terms as given by � . The � -unifier is obtained by collecting the substitutions
along the way.

Some questions coming up immediately are the following: is the � -unification problem
decidable? (No); how many such � -unifiers exist? (Countable many); if more than
one exists, can we compute a solution base, i.e. a reasonable small set that implicitly
includes all other solutions?

A problem similar to � -unification is rigid � -unification. This is a resource-bounded
form of � -unification which, loosely, forbids drawing more than one instance of an
equation in � when solving an � -unification problem. Rigid � -unification is relevant for
building in the theory of equality into general theory reasoning calculi and is discussed
in section (4).

Unification procedures for equational theories can be further distinguished: on the
one hand, there are dedicated unification algorithms, which are special purpose theory
unification algorithms for one single equational theory (see e.g. (Petermann, 1991a)).
For example, there are such algorithms for associative and for commutative theories (see
(Bürckert et al., 1988) as an anchor). From a practical point of view it would be very
pleasing to combine given unification algorithms for different theories in order to obtain
a unification algorithm for the theories’ union. Unfortunately this is a highly non-trivial
task. An advanced result allows for the combination of theories with disjunct function
symbols, but common constant symbols (Ringeissen, 1992).

On the other hand we have universal unification algorithms, that work for a wide
class of equational theories (see (Gallier and Snyder, 1990; Gallier and Snyder, 1989; J.-
P. Jouannaud, 1991)). Further advantage can be taken if the equations can be directed into
rewrite rules. Then the Narrowing-technique can be used, which is the first order version
of rewriting (Hullot, 1980; W. Nutt and Smolka, 1987; Hölldobler, 1989). General
overviews of theory unification can be found in (J.-P. Jouannaud, 1991; Siekmann,
1989), and a recent text book is (Snyder, 1991).

Non-equational theories – typing: The most investigated non-equational theories (at least,
conceptually) are those which employ a type hierarchy on terms, as already discussed
in the introduction. This is also known as order-sorted unification. Roughly, if � 1 : � 1
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means that the term � 1 is of type � 1, then the unification of the expressions � 1 : � 1 and
� 2 : � 2 succeeds if � 1 and � 2 (Robinson-)unify, and if � 1 and � 2 can both be restricted
to a common subtype. See (J.-P. Jouannaud, 1991) for an overview. Order-sorted
logics has been developed since the 60s (Oberschelp, 1962), and nowadays numerous
proof-procedures exist, which demonstrate that order-sortedness increases efficiency
significantly.

2.3 Variable Level Theory Reasoning – Constraints

In variable level theory reasoning, the set of legal values for variables is limited. This is
usually achieved by constraints. Syntactically, constraints are formulas that are attached to
some variables in clauses, and semantically they filter out valid assignments for the variables.
During inferences the constraints of the unified variables are combined, and eventually, but not
necessarily immediately, the combined constraints must be solved. In other words, constraints
may be treated lazily. This is the approach taken in (Bürckert, 1990a). Constraints are mostly
investigated in the context of logic programming and Prolog (Van Hentenryck, 1989; Jaffar and
Lassez, 1987), which is so successful that constraint logic programming has been established
as a field of its own.

3 Literal Level Theory Reasoning

As mentioned previously, this work is strongly biased towards the literal level theory reasoning.
This section describes several general calculi for literal level theory reasoning in a formal
way. In order to see the similarities and differences among them, we have decided to define
the calculi as instances of some particular common framework. Thus, many notions, such
as “derivation”, “theory refuting substitution” and “residue” only have to be defined once.
The common framework is called “theory consolution” and it generalizes the non-theory
consolution calculus as defined in (Eder, 1991). This calculus was designed as a generalization
of both connection calculi and resolution calculi. In (Baumgartner and Furbach, 1992) it has
been proved to be useful as framework to define and to compare various other calculi. Thus it
is not surprising that its theory-generalization is well-suited for our purpose.

This section is structured as follow. We introduce the consolution calculus along the lines of
(Eder, 1991; Baumgartner and Furbach, 1992) and then define a theory version, both in a total
and a partial variant. These calculi are then modified to obtain theory resolution, theory model
elimination and a theory connection method in order. The partial variant thereof is derived
only for the case of the resolution calculus. Since the instantiations of theory consolution in the
partial case to model elimination and connection method can be done analogously, we assume
that it is sufficient to demonstrate this construction only once.
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But before we start the discussion, let us introduce an example theory that will serve us
commonly for all calculi throughout this section. It is the first-order representation of some ta-
xonomical knowledge about persons. We are not concerned with how this theory is represented
in a real system.

�
:

(T-1) � � 
 
 � � � � � � 
 � � � � � � � � 	 
 
 � � � � � 	 
 �  � 
 � � �
(T-2) � � 
 �  � � � 
 � � � � 	 
 �  � 
 � � �
(T-3) � � 
 � � � 
 � � � � 	 
 �  � 
 � � �

Besides this theory some concrete situation is needed. We will often use the following clauses
in conjunction with the theory1:

�
:

(1)  � 	 
 �  � 
 � 
 	 � � �  � � � 
 � �
(2) � � � � � 	 
 
 � 
 	 � �
(3) � � � � � � 
 � � � � � � 
 � �

3.1 Consolution

In this section we will briefly recall the consolution calculus as defined in (Eder, 1991). Since
we want the calculus as a starting point for the description of other calculi, we feel the need to
modify the original definition as it is given by Eder. For a careful treatment and discussion of
these divergences, the reader is referred to (Baumgartner and Furbach, 1992); in the present
paper we use consolution in the already modified version.

3.1.1 The Idea of Consolution

Consolution can be seen as a procedure for converting a formula given in one normal form into
another normal form: assume we are given a (for simplicity: ground) formula in disjunctive
normal form (DNF) and want to prove its validity. This can be done by converting it in a first
step into conjunctive normal form (CNF). The second step then uses the fact that a formula
in CNF is valid iff every conjunct contains complementary literals. Thus, a simple test for
complementary literals in every conjunct suffices to decide the validity of the CNF and also the

1This example is a bit contrived, but will serve us well in the formal part below
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DNF. Now, with some additional optimizations this is just how consolution works. Consider
for example the DNF-formula


 	 � � � � 
  	 � � �
� � � �

�  �

Conversion to CNF can be begun by applying the law of distributivity to the underbraced part,
yielding


 
 	 �  	 � � 
 	 � � � � 
 � �  	 � � 
 � � � � � �  �

This operation is also carried out as a first step in an consolution inference. The subsequent
steps deal with the above-mentioned optimizations: first, disjuncts such as 	 �  	 which
contain complementary literals are tautological and thus can be removed. Second, disjuncts
may be shortened; for example, 
 � �  	 � may be replaced by � . This corresponds to the
“weakening” rule in Gentzen’s sequent calculus (see e.g. (Gallier, 1987) for the sequent
calculus). However, it may cause incompleteness by throwing away the “wrong” literal, i.e.
the literal that contributes to a complementary pair in a later stage. Third, � � � can be
replaced by � . This rule corresponds to the “contraction” rule in the sequent calculus. It is
implicitly present in consolution by means of the set data structure, which collapses multiple
occurences of literals into a single one. Similarly, identical conjuncts such as � in � � � can
be contracted to a single one. Carrying out these suggested operations results in the formula


 
 	 � � � � � � �  �

Now it is easy to see that the next step produces the “empty” disjunct, which is a proof for the
validity of the given formula.

Consolution is slightly more general than just explained: instead of logical formulas in DNF,
consolution works on sets of clauses, where a clause is a set of literals. The semantics of
clause sets is then obtained by interpreting the outer commas by “� ” and the inner commas
by “� ”. The clause set data structure is more general, since the interpretation of the outer
comma and inner comma can be exchanged. In other words, one starts with a CNF instead of
a DNF. A derivation of the empty clause can then be interpreted as proof of the unsatisfiablity
of the DNF-formula, instead of a proof of the validity of a (logically different) CNF-formula.
This duality is not specific to consolution but applies to every calculus with clause sets as
data structure. It gives us the freedom to directly relate derivations in e.g. model elimination
(which is usually formulated in the refutational setting) and consolution (which was formulated
in Eder’s theorem in the affirmative setting).

Consolution can also be explained from the background of the connection method (cf. (Bibel,
1987)). Here, clause are called matrices, and the method is concerned with proving that
every path through this matrix contains two complementary literals, called connections in this
framework (a path through a matrix is built by selecting exactly one literal from every clause
in the matrix).
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To illustrate consolution we use an example from (Eder, 1991):

The three clauses � 	 � � � , �  	 � � � and  � are represented in the connection method as a
matrix � :

	
�

 	
�

 �

Thus the possible paths through this matrix are � 	 �  	 �  � � , � 	 � � �  � � , � � �  	 �  � � and
� � �  � � . Consolution shares with the connection method the idea of showing that every path
contains a connection. Consolution does so by combining partial paths through a matrix to even
longer partial paths and thereby ruling out paths containing a connection. The following tree is
a proof tree in consolution. The nodes are marked with path sets, e.g. � � 	 � � � � � � �  	 � � � � � �
is a set with three partial paths through the two leftmost clauses in the matrix � . Now, in an
inference the cross product of the elements of the parent nodes is built, and paths containing
connections are deleted.

� � � � � � � � � � �  � � � � � � �

� � � � � � � � � �  � � � � � � � � �  � � �

� �

� � � � � � � � � � � � � �

� � � � � � � � � � � � � � � �

The root of this tree is the empty path set, which proves that all paths through � are comple-
mentary.

3.1.2 Formal Definition

To introduce consolution formally we need the following definitions.

A connection in a set of clauses is a pair of literals which can be made complementary by
instantiation. Let � � 1

� 	 	 	 � � 
 � be a clause set. A path through � C1
� 	 	 	 � Cn

� is a finite
sequence of literals

�
1 �    � � 


where every
� �

is a literal in � �
(for all � � 1 	 	 	 � ). Define

� � � � 
 �
1 �    � � 
 � � � 
 if � � 1
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and � � � � � 
 �
1 �    � � 
 � � �

1 �    � � 
 � 1 if � � 1

A path � � �
1 �    � � 
 immediately extends to a path q iff � � � iff

� � � � 
 0 � � � � � : � � �
1 �    � � � � � � � � �

1 �    � � 

For the transitive closure we say that a path � extends to a path q iff � � � � . The partial order� on paths is defined as

� � � iff � � � or else � � � �
A path set is a finite multiset of paths. Multisets are like sets, but allow multiple occurrences
of identical elements. Formally, a multiset can be introduced as a function 	 over a certain
domain that maps every element of the domain to a natural number. For convenience we will
use set-notations. For example the set for which 	 
 � � � 3 and 	 
 
 � � 1 and 	 
 � � � 0 for
all other values can be written as � � � � � � � 
 � . As operators for multisets we will use the usual
set operators with the obvious intended meaning.

In (Eder, 1991) paths are simply sets and thus the above operations
� � � �

,

� � � � �
and extension

are unnecessary or rather their effect can be achieved by the usual set operations. Furthermore,
the original calculus computes with sets of paths instead of multisets. In (Baumgartner and
Furbach, 1992) we argue that our modified calculus is the appropriate formal base for expressing
other calculi. Since the arguments given for the modifications carry over to the theory case, we
refer the reader to (Baumgartner and Furbach, 1992) for that discussion. The next definitions
are adaptions of the ones in (Eder, 1991) towards our data structures.

If � is a clause � � � �
1
� 	 	 	 � � 
 � then the path set of C is given by the path set�  � � �

1
� 	 	 	 � � 
 �

The product pq of two paths � and � is the path � � � . The product
� �

of two path sets
�

and
�

is defined as� � � � � � � � � �
and � � � �

For ease of notation we write �  �
as an abbreviation for � � �  �

.

In the sequel we are also concerned with trees, whose nodes are labelled with literals, except
for the root which remains unlabelled. Such trees can be conveniently represented by path
sets by simply taking the sequence of the labels

�
1
� 	 	 	 � � 
 of a branch in the tree as a path�

1 �    � � 
 in the corresponding path set. Then the
� � � �

operation of above denotes the leaf
of a branch. This representation is not into: although every such tree can be represented as a
path set, there are path sets that may stem from non-isomorphic trees.

In order to define the model elimination and matrix calculi later in this section, we have to
introduce ferns, which are trees whose shape is pictorially as follows:
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� 1
1    �

1    � �
1

1

� 1
2    �

2    � �
2

2

...

� 1
    � 
    � � �


� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

More formally, a fern F of C1
� 	 	 	 � Cn with trunk L1 �    � Ln is the smallest path set

�
satisfying

the following conditions:

1. � �
is a clause containing the literal

� �
, for all � � 1 	 	 	 � .

2.
�

1 �    � � 
 � �

3.
�

1 �    � � � � 1 � � � �
, for all � � 1 	 	 	 � , for all

� � � � � � � � �
The following concepts will be used in the inference rule below:

Definition 3.1 (Spanning MGU) A substitution � is a spanning MGU for a path set Q iff � is
a most general substitution such that every element in Q� contains syntactical complementary
literals. �
Definition 3.2 (Shorteningof paths) A path set

�
is obtained from a path set

�
by shortening

of paths if there is a surjective mapping f :
� � �

such that f 
 p � � p holds for all p � �
. �

Definition 3.3 (Simplification) A path set 	 is obtained from a path set
�

by simplification
iff

A) there exists a spanning MGU � for some subset Q 
 P, and

B)
� B is obtained from

� � by deleting zero or more paths containing complementary
literals, and

C)
� C is obtained from

� B by shortening of zero or more paths, and

D) 	 is obtained from
� C in the following way: for every path p � � C zero or more, but

not all paths are deleted that are equal to p as a set of literals.
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�
The motivation for the term “equal as a set of literals” in item D comes from the desire to
simulate the behaviour of sets in Eder’s original consolution. See (Baumgartner and Furbach,
1992) for details.

Definition 3.4 (Consolution inference) (Sequence Consolution) The inference rule sequence
consolution is defined as follows � �

	
if there exists a variant

� �

of
�

which does not have variables in common with
�

such that 	
is obtained from

�  � �

by simplification. 	 is called a sequence consolvent of
�

and
�

.

A derivation of a matrix M is a finite sequence 
 � 0
� 	 	 	 � �

n
� of path sets such that the following

conditions hold:

1. For all k � 1 � 	 	 	 � n, the set
�

k

(a) is a path set
�

C of a clause C � M, or

(b) is a consolvent of
�

i and a new variant of
�

j for some i � j � k.

2.
�

n � � �
In order to express linear calculi, such as model elimination a slightly modified definition is
necessary. Thus, a linear derivation of a matrix M is a finite sequence 
 � 0

� 	 	 	 � �
n
� of path

sets such that the following conditions hold:

1.
�

0 is a path set
�

C of a clause C � M.

2. For all k � 1 � 	 	 	 � n, the set
�

k is a consolvent of
�

k � 1 and a new variant of a path set�
C of a clause C � M.

3.
�

n � � �
�

We will not give an example of consolution here, because it would be subsumed by the theory
consolution examples presented below. Instead we conclude non-theory consolution with the
following theorem.

Theorem 3.1 (Soundness and completeness of consolution) (Eder, 1991) A formula in dis-
junctive normal form is valid if and only if there is a derivation of its matrix by consolution.

Together with a theorem from (Baumgartner and Furbach, 1992) which states that every
consolution derivation can be stepwisely simulated by a sequence consolution derivation, the
completeness of sequence consolution follows.
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3.2 Theory Consolution

As motivated in the introduction we take apart the knowledge of the domain (i.e. the theory)
from the program clauses. Formally, a theory is a satisfiable set of universally quantified
formulas.

A
�

-interpretation is an interpretation satisfying the theory
�

. A
�

-interpretation
� �

-satisfies
a clause set � iff

�
simultaneously assigns true to all ground instances of the clauses in � .�

-(un-)satisfiability and
�

-validity of clause sets are defined on top of this notion as usual.

The restriction to universally quantified theories, shortly universal theories, is necessary bec-
ause precisely for those theories a Herbrand theorem of the following form holds (Petermann,
1991b).

Theorem 3.2 A clause set M is
�

-unsatisfiable if and only if there is a finite set of ground
instances of clauses from M which is

�
-unsatisfiable.

Similar to the non-theory case a Herbrand theorem of this form is the basis for any completeness
proof for a calculus which relies on the co-operation of foreground and background reasoning.
The restriction is not serious in principle because every theory may be substituted by an
equivalent universal theory. However, equivalent means here equivalence with respect to
theory-satisfiability and up to the enrichment of the signature by Skolem functions.

3.2.1 The Interface Between General and Dedicated Reasoner

In the present subsection we define the interface between the foreground reasoner, consolution,
and the background reasoner. This interface is constituted by three notions. Firstly, we have
to generalize the concept of “complementary pair of literals” to the theory case. Unlike in the
non-theory case, there is no general syntactic characterization in the theory case. Therefore
we will give a semantic pendant which is that of a “theory complementary set of literals”.
Secondly, we have to generalize the notion of “unifier”. The task of the background reasoner
is to construct from candidates given by the foreground reasoner “theory complementary
sets of literals” which play the role of elementary arguments in the course of the refutation.
This construction is carried out by instantiating the candidates. We will call the respective
substitutions “theory refuters”. Thirdly, in order to be able to treat partial theory reasoning
too we introduce the notion of “theory residue”.

Definition 3.5 Let S � � L1
� 	 	 	 � Ln

� be a literal set. S is called
�

-complementary iff the
existentially quantified conjunction

� 
 L1
� 	 	 	 � Ln

� is
�

-unsatisfiable. A
�

-complementary
set is called minimal

�
-complementary iff every true subset is not

�
-complementary. �

Equivalently to this definition it holds that � �
1
� 	 	 	 � � 
 � is

�
-complementary iff every ground

instance of
�

1
� 	 	 	 � � 
 is

�
-unsatisfiable iff the universally quantified disjunction � 
 �

1
�
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	 	 	 � � 
 � is
�

-valid.

There is a subtle difference between the
�

-complementary of a literal set and its
�

-unsatisfiability,
when read as a set of unit clauses, i.e. if the variables were � -quantified. These notions are the
same only for ground sets. Consider, for example, a language with at least two constant sym-
bols

�
and 
 and the “empty” theory � . Then � � � � 
 � � �  � 
 � � � is, when read as a clause set,

� -unsatisfiable, but � is not � -complementary, because the conjunction
� � � � 
 � 
 � � �  � 
 � � �

is not � -valid (because the interpretation with
� 
 � 
 � � � �

�
� � � �

and
� 
 � 
 
 � � � � � � �

is a
model). However, when applying the substitution � � � � � � � to � the resulting set � � is
� -complementary.

The importance of “complementary” arises from its application in inference rules, such as
resolution, which for soundness reasons have to be built on top of complementarism. Since
we deal with theory inference rules, we had to extend the usual notion of “complementarism”
to “

�
-complementarism”. As a further example consider the theory � of equality (section

4). Then � � � � 
 � � � � �

�

 � � �  � 


�


�


 � � � � � is � -unsatisfiable but not � -complementary.
However after application of the substitution � � � � � � � � � � � , the set � � is � -
complementary. Such substitutions will be called refuters. As with non-theory consolution,
the theory consolution derivations should be computed at a most general level; this is achieved
by most general refuters. More formally we define:

Definition 3.6 A substitution � is a
�

-refuter for S iff S� is
�

-complementary. Conversely, S
is called

�
-refutable iff a

�
-refuter exists for it. If S� is minimal

�
-complementary then S is

also called minimal
�

-refutable by � . A set of substitutions is a complete set of
�

-refuters for
S (or short: CSR� 
 S � ) iff

1. for all � � CSR 
 S � : � is a
�

-refuter for S (Correctness)

2. for all
�

-refuters � for S:
there is a � � CSR 
 S � and a substitution � � such that � �var 
 S � � 
 � � � � �var 
 S �
(Completeness)

�
A “partial” variant of

�
-refuters is as follows:

Definition 3.7 A pair 
 � � R � , where � is a substitution and R is a literal, is a
�

-residue of S iff
S� � � R� is minimal

�
-complementary. �

The prefix “
�

-” is often omitted in the sequel.

In this context it might be interesting to know that our notion of theory refuter generalizes
the notion of rigid E-unifier (Gallier et al., 1990) to more general theories than equality (see
(Bürckert, 1990a) for a proof). A dual notion, “unifier with respect to

�
-complementary literal

sets”, has been studied within an affirmative setting (Petermann, 1991b). Constraint theories,
equational theories and simple taxonomic theories have been discussed there as special cases.
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To give an example of theory refuters assume that the theory consists solely of the following
formula:

� � � � � : �
� � 
 � � � � � � � � � 
 � � �

Now consider the literal set

� � � �
� � 
 � � �  � � � � � � 


�
� � � � � 
 � � � �

Then

� � � � �
�

� � � � � 
 � � �
is a

�
-refuter for � , because the formula

� � � � � 
 �
� � 


�
� � � � � 
 � � � �  � � � � � � 


�
� � � � � 
 � � � �

is
�

-unsatisfiable. � � is even minimal
�

-complementary, as any true subset of � � can be
ground instantiated to a

�
-satisfiable set. The substitution � � � � �

�
� � � � � 
 � � � is not a�

-refuter for � , because
� � � � 
 �

� � 

�

� � � � � 
 � � � �  � � � � � � 

�

� � � � � 
 � � � � is not
�

-unsatisfiable.
This can be seen by replacing, say, � by

�
and � by 
 and finding a model.

The semantics of a residue 
 � � � � of � is given as follows:
�

is a logical consequence of � � .
Operationally,

�
is a new goal to be proved. For example let � � � � � 
 � � � � �

�

 � � � . Then


 � � � � � � � 

�


 � � � � is an � -residue of � � , since

� � � � � � � � �  � 

�


 � � � � � � � 
 � � � � �

�

 � � �  � 


�

 � � � �

is minimal � -complementary.

If desired, a minimality requirement stating that no refuter is an instance of another can be
added to the definition of � � � . However it is not required for correctness or completeness
issues; even more it may be advisable to leave minimality away, as there are cases where a
complete set of minimal refuters may not exist (See (Fages and Huet, 1986) for a proof in the
context of theory unifiers).

3.2.2 Formal Definition of Theory Consolution

Being equipped with the definition of the consolution calculus, a generalization to a theory
consolution calculus is fairly straightforward now.

At first the notion of product has to be generalized: the product � 1 � 2
	 	 	 � 
 of � paths� 1

� � 2
� 	 	 	 � � 
 is the path � 1 � � 2 �    � � 
 . The product

�
1
�

2
	 	 	 � 
 of � path sets

�
1
� �

2
� 	 	 	 � � 


is defined as�
1
�

2
	 	 	 � 
 � � � 1� 2

	 	 	 � 
 � � � � � �
for all � � 1 	 	 	 � �
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Definition 3.8 (Spanning
�

-refuter) A substitution � is a spanning
�

-refuter for a path set�
iff � is a

�
-refuter for every q � �

when q is read as a set of literals. �
Simplification is generalized in the following way:

Definition 3.9 (Total theory simplification) A path set 	 is obtained from a path set
�

by
total theory simplification iff

A) the path set
� A is obtained from

�
by application of some substitution � to some

� 
 �
.

B) the path set
� B is obtained from

� A by deleting zero or more paths containing
�

-
complementary literals.

C)
� C is obtained from

� B by shortening of zero or more paths, and

D) 	 is obtained from
� C in the following way: for every path p � � C zero or more, but

not all paths are deleted that are equal to p as a set of literals.

�
The substitution � applied in A) need not necessarily be a

�
-refuter or to be a most general

substitution. This enables e.g. application of a factorisation substitution as in resolution.

Deletion of duplicate paths modulo ordering of literals in D) allows to simulate the set data
structure of paths and of path sets in consolution.

Now the inference rule can be defined. It generalizes from 2 to � path sets in the premise:

Definition 3.10 (Theory consolution inference) The inference rule:

�
1

	 	 	 �
n

	
if the

�
i are pairwise disjoint path sets, and 	 is obtained from the product

�
1

	 	 	 �
n by

simplification. We say then that the path set 	 is a theory consolvent of the path sets�
1
� 	 	 	 � �

n. �
Next the notion of derivation has to be adapted.

Definition 3.11 A theory derivation of a matrix M is a finite sequence 
 � 0
� 	 	 	 � �

n
� of path

sets such that the following conditions hold:

1. For all k � 1 � 	 	 	 � n, the set
�

k

(a) is a path set
�

C of a clause C � M, or

(b) is a theory consolvent of new variants of path sets
�

i1
� 	 	 	 � �

ik where i1
� 	 	 	 ik

� k.
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2.
�

n � � �
A linear theory derivation of a matrix M is a finite sequence 
 � 0

� 	 	 	 � �
n
� of path sets such

that the following conditions hold:

1.
�

0 is a path set of a clause C � M.

2. For all k � 1 � 	 	 	 � n, the set
�

k is a theory consolvent of
�

k � 1 and new variants of path
sets

�
C1

� 	 	 	 � �
Cn where the Ci (for i � 1 	 	 	 n) are clauses in M.

3.
�

n � � �
�

It should have become clear from the preceding definitions that consolution has some open
parameters (the commitment to the derivation strategy, and the simplification). Thus one
cannot speak of the consolution calculus. Instead consolution should be interpreted as a
method that can be instantiated to several calculi. This will be done in the following sections
in a goal-oriented way.

3.2.3 Example

This example is intended to trace through the several intermediate steps in a consolution
inference. The parameter settings are chosen “at random”.

Consider this excerpt from the example in the beginning of this section, consisting of the theory�
and the clause set

�
:

�
: (T-1) � � 
 
 �

�
� �

� � 
 � � � � � � � � � � 
 � � � � � � � � � � 
 � � �
(T-3) � � 
 �

� � 
 � � � � � � � � � 
 � � �
�

: (1) �  � � � � � � 

� � � � � �  �

� � 
 � � �
(2) � � � � � � � � 


� � � � � �
(3) � �

�
� �

� � 
 � � � �
� � 
 � � �

We will show a total inference step, using clauses (1), (2) and (3). Then the following inference
can be made:2

 � � � � � � 

� � � � � �  �

� � 
 � �� � � � � � � 

� � � � �

�
�
� �

� � 
 � � � �
� � 
 � �

 �
� � 
 � � � � � � � � � � 


� � � � �
2In this presentation style the input path sets are written in separate rows; the set braces are left away.
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Let us have a detailed look at how this result can be achieved: in a first step the product of the
path sets of clauses (1), (2) and (3) is computed:� � �

1
�

2
�

3 � �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
�
� �

� � 
 � � �
 � � � � � � 


� � � � � � � � � � � � � 

� � � � � � �

� � 
 � � �
 �

� � 
 � � � � � � � � � � 

� � � � � � �

�
� �

� � 
 � � �
 �

� � 
 � � � � � � � � � � 

� � � � � � �

� � 
 � � �
Then

�
is simplified:

A) Due to (T-1), a
�

-refuter for the first underlined path is � � �
� � � � � , and due to (T-3),

� � �
� � � � � is a is a

�
-refuter for the second path. In total we build � � � � �� � � � � � �

� � � � � and apply it to
�

.

B) 	 � is obtained from
� � by deletion of the underlined paths.

	 � � �  �
� � 
 � � � � � � � � � � 


� � � � � � �
�
� �

� � 

� � � � � �

 �
� � 
 � � � � � � � � � � 


� � � � � � �
� � 


� � � � � �
C) Shorten to the underlined paths in 	 � and obtain:

	


� �  �
� � 
 � � � � � � � � � � 


� � � � � �
 �

� � 
 � � � � � � � � � � 

� � � � � �

D) Obtain the above consolvent from 	


by deleting one of the duplicate occurrences.

3.3 Partial Theory Consolution

The calculus from above does not compute with residues. A partial variant can be defined by
replacing “application of a substitution” in total theory consolution with “appending a residue
to a path”.

Definition 3.12 (Extension with a
�

-residue) A path p� � Res is obtained from a path p by
extension with a

�
-residue 
 � � Res � iff 
 � � Res � is a

�
-residue of the literal set of p. �

Definition 3.13 (Partial theory consolution) The inference rule partial theory consolution
is defined in the same way as total theory resolution, except that in simplification step A) is
changed in the following way:

A) the path set
� A is obtained from

�
by replacing a single occurence of a path p � �

by
p� � Res, which is obtained from p by extension with a

�
-residue.

The partial theory consolution calculus consists of the inference rules total theory consolution
and partial theory consolution �
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In (Stickel, 1985) residues are introduce on the ground level in a dual way and more generally
as a set of literals instead of a single literal: a set � �

1
� 	 	 	 � � � � is a

�
-residue of a formula

� iff � � �
1

� 	 	 	 � � � is
�

-complementary. Equivalently, this means that the disjunction�
1

� 	 	 	 � � � is a logical
�

-consequence of � . Since this generalisation is straightforward
we have omitted it for the sake of simplicity.

For an example consider again the same theory and clauses (1) and (3) as above in total theory
consolution. Again, the open parameters of consolution are set at random. Selecting from
clauses (1) and (3) the literals  � � � � � � 


� � � � � and �
�
� �

� � 
 � � (respectively) the following
inference can be made:

 � � � � � � 

� � � � � �  �

� � 
 � �
�

�
� �

� � 
 � � � �
� � 
 � �

�
� � 
 � � �  �

� � 
 � � �  � � � � � � � 

� � � � �

Let us have a detailed look at how this result can be achieved: in a first step the product of the
path sets of clauses (1) and (3) is computed:� � �

1
�

3 � �  � � � � � � 

� � � � � � �

�
� �

� � 
 � � �
 � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � � �

�
� �

� � 
 � � �
 �

� � 
 � � � �
� � 
 � � �

Then
�

is simplified:

A) The above underlined path is selected for extension with a residue 
 � � � � ; a residue for
this path is 
 � � �

� � � � � �  � � � � � � � 

� � � � � � . Applying the substitution � �

� � � �
and

extending the selected path with  � � � � � � � 

� � � � � yields:

	 �

� �  � � � � � � 

� � � � � � �

�
� �

� � 

� � � � � �  � � � � � � � 


� � � � � �
 � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � � �

�
� �

� � 

� � � � � �

 �
� � 
 � � � �

� � 
 � � �
B) 	 � � 	 �

, i.e. no path is deleted.

C) Shorten to the underlined paths in 	 � and obtain:

	


� �  � � � � � � � 

� � � � � �

�
� � 
 � � �

 �
� � 
 � � �

 �
� � 
 � � �

D) Obtain the partial theory consolvent as exposed above from 	


by deleting one of the
duplicate occurrences of  �

� � 
 � �
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Now we have defined the formal framework that can be instantiated to the various theory
calculi. Let us quickly summarize what “parameters” have to be instantiated in the theory
consolution calculus:

� Concerning derivation: The function

�
and the commitment to a non-linear or linear

strategy.
� Concerning simplification: The parameters of step A (application of a substitution or

extension with a residue), step B (deleting complementary paths), step C (shortening of
paths) and step D (deleting occurrences).

3.4 Theory Resolution

We assume the reader to be familiar with the resolution calculus and its terminology (see e.g.
(Loveland, 1978; Chang and Lee, 1973) for introductory textbooks). First we will explain the
original version of theory resolution (Stickel, 1985). Then, after the formal definition based
on theory consolution is given, completeness will be proved.

3.4.1 Informal Explanation

In (Stickel, 1985) several variants of a theory resolution calculus are defined. One of them
is called narrow total theory resolution. We will demonstrate a first-order version of this
rule. It takes � clauses as inputs and selects one literal from each of the � clauses such that
these literals can be instantiated to a theory-complementary set. Then the resolvent is built
as in ordinary resolution by applying the substitution and collecting the rest of the clauses.
Thus narrow theory resolution is a straightforward “semantical” generalization of the ordinary
resolution rule.

Example. This is an excerpt from the example in the introduction:

�
: (T-1) � � 
 
 �

�
� �

� � 
 � � � � � � � � � � 
 � � � � � � � � � � 
 � � �
(T-3) � � 
 �

� � 
 � � � � � � � � � 
 � � �
�

: (1) �  � � � � � � 

� � � � � �  �

� � 
 � � �
(2) � � � � � � � � 


� � � � � �
(3) � �

�
� �

� � 
 � � � �
� � 
 � � �

We will show an inference step, using from clauses (1), (2) and (3) the literals  � � � � � � 

� � � � � ,� � � � � � � 


� � � � � and �
�
� �

� � 
 � � (respectively) as a
�

-refutable literal set. It can easily be seen
that � � �

� � � � � is a
�

-refuter for this set (join the clause form of (T-1) to this set and find
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a resolution refutation). Hence the following resolvent can be built (the selected literals are
underlined) :

�  � � � � � � 

� � � � � �  �

� � 
 � � �
� � � � � � � � 


� � � � � �
� �

�
� �

� � 
 � � � �
� � 
 � � �

�  �
� � 
 � � � �

� � 
 � � � with refuter � � �
x � fred �

It should be noted that sometimes factorization has to be carried out for completeness reasons.
This can either be done by an extra inference rule, or by incorporating factorization into the
resolution inference rule. Since factorization is not central for the idea of theory reasoning, we
will skip over it for the moment.

The partial variant of theory resolution is similar to the total theory resolution rule, except that
the resolvent additionally includes a residue in the resolvent. Stickel’s ground calculus allows
as residues disjunctions � 1

� 	 	 	 � � � of literals. The disjunction � � � 1
� 	 	 	 � � � is a

residue of a conjunction � � � 1
� 	 	 	 � � � if � implies � . Here we will restrict ourselves to

the important special case where the residue is a single literal � 1. A generalization would be
straightforward if desired.

Example. Using the example of above, we have that


 � � �
� � � � � �  � � � � � � � 


� � � � � �
is a residue of

�  � � � � � � 

� � � � � � �

�
� �

� � 
 � � �
which is built from literals in clauses (1) and (3). Thus we arrive at the following partial theory
resolution inference:

�  � � � � � � 

� � � � � �  �

� � 
 � � �
� �

�
� �

� � 
 � � � �
� � 
 � � �

�  � � � � � � � 

� � � � �  �

� � 
 � � � �
� � 
 � � � with residue � �

x � fred � 	 
 thinker � fred � �
Now resolving this resolvent in an ordinary resolution step against (2) we could arrive at the
same clause as in the above total theory step. As a general property one could say that the
purpose of partial theory reasoning is to approximate a total theory reasoning step in a sequence
of partial steps, followed by one single total step.

A problem of Stickel’s original definition is that it allows one to derive many redundant clauses.
For example, in the theory of strict orderings from

� � 
 and 
 � � one might infer the residue� � � , but also residues like  � � � � � � � ,  � � � �  � � � � � � � � � , 	 	 	 . Thus in
practice it is inevitable to seek for suitable restrictions. See again (Stickel, 1985) for a more
detailed discussion how redundant residues can be omitted.

So far we have discussed narrow theory resolution. In (Stickel, 1985) a more general variant
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called wide theory resolution is defined. It differs from narrow theory resolution in that no
longer are only single literals of the clauses considered in inferences, but instead subclauses
are passed to the theory reasoner. This however complicates the theory reasoner, since it must
operate on clause sets instead of literal sets. Similar to the narrow case, a total and a partial
variant can be defined.

3.4.2 Formal Definition

The total theory resolution inference rule can be defined as an instance of theory consolution.
For the total version we need two inference rules: total theory resolution and factorisation.
For the former � clauses have to be chosen and they have to be put into a format suitable for
the theory consolution operation. The simplification operation in theory consolution has to
be defined in such a way that the consolvent corresponds precisely to the theory resolvent in
theory resolution. More formally we arrive at the following inference rule:

Definition 3.14 (Total theory resolution) The inference rule total theory resolution is defined
as follows: � �

L1 � � R1

...� �
Ln � � Rn

	
where

1. � Li
� � Ri are pairwise variable disjoint clauses (for i � 1 	 	 	 n � n � 1).

2. � L1
� 	 	 	 � Ln

� is
�

-refutable.

3. The simplification of the product� � � �
L1 � � R1  	 	 	  � �

Ln � � Rn

is done in the following way:

A) Q� is obtained from
�

by application of the
�

-refuter � of � L1
� 	 	 	 � Ln

� (which
exists by 2.)

B) Delete every path 
 L1 �    � Ln
� � from

� � and obtain 	 B.

C) 	 C is obtained from 	 B by shortening every path in 	 B according to

f 
 K1 �    � Km
� � Ki

where i � � 1 � 	 	 	 � m � such that Ki
�� � L1

� 	 	 	 � Ln
� �

D) 	 is obtained from 	 C by deleting for every path all its duplicate occurences.
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�
In simplification step C) the path sets computed so far are shortened to path sets of length
1. Thus resolution “forgets” information that might possibly be useful later. Indeed, matrix
oriented calculi keep this information and make use of it. Below we will proof that this
definition is indeed correct wrt. the standard theory resolution inference. More precisely we
will show that

	 � � � �
1� � � �

1 � � � � � � � �
� � � � � � � � � � �

As with ordinary resolution, theory resolution requires for completeness reasons factoring, i.e.
sometimes in a refutation a parent clause � must be instantiated to � � where � is a most
general unifier of some literals in � . This can be achieved in the consolution framework by
instantiating the theory consolution inference in the following way:

Definition 3.15 (Factorisation) The inference rule Factorisation is defined as follows:

�
C

	
where

1. � is a most general unifier for some � L1
� 	 	 	 � Ln

� 
 C.

2. The simplification of
�

C is done in the following way:

A) Obtain
� A � �

C � .

B) No path is deleted, i.e.
� A � � B.

C) No shortening is applied, i.e. f 
 p � � p for every path. This yields
� C � � B.

D) 	 is obtained from 	 C by deleting for every path all its duplicate occurences.

�
Building on these inference rules we define:

Definition 3.16 A total theory resolution refutation is defined as a theory consolution deriva-
tion where every theory consolution inference either is a total theory resolution inference or a
factorisation inference. �
Example. Consider the theory and clauses as used above in the informal presentation of
theory resolution. We will redo the above inference step. So we consider again from clauses
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(1), (2) and (3) the literals  � � � � � � 

� � � � � , � � � � � � � 


� � � � � and �
�
� �

� � 
 � � (respectively) as�
-complementary literal set. Then the following inference can be made:

 � � � � � � 

� � � � � �  �

� � 
 � �� � � � � � � 

� � � � �

�
�
� �

� � 
 � � � �
� � 
 � �

�
� � 
 � � �  �

� � 
 � �
Observe that the resulting path set encodes the same clause as in the example of the above
informal presentation. Let us have a detailed look at how this result can be achieved: in a first
step the product of the path sets is computed:� � �

1
�

2
�

3 � �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
�
� �

� � 
 � � �
 � � � � � � 


� � � � � � � � � � � � � 

� � � � � � �

� � 
 � � �
 �

� � 
 � � � � � � � � � � 

� � � � � � �

�
� �

� � 
 � � �
 �

� � 
 � � � � � � � � � � 

� � � � � � �

� � 
 � � �
Then

�
is simplified:

A) The
�

-refuter � � �
� � � � � for the literals in the underlined path

 � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
�
� �

� � 
 � � 
 � �
is applied to

�
.

B) 	 � is obtained from
� � by deletion of 
 � �

	 � � �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � � � � � � � � � 


� � � � � � �
�
� �

� � 

� � � � � �

 �
� � 
 � � � � � � � � � � 


� � � � � � �
� � 
 � � �

�

C) Shorten to the underlined paths in 	 � and obtain, modulo multiplicity of paths:

	


� � �
� � 
 � � �

 �
� � 
 � � �

 �
� � 
 � � �

It can be verified that this shortening is indeed achieved by the specification of the
definition.

D) Obtain � from 	


by deleting the underlined path.

The partial variant of theory resolution is obtained in much the same way:

Definition 3.17 (Partial theory resolution) The inference rule partial theory resolution is
defined as follows:
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�
R1 �

�
L1 �

...�
Rn �

�
Ln �

	
where

1. � Li
� � Ri are pairwise variable disjoint clauses (for i � 1 	 	 	 n).

2. There is a most general residue 
 � � Res � for � L1
� 	 	 	 � Ln

� .

3. The simplification of the product� � 
 � �
L1 � � R1

�  	 	 	  
 � �
Ln � � Rn

�
is done in the following way:

A)
�

has the form� � � L1 �    � Ln
� � � �

Obtain

� 
 L1 �    � Ln
� � � Res � � � � �

from
�

by extension with a
�

-residue 
 � � Res � for L1 �    � Ln (which exists by 2).

B) Let 	 B � 	 A, i.e. do not delete any complementary path.

C) 	 C is obtained from 	 B by shortening every path in 	 B according to

f 
 K1 �    � Km
� � Ki

where i � � 1 � 	 	 	 � m � such that Ki
�� � L1

� 	 	 	 � Ln
� �

D) 	 is obtained from 	 C by deleting for every path all its duplicate occurences.

A partial theory resolution refutation is defined as a theory consolution derivation where every
theory consolution inference is an “total theory resolution” or “partial theory resolution” �
By shortening the path 
 �

1 �    � � 
 � � � � �
� �

to the path �
� �

(due to simplification step C) at
leat one occurence of such a path must be contained in the result) and shortening the other paths
to

� �
1 � � � � �

� � � as in total theory resolution, and finally “collapsing” all multiple occurrences
of paths into one occurrence, we obtain precisely the path set corresponding to the resolvent
of the

traditional inference rule.
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Example. Consider again the same theory and clauses as above. We will show a partial theory
resolution step, using from clauses (1) and (3) the literals  � � � � � � 


� � � � � and �
�
� �

� � 
 � �
(respectively) to derive the residue  � � � � � � � 


� � � � � . Then the following inference can be made:

 � � � � � � 

� � � � � �  �

� � 
 � �
�

�
� �

� � 
 � � � �
� � 
 � �

 � � � � � � � 

� � � � � � �

� � 
 � � �  �
� � 
 � �

Observe again that the resulting path set encodes the same clause as in the example of the
above informal presentation. Let us have a detailed look at how this result can be achieved: in
a first step the product of the path sets is computed:� � �  � � � � � � 


� � � � � � �
�
� �

� � 
 � � �
 � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � � �

�
� �

� � 
 � � �
 �

� � 
 � � � �
� � 
 � � �

Then
�

is simplified:

A) The above underlined path

� �  � � � � � � 

� � � � � � �

�
� �

� � 
 � �
is selected for finding a most general residue; a most general residue for � is

�
� � � 
 � � �

� � � � � �  � � � � � � � 

� � � � � �

So we obtain by replacement of � � with

� �  � � � � � � 

� � � � � � �

�
� �

� � 

� � � � � �  � � � � � � � 


� � � � �
the path set

	 �

� �  � � � � � � 

� � � � � � �

�
� �

� � 

� � � � � �  � � � � � � � 


� � � � � �
 � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � � �

�
� �

� � 

� � � � � �

 �
� � 
 � � � �

� � 
 � � �
B) Let 	 � � 	 �

, i.e. do not delete any complementary path.

C) The result of the inference rule must be the path set corresponding to the clause
 � � � � � � 


� � � � � � �
� � 
 � � �  �

� � 
 � � . This path set, modulo multiplicity of paths,
is obtained from 	 � by shortening the paths such that the underlined subpaths in B) are
kept. This results in the path set

	


� �  � � � � � � � 

� � � � � � �

� � 
 � � � �
� � 
 � � �  �

� � 
 � � �
D) delete one occurrence of �

� � 
 � � in 	


to obtain 	 .
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3.4.3 Completeness

Completeness of the consolution-style total theory resolution calculus is obtained by simulating
another theory resolution resolution calculus known to be complete. This strategy was also
used for the non-theory case in (Eder, 1991). As a preliminary we cite from (Baumgartner,
1992b) a theory resolution calculus. The calculus defined there takes advantage of ordering
restrictions which we will omit below. This is legal for our purposes, since an ordered refutation
always is an unordered one as well. Thus, the completeness result for the ordered calculus as
developed in (Baumgartner, 1992b) holds as well for the unordered case.

Definition 3.18 ((Baumgartner, 1992b), Clausal Theory Resolution Calculus) The infe-
rence rules of the clausal theory resolution (CTR) calculus are defined as follows:

Clausal factoring:
C

C�
�

if � is a most general (syntactical) unifier
for some � L1

� 	 	 	 � Ln
� 
 C

Clausal theory resolution:
C1

	 	 	 Cn


 C1 � � � L1� � � � 	 	 	 � 
 Cn � � � Ln� � �
�

if � is a
�

-refuter for � L1
� 	 	 	 � Ln

� for
some L1 � C1

� 	 	 	 � Ln � Cn

In these inference rules, the Li’s are called the selected literals. Let M be a clause set. A
CTR-derivation of Cn from M is a sequence C1

� 	 	 	 � Cn where each Ci � M or is obtained by
an application of the above inference rules to k variable disjoint copies of clauses Cj1

	 	 	 Cjk

where j1
� i � 	 	 	 � jk

� i. A refutation of M is a derivation of the empty clause. �
This calculus is complete:

Theorem 3.3 ((Baumgartner, 1992b), Completeness of clausal theory resolution) Let
�

be a theory and M be a
�

-unsatisfiable clause set. Then there exists an CTR-refutation of M.

Building on this, we can prove the consolution-style version complete:

Theorem 3.4 (Completeness of Total Theory Resolution) Let
�

be a theory and M be a�
-unsatisfiable clause set. Then there exists a total theory resolution refutation of M.

Proof. The proof is in analogy to the corresponding theorem for the non-theory case in
(Eder, 1991). By the previous theorem it suffices to show that every clausal theory resolution
refutation can be simulated by step within total theory resolution.

Since the definitions of derivation are the same in total theory resolution and clausal theory
resolution the only non-trivial task is to show how to simulate the inference rules:
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1. Clausal theory resolution: Let

�
� � � 
 � 1 � � � �

1� � � � 	 	 	 � 
 � 
 � � � � 
 � � �
be the result of a clausal theory resolution step with selected literal

�
1
� 	 	 	 � � 
 and refuter

� . We have to show that �
� �

is the same set of literals as the total theory consolvent 	 of� �
1 �

� �
1 � � 	 	 	 � � � � �

� � � � , i.e. we have to show that �
� � � 	 . Since 	


is the same as 	

modulo multiplicity of occurences of same literals this is equivalent to prove
� � �

� �
iff

� � 	


(1)

By the given clausal resolution step we know that � �
1
� 	 	 	 � � 
 � is

�
-refutable by � . Hence

condition 2) in the definition of total theory resolution is satisfied. Then in simplification, the
product � is built and � is applied in step A). The resulting multiset � � can be written as

� � � � 
 � 1 �    � � 
 � � � �
� � � � � � � � � � (2)

In Step B)
�

-complementary paths are deleted which yields

	 � � � � � � � � � � � �
� 
 �

1 �    � 
 � � �
Then in step C) we obtain

	


� �
�


 � � � � � � � � � �
� 
 �

1 �    � 
 � � �
Note that by definition,

�
has to select a literal that is unequal to

�
1 � � 	 	 	 � � 
 � but paths

containing only these literals are deleted. Thus

�
is well-defined.

Now we can prove (1):
� � �

� �
iff

� � :
� � � � � � � � � � �

iff (since � � � � � � � � � �
� � � )

� �
� � � �

iff (by def. of 	 � ) � � � 
 �
1 �    � � � � 1

� � � � � 
 � � �
1 �    � � 
 � � � 	 �

iff (by def. of

�
)

�

 � � � � �

iff (by def. of 	


)
� � 	


2. Clausal factoring: Let � � be the result of a clausal factorisation step applied to � . We
have to show that � � is the same set of literals 	 as obtained by factorisation of

� 
, i.e.

we have to show that � � � 	 . Since 	


� 	 � � 	 �

� �  � is the same as 	 modulo
multiplicity of occurences of same literals this is equivalent to prove

� � � � iff
� � �  � (3)

This however is a trivial consequence of
� � � iff

� � � 
�
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3.4.4 Constrained Resolution

In (Bürckert, 1990a) the resolution calculus is extended with a framework for constraints, i.e.
semantic restrictions for quantified variables. The goal of this section is to show the relation
between this resolution principle and theory resolution as defined above.

In order to sketch the idea of the constrained resolution calculus (see (Bürckert, 1990b;
Bürckert, 1990a; Bürckert, 1992) for details) consider a clause like

� � 
  � � � � � � 
 � � � � � � � � 
 � � � � � � 
 � � �
stating that “persons sleep or eat”. In the spirit of constrained resolution this should be
expressed as a formula ( � sleeps or eats) over a restricted domain ( � is a person), i.e. the
clause:

� 
 � : � � � � � � 
 � � � 
 � � � � � 
 � � � � � � 
 � � �
As in theory resolution, constrained resolution distinguishes between foreground reasoning and
a background reasoning. The background reasoning is formalized by a restricted quantification
system (RQS), which consists of a signature ∆ with equality, a theory over ∆ (called the
restriction theory 	 ), and a set of open ∆-formulae (called the restrictions). The restriction
theory might be given by a class of ∆-structures or by some ∆-axioms. The restrictions, such
as � � � � � � 
 � � in the above example, play the role of an interface between foreground and
background reasoner.

The foreground language is defined by RQ-formulas over a signature Σ, which consist of the
usual first order formulas built from Σ and of formulas � 
 � : � � �

and
� 
 � : � � �

where
�

is a
RQ-formula and � is a restriction. The signatures Σ and ∆ must share the same set of function
symbols (they can always be extended in such a way) but must be disjoint in the predicate
symbols. Then the model-theoretic semantics of the RQ-formulas is confined to those models
that also obey the restriction theory 	 .

Let us continue the above example. Here an RQS named Tax might consist of the following
ingredients:

Tax: ∆ � : Predicate symbols: �
� � � � � � � � � , function symbols:

� � �
Axioms for 	 � : � �

� � 
 � � � � � � � 
 �
� � 
 � � � � � � � � � 
 � � � �

Restrictions: � � � � � � � 
 � � �

In order to complete the example we need a signature Σ and a set of RQ-formulas. Building
on the above clause and leaving Σ implicit, we give the following set of RQ-formulas to a
foreground reasoner:

(1’) � 
 � : � � � � � � 
 � � � 
 � � � � � 
 � � � � � � 
 � � �
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(2’)  � � � � � 
 � � � �

As an alternative notation for RQ-clauses one usually leaves quantifiers implicit and separates
the restrictions with ’ � � ’ from the rest of the clause:

�
:

(1)
� � � � � 
 � � � � � � 
 � � � � � � � � � � 
 � �

(2)  � � � � � 
 � � � � � � � � � �

The semantics of an RQ-clause � � � � can alternatively be given by relativizing to the
implication � � � .

Two RQ-clauses can be resolved by the RQ-resolution rule, which can be described as fol-
lows: select from disjoint variants of the clauses two literals � 
 �

1
� 	 	 	 � � 
 � and  � 
 �

1
� 	 	 	 � � 
 �

(respectively), and build the resolvent by joining the rest of the clauses; the restriction of
the resolvent is obtained by inheriting the restrictions of the parent clauses together with the
confrontations

� � � � �
of the arguments of the selected literals. As an optimization it suffices

to consider only those resolvents whose restriction is 	 -satisfiable. Thus we can build from
(1) and (2) by selecting the

� � � � � -literals the resolvent

(3)
� � � 
 � � � � � � � � � � 
 � � � � � � � �

As a difference to ordinary resolution it does not suffice to derive a single empty clause in
order to obtain a refutation. A refutation has been found if for each model � in the constrained
theory 	 there is an empty RQ-clause � � � � such that � is satisfied by � , i.e. � �� � .
In other words, if it can be shown that every model in 	 implies a contradiction (the empty
clause) then the RQ-clause set is 	 -unsatisfiable.

Constrained resolution derivations can roughly be mapped to theory resolution derivations as
follows: for every set � of selected literals in a theory resolution derivation in the correspon-
ding constrained resolution derivation a restriction � comes up, where � is interpreted as a
conjunction of literals. Since the solution of the restrictions can be delayed until all other
literals are resolved away, constrained resolution can be seen as a “lazy” strategy for theory
resolution. Note however that no instantiation takes place in RQ-inferences. For example, in
(3) the variable � is not instantiated to

� � �
. Things are different in theory resolution. Let us

compute the same example in theory resolution. The theory consists of the axioms 	 � , and
the clauses specification is as follows:
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(1”)  � � � � � � 
 � � � � � � � � 
 � � � � � � 
 � �
(2”)  � � � � � 
 � � � �

In constrained resolution the � � � � � � -literal is shifted to the constraint part as demonstrated
above. So only one resolvent can be built. Theory resolution admits two possible resolvents.
As a first possibility we could derive in a syntactic step

 � � � � � � 
 � � � � � � � � 
 � � � � � � 
 � �
 � � � � � 
 � � � �
� � � � � � 
 � � � � � � � � 
 � � � �

with 	 � refuter � � � � � � � . Since the theory-literal � � � � � � 
 � � is not selected this inference
roughly corresponds to the constrained resolution inference. As another possibility we could
select � � � � � � 
 � � in (1”) and obtain

 � � � � � � 
 � � � � � � � � 
 � � � � � � 
 � �
� � � � � 
 � � � � � � � � 
 � � � �

with 	 � refuter � � � � � � � , since �  � � � � � � 
 � � � � � is 	 � -complementary. In both cases,
however, � will be instantiated.

Here, constraint resolution is clearly advantageous compared to theory resolution. While
theory resolution blindly has to guess a refuter3, constrained resolution may delay this until
more information is available.

However constrained resolution has a serious drawback. Informally, the RQ-formulas must
not alter the meaning of a predicate symbol in ∆ defined by the restriction theory 	 . More
technically, only interpretations for RQ-formulas are considered whose reduct to ∆ is one of
the models in 	 , i.e. every RQ-interpretation is a conservative extension of a model in 	 . As
a sufficient criterion to achieve this, the disjointness of the signatures w.r.t. predicate symbols
(see above) is used.

This property marks an important difference between constraint resolution and theory resolu-
tion, since in theory resolution also non-conservative extensions of the background theory are
allowed: the foreground theory might “cut off” some models of the background theory. This is
advantageous because it allows one to split definitions for certain predicate symbols across the
background and the foreground theory. Take as an example equality, i.e. the background theory
is equality, where one usually has (positive) equations also in the foreground specification.

3Consider e.g. AC-unification which has an exponential number of solutions in the number of variables
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3.5 Theory Model Elimination

Model elimination is a refutational complete calculus for first order clause logic (Loveland,
1968). Not quite correctly, but instructively it can be seen as restricted version of linear
resolution with ancestor resolution, where ancestor resolution is restricted to s-resolution
(subsumption resolution: the ancestor clause minus its literal resolved upon must subsume
the near parent clause). Furthermore, the clauses are sequences (“chains”) rather than sets of
literals. However, collapsing multiple occurrences of equal literals in a sequence is achieved;
furthermore in its strong version, unifiable literals may be collapsed into a single occurrence
by the factorization rule.

The calculus presented in this section is not exactly model elimination, even in the non-
theory case; the main difference is that our calculus does not contain such improvements as
collapsing multiple occurrences of equal literals into one occurrence. This could be achieved
in our calculus by adding an additional factorisation inference rule; however we feel that
this topic is not essential for our purposes here, so it will not be considered any further. On
the other hand, for our calculus we have the independence of the computation rule, i.e. we
may nondeterministically select the next subgoal to be processed. So, Loveland’s original
computation rule is covered. For lack of a better name, and because of the many similarities
we prefer to speak of “model elimination”. A discussion of the differences compared with
Loveland’s calculus can be found in (Baumgartner and Furbach, 1992). The theory model
elimination calculus is introduced in (Baumgartner, 1992a).

Next we will informally explain a tree-oriented version of theory model elimination. Then,
after the formal definition based on theory consolution is given completeness will be proved.

3.5.1 Informal Explanation

We will follow the lines from (Letz et al., 1992) and define the inference rules as tree-
transforming operators. Then the calculus is much in the spirit of semantic tableau with
unification for clauses (see (Fitting, 1990)), but with an important restriction. This restriction
will be explained below and justifies using the new name — “tableau model elimination” —
instead of qualifying it as “analytical tableaux for clauses with unification”.

Equally, this calculus can be seen as a restriction of semantic tableau with unification for
clauses (see (Fitting, 1990)). This restriction will be explained below.

Example. This is an excerpt from the example in the introduction:

�
: (T-1) � � 
 
 �

�
� �

� � 
 � � � � � � � � � � 
 � � � � � � � � � � 
 � � �
(T-3) � � 
 �

� � 
 � � � � � � � � � 
 � � �
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�
: (1) �  � � � � � � 


� � � � � �  �
� � 
 � � �

(2) � � � � � � � � 

� � � � � �

(3) � �
�
� �

� � 
 � � � �
� � 
 � � �

Model elimination tries to construct a semantic tableau, where every branch is
�

-complementary
(“closed”). We have to pick a clause and construct an initial tableau; selecting clause (1) yields:

 � � � � � � 

� � � � �  �

� � 
 � ��
� � � � � � � �

� �
�

�
�

�
�

�
�

We will show a theory extension step, using from the left branch  � � � � � � 

� � � � � and from

clauses (2) and (3) the literals
� � � � � � � 


� � � � � and �
�
� �

� � 
 � � (respectively) as a
�

-refutable
literal set. It can easily be seen that � � �

� � � � � is a
�

-refuter for this set (join the clause form
of (T-1) to this set and find a resolution refutation). Hence the tableau can be extended at the
left branch with clauses (2) and (3) in such a way that a branch labelled with the complementary
literal set comes up:

 � � � � � � 

� � � � �  �

� � 
 � �

� � � � � � � 

� � � � �

�
�
� �

� � 

� � � � �

�
�

� � 
 � �

�
�

�
�

�
�

�
� �

�
�

�
�

�
�

�

�
�

�
�

�
� �

�
�

�
�

�
�

�

The path containing the set of
�

-unsatisfiable literals is closed, i.e. it is marked with an asterix
and the

�
-refuter is applied to the whole tree.

Such a closing of a path can also be done by the second inference rule, the reduction step:
if a path contains a set of literals that are theory complementary by some

�
-refuter � , it

can be closed and the MGR is applied to the entire tree. The branch ending in �
� � 
 � � can

be closed in a reduction step, because by (T-3) the literals �
� � 
 � � and  � � � � � � 


� � � � � are�
-complementary by

�
-refuter � � �

� � � � � .

This process has to be repeated until a tree is derived where all branches are marked with a
star. Then a refutation is found.
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3.5.2 Formal Definition

In the formalisation of this calculus we need only one inference rule, namely the extension
rule, because the reduction rule will become an instance of the extension rule:

Definition 3.19 (Total theory model elimination) The inference rule total theory extension
is defined as follows: � � � p ��

R1 �
�
L1 �

...�
Rn �

�
Ln �

	
where

1.
� � � p � is a path set.

2. � Li
� � Ri are pairwise variable disjoint clauses (for i � 1 	 	 	 n).

3. for some subset q of the literal set of front 
 p � the set q � � last 
 p � � L1
� 	 	 	 � Ln

� is minimal�
-refutable. Let

�
be a CSR for that set.

4. The simplification of the product� � 
 � � � p � � 
 � R1 �
�
L1 �  	 	 	  �

Rn �
�
Ln � �

is done in the following way:

A)
� � is obtained from

�
by application of a

�
-refuter � � �

for � q � L1
� 	 	 	 � Ln

�
(which exists by 2.)

B) Delete 
 p � L1 �    � Ln
� � from

� � and obtain 	 B.

C) Let � be the fern of L1
� R1

� 	 	 	 � Ln
� Rn with trunk L1 �    � Ln. Then obtain 	 C

from 	 B by shortening to the path set that is specified as follows:

	 C � � � � � � p � 
 � � � L1 �    � Ln
� � � � �

D) Delete some duplicate occurrences of some paths in 	 C to obtain 	 .

A total model elimination refutation is defined as a linear theory consolution derivation where
every theory consolution inference is a “total theory model elimination”. �
In terms of the traditional calculus, the path set

� � � � � is intended to represent the tableau
that is extended at its branch � . Then the effect of C) is to append to � the fern formed from
the clauses to extend with. It is due to the design of “derivation” and “simplification” that
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a sequence of tableau in a (traditional) theory model elimination derivation can be mirrored
by a sequence of path sets in the consolution-style theory model elimination. Of particular
importance here is step D) in simplification, where it is not exactly specified how many
duplicate paths should be removed: at the one extreme, if all but one occurrences of a branch
are removed then in effect more paths may get closed than in the corresponding traditional
extension step; at the other extreme, if no path is removed then, speaking in the terminology
of the original calculus, some additional branches may come up which are copies of already
present branches. Thus, if the original calculus is to be precisely expressed in terms of the
consolutions framework, step D) must be somewhere “in the middle” between both extremes.

Condition 3. might seem a bit complicated. Informally it expresses the requirement that the
leaf, as well as all literals in the extending branch together with some literals in the extended
branch form a minimal

�
-complementary set. Thus this condition generalizes the condition in

the non-theory case that in an extension step a leaf � must be closed with a clause containing
 � (of course this is the ground case and has to be lifted).

In the tree calculus by the extension step a branch gets closed. The corresponding action here
is to delete that branch in simplification step B).

Note that “Reduction step” is an instance of extension step in case � � 0.

Example. Consider the theory and clauses as used above in the informal presentation. We
will redo the above inference step. The initial tree to which we apply the extension step is
represented by the following path set obtained from (1):� � � � � � �  � � � � � � 


� � � � � �  �
� � 
 � � �

Here we choose � �  � � � � � � 

� � � � � . Clauses (2) and (3) yield the following path sets:�

1 � � � � � � � � � 

� � � � � ��

2 � � �
�
� �

� � 
 � � � �
� � 
 � � �

The path sets
� � � � � together with the path sets

�
1 and

�
2 are to be combined in the following

inference step:

 � � � � � � 

� � � � � �  �

� � 
 � �� � � � � � � 

� � � � �

�
�
� �

� � 
 � � � �
� � 
 � �

 � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � �  �

� � 
 � �
Observe that the resulting path set encodes the same tableaux as in the example of the above
informal presentation. Let us have a detailed look at how this result can be achieved: in a first
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step the product of the path sets is computed:� � 
 � � � � � � �
1
�

2 � �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
�
� �

� � 
 � � �
 � � � � � � 


� � � � � � � � � � � � � 

� � � � � � �

� � 
 � � �
 �

� � 
 � � � � � � � � � � 

� � � � � � �

�
� �

� � 
 � � �
 �

� � 
 � � � � � � � � � � 

� � � � � � �

� � 
 � � �
Then

�
is simplified:

A) The above underlined path

 � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
�
� �

� � 
 � � 
 � �
is selected for finding a

�
-refuter � ; a

�
-refuter for this path is � � �

� � � � � .

B) 	 � is obtained from
� � by deletion of 
 � �

	 � � �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � � � � � � � � � 


� � � � � � �
�
� �

� � 

� � � � � �

 �
� � 
 � � � � � � � � � � 


� � � � � � �
� � 
 � � �

C) Shorten to the underlined paths in 	 � and obtain, modulo multiplicity of paths:

	


� �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � �

 �
� � 
 � � �

 �
� � 
 � � �

It can be verified that this shortening is indeed achieved by the specification of the
definition.

D) Obtain � from 	


by deleting the underlined path.

The partial variant of theory model elimination can be defined in much the same way as total
theory resolution is modified to partial theory resolution. This is omitted here.

3.5.3 Completeness

Completeness of the consolution-style theory model elimination is obtained by simulating
another theory model elimination calculus known to be complete, namely the calculus from
(Baumgartner, 1992a). To distinguish it from the above introduced model elimination, we will
call this calculus tableaux model elimination.
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Tableaux Model Elimination

In (Baumgartner, 1992a) tableaux are introduced as so called literal trees, i.e. multiset of
branches, which form a tree, the nodes of which are labelled with literals. Note that without
this distinction between nodes and their labels, we get our multisets of paths. A literal tree � �
is obtained from a literal tree � by extension with a clause L1

� 	 	 	 � Ln at a branch b iff

� � � � � � 
 � � � 
 � � � � � � 1 	 	 	 � and
� �

is labelled with
� � �

In this case we also say that � � contains a clause
�

1
� 	 	 	 � � � rooted at 
 .

The term “to close a branch” means to attach an additional label “� ” to its leaf in order to
indicate that the branch is proved to be

�
-complementary. A branch is open iff it is not

labelled in that way.

Definition 3.20 (Total Theory Tableau Model Elimination) Let M be a clause set and
�

be
a theory. An initial model elimination tableau for M with top clause C is a literal tree that
results from extending the empty tree (the tree that contains only the empty branch) with the
clause C.

A model elimination tableau (ME tableau) for M is either an initial ME tableau or a literal tree
obtained by a single application of one of the following inference rules to a ME tableau T:

Extension step: Let b � L1 � 	 	 	 � Lk � 1 � Lk be an open branch in T . Suppose there exist new
variants Ci � K1

i
� 	 	 	 � Kmi

i (i � 1 	 	 	 n) of clauses in M. These clauses are called the
extending clauses and the sequence K1

1 �    � K1
n is called the extending literals.

In order to describe the appending of the extending clauses, we define the literal tree Tn

and the “actual branch to extend”, bn, recursively as follows: if n � 0 then T0 :� T and
b0 :� b, else Tn is the literal tree obtained from Tn� 1 by extending with the clause Cn at
bn� 1 and bn :� bn� 1 � K1

n.

Let � be a subset of the literal set of bn with Lk
� K1

1
� 	 	 	 � K1

n � � . Borrowing a notion
from (Stickel, 1985), � is called the key set. If there exists a most general

�
-unifier

� for � , and � � is minimal
�

-complementary, then total theory extension yields the
literal tree Tn � , and the branch bn� � Tn � is closed.

A total extension step with n � 0 is also called reduction step.4 A derivation from M with
top clause C and length n is a finite sequence of tableaux T0

� T1
� 	 	 	 � Tn, where T0 is an initial

tableau for M with top clause C, and for i � 1 	 	 	 n Ti is the tableau obtained from Ti� 1 by one
single application of one of the above inference rules with new variants of clauses from M. If
additionally in Tn every branch is closed then this derivation is called a refutation of M. �

4This notion is kept for historical reasons
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Tableau Model Elimination and Model Elimination

The data structures of the two calculi – tableau model elimination and model elimination – are
already identical, since the trees from the tableau oriented calculus are defined as multisets of
paths. A key concept of tableau model elimination is the extension of a tree; we can simulate
this operation very naturally with path multiplication from consolution:

Lemma 3.1 Let T � be a literal tree obtained from a literal tree T by extension with a clause
C � L1

� 	 	 	 � Ln at a branch b, i.e.

T � � T
� � b � � � b � li � i � 1 	 	 	 n � and li is labelled with Li

�
then

T � � T
� � b � � 
 � b �  �

C
�

Theorem 3.5 Every total theory tableau model elimination derivation T0
� T1

�    � Tn is a total
theory model elimination derivation.

Proof. Let � �
be derived from � � � 1 by extension of path 
 with extending clauses � 1

�    � � �
and extending literals � 1

�    � � � . Let � be the
�

-unifier for � , where � is a subset of the
extended path 
 � (which is obtained by extension of 
 as defined in the definition of extension),
such that

� � � � 
 
 � � � 1
�    � � � � � . Hence, we can write � � � 1 � � � � 
 � with an appropriate

path set
�

and
�  � � � � �

�
� � �

� with � � � � � � � � � � for 1 � � � � .

Note that the path 
 � is obtained by successive extensions of 
 with � 1
�    � � � at the literals

� �
; i.e. the path 
 � consists of an initial part 
 followed by the trunk of the fern

�
of � 1

�    � � � .

Now the path sets � � � 1
� � 

1
�    � �  �

are the premise of the theory model inference rule and
we have to show that there exists a conclusion 	 , which is equal to � �

. According to the theory
model elimination rule we first have to compute the product

� � 
 � � � 
 � � 
 � �
1 �

� �
1 �  	 	 	  � � �

�
� � �

� �
which is simplified as follows:
A) � � is obtained by applying the

�
-refuter � .

B) The closing of 
 � corresponds to the deletion of the path 
 
 � � 1 � 	 	 	 � � � � � and thus we
get 	 �
C)From 	 � we have to shorten to the path set

� � 
 � 
 � 
 � � � � 1 � 	 	 	 � � � � � � �
D) Delete those multiple occurrences of paths to obtain

� � 
 � 
 � 
 � � � � � 1 � 	 	 	 � � � � � � � . �
Togehter with the completeness result for total theory tableau model elimination we get com-
pleteness of theory model elimination. Note that the following result is formulated for partial
theory tableau model elimination in (Baumgartner, 1992a). This requires a rather technical
condition (called acceptable), which can be ommitted in the case of total derivations. Since
we restrict ourselves to that case, we cite a simplified version of the completeness theorem.
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Theorem 3.6 ((Baumgartner, 1992a)) Let
�

be a theory and M be a
�

-unsatisfiable clause
set. Let C � M be such that C is contained in some minimal

�
-unsatisfiable subset of M. Then

there exists a total theory tableau model elimination refutation of M with top clause C.

Theorem 3.7 (Completeness of total theory model elimination) Let
�

be a theory and M
be a

�
-unsatisfiable clause set. Then there exists a total theory model elimination refutation

of M.

Proof. From the completeness of theory tableau model elimination (theorem 3.6) we know,
that there exists a theory tableau model elimination derivation of the empty clause and from
theorem 3.5 we conclude that there is a theory model elimination refutation as well. �

3.6 Theory connection method

In the present section we discuss a theory version of the connection method according to W.
Bibel. According to the conventions of this paper we will consider only formulas in clause
form. The connection method is not restricted to that class of formulas. We will present
the classical version of the connection method following (Bibel, 1987)5. However, we will
transcribe this version into a refutational form. This way we allow the reader to concentrate
on the essential differences and similarities of the connection method in comparision with the
other calculi discussed in this paper.

3.6.1 Informal explanation

Let us introduce some notions which are usually used in the context of the connection method.

Let us recall from 3.1.1 that a set of clauses is called a matrix. The following notion generalizes
the notion of a connection from subsubsection 3.1.2. A

�
-connection in a matrix � is a set

of literals which contains from each clause from � at most one literal and which can be made�
-complementary by instantiation. If the set of the elements of a path � through a matrix

contains a set � of literals then � is said to span � . Let � be a set of sets of literals. Then �
spans the matrix � if for every path � through � there is a � � � that spans � . Now we can
formulate the idea of the connection method.

In order to refute a clause set � the connection method tries to find a set � of instances
of clauses from � such that there is some set of

�
-complementary sets of literals which

is spanning � . Under the name connection method there exists a variety of algorithms for
constructing systematically such an instance � . The approaches differ mainly in the data
structure which is used to represent the set of paths

�
which should be checked for the

existence of a spanning
�

-complementary set. In the version presented here
�

is the fern of

5For a more recent introductory presentation see (Bibel, 1992).
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� 1
� 	 	 	 � � 
 with trunk

�
1 � 	 	 	 � � 
 where for every � � 1 � 	 	 	 � � � �

is a subclause of a clause
from � and for � � � � 1 � 	 	 	 � � � � � 	 	 	 � � �

and � � must not be subclauses of the same
clause in � . Then

�
1 � 	 	 	 � � 
 � 1 is called the actual path and

� 
 the actual goal. This notion
reflects that the procedure tries as the next step to span the trunk or its extension.

Now let us consider a the following clause set � and let us track some steps of a derivation
based on the connection method with the built-in theory

�
from our running example:

�
:

(T-1) � � 
 
 �
�
� �

� � 
 � � � � � � � � � � 
 � � � � � � � � � � 
 � � �
(T-3) � � 
 �

� � 
 � � � � � � � � � 
 � � �

�
:

(1)  � � � � � � 

� � � � � �  �

� � 
 � �
(2)

� � � � � � � 

� � � � �

(3) �
�
� �

� � 
 � � � �
� � 
 � �

The clause set � which is actually under consideration is represented as a matrix where each
row represents the elements of a clause. We start the derivation with the fern of one clause,
namely clause (1), with trunk  � � � � � � 


� � � � � . The elements of the actual path will be in a
dashed box. The actual goal will be pointed by a small arrow. The elements of each of the
clauses which form the fern are placed on the right of the corresponding elements of the trunk.
Thus, the initial matrix looks as follows.

 � � � � � � 

� � � � �  �

� � 
 � �
�

(4)

In our example we can try an extension step by entering new clause copies to the initial
clause set at the bottom of the matrix and applying a substitution to the extended matrix. This
extension must yield a

�
-refutable extension of the actual path via the actual goal. The actual

goal and the literals
� � � � � � � 


� � � � � and �
�
� �

� � 
 � � from clauses (2) and (3) (respectively)
form a

�
-connection. A

�
-refuter for that set is � 1 � � � �

� � � � � . So entering copies
of clauses (2) and (3), applying � to the matrix, marking the

�
-complementary path with a

connection (the triple arc) and putting the elements of the new actual path into dashed boxes
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yields the following matrix.

 � � � � � � 

� � � � �

�
�
� �

� � 

� � � � �

� � � � � � � 

� � � � �

 �
� � 
 � �

�
� � 
 � �
�

(5)

It remains to span the paths in the fern determined by the new actual path. As next step we
try a second inference rule, reduction that allows inferencing without adding new clauses to
the matrix. Consider  � � � � � � 


� � � � � from the first row and �
� � 
 � � from the third row. By

theory clause 
 � �
3 � they are

�
-refutable with

�
-refuter � 2 � � � �

� � � � � . So � 2 can
be applied to the matrix and the

�
-connection can be established as shown below. Now we

have spanned all paths starting from  � � � � � � 

� � � � � . Thus, it remains to span paths starting

from  �
� � 
 � � . The actual path now is empty and the actual goal is  �

� � 
 � � . We arrive at
the following matrix.

 � � � � � � 

� � � � �

�
�
� �

� � 

� � � � �

� � � � � � � 

� � � � �

 �
� � 
 � �

�
� � 
 � �

�

(6)

Here we leave our sample derivation. We only mention that the derivation will be completed
if the fern will have length zero. Then every path through the matrix is spanned by a

�

-complementary set of literals.

3.6.2 Formal definition

The extension and the reduction step of the theory connection calculus may be expressed by
one single instantiation of the consolution rule.

Definition 3.21 (Total theory connection method) Let
�

be a theory and
�

a set of clauses.
The inference rule total theory inference is defined as follows:
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�
1 � � p1

��
R2 �

�
L2 �

...�
Rn �

�
Ln �

	
where

1.
�

1 � � p1
� is a fern of C1

� 	 	 	 � Cm with trunc p1 where for j � 1 � 	 	 	 � m Cj is a subclause
of an instance of a clause from C.

2. � Li
� � Ri are pairwise variable disjoint copies of clauses from C (for i � 2 	 	 	 n).

3. for some subset q of the literal set of p1 the set � q � L2
� 	 	 	 � Ln

� is minimal
�

-refutable.
Let

�
be a CSR for that set.

4. The simplification of the product� � 
 � 1 � � p1
� � 
 � R2 �

�
L2 � � 	 	 	 
 � Rn �

�
Ln � �

is done in the following way:

A)
� � is obtained from

�
by finding of a

�
-refuter � � �

for � q � L2
� 	 	 	 � Ln

�
(which exists by 3.)

B) All paths q� � � � satisfying the conditions

tail 
 p1
� � q� � length 
 q� � � length 
 p1

� � n and � q � L2
� 	 	 	 � Ln

� � 
 q� �
will be deleted. Call the resulting set 	 B.

C) If F is the fern of � L2
� � R2

� 	 	 	 � � Ln
� � Rn with trunk L2 �    � Ln then obtain 	 C

from 	 B by shortening to the path set that is specified as follows:

� 	 B � � � 1 � � � p1
� 
 F � � L2 �    � Ln

� � � � � �
In step B) some paths p may have been deleted such that K � last 
 p � satisfies
K � Cn and K

�
� Ln. Those paths belong to�

1 � � � p1
� 
 F � � L2 �    � Ln

� � �

Therefore we have to cut with 	 B.

D) Let 	 � 	 C.

A total theory connection derivation is defined as a linear theory consolution derivation where
every theory consolution inference is a “total theory connection inference”. �
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Example. In order to illustrate the previous definition let us consider again the theory and
clause set as used above in the informal presentation. We discussed in detail the first inference
step, an extension, in order to illustrate the model elimination case. Now for illustrating the
formalization of the theory connection method we will redo the second inference step of our
sample run which is a reduction. After the first step we arrive at the following path set6:�

2 � � � 2
� � �  � � � � � � 


� � � � � � � � � � � � � 

� � � � � � �

� � 
 � � �  �
� � 
 � � �

Here we choose � 2 �  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � . The path set

�
2 � � � 2

� will
be processed in the following inference step:

�  � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � �  �

� � 
 � � �
�  �

� � 
 � � � 
 � �

The resulting path set encodes the same path set as in the example of the above informal
presentation. Let us have a detailled view how this result can be achieved: Since our product
consists of one factor we have

� � �
2 � � � 2

� .
�

is simplified as follows: The instance of
the consolution rule has the form�

2 � � � 2
�

	
where

1. � 2 denotes the path which is underlined in 
 � � . It has a maximal length in
�

2 � � � 2
� .

2. � � 0.

3. The subset � is �  � � � � � � 

� � � � � � �

� � 
 � � � .

4. A) The above underlined path

 � � � � � � 

� � � � � � � � � � � � � 


� � � � � � �
� � 
 � � 
 � �

is selected for finding a
�

-refuter � � � � �
� � � � � for the

�
-connection

�  � � � � � � 

� � � � � � �

� � 
 � � � .

B) 	 � is obtained from
� � by deletion of 
 � �

	 � � �  �
� � 
 � � �

C) Shortening is neither possible nor necessary.

	  � 	 �
D) Finally we have � � 	 

.

6This path set is the fern of � � � � � � � � �
� � � � � � � �

� � � � � �
, � � � � � � � � �

� � � � � �
, � �

� � � � � �
with trunk� � � � � � � �

� � � � � � � � � � � � � �
� � � � � �

�
� � � � �
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It is astonishing how closely related the theory model elimination and theory connection method
are.

� Model elimination has a free selection function and thus allows the next subgoal to be
chosen in a don’t care nondeterministically manner. In the presented version of the
connection method a trunk, i.e. a branch of maximal length, is selected for extension.
This restriction makes sure that the set of unexamined paths obtained after the extension
may be represented as a fern too (cf. proposition 1). In (Neugebauer and Schaub, 1991)
there has been proposed another representation of that set by a set of hooks instead of
a fern. A hook represents the fern of � �

1
� � � �

2
� � 	 	 	 � � � 
 � 1

� � � � 
 � � � 
 with trunk�
1 � �

2 �    � � 
 � 1 � � 
 . This representation allows the same flexibility like the tree
representation which is used in the tableaux model elimination.

� In step A) of simplification the role of the last literal of the path to be extended is
different: in the tree-notation of model elimination, the last literal corresponds to the
leaf of the branch, and that literal must be “essential” in the

�
-complementary literal

set (i.e. without it, the set is no longer
�

-complementary). In the presented version
of the connection method, the last literal has no special meaning. Thus the model
elimination extension rule is more restrictive than the connection method inference rule.
In (Petermann, 1993b) has been proved that also the extension rule of the the connection
method may be restricted in that way without lost of completeness. Thus, the branching
rate in the search space might be restricted like in the model elimination.

� In step B) the connection method is more effective than model elimination, since all paths
which reach the actual clause and which become

�
-complementary by the

�
-refuter

are deleted. In model elimination only one path is deleted.

There are many refinements of the connection method which cut the search space essentially.
For an overview see (Bibel, 1987) and (Letz et al., 1992)

Now let us formulate some results about the total theory connection method. First of all we
need a representation lemma 3.2 concerning ferns and two lemmata 3.3 and 3.4 concerning
their structure properties. The three lemmata may be proved by simple verification. Those
facts enable us to prove that a set of paths 	 obtained by a total theory connection inference
from a fern � is again a fern. This gives a formal justification of our definition of the total
connection inference rule.

Lemma 3.2 Let F be the fern of � C1
� � 	 	 	 � � Cn

� with trunk L1 �    � Ln. Then for each
i � 1 � 	 	 	 � n holds

Ci � � Li
� � � last 
 p � � p � F � length 
 p � � i � 	

Lemma 3.3 Every subset of a fern is a fern.
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Lemma 3.4 Let � be a fern of � C1
� � 	 	 	 � � Cn

� with trunk p � L1 �    � Ln and let � be a fern
of � Cn

�
1
� � 	 	 	 � � Cn

�
m

� with trunk Ln
�

1 �    � Ln
�

m. Then


 � � � p � � � 
 � p � � �
is the fern of � C1

� � 	 	 	 � � Cn
� � � Cn

�
1
� � 	 	 	 � � Cn

�
m

� with trunk L1 �    � Ln � Ln
�

1 �    � Ln
�

m.

Proposition 1 Let �
1 � � p1

��
R2 �

�
L2 �

...�
Rn �

�
Ln �

	
be a total theory connection inference. Then R is a fern.

Proof. Let � 1 � � 1 �    � � � where � � 0 is allowed. Then (cf. definition 3.21)
�

1 � � � 1
� is

a fern of some clauses � 1
� 	 	 	 � � � with trunk � 1. Let

�
be the fern of � �

2
� � � 2

� 	 	 	 � � � 
 � � � 

with trunk

�
2 �    � � 
 . Then according to lemma 3.4�

1 � � � � 1
� � �

is the fern of
� 1

� 	 	 	 � � � � � �
2
� � � 2

� 	 	 	 � � � 
 � � � 

with trunk � 1 � �

2 �    � � 
 . According to lemma 3.3 R is a fern because it is a subset of that
fern. �
Finally we give proof outlines of the soundness and completeness theorem for the total connec-
tion method.

Theorem 3.8 Soundness Let
�

be a theory and let
�

be a clause set. If there exist a copy of a
clause of

�
, an element L � �

and a total theory connection derivation which starts from the
fern of

�
with trunk L then

�
is

�
-unsatisfiable.

Proof. Let
�

be a theory and let
�

be a clause set. Let
�

1
� 	 	 	 � � � be a total theory connection

derivation and let � �
denote the set of copies of clauses from � which have been used as

extension clauses up to the 
 � �
1 � -th inference for each � � 1 � 	 	 	 � � . Moreover let � �

denote
the set of

�
-connections which have been found up to the 
 � �

1 � -th inference for each
� � 1 � 	 	 	 � � . Claim: � �

spans all paths � through � �
such that there is no path � � � �

with� � � or � � � . In order to prove this claim it is sufficient to observe that
�

1 contains all paths
through � 1 and that in each simplifaction step

within substeps A and B only those paths are deleted that are spanned by the considered�
-connection,

within substeps C path are only shortened and
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within substep D the set of paths remains unchanged.

Clearly, if � � � � then � � spans � � . �
Theorem 3.9 Completeness Let

�
be a theory such that

1. the set of
�

-connections is decidable,

2. for each
�

-refutable literal set u a complete set of
�

-refuters is enumerable.

If
�

is a
�

-unsatisfiable clause set then there exist a copy of a clause of
�

, an element L � �

and a total theory connection derivation which starts from the fern of
�

with trunk L.

Proof. Let
�

be a theory and let
�

be a
�

-unsatisfiable clause set. >From the Herbrand
theorem proved in (Petermann, 1991b) follows that there is a set of instances � of clauses
of

�
and a set of

�
-complementary literal sets which is spanning � . There is a ground

total connection derivation of � . This may be shown using properties of minimal spanning
matings of ferns (cf. (Petermann, 1993b)). The decidability of the set of

�
-connections and

the enumerability of the CSR for each � allow to lift this ground derivation to a total connection
derivation where each inference is effective. �

Discussion:

The decidability of the set of
�

-connections is necessary for the decidability of the derivation
relation. Sometimes it is not necessary to know all

�
-connections and to be able to enumerate�

-refuters for all of them. For example there is a fragment of first-order logic with equality
which is the image of the translation of multi-modal logics following (Debart et al., 1990).
Different modal systems may be described by equational theories. Fortunately, after translation
there occurs no equality sign in the formulas. This sinplifies considerably the the set of theory
connections to be considered. In order to describe this phenomenon in (Petermann, 1993b) has
been studied the notion of a complete set of theory connections.

The decidability whether � � � � 
 � � � � means in an implementation that whenever the
existence of a

�
-refuter for a

�
-connection is considered that in case of the non-existence

there will be a defined answer and not a failure.

The restriction that the actual goal is element of the actually found connection can be proved
by careful examination of minimal spanning sets of connection.

The partial variant of theory connection method can be defined in much the same way as total
theory resolution is modified to partial theory resolution. This is omitted here. The interested
reader is referred to (Petermann, 1993a). Paramodulation, relaxed paramodulation and RUE-
resolution have been view as instances of a partial theory connection calculus. It is worth
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mentioning that the residue may have more than one literal if not only the paramodulation is
considered.

4 Equality

Being of such a fundamental importance in mathematics and nearly every area where deduction
applies, the equality relation deserves special treatment. Thus it is not surprising that in the
early days of theorem proving the equality relation was already built in. Viewed syntactically
“equations” are simply literals, built from the predicate symbol “� ” and written infix. Se-
mantically, the interpretation of “� ” is comitted to an equivalence relation that is closed under
equality replacement for all function and predicate symbols of the language (i.e. a congruence
relation). From the viewpoint of theory reasoning, we have to deal with the theory of equality
� , which can be axiomatized by the following scheme:

� : � � : � � � (Reflexivity)
� � � � : � � � � � � � (Symmetry)
� � � � � � : � � � � � � � � � � � (Transitivity)
� � 1

� 	 	 	 � � 
 � � : � � � � ��

 � 1

� 	 	 	 � � � � 1
� � � � � � �

1
� 	 	 	 � � 
 � ��


 � 1
� 	 	 	 � � � � 1

� � � � � �
1

� 	 	 	 � � 
 � for all � -ary function symbols
�

and all 1 � � � � (

�
-

Substitutivity)
� � 1

� 	 	 	 � � 
 � � : 
 � � � � �
� 
 � 1

� 	 	 	 � � � � 1
� � � � � � �

1
� 	 	 	 � � 
 � � �

� 
 � 1
� 	 	 	 � � � � 1

� � � � � �
1

� 	 	 	 � � 
 � � for all � -ary predicate symbols
� and all 1 � � � � (� -
Substitutivity)

If we assume that we have only a finite number of predicate and function symbols (as is usually
the case) then this theory of equality is finite too. Thus also “equality” could be dealt with in
the trivial way: simply add the clause form of these axioms to a given specification and rely
on the no-theory calculus. This however is prohibited for well-known efficiency reasons. The
theory of equality should be handled at least as carefully as any other theory following the
discussion of the previous chapters e.g. 3.

4.1 Dealing with Equality via Total Theory Reasoning

Here we discuss the possibility of building in the theory of equality by total theory reasoning
following our discussion in section 2.1.
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For a given literal set we have to accomplish an � -refuter. For this purpose it might be useful
to know of the syntactical form of � -complementary literal sets. It is as follows (Petermann,
1991b):

� � � where
�

is a set of equations and � consists either of two literals � 
 �
1

� 	 	 	 � � 
 �
and  � 
 � 1

� 	 	 	 � � 
 � or of one negated equation  � 
 � � 
 with � � 0 such that

�� � � � �

�� �

0

� � � � �

Both cases have an obvious intuitive meaning. The sides of each term pair � � � � � � � might
become equal by subsequent substitutions of subterms which occur as one side of the equations
in

�
by the other side of such an equation. Obviously this raises a contradiction. Due to this

syntactic structure the dedicated reasoner has to solve the following problem:

Given a set
�

of equations and some pairs of terms � � � � � � � . Is there a substitution
� such that for all equations � � � � � � � holds that

� � � �  � � � � � � � � is � -
complementary?

It can be shown (Baumgartner, 1992b) that this problem is equivalent to the so-called rigid
� -unification problem (Gallier and Snyder, 1990). It is formulated as follows:

Given a set
�

of equations and some pairs � � � � � � � . Is there a substitution �
such that all equations � � � � � � � are a logical � -consequence of

� � , where all
variables are treated as constants?

Let us consider the following clause specification in the spirit of the introductory example:

(4)  �
� � � 
 � � �

�
� � � � � 
 � � � � � � � � � 
 � � � � �

(5) � � � � � � � � � 

� � � � � � � � �

(6) �
� � � 


� � � � �

A useful query is for example to ask for the father of sue. An answer might be found by adding
the clause 

�
� � � � � 
 � � � � � � and refuting the thus obtained clause set � . This example will

be processed by the various approaches below. Of course there is a trivial solution, namely
� � �

�
� � � � � 
 � � � � � which simply says that the father of Sue is the father of Sue. We will

suppose the deductions below to be controlled in such a way that the more interesting answer
� � �

� � � � � results. Refutations which return that answer rely on the fact that there are two
literal sets

�
�

� � � � � 
 � � � � � � � � � 
 � � � � � � � � � � � � � � � 

� � � � � � � � � � 

�
� � � � � 
 � � � � � � �
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�  �
� � � 
 � � � �

� � � 

� � � � � �

which become � -complementary after the application of the substitution � � � � � � �
� � � � � .

Using the notions from section 3.1.2 � is an � -refuter for both literal sets. Let us consider a
total theory consolution refutation for � . We assume that the query � 

�
� � � � � 
 � � � � � � � has

been used as start clause. The refutation consists of two inferences.

� 
 father � sue � � y� 	 �
firstchild � fred � � sue� 	 �

father � firstchild � x � � � x 	 
 male � x � �
� 
 father � sue � � fred � firstchild � fred � � sue � 
 male � fred � �

� 
 father � sue � � fred � firstchild � fred � � sue � 
 male � fred � � 	 �
male � fred � �

�

Let consider in more detail the interaction of the general and the dedicated reasoner during the
first inference. The substitution � has to be found by the dedicated reasoner for the literal set

� � �
�

� � � � � 
 � � � � � � � � � 
 � � � � � � � � � � � � � � � 

� � � � � � � � � � 

�
� � � � � 
 � � � � � � �

which has been supplied by the general reasoner. In our example the set
�

is a good choice for
a candidate for an � -complementary set. If the general reasoner made such a good choice then
the dedicated reasoner will return a rigid � -unifier, � in our case. Otherwise, the dedicated
reasoner will return the definitive answer that the choice was bad. In other words, rigid � -
unification is decidable, although NP-complete (Gallier et al., 1990). The hard problem is
that it is undecidable whether a set of equations

�
in the � -complementary problem format

exists, or how many instances of equations are needed (see above). For example, in order to
extend the equation � 


�

 � � � 
 � � � 
 � �

�

 
 � � to an � -complementary literal set two instances

of the equation

�

 � � � � are needed, which are

�

 � � � �

and

�

 
 � � 
 . The substitution

� � 1
� � � � 2

� 
 � is the � -refuter.

The completeness of both connection and a model elimination calculi with total equality
reasoning follows from a general completeness theorem for total theory reasoning proved in
(Petermann, 1991b). In (Gallier et al., 1987) rigid � -unification has been built into the “method
of matings”.

E-resolution (Morris, 1969) is a slightly different realization of this kind of reasoning with
equality. Here for a given literal set � � � � � � � and clauses � and � � , where

� � � and
� � � � , both the set of equations

�
and the appropriate � -refuter � for

� � � are computed
by exhaustive paramodulating (see below) into � all equations which exist somewhere in
the given clause set until a trivial syntactical inconsistence is discovered. In order to obtain
completeness a level saturation strategy has been used. As the result of the computation,
the dedicated reasoner returns the set of equations

� � � �
1
� 	 	 	 � � 
 � , the � -refuter � and

the clauses � � 1
� 	 	 	 � � 
 � such that a total equality reasoning step may be carried out which

involves the clauses � , � � and � 1
� 	 	 	 � � 
 .
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4.2 Dealing with Equality via Partial Theory Reasoning

In the previous approach we had to guess in one step an � -complementary literal set and to
compute an � -refuter. Now we break this huge step into smaller ones. Two main ways to do
so have been studied.

Paramodulation-like setting: We apply equations by substituting “equals by equals” in order
to transform terms which are suspected to be equal. We are allowed to use unification in
order to make an equation applicable. This is rather a bottom-up approach.

RUE-resolution-like setting: We consider the “difference” between corresponding terms, in
order to determine some equations which are sufficient for their equality. This is rather
a top-down approach.

In both cases the considered rules are thought to produce either complementary pairs or negated
equations. Both cases will be viewed now as instances of partial theory reasoning.

4.2.1 Paramodulation-like Calculi

Let us recall from section 4.1 that if an � -refuter � has been found for literal set
� � � then

corresponding term pairs in � � may be made equal by substituting “equals by equals” using
equations from

� � . In a paramodulation-like setting, the set
� � � and the � -refuter will be

approximated by number of single replacements of “equals by equals”. To be equal means
now “equal up to some substitution”.

Let us examine the co-operation between general and dedicated reasoner in this situation. The
general reasoner now has to supply literal sets

� � � � � � � � �� � �

where
� � denotes a subterm occurrence in

�
and

� �� � is a nondeterministic notation for either
the literal

� � � or the literal � � �
.

�
may contain the equality predicate. The dedicated

reasoner has to return a pair

 � � � � � � � � � �

if a most general unifier � of
� � and

�
exists.

� � � � � � � means that one occurrence of
� � in

�
is

replaced by � . Obviously, the literal set

� � � � � � � � � � �� � � � � � � � � � � �

is � -complementary. Thus, the pair


 � � � � � � � � � �
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is a residue for the literal set
� � � � � � � � �

� � � 	
A partial � -reasoning step using this way of forming the residue will be called a paramodulation
inference.

� � is called the term paramodulated into.

Although well-known we prefer to give a short example of paramodulation in order to ease
comparison with other approaches below. We return to our example from 4.1. We could com-
pute the

�
� � � � � of

� � �
by splitting the first total theory consolution step into one paramodulation

and one extension step. This fragment of the derivation has the following form:

� � � � � � � � � � 

� � � � � � � � � � � �

�
� � � � � 
 � � � � � � � � � 
 � � � � � �  �

� � � 
 � � �
� � 1

� � 2
�

� � 1
� � 2

� � � 
�

� � � � � 
 � � � � � � �
� � � � � � � � � � 


� � � � � � � � � �  �
� � � 


� � � � � �
where

� 1 � � � � � � � � � � 

� � � � � � � � �

�
�

� � � � � 
 � � � � � � � � � 

� � � � � � �

� � � � �
�

� � � � � 
 � � � � �

� � � �

� 2 � � � � � � � � � � 

� � � � � � � � � �  �

� � � 

� � � � �

The more interesting first step in that derivation is a paramodulation into the term � � � � � � � � � 
 � � .
The pair


 � � �
�

� � � � � 
 � � � � �

� � � � � with � � � � � �
� � � � �

is a residue for the set of literals

� � � � � � � � � � 

� � � � � � � � � �

�
� � � � � 
 � � � � � � � � � 
 � � � � � � 	

The path � 1 has been obtained by adjoining the path from the residue to the path

� � � � � � � � � 

� � � � � � � � � �

�
� � � � � 
 � � � � � � � � � 


� � � � � � �

� � � � 	

Obviously, the paramodulation inference is much simpler than the the computation of an � -
refuter. But this simplification must be paid for by a large search space introduced by the
chaining of paramodulation steps. In the present version paramodulation cannot use any hint
which equation should be applied for paramodulation in order to enable further reasoning steps
to be made. Thus, the enormous search space will be entered without any guidance. Therefore,
improvements are urgently needed (see below).
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Paramodulation has been built in to many calculi. Resolution with paramodulation is complete.
For the resolution calculus, we arrive at the following well-known form of the paramodulation
inference rule (Robinson and Wos, 1969):

� � � � � � � 1
� �� � � � 2


 � � � � � � � � � 1
� � 2

� �

with
�

,
� � , �

and � as above and, as usual, the two clauses involved in the inference step being
variable disjoint.

Several rules which restrict the applicability of paramodulation have been invented in order
to cut the search space. It is well known (see e.g. (Chang and Lee, 1973)) that linear
paramodulation is complete provided that additionally the functional reflexive axioms are
added (e.g. (Furbach et al., 1989; Hölldobler, 1989)). In (Peterson, 1983) it was shown
that these axioms are unneccesary in the unrestricted (no linear or set of support restriction)
resolution and paramodulation calculus. Furthermore he shows that it is not necessary to
paramodulate into variable occurrences. By these restrictions two sources for substantial
inefficiences are eliminated. The refutation from above satisfies this restriction. As anexample
for a paramodulation step into a variable confer the following step, which paramodulates into
the variable occurrence � .

� 
�

� � � � � 
 � � � � � � � � �
�

� � � � � 
 � � � � � � � � � 
 � � � � � �  �
� � � 
 � � �

� 3
� 

�
� � � � � 
 � � � � � � �  �

� � � 

� � � � �

where

� 3 � 
�

� � � � � 
 � � � � � � �
�

� � � � � 
 � � � � � � � � � 
 � � � � �
� 

�
� � � � � 
 � � � � �

�
� � � � � 
 � � � � � � � � � 
 � � �

In order to combine the best of two worlds, a set of support strategy and avoidance of paramodu-
lation into variables, in (Snyder and Lynch, 1991) an inference rule “relaxed paramodulation”
is defined. The calculus essentially consists of this rule, factorisation and a standard paramo-
dulation rule that, however, does not paramodulate into variables. “Relaxed paramodulation”
delays part of the unification and introduces the delayed parts as new subgoals into the resol-
vent. Thus, this rule may be applied even if paramodulation is not possible. The delay of
unification is necessary for preserving the completeness. The following sample clause set is
� -unsatisfiable, but it cannot be refuted by a set of support strategy with paramodulation. Let

� � �


�

 � 
 � � � � 
 � � � � � 
 � 
 � � � � 
 � � �
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�


 � 
 � � � � 
 � � � � � 
 � 
 � � � � 
 � � ��

 � � � � � � 
 � � � � �

�

 � � � � � � 
 � � � �

be a set of equations with set of support �
�


 � � � � � � 
 � � � � �
�


 � � � � � � 
 � � � � � . The
reason for paramodulation (without substituting into variables) to fail is that there is no way
to paramodulate from

�

 � � � � into

�

 � 
 � � � � 
 � � � nor from � 
 � � � � into � 
 � 
 � � � � 
 � � � nor

from
� 
 � � � � into

� 
 � 
 � � � � 
 � � � . However, relaxed paramodulation from, say,

�

 � � � � �� 
 � � � � into

�

 � 
 � � � � 
 � � � is possible. This inference returns 
 � � � � � � 
 � � � � �� 
 � � � � 
 � 
 � � � � 
 � � � � � 
 � � � � � as a kind of a residue. All of these additional goals may be

solved by use of the equation
� � �

. This technique is much in the spirit of RUE-resolution
(Digricoli and Harrison, 1986) with the important restriction that the delayed subgoals (the
corresponding concept in RUE-resolution is “disagreement set”) can be restricted to variable-
term pairs. Unfortunately the completeness of “relaxed paramodulation” with set of support
strategy has not been proved yet.

As a concluding improvement of paramodulation we will briefly sketch basic paramodulation
(Bachmair et al., 1992). The term “basic” was coined in (Hullot, 1980) in the context of
narrowing (section 2.2) and means the same thing for paramodulation: in basic paramodulation,
it is forbidden to paramodulate into occurrences introduced by previous inference steps. Stated
positively, paramodulation is allowed only into such occurrences that are already present in the
input set. For example, suppose that the clause � 
 � � � � 
 � � is resolved with  � 
 � 


�

 � � � �

yielding � 
 � 

�


 � � � � . Then � 
 � 

�


 � � � � can be paramodulated with, say,

�

 � � � �

to � 
 � 
 � � � ;
however, this is no basic paramodulation step, since � 
 � � does not contain the

�
-term to be

paramodulated upon. Thus, basic paramodulation is a serious restriction of the applicabibilty
of paramodulation. Moreover, in basic paramodulation it is not necessary to paramodulate into
variables; also it is compatible with ordering restrictions (section 4.2.3).

A paramodulation-like treatment of equality was carried out for the tableau method (Fitting,
1990) in (Jeffrey, 1967) and (Poppelstone, 1967), for model elimination (Loveland, 1978),
for the connection method (Petermann, 1991a) and for connection graphs (Siekmann and
Wrightson, 1980). Paramodulation with order-sorted theories has been considered in (Walther,
1983).

In the next parts of the paper we discuss in more detail two further alternatives for restrictions
of the paramodulation rule which have been considered in the literature:

1. Make the application of equations more goal-oriented: choose first candidates for a
complementary pair and look which equations should be used. Solve these equations by
paramodulation.

2. Restrict the applicability of the paramodulation rule by order restrictions. For instance
make sure that clauses are not growing w.r.t. a term ordering.
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4.2.2 RUE-Resolution-like

Let us discuss in more detail one strategy of making paramodulation more efficient. The
improvement is given by the following advice.

� Try to unify corresponding term pairs first.
� Paramodulate only into those terms which cannot be made equal this way.

Applying this strategy to the previous example the prover might “think”: Let’s try to make an
� -complementary literal set from 

�
� � � � � 
 � � � � � � and

�
� � � � � 
 � � � � � � � � � 
 � � � � � .

Then the equation � � � � � � � � � 
 � � � � � �
would be needed to achieve that goal. The hint, that� � � � � � � � � 
 � � � � � �

should be solved as a subgoal follows from the failure of the unification
algorithm7. Since on the outermost level the

�
� � � � � -function symbols are the same in both

terms, it suffices to prove that the argument terms of the left hand side, and the right hand side
are equal. In other words, the left hand side has to be “decomposed”8 into the new subgoal
 � � � � � � � � � 
 � � � � � �

. The right hand sides immediately unify by, say, � � � � � . This example
demonstrates the main idea of RUE-resolution: unify the terms “as much as possible”, and
prove equality of non-unifying terms later. In RUE-terminology the most general substitution
involved in this is called a most general partial unifier and the non-unifying part is called the
disagreement set. For a given unification problem several disagreement sets may exist. Let us
examine an example related to that in subsection 4.1. In our terminology the example situation
can be formulated as the path


�

� � � � � 
 � � � � � � �
�

� � � � � 
 � � � � � � � � � 
 � � � � � � � � � � � � � � � 
 � � � � � �

which becomes � -complementary with the substitution � � � � � � � � . Thus, the pair


 � � �  � � � � � � � � � 
 � � � � � � �
forms a residue for the literal set

� 
�

� � � � � 
 � � � � � � �
�

� � � � � 
 � � � � � � � � � 
 � � � � � � 	
The new goal  � � � � � � � � � 
 � � � � � �

may be solved together with the fact � � � � � � � � � 

� � � � � �� � �

. The corresponding two step consolution refutation fragment looks as follows. The first
step is adding a residue, the second step is an extension. Let

� 1 � 
�

� � � � � 
 � � � � � �
�

�
� � � � � 
 � � � � � � � � � 
 � � � � � �  � � � � � � � � � 
 � � � � � �

� 2 � 
�

� � � � � 
 � � � � � � �  �
� � � 
 � �

7Suppose the unification is according to the transformational approach to unification (J.-P. Jouannaud, 1991).
Then the failure already occurs after one application of the decomposition rule.

8A unification algorithm based on an transformational approach which also includes a decomposition rule can
be found in (J.-P. Jouannaud, 1991)
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� 
�

� � � � � 
 � � � � � � � � �
�

� � � � � 
 � � � � � � � � � 
 � � � � � �  �
� � � 
 � � �

� � 1
� � 2

�
� � 1

� � 2
� � � � � � � � � � � � 


� � � � � � � � � �
� 

�
� � � � � 
 � � � � �

� � � � �  �
� � � 


� � � � � �
Let us compare the present tactic with the paramodulation rule. The underlying � -complementary
literal set has a similar structure:

� � 
 � � � � � � � �� � � � 
 � � � � � � � � � �
But now we construct the pair


 � � �  � �� � �
as the residue for the literal set

� � 
 � � � � � � � 
 � � � � � � � 	

The construction of the residue is now more goal-oriented. We have another restriction of the
general rule for computing the residue.

It should be noted that in general it is not possible for completeness reasons to restrict to the
“most specific” disagreement set. This is the disagreement set that results from unification
“as much as possible”. An example below will show this. This claim may illustrated by the
following example (Anderson, 1970).

(1) � 

�


 � � � � 
 � � � � � 
 � 
 � � � � 
 � � �
(2)  � 


�

 � � � � 
 
 � �

(3)  � 
 � 
 
 � � � 
 
 � �
(4)

�

 � � �

�

 � �

(5)
� 
 � � � � 
 
 �

A prover which is allowed to paramodulate only on unification failure comes up with a unifier
containing

either � � � � � (if � 

�


 � � � � 
 � � � from the first and  � 

�


 � � � � 
 
 � � from the second
clause are considered)

or � � � 
 � (if � 
 � 
 � � � � 
 � � � from the first and  � 
 � 
 
 � � � 
 
 � � from the third clause
are considered).

But the unique useful substitution � � � � � may be found only in a more flexible way. One
improvement is the so called RUE-resolution due to Digricoli (Digricoli and Harrison, 1986).
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There the prover is allowed to look ahead for paramodulation possibilities before going deeper
applying the decomposition rule. In our example the prover is allowed to transform the
unification problem �

�

 � � �

�

 � � � (called disagreement set in (Digricoli and Harrison, 1986))

into �
�


 � � �
�


 � � � using the fourth clause. This way the substitution � � � � � may be detected
in fact. Nevertheless the inference rules are rather complicated and it is not known to the
authors whether the overhead is not too much.

Another improvement is based on a level saturation strategy as given and proved to be complete
in (Anderson, 1970). The connection graph calculus was extended with an equality handling in
the spirit of RUE-resolution by means of equality graphs (EGC-procedure) in (Bläsius, 1987).
A matrix calculus with a RUE-resolution-like inference rule has been proved to be complete
in (Petermann, 1991c). A treatment of equality which is similar to the RUE-resolution was
carried out for the tableau method (Fitting, 1990) in (Reeves, 1987).

4.2.3 Ordering Strategies

Except rigid � -unification, for which experimental results are not yet available, all the methods
described so far for equality handling could not prove to be sufficient for really hard practical
problems. (Ohlbach and Siekmann, 1991) report various discouraging results with paramo-
dulation and the EGC-procedure within the connection graph calculus. As a solution, recent
research concentrates on the application of ordering restrictions. These methods can be
seen as extensions of term rewriting and the Knuth-Bendix completion procedure (Knuth and
Bendix, 1970). A good overview over term rewriting, completion and some of its extensions
can be found in (Plaisted, 1993).

Calculi and proof procedures for full first order order-restricted equational theorem proving
were proposed in (Bachmair, 1991; Bachmair and Ganzinger, 1990a; Bachmair and Ganzinger,
1990b; Zhang and Kapur, 1988; Hsiang and Rusinowitch, 1986; Hsiang and Rusinowitch, 1987;
Kounalis and Rusinowitch, 1991; Rusinowitch, 1991; Kirchner et al., 1990; Socher-Ambrosius,
1990). These systems are basically paramodulation-like, however the possible inferences are
highly restricted by orderings, which have to be given as an input parameter. More precisely,
the given ordering � must satisfy the following properties (“complete reduction ordering”):

1. � is stable under substitution, i.e.
�

�
�

implies
� � �

� � for all
� � � � � .

2. � is monotonic, i.e.
�

�
�

implies � � � � � � � � � for all
� � � � � .

3. � is ground-total.

4. � is well-founded.

The inference rules below make heavy use of such a given ordering. One main application is
to direct the use of equations, i.e. to allow only one side of an equation as a paramodulating
term. Which side of an equation

� �
� � is to be used, is determined by the ordering: if �
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has to substitute the term
�

then � should be the smaller side of
� �

� � . However, in general
only in the ground case can it be achieved that

� �
� �

implies that either
�

�
�

or
�

�
�

(see
(Dershowitz, 1987) for an overview about orderings). In order to compute with non-variable
terms, the � -relation is “lifted” to the condition “

��
”; this means that if in the ground case an

inference were legal if
�

� � , then it is legal in the general case if
� �� � . Similarly, for sets of

literals the notion of a “greatest literal” lifts to that of a “maximal literal”: a literal
�

is maximal
relative to a set if for none of the literals � in that set holds

� �
� . Additionally the term

ordering must be extended to equations and to literals; this can be done e.g. lexicographically.

Essentially the several order-restricted paramodulation calculi restrict the above paramodula-
tion inference rule in the following way:

� � � � � � � 1
� �

� � � � 2


 � � � � � � � � � 1
� � 2

� �
if

1.
� � � � � � is maximal relative to � 1 � and 
 � �

� � � � is maximal relative to � 2 � (only
maximal literals in clauses may be selected for the inference; also comparison is done
after application of � , since after instantiation more information is available, possibly
ruling out some inferences).

2.
� � �� � � (the substitution of

� � by � � must not cause a growth of the literal) and if
� � � � � �

is an equation
� � � � � � �

� � � � � � �
� � � then

� � � � � � �� � � (it suffices to paramodulate into
bigger sides of equations). In this case, the inference is called a superposition inference.

3.
� � is not a variable occurrence.

Let us compute our example with this restricted variant. We need an ordering. For the sake of
simplicity, assume that literals are ordered �

� � � 
 � � �
�
1 � �

2 for any
� � �

1
� �

2, and for function
symbols we order � � � � � � � � � �

� � �
, and assume e.g. a recursive path ordering based on this

ordering (see (Dershowitz, 1987) for an overview about orderings). The ordering among the
other function symbols does not matter. Suppose again that we want to refute


 7 �  � �

�
� � � � � 
 � � � � 	

According to restriction 3. we cannot paramodulate into � in (7). Furthermore we cannot
paramodulate into

� � �
with (5), because in (5) we have � � � � � � � � � 


� � � � � �
� � �

and such a
step would violate restriction 2. Also we cannot use (4) to paramodulate into

�
� � � � � 
 � � � � of

(7), because in (4) �
� � � 
 � � �

�
� � � � � 
 � � � � � � � � � 
 � � � � � and hence according to restriction

1. Only  �
� � � 
 � � may be used in an inference. A legal step is to resolve (4) with (6), which

yields:


 8 �
�

� � � � � 
 � � � � � � � � � 

� � � � � � �

� � � �
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Now (5) can be used to paramodulate into � � � � � � � � � 

� � � � � in (8), which yields


 9 �
�

� � � � � 
 � � � � �

� � � �

Now paramodulating (9) into

�
� � � � � 
 � � � � of (7), and a final resolution with � � � completes

the proof.

It should be indicated by this example that ordering restrictions are a very effective tool for
disallowing many otherwise possible inferences. For example, the topmost step in the above
paramodulation refutation is no legal inference in the restricted calculus, because it violates the
restriction 1 and 2. As a general property these ordering restrictions seem to be only possible
at the price of giving up the linear, top-down strategy as in the unordered case. However, as an
improvement in this direction in (Socher-Ambrosius, 1992) a more goal-oriented completion
strategy is proposed.

As a special case, the term ordering might be strong enough to direct all the equations into
rewrite rules, which means that in inferences only the left side needs to be considered for
replacement by the right side. Sometimes the input clauses, short of the query, can be closed
under application of the above ordered inference rule and yield a finite clause set. This is
easier to achieve if additionally simplification techniques are applied (see again (Bachmair and
Ganzinger, 1991; Bachmair and Ganzinger, 1990b)). This finite set can be used to decide the
word problem in the given equational theory. In the infinite case a semi-decision procedure
results (see also (Hsiang and Rusinowitch, 1987) for such an “unfailing” procedure). This
shows that such calculi are closely related to the Knuth-Bendix completion procedure; indeed,
that procedure can be seen as an instance of them.

We are not aware of any research going on in a non-resolution setting.

5 Conclusion

We have presented a classification of theory reasoning methods for first order predicate calculi.
We have distinguished between literal, term and variable level reasoning. The main focus of
the paper is literal level theory reasoning, which is presented for various calculi in a uniform
manner. For this we used the consolution calculus, which was defined in a partial and a total
theory variant. This framework was then used in the main part of the paper to present theory
resolution, theory model elimination and a theory connection method. For the total variants of
these calculi we have proven completeness.

The advantages of such a uniform view of various calculi are both the possibility of using the
same formal machinery for different calculi, and the ability to investigate differences in detail.

Since efficient equality handling is one of the central issues in theorem proving we have
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discussed this in a special section. Again, we presented methods like paramodulation and RUE-
resolution as special cases of partial theory reasoning in the framework of theory consolution.
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