A Unified Approach to Theory Reasoning

Peter Baumgartner, Ulrich Furbach
Universitat Koblenz
Rheinau 34
W-5400 Koblenz
{peter,uli}@nfko.uni-kobl enz. de
Uwe Petermann
Universitaet Leipzig
Augustusplatz 10/11
O-7010 Leipzig
pet er mtann@ nf or mati k. uni -1 ei pzi g. dbp. de

Abstract. Theory reasoning is a kind of two-level reasoning in automated theorem
proving, where the knowledge of a given domain or theory is separated and treated by
special purpose inference rules. We define a classification for the various approaches for
theory reasoning which is based on the syntactic concepts of literal level — term level
— variable level. The main part is a review of theory extensions of common calculi

(resolution, model elimination and a connection method). In order to see the relationships
among these calculi, we define a super-cal culus called theory consolution. Completeness

of thevarioustheory calculi isproven. Finally, duetoitsrelevancein automated reasoning,

we describe current ways of equality handling.

Contents

1 Introduction 2

2 TheTour: Literal level — Termlevel — Variablelevel 5
21 Literal Level Theory Reasoning o oot 5
22 TemlLevel TheoryReasoning oo it i e 8
2.3 VaiableLevel Theory Reasoning—Constraints 10

3 Literal Level Theory Reasoning 10
31 Consolution e e 11
32 Theory Consolution e 17
33 Parttid Theory Consolution. 22
34 Theory Resolution e 24
35 Theory Moddl Elimination 36
3.6 Theory connectionmethod 43

1 Introduction 2

4 Equality 51
4.1 Dedingwith Equality viaTotal Theory Reasoning 51
4.2 Dedingwith Equality viaPartial Theory Reasoning 54

5 Conclusion 62

1 Introduction

One of the most traditional disciplines in Al is Theorem Proving. In the early days it was
concentrated mainly on devel oping general proof proceduresfor predicate logic. According to
the shift within wide partsof Al-research towardsspecial domain dependent systems, automated
reasoning and theorem proving nowadaysai m at incorporating specialized and efficient moduls,
which are suited for handling special parts or domains of knowledge. Whenever thisis done
in aformal way we will understand those moduls as a means to built-in theories and speak of
“theory reasoning”.

A very prominent example for efficient handling of atheory is equality handling. Thereisa
smple way of specifying this theory, namely by stating the axioms of reflexivity, symmetry,
trangitivity and by stating the substitutivity of function and predicate symbols. If theseformulas
are added to the formulas to be proven by the system, the usual inference rules are able to
process this theory. A better approach is to supply special inference rules for handling the
equality predicate with respect to the equality theory, like e.g. paramodulation (Robinson and
Wos, 1969) or RUE-resolution (Digricoli and Harrison, 1986).

Another very well-investigated example for theory handling is the design of calculi and proof
procedures, which use many- or order-sorted logics (Blasius and Burckert, 1989). Here, the
am is to take care of a sort hierarchy in a direct way, eg. by using a special unification
procedure. Thisisin contrast to relativation approaches which transform the sort information
into formulas of the unsorted logics.

While the above two examples were concerned mainly with an efficient treatment of a theory,
there is as well a concern in the field of knowledge engineering of keeping different kinds
of knowledge apart. Often, one wants to separate taxonomical from assertional knowledge:
taxonomical knowledge is used as a special theory, which has to be handled outside the
deduction mechanism which processes the assertional knowledge. One of the most prominent
examples of those approachesis KRY PTON (Brachmann et al., 1983), where the semantic net
language KL-ONE is used as a theory defining language, which is combined with a theorem
prover for predicate logic. This system is based on the theory resolution calculus (Stickel,
1985), which will be discussed later on. Nowadays numerous works on defining concept
languages with well-understood semantics for the definition of taxonomical knowledge exist
(Hollunder, 1990).

1 Introduction 3

Viewpoint of this paper

The aim of this paper is twofold: Firstly, we want to classify the various kinds of treating
theories within deduction systems, and secondly, we want to compare a special subclass of
these methods. It iseasier to comparethe theory reasoning calculi if acommon input language
can be presupposed. Fortunately, the calculi to be discussed operate on formulasin a standard
language, whichis, of course, clause logic. Thus clause logic will serve us well asacommon
input language, too. However there are minor differences. sometimes clauses are thought
of as sets of literals, sometimes of multisets and sometimes of sequences. Fortunately these
differences are not essential for the intuitive understanding of theory reasoning, and so the
discussion of these differences can be postponed to the formal section. As a coincidence most
work is done in a refutational setting, but not in an affirmative one. Due to their perfect
duality, it sufficesto restrict attention to one of these concepts. Thiswill be the more common
refutational setting.

Theory reasoning always deals with two kinds of reasoning: background reasoning for the
theory, and foreground reasoning for the actual problem specification. We are mostly interested
in studying the interface between foreground and background reasoning. We give a formal
description of thisinterface which appliesto awide class of theories. We will not focus on the
question of how to built dedicated background reasoners for special theories (equality will be
an exception).

It has to be said what kinds of theories we are interested in. The “upper bound” is given by
the universal theories, i.e. theories that can be axiomatized by a set of formulasthat does not
contain 3-quantifiers. Universal theories are expressive enough to formulate e.g. equality or
interesting taxonomic theories. Moreover, the restriction to universal theoriesis not essential.
A theory which contains existential quantifiers may be transformed by Skolemization into a
universal theory which is equivalent up to an extension of the signature by Skolem functions.
Universal theories also mark the limit of what can be built into a calculus preserving the
completeness of calculus (cf. (Petermann, 1991b)).

We do not treat reasoning in single models, like real numbers and their arithmetic, or classes
of models. Such extensions of theory reasoning have been investigated in (Burckert, 1990a).

Due to the great variety of approaches for theory reasoning, we prefer to bring in structure by
classifying thevarious approaches. Of coursethereare plenty waysof doing. The classification
we useisby level of connection. In order to explainthistermitis necessary to recall the nature
of theory reasoning as interfacing background reasoning and foreground reasoning. Now, by
“level of connection” we mean the common subpart of the foreground and the background
language, that isused for their interfacing. To be concrete, we will distinguish the three levels
literal level, termlevel and variable level. Figure (1) isaclassification of the approachesto be
described with respect tolevel of connection. Theliteral level isthemost general of all; it allows
for theory reasoning with literals with different predicate symbols (general theory reasoning

1 Introduction 4

Theory reasoning

Literal leve Term leve

Total theory reasoning

Partial theory reasoning Typed terms
Ordered eguations Dedicated unification Variable level
Paramodul ation-like Universal unification

E-Resolution-like

Typed variables
Constraints

Figure 1: Classification wrt. level of connection

approaches and equality). Thisisdifferent to termlevel theory reasoning, where unification on
termsis replaced by some unification modulo atheory (typing, dedicated unification, universal
unification). A further speciaization is the variable level theory reasoning which is bounded
to variables (typing of variables, constraints).

The methods subsumed by “theory reasoning” in figure (1) are subject to enormous research
activities and results. Thus it would be too a big task to give a deep overview of al of them.
Since there are excellent overviews of term level (usually known as “unification theory”) (e.g.
(Siekmann, 1989)) and constraints (see e.g. (Meseguer, 1989), or (Van Hentenryck, 1989) for
atextbook on constraintsin logic programming), we will concentrate on the literal level.

Our strategy for describing the literal level is essentially as follows: we will define a formal
framework, called theory consolution, and show how it can beinstantiated to the variousknown
theory calculi. By this technique, we hope to give an understanding of the ssmilarities and
differences among the calculi. This technique of instantiating the consolution framework to
other calculi has been applied by two of the authorsto non-theory cases beforein (Baumgartner
and Furbach, 1992).

For a related overview of modifications to the resolution calculus, such as UR-resolution
(McCharen et a., 1976) and Hyperresolution, but also theory resolution, see (Eisinger and
Ohlbach, 1993). Thiswork aso covers various kinds of theories (equality, theories compiled
from the axioms, taxonomically represented theories).

Thiswork is structured asfollows: in the next section the varioustheory reasoning approaches
will be described informally. Thistour touchesall of them. In section 3 we will turnto amore

2 TheTour: Literal level — Termlevel — Variable level 5

formal presentation of theliteral level. Asjust mentioned, thiswill be done on the basis of one
gpecial calculus, namely the consolution calculus. It will be presented first in its non-theory
versionand finally wedefineitstotal and itspartial variant. Thiscalculi will be used afterwards
to discuss theory resolution, theory model elimination and a theory connection method. The
completeness of these calculi is proven rigorously by mapping our presentation of the calculi
to corresponding representations, for which we have compl eteness results. Section 4 contains
adiscussion on equality handling.

2 TheTour: Literal level — Termlevel — Variable leve

In this section we will present several methods of theory reasoning according to our classifica-
tion. Consider againfigure (1) intheintroduction. Theinner nodes can be briefly characterized
asfollows:

Literal level: Certain literals from selected clauses are passed to the theory reasoner. For
example, if the theory isinstantiated to “strict ordering” then the theory reasoner might
get the two literals (not the different predicate symbols) « < b and « > = and decide
that applying the substitution {z < b} to their conjunction gives a formula which is
unsatisfiable in the theory of strict orderings.

Term level: The argument terms of certain literals from selected clauses are passed to the
theory reasoner. Typically, two complementary literals are selected, and the theory
reasoner has to check for a pairwise theory-unifiability of the argument terms. For
example, if f isacommutative function symbol, then the theory reasoner might decide
that the arguments of P(f(a,b)) and —P(f(z,a)) are unifiable by the substitution
{z « b}.

Variablelevel: Since variables are terms, thisis a subcase of the previous case. Here, the
legal assignments for variables are restricted in some way, e.g. by domain restrictions.
For exampleif P(z) and —P(y) aregiven, and thedomain of z is{a, b} and thedomain
of y is {b, ¢} then the substitution {z « b,y < b} isin accordance with the domains
and makes the above literal set unsatisfiable.

Obvioudly, the methods in the same level of connection deserve further structuring. Let us
start with general literal level theory reasoning.

2.1 Literal Level Theory Reasoning

Thebasicideaof literal level theory reasoningisat best explainedin comparisonto ordinary, i.e.
non-theory reasoning: in ordinary reasoning, clauses containing syntactically complementary

21 Literal Level Theory Reasoning 6

Literal level
theory reasoning

TN

General Theories Equality
hoxordered
Partial Total Ordered equations
theory reasoning theory reasoning equations
Paramodul ation- E-Resolution-
like like

Figure 2: Classification of “Literal level”

literals are used for inferences, whereas in theory reasoning this is done with semantically
complementary literals. Here “semantically complementary” means roughly “unsatisfiable in
the given theory”. A precise characterization isgiven in the next section.

Figure (2) depicts a classification of literal level theory reasoning. On the one hand we will
consider general theory reasoning approaches. There, no fixed theory is presupposed, and
these frameworks can be instantiated with a great variety of theories. On the other hand we
will devote an extra section to equality, i.e. general theory reasoning that is instantiated with
the theory of equality. This partition is motivated by the enormous research dedicated to

equality.

General literal level theory reasoning (smply called “theory reasoning” from now on in this
subsection) isthe most general technique of all. Itisascheme of building in arbitrary universal
theoriesintofirst order calculi. Still onthisvery general level two variants can be distinguished
(figure 2):

Partial theory reasoning: Viewed operationaly, in a partial reasoning step the background
reasoner is passed from the foreground reasoner a set of literals and returns a formula
Thisformulais anew subgoa to be proved. It isaso caled residue. For example, if the
theory is “strict ordering” and we are given theliterals S = {a < b,b < ¢,c¢ < d} and
the“goa” —a < d. By transitivity of < theliteral « < d isalogical consequence of S,
and this literal immediately contradicts the goal. To show this fact with partial theory
reasoning the background reasoner might be passed thegoal —a < d andtheliteral a < &
from S; then it returnsthe residue —b < d. For the next step this residue plays the same

21 Literal Level Theory Reasoning 7

role asthe goal before. Thiskind of reasoning is repeated until a contradiction becomes
immediate.

Semantically, a residue states a logical consequence of the passed literals, or, in other
words, the negation of the residue together with the passed literasis unsatisfiable in the
theory. Asusual, in the non-ground case substitutions are involved. See section (3) for
aprecise treatment of residues and so-called “theory refuting substitutions”.

Total theory reasoning: Total theory reasoning isthe same as partial theory reasoning, except
that the residue must be empty. Thus, the literal set passed to the background reasoner
must be unsatisfiable by itself. For example, theliteralsa < banda > b areunsatisfiable
in the theory of strict orderings, and thus are subject to atotal theory reasoning step.

The distinction between these kinds of theory reasoning is important for several reasons:
firstly, in partial theory reasoning we have the unique situation that the theory reasoner returns
aformulato the caller, and not just a substitution or ayes-no result. Thusthe coupling is more
symmetric than the other approaches on the term level.

Secondly, for undecidable theories total theory reasoning requires too much from the theory
reasoner, i.e. theinference must neccessarily be undecidable. As aconsequence, the notion of
“derivation” isundecidable— ahighly undesirable property. Thisimpliesfor implementations
that the background reasoner cannot be “called” as a procedurethat is guaranteed to terminate.
But even if the theory is decidable there remain problems with total theory reasoning. For
examplelet us consider the theory of equality. Though thistheory admits a decision procedure
for the background reasoner, as e.g. rigid £-unification (cf. (Gallier and Snyder, 1990) and
section 4 of the present paper), it cannot be predicted by the foreground reasoner how many
variants of literals from clauses constitute a contradictory set. In other words:. it is hard to
find good candidates for contradictory sets. On the other hand, it may not be difficult for
the foreground reasoner to detect the potential kernel of a contradictory set. Moreover, the
theory reasoner might guide the search for literalswhich complete the kernel to a contradictory
set. This scheme of co-operation with a search guiding role of the theory reasoner is the idea
of partial theory reasoning. The residue returned by the partial reasoner gives advice to the
general reasoner for the search for appropriate literals.

The generality of theory reasoning isboth a strength and aweakness: it isa strength, because it
subsumes all other techniquesif an appropriate theory reasoner is given — and the generality
IS aweakness because it cannot propose how to come to efficient theory reasoners, which are
usually domain dependent.

Since Stickel’s pioneering work for the resolution calculus (Stickel, 1985; Stickel, 1983),
the scheme was ported to many calculi. It was done for matrix methods in (Murray and
Rosenthal, 1987), for the connection method in (Petermann, 1990) and for model elimination
in (Baumgartner, 1992a). The latter two papers contain completeness resultsfor the first-order
case. The primary concern of these works is the combination of the main calculus with the
theory reasoner; it is not the construction of efficient theory reasoners.

2.2 Term Level Theory Reasoning 8

Term level
theory reasoning

N

Non-equational theories Equational theories
Typed terms Dedicated Universal
unification unification

Figure 3: Classification of “Term level”

2.2 Term Level Theory Reasoning

Term level theory reasoning is better known under the name unification modulo a theory, or
simply theory unification.

Since there are excellent overviews of this area, we will only supply a very brief description
here. The reader interested in thistopic is referred to (Blasius and Burckert, 1989; Siekmann,
1989) for more details.

Like general theory reasoning it generalizes a syntactical concept to a semantical one, by
replacing the syntactical unification algorithm with a unification a gorithm for the theory.

Theory unification differsfrom theory reasoning in two aspects:

e Theory reasoning is carried out on theliteral level, whereas theory unification is carried
out on the term level. Thus, the predicate symbols of the literals selected for the theory
reasoning step may be different, whilein the theory unification step they must be equal.

e The partial variant of theory reasoning computes with residues, i.e. the theory reasoner
maly establish new subgoal s and return them to the main procedure. Intheory unification
such a concept is missing.

Figure (3) depicts a classification of theory unification, where the kind of theory isused as a
classification criterion:

Equational theories: Since equations (pairsof theform s = ¢) occur so frequently in mathe-
matics and in nearly every form of reasoning, it is not surprising that much research has
been spent on the automatization of equational theories. Here the theory is axiomatized
by a set of (conditional)equations £. Only £-models are considered, i.e. models of the
theory of equality £ (section (4)).

2.2 Term Level Theory Reasoning 9

Thus in equational unification the following £-unification problem has to be solved:

Given aset E of equations and some pairs (u;, v;). ISthere a substitution o
such that every £-mode satisfying £ aso satisfies u;o = v;o, or shortly, that
all equations u;0 = v;0 are £-consequences of E.

Such ao iscaled E-unifier for (u,,v;) inthetheory E. The £-unification problem can
equivalently be formulated in a more operational fashion. It is roughly as follows: in
order to solve the above problem, try to transform w; into v; by replacement of subterms
with equal termsasgivenby E. The £-unifier isobtained by collecting the substitutions
along the way.

Some questions coming up immediately are the following: is the £-unification problem
decidable? (No); how many such &£-unifiers exist? (Countable many); if more than
one exists, can we compute a solution base, i.e. areasonable small set that implicitly
includes all other solutions?

A problem similar to £-unification is rigid £-unification. This is a resource-bounded
form of &-unification which, loosely, forbids drawing more than one instance of an
equationin £ when solving an £-unification problem. Rigid £-unificationisrelevant for
building in the theory of equality into general theory reasoning calculi and is discussed
in section (4).

Unification procedures for equationa theories can be further distinguished: on the
one hand, there are dedicated unification algorithms, which are special purpose theory
unification algorithms for one single equational theory (see e.g. (Petermann, 1991a)).
For example, there are such agorithmsfor associative and for commutative theories (see
(Burckert et al., 1988) as an anchor). From a practical point of view it would be very
pleasing to combine given unification agorithmsfor different theoriesin order to obtain
aunification algorithm for the theories union. Unfortunately thisis ahighly non-trivial
task. An advanced result allows for the combination of theories with digunct function
symbols, but common constant symbols (Ringeissen, 1992).

On the other hand we have universal unification agorithms, that work for a wide
class of equational theories (see (Gallier and Snyder, 1990; Gallier and Snyder, 1989; J.-
P. Jouannaud, 1991)). Further advantage can betakenif the equations can bedirectedinto
rewriterules. Then the Narrowing-technique can be used, whichisthefirst order version
of rewriting (Hullot, 1980; W. Nutt and Smolka, 1987; Holldobler, 1989). General
overviews of theory unification can be found in (J.-P. Jouannaud, 1991; Siekmann,
1989), and a recent text book is (Snyder, 1991).

Non-equational theories—typing: The most investigated non-equational theories (at least,
conceptually) are those which employ a type hierarchy on terms, as already discussed
in the introduction. Thisis aso known as order-sorted unification. Roughly, if s; : 71

2.3 VariableLevel Theory Reasoning — Constraints 10

means that the term s, is of type 73, then the unification of the expressions s; : 73 and
so » Tp succeeds if s; and s, (Robinson-)unify, and if 77 and 7>, can both be restricted
to a common subtype. See (J-P. Jouannaud, 1991) for an overview. Order-sorted
logics has been developed since the 60s (Oberschelp, 1962), and nowadays numerous
proof-procedures exist, which demonstrate that order-sortedness increases efficiency
significantly.

2.3 VariableLeve Theory Reasoning — Constraints

In variable level theory reasoning, the set of legal values for variables is limited. This is
usually achieved by constraints. Syntactically, constraints are formulas that are attached to
some variablesin clauses, and semantically they filter out valid assignments for the variables.
During inferencesthe constraints of the unified variables are combined, and eventually, but not
necessarily immediately, the combined constraints must be solved. In other words, constraints
may be treated lazily. Thisis the approach taken in (Burckert, 1990a). Constraints are mostly
investigated in the context of logic programming and Prolog (Van Hentenryck, 1989; Jaffar and
Lassez, 1987), which is so successful that constraint logic programming has been established
asafield of its own.

3 Literal Level Theory Reasoning

Asmentioned previoudly, thiswork isstrongly biased towardstheliteral level theory reasoning.
This section describes several general calculi for literal level theory reasoning in a formal
way. In order to see the smilarities and differences among them, we have decided to define
the calculi as instances of some particular common framework. Thus, many notions, such
as “derivation”, “theory refuting substitution” and “residue’ only have to be defined once.
The common framework is called “theory consolution” and it generalizes the non-theory
consolution calculus as defined in (Eder, 1991). This calculuswas designed as ageneralization
of both connection calculi and resolution calculi. In (Baumgartner and Furbach, 1992) it has
been proved to be useful as framework to define and to compare various other calculi. Thusit
is not surprising that its theory-generalization is well-suited for our purpose.

This section is structured as follow. We introduce the consolution calculus along the lines of
(Eder, 1991; Baumgartner and Furbach, 1992) and then define atheory version, both in a total
and a partia variant. These calculi are then modified to obtain theory resolution, theory model
elimination and a theory connection method in order. The partial variant thereof is derived
only for the case of theresolution calculus. Sincetheinstantiations of theory consolutionin the
partial case to model elimination and connection method can be done analogously, we assume
that it is sufficient to demonstrate this construction only once.

3.1 Consolution 11

But before we start the discussion, let us introduce an example theory that will serve us
commonly for all calculi throughout this section. Itisthefirst-order representation of some ta-
xonomical knowledge about persons. Weare not concerned with how thistheory isrepresented
inareal system.

T:
(T-1) Ya((mammal(xz) A thinker(x)) — person(z))
(T-2) Vz(woman(z) — person(z))
(T-3) Vz(man(z) — person(z))

Besides thistheory some concrete situation is needed. We will often use the following clauses
in conjunction with the theory®:

C:
(1) —person(fred)V —man(y)
(2) thinker(fred)

(3) mammal(z)V man(z)

3.1 Consolution

In this section we will briefly recall the consolution calculus as defined in (Eder, 1991). Since
we want the calculus as a starting point for the description of other calculi, we feel the need to
modify the original definition asit isgiven by Eder. For acareful treatment and discussion of
these divergences, the reader is referred to (Baumgartner and Furbach, 1992); in the present
paper we use consolution in the already modified version.

3.1.1 Theldea of Consolution

Consolution can be seen as a procedurefor converting aformulagiven in one normal forminto
another normal form: assume we are given a (for simplicity: ground) formulain digunctive
normal form (DNF) and want to prove its validity. This can be done by converting it in afirst
step into conjunctive normal form (CNF). The second step then uses the fact that a formula
in CNF is valid iff every conjunct contains complementary literals. Thus, a smple test for
complementary literalsin every conjunct sufficesto decide the validity of the CNF and also the

1This example isa bit contrived, but will serve uswell in the formal part below

3.1 Consolution 12

DNF. Now, with some additional optimizations thisis just how consolution works. Consider
for example the DNF-formula

(PAQ)V (~PVQ)V-Q

Conversion to CNF can be begun by applying the law of distributivity to the underbraced part,
yielding

(PV=P)AN(PVQ)A(QV-P)AN(QVQ))V-Q

This operation is aso carried out as afirst step in an consolution inference. The subsequent
steps deal with the above-mentioned optimizations. first, diguncts such as P v =P which
contain complementary literals are tautological and thus can be removed. Second, disuncts
may be shortened; for example, (Q vV —=P) may be replaced by). This corresponds to the
“weakening” rule in Gentzen's sequent calculus (see eg. (Galier, 1987) for the sequent
calculus). However, it may cause incompleteness by throwing away the “wrong” literd, i.e.
the literal that contributes to a complementary pair in a later stage. Third, Q vV () can be
replaced by). This rule corresponds to the “contraction” rule in the sequent calculus. Itis
implicitly present in consolution by means of the set data structure, which collapses multiple
occurences of literalsinto asingle one. Similarly, identical conjunctssuchas @ inQ A @ can
be contracted to asingle one. Carrying out these suggested operations results in the formula

(PVQIAQ)V~Q

Now it iseasy to see that the next step produces the “empty” digunct, which is a proof for the
validity of the given formula

Consolution is dightly more general than just explained: instead of logical formulasin DNF,
consolution works on sets of clauses, where a clause is a set of literals. The semantics of
clause sets is then obtained by interpreting the outer commas by “V” and the inner commas
by “A”. The clause set data structure is more general, since the interpretation of the outer
commaand inner comma can be exchanged. In other words, one starts with a CNF instead of
aDNF. A derivation of the empty clause can then be interpreted as proof of the unsatisfiablity
of the DNF-formula, instead of a proof of the validity of a (logically different) CNF-formula.
This duality is not specific to consolution but applies to every calculus with clause sets as
data structure. It gives us the freedom to directly relate derivationsin e.g. model elimination
(whichisusually formulatedin therefutational setting) and consolution (which wasformulated
in Eder’s theorem in the affirmative setting).

Consolution can also be explained from the background of the connection method (cf. (Bibel,
1987)). Here, clause are called matrices, and the method is concerned with proving that
every path through this matrix contains two complementary literals, called connectionsin this
framework (a path through a matrix is built by selecting exactly one litera from every clause
in the matrix).

3.1 Consolution 13

To illustrate consol ution we use an example from (Eder, 1991):

The three clauses {P, @}, {—P,Q} and —@) are represented in the connection method as a
matrix M:

Thus the possible paths through thismatrix are { P, - P, -Q}, { P, Q,-Q}, {Q,~P,-Q} and
{@Q,~Q}. Consolution shares with the connection method the idea of showing that every path
containsaconnection. Consolution doesso by combining partial pathsthroughamatrix to even
longer partial paths and thereby ruling out paths containing aconnection. Thefollowing treeis
aproof treein consolution. Thenodesare markedwith path sets, eg. {{P,Q},{Q,—-P},{Q}}
is a set with three partia paths through the two leftmost clauses in the matrix A7. Now, in an
inference the cross product of the elements of the parent nodes is built, and paths containing
connections are deleted.

{Hry{e} {{-P}.{Q}}

N 7

{{P,0},{Q,-P},{Q}} {{-@}}
{

Theroot of thistreeisthe empty path set, which provesthat all paths through M are comple-
mentary.

3.1.2 Formal Definition

To introduce consolution formally we need the following definitions.

A connection in a set of clauses is a pair of literals which can be made complementary by
instantiation. Let {Cy,...,C,} be a clause set. A path through {C,,...,C,} is a finite
sequence of literals

Iio---0ol,
whereevery L; isalitera in C; (foral : = 1...n). Define
last(Lyo---0L,) =L, ifn>1

3.1 Consolution 14

and
front(Lyo---oL,)=1L10---0L, 1 ifn>1

Apathp = Lyo---0 L, immediately extendsto a path q iff p ~ ¢ iff
3L 3i(0<i<mn):q=ILio--roL;oLoL;y0---0L,

For the transitive closure we say that a path p extendsto a path qiff p ~* ¢. The partial order
< on pathsis defined as

p<gq iff p=gqgordsep~~Tq

A path set is afinite multiset of paths. Multisets are like sets, but allow multiple occurrences
of identical elements. Formally, a multiset can be introduced as a function N over a certain
domain that maps every element of the domain to a natural number. For convenience we will
use set-notations. For example the set for which N(a) = 3and N(b) = 1and N(z) = O for
all other values can be writtenas {«, a, a, b }. Asoperatorsfor multisets we will use the usual
set operators with the obvious intended meaning.

In (Eder, 1991) paths are ssimply sets and thus the above operations last, front and extension
areunnecessary or rather their effect can be achieved by the usual set operations. Furthermore,
the origina calculus computes with sets of paths instead of multisets. In (Baumgartner and
Furbach, 1992) we arguethat our modified cal culusisthe appropriateformal basefor expressing
other calculi. Sincetheargumentsgiven for the modificationscarry over to thetheory case, we
refer the reader to (Baumgartner and Furbach, 1992) for that discussion. The next definitions
are adaptions of the onesin (Eder, 1991) towards our data structures.

If Cisaclause C = {L,,..., L,} thenthe path set of C isgiven by the path set
Pe={L1,...,L,}

The product pq of two paths p and ¢ is the path p o ¢. The product PQ of two path sets P
and Q isdefined as

PQ ={pglp e Pandq € Q}
For ease of notation we write p - P as an abbreviationfor {p} - P.

In the sequel we are also concerned with trees, whose nodes are |abelled with literals, except
for the root which remains unlabelled. Such trees can be conveniently represented by path
sets by simply taking the sequence of the labels L, ..., L, of abranch in the tree as a path
Lyo---0 L, inthe corresponding path set. Then the last operation of above denotes the |eaf
of abranch. This representation is not into: although every such tree can be represented as a
path set, there are path sets that may stem from non-isomorphic trees.

In order to define the model elimination and matrix calculi later in this section, we have to
introduce ferns, which are trees whose shape is pictorialy as follows:

3.1 Consolution 15

Moreformally, afernF of Cy, ..., CywithtrunkL,o- - -oL,isthesmallest path set F' satisfying
the following conditions:

1. C;isaclause containing theliteral L;, forall : = 1...n.
2. [1o---0L, € F
3. Lio--oLi_joLeF fordli=1...n,fordl Le C;—{L;}

The following concepts will be used in the inference rule below:

Definition 3.1 (Spanning MGU) A substitution o isaspanning MGU for a path set Qiff o is
amost general substitution such that every element in Qo contains syntactical complementary
literals. O

Definition 3.2 (Shorteningof paths) A path set Q isobtained fromapath set P by shortening
of pathsif thereisa surjective mappingf : P — Q suchthat f(p) < pholdsforall pe P. O

Definition 3.3 (Simplification) A path set ‘R is obtained from a path set P by smplification
iff
A) there existsa spanning MGU o for some subset Q C P, and

B) 7B is obtained from Po by deleting zero or more paths containing complementary
literals, and

C) PC isobtained from 78 by shortening of zero or more paths, and

D) R isobtained from P¢ in the following way: for every path p € P¢ zero or more, but
not all paths are deleted that are equal to p asa set of literals.

3.1 Consolution 16

O

The motivation for the term “equal as a set of literals’ in item D comes from the desire to
simulate the behaviour of setsin Eder’s original consolution. See (Baumgartner and Furbach,
1992) for details.

Definition 3.4 (Consolution inference) (Sequence Consolution) Theinferencerule sequence

consolution is defined as follows
P Q

R
if thereexistsavariant Q@ of Q which does not have variablesin common with P such that R
isobtained from P - Q by simplification. R is called a sequence consolvent of P and Q.

A derivation of amatrix M isafinite sequence(Py, . . . , Pn) of path setssuch that thefollowing
conditions hold:

1. Fordlk=1,...,n,theset Py

(a) isapath set Pc of aclause C € M, or

(b) isaconsolvent of P; and a new variant of P; for somei,j < k.
2. Pan=A{}

In order to express linear calculi, such as model elimination a slightly modified definition is
necessary. Thus, alinear derivation of a matrix M is afinite sequence (Py, ..., Pn) of path
sets such that the following conditions hold:

1. Pyisapath set Pc of aclause C € M.

2. Foral k=1,....n,the set Py isaconsolvent of P,_; and a new variant of a path set
Pc of aclause C € M.

O
We will not give an example of consolution here, because it would be subsumed by the theory

consolution examples presented below. Instead we conclude non-theory consolution with the
following theorem.

Theorem 3.1 (Soundness and completeness of consolution) (Eder, 1991) A formulain dis-
junctive normal formisvalid if and only if thereis a derivation of its matrix by consolution.

Together with a theorem from (Baumgartner and Furbach, 1992) which states that every
consolution derivation can be stepwisely smulated by a sequence consolution derivation, the
completeness of sequence consolution follows,

3.2 Theory Consolution 17

3.2 Theory Consolution

As motivated in the introduction we take apart the knowledge of the domain (i.e. the theory)
from the program clauses. Formally, a theory is a satisfiable set of universally quantified
formulas.

A T -interpretationisan interpretation satisfying thetheory 7. A 7 -interpretation I 7 -satisfies
aclause set M iff I smultaneoudy assigns true to al ground instances of the clausesin M.
T -(un-)satisfiability and 7 -validity of clause sets are defined on top of this notion as usual.

The restriction to universally quantified theories, shortly universal theories, is necessary bec-
ause precisely for those theories a Herbrand theorem of the following form holds (Petermann,
1991b).

Theorem 3.2 A clause set M is 7 -unsatisfiable if and only if there is a finite set of ground
instances of clauses from M which is 7 -unsatisfiable.

Similar to the non-theory case aHerbrand theorem of thisformisthe basisfor any completeness
proof for acalculuswhich relies on the co-operation of foreground and background reasoning.
The restriction is not serious in principle because every theory may be substituted by an
equivaent universa theory. However, equivalent means here equivalence with respect to
theory-satisfiability and up to the enrichment of the signature by Skolem functions.

3.2.1 Thelnterface Between General and Dedicated Reasoner

In the present subsection we define the interface between the foreground reasoner, consolution,
and the background reasoner. This interface is constituted by three notions. Firstly, we have
to generalize the concept of “complementary pair of literals’ to the theory case. Unlikein the
non-theory case, there is no general syntactic characterization in the theory case. Therefore
we will give a semantic pendant which is that of a “theory complementary set of literals’.
Secondly, we have to generalize the notion of “unifier”. The task of the background reasoner
is to construct from candidates given by the foreground reasoner “theory complementary
sets of literals” which play the role of elementary arguments in the course of the refutation.
This construction is carried out by instantiating the candidates. We will call the respective
substitutions “theory refuters’. Thirdly, in order to be able to treat partia theory reasoning
too we introduce the notion of “theory residue’.

Definition 3.5 Let S = {L,,...,Ly} be alitera set. Sis called 7-complementary iff the
existentially quantified conjunction 3(L; A ... A L) is7-unsatisfiable. A 7 -complementary
set iscalled minimal 7 -complementary iff every true subset is not 7 -complementary. O

Equivalently to thisdefinitionit holdsthat { L, ..., L, } is7 -complementary iff every ground
instance of Ly A ... A L, is T-unsatisfiable iff the universally quantified digunction V(Z; v

3.2 Theory Consolution 18

...V T,)isT-vdid.

Thereisasubtledifferencebetweenthe7 -complementary of aliteral setandits7 -unsatisfiability,
when read as a set of unit clauses, i.e. if the variableswere V-quantified. These notions are the
same only for ground sets. Consider, for example, alanguage with at least two constant sym-
bols« and b and the“empty” theory). Then S = {P(z),~P(y)} is, whenread asaclause s,
0-unsatisfiable, but S isnot)-complementary, because the conjunction 3z, y(P(z) A =P (y))
is not (-valid (because the interpretation with I(P(a)) = false and I(P(b)) = true isa
model). However, when applying the substitution o = {z <« y} to § theresulting set So is
()-complementary.

The importance of “complementary” arises from its application in inference rules, such as
resolution, which for soundness reasons have to be built on top of complementarism. Since
we deal with theory inference rules, we had to extend the usua notion of “complementarism”
to “7 -complementarism”. As a further example consider the theory £ of equality (section
4). Then § = {P(z),y = f(y),~P(f(f(a)))} is E-unsatisfiable but not £-complementary.
However after application of the subgtitution ¢ = {z « a,y <« a}, the set So is &-
complementary. Such substitutions will be called refuters. As with non-theory consolution,
the theory consol ution derivations should be computed at amost general level; thisisachieved
by most general refuters. More formally we define:

Definition 3.6 A substitution o isa7 -refuter for Siff S is7 -complementary. Conversely, S
iscaled 7 -refutableiff a7 -refuter existsfor it. If So isminima 7 -complementary then Sis
also called minimal 7 -refutableby o. A set of substitutionsisacomplete set of 7 -refuters for
S(or short: CSR7(9)) iff

1. foral o € CSR(S): o isa7 -refuter for S (Correctness)

2. foral 7T -refutersé for S
thereisao € CSR(S) and a substitution o’ such that §|var(S) = (oo’)|var(S)
(Compl eteness)

A “partial” variant of 7 -refutersis asfollows:

Definition 3.7 A pair (o, R), where o isasubstitution and Risaliteral, isa7 -residue of S iff
Sy U {R} isminimal 7 -complementary. O

The prefix “7-" is often omitted in the sequel.

In this context it might be interesting to know that our notion of theory refuter generalizes
the notion of rigid E-unifier (Gallier et al., 1990) to more general theories than equality (see
(Burckert, 1990a) for aproof). A dual notion, “unifier with respect to 7 -complementary literal
sets’, has been studied within an affirmative setting (Petermann, 1991b). Constraint theories,
equational theories and simple taxonomic theories have been discussed there as special cases.

3.2 Theory Consolution 19

To give an example of theory refuters assume that the theory consists solely of the following
formula

T = {Vz : man(z) — person(z)}
Now consider the literal set
§ = {man(z), ~person(father(y))}
Then
o = {z — father(y)}
isa7 -refuter for S, because the formula
So = Jy(man(father(y)) A —person(father(y)))

is 7-unsatisfiable. So is even minimal 7 -complementary, as any true subset of So can be
ground instantiated to a 7 -satisfiable set. The substitution v = {z « father(z)} isnot a
T -refuterfor S, because 3y, z(man(father(z)) A—person(father(y)))isnot 7 -unsatisfiable.
This can be seen by replacing, say, z by « and y by b and finding amodel.

The semantics of aresidue (L, o) of S isgiven asfollows: L isalogical consequence of So.
Operationally, L isanew goa to be proved. For examplelet S’ = {P(z),y = f(y)}. Then
({z «— y},P(f(y))) isan E-resdueof S’, since

S =yt U{=P(F(w)} ={P(),y = f(y), ~P(f(y))}
isminimal £-complementary.

If desired, a minimality requirement stating that no refuter is an instance of another can be
added to the definition of CSR. However it is not required for correctness or completeness
issues; even more it may be advisable to leave minimality away, as there are cases where a
complete set of minimal refuters may not exist (See (Fages and Huet, 1986) for a proof in the
context of theory unifiers).

3.2.2 Formal Definition of Theory Consolution
Being equipped with the definition of the consolution calculus, a generaization to a theory
consolution calculusis fairly straightforward now.

At first the notion of product has to be generalized: the product pip,...p, of n paths
P1, P2, - - - , Pu ISthepath p1opoo- - -0p,. Theproduct PP, ... P, of n pathsets Py, Po, ..., P,
isdefined as

PiPo... P, = {plpz...pn|pi e P;fordl : = 171,}

3.2 Theory Consolution 20

Definition 3.8 (Spanning 7 -refuter) A substitution o is a spanning 7 -refuter for a path set
Q iff o isaT -refuter for every q € Q when qisread asaset of literals. O

Simplification is generalized in the following way:

Definition 3.9 (Total theory smplification) A path set R is obtained from a path set P by
total theory ssmplification iff

A) thepath set P*isobtained from P by application of some substitution o tosome Q C P.

B) the path set PB is obtained from P* by deleting zero or more paths containing 7 -
complementary literals.

C) PC isobtained from P8 by shortening of zero or more paths, and

D) R isobtained from P¢ in the following way: for every path p € P¢ zero or more, but
not all paths are deleted that are equal to p asa set of literals.

O

The substitution o applied in A) need not necessarily be a 7 -refuter or to be a most genera
substitution. This enables e.g. application of afactorisation substitution asin resolution.

Deletion of duplicate paths modulo ordering of literalsin D) allows to simulate the set data
structure of paths and of path setsin consolution.

Now the inference rule can be defined. It generalizes from 2 to » path setsin the premise:

Definition 3.10 (Theory consolution inference) The inferencerule:

,Pl ,Pn
R

if the P; are pairwise digoint path sets, and R is obtained from the product P; ... P, by
smplification. We say then that the path set ‘R is a theory consolvent of the path sets
,Pl, . ,,Pn. O

Next the notion of derivation has to be adapted.

Definition 3.11 A theory derivation of a matrix M is a finite sequence (Po, ..., Pn) of path
sets such that the following conditions hold:

1. Fordlk=1,...,n,theset Py
(a) isapath set Pc of aclause C € M, or

(b) isatheory consolvent of new variantsof pathsets P, . .., P, whereiy, .. .ix < k.

3.2 Theory Consolution 21

A linear theory derivation of a matrix M is a finite sequence (P, . .., Pn) of path sets such
that the following conditions hold:

1. Poisapathset of aclause C € M.

2. Fordl k=1,...,n, the set Py isatheory consolvent of P,_; and new variants of path
setsPe,, ..., Pc, Wherethe G (fori = 1...n) areclausesin M.

O

It should have become clear from the preceding definitions that consolution has some open
parameters (the commitment to the derivation strategy, and the smplification). Thus one
cannot speak of the consolution calculus. Instead consolution should be interpreted as a
method that can be instantiated to several calculi. Thiswill be donein the following sections
in agoal-oriented way.

3.23 Example
This example is intended to trace through the several intermediate steps in a consolution
inference. The parameter settings are chosen “at random”.

Consider thisexcerpt from the examplein the beginning of thissection, consisting of the theory
7 and the clause set C:

7: (T Va((mammal(z) A thinker(z)) — person(z))
(T-3) Vz(man(z) — person(z))

c: (1 {—person(fred), ~man(y)}
2 {thinker(fred)}
(3) {mammal(z), man(z)}

We will show atotal inference step, using clauses (1), (2) and (3). Then thefollowing inference
can be made:?

—person(fred), ~man(y)
thinker(fred)
mammal(z), man(z)

—man(y) o thinker(fred)

2In this presentation style the input path sets are written in separate rows; the set braces are left away.

3.3 Partial Theory Consolution 22

Let us have adetailed look at how this result can be achieved: in afirst step the product of the
path sets of clauses (1), (2) and (3) is computed:

Q = P1PPs = { —person(fred) o thinker
—person(fred) o thinker
—man(y) o thinker(fred
—man(y) o thinker(fred

fred) o mammal(z),
fred) o man(z),

o mammal(z),
oman(z)}

S e | NN

Then Q issmplified:

A) Dueto (T-1), a7 -refuter for the first underlined path is {z « fred}, and due to (T-3),
{z « fred} isais aT-refuter for the second path. In total we build 0 = {z «
fred, z «— fred} and apply itto Q.

B) R? isobtained from Qo by deletion of the underlined paths.

RP = { —man(y) o thinker(fred) o mammal(fred),
—man(y) o thinker(fred) o man(fred)}

C) Shorten to the underlined pathsin R? and obtain:

RE = { —man(y) o thinker(fred),
—man(y) o thinker(fred)}

D) Obtain the above consolvent from R ¢ by deleting one of the duplicate occurrences.

3.3 Partial Theory Consolution

The calculus from above does not compute with residues. A partial variant can be defined by
replacing “application of a substitution” in total theory consolution with “appending aresidue
to apath”.

Definition 3.12 (Extension with a 7-residue) A path po o Resis obtained from a path p by
extension with a 7 -residue (o, Res) iff (o, Res) isa7 -residue of theliteral set of p. O

Definition 3.13 (Partial theory consolution) The inference rule partial theory consolution
is defined in the same way as total theory resolution, except that in smplification step A) is
changed in the following way:

A) the path set PA is obtained from P by replacing a single occurence of apath p € P by
po o Res, which is obtained from p by extension with a7 -residue.

The partial theory consolution calculus consists of theinference rulestotal theory consolution
and partial theory consolution O

3.3 Partial Theory Consolution 23

In (Stickel, 1985) residues are introduce on the ground level in adua way and more generally
as aset of literalsinstead of a single literal: aset {L,,..., L;} isa7-residue of aformula
Mifft M AN Ly A ... A Ly iST-complementary. Equivalently, this means that the digunction
L1 V...V L isalogica 7-consequence of M. Since this generalisation is straightforward
we have omitted it for the sake of simplicity.

For an example consider again the same theory and clauses (1) and (3) as above in total theory
consolution. Again, the open parameters of consolution are set at random. Selecting from
clauses (1) and (3) the literals —person(fred) and mammal(z) (respectively) the following
inference can be made:

—person(fred), ~man(y)

mammal(z), man(z)
man(z),~man(y), ~thinker(fred)

Let us have adetailed look at how this result can be achieved: in afirst step the product of the
path sets of clauses (1) and (3) is computed:

Q = P1Ps = { —person(fred) o mammal(z),
—person(fred) o man(z),
—man(y) o mammal(z),
—man(y) o man(z)}

Then Q issmplified:

A) The above underlined path is selected for extension with aresidue (o, R); aresidue for
this path is ({z « fred}, ~thinker(fred)). Applying the substitution z « fred and
extending the selected path with —thinker(fred) yields:

RA = { —person(fred) o mammal(fred) o —~thinker(fred),

—person(fred) o man(z),

—man(y) o mammal(fred),
—man(y) o man(z)}
B) R? = R4, i.e. nopathisdeleted.
C) Shorten to the underlined pathsin R? and obtain:
© = { —thinker(fred),
man(z),
—man(y),
—man(y)}

D) Obtain the partial theory consolvent as exposed above from R ¢ by deleting one of the
duplicate occurrences of —man(y)

3.4 Theory Resolution 24

Now we have defined the formal framework that can be instantiated to the various theory
caculi. Let us quickly summarize what “parameters’ have to be instantiated in the theory
consolution calculus:

e Concerning derivation: The function f and the commitment to a non-linear or linear
strategy.

e Concerning simplification: The parameters of step A (application of a substitution or
extension with aresidue), step B (deleting complementary paths), step C (shortening of
paths) and step D (deleting occurrences).

3.4 Theory Resolution

We assume the reader to be familiar with the resolution calculus and its terminology (see e.g.
(Loveland, 1978; Chang and Lee, 1973) for introductory textbooks). First we will explain the
origina version of theory resolution (Stickel, 1985). Then, after the formal definition based
on theory consolution is given, completeness will be proved.

3.4.1 Informal Explanation

In (Stickel, 1985) several variants of a theory resolution calculus are defined. One of them
is called narrow total theory resolution. We will demonstrate a first-order version of this
rule. It takes n clauses as inputs and selects one literal from each of the » clauses such that
these literals can be instantiated to a theory-complementary set. Then the resolvent is built
as in ordinary resolution by applying the substitution and collecting the rest of the clauses.
Thus narrow theory resolution is a straightforward “ semantical” generalization of the ordinary
resolution rule.

Example. Thisisan excerpt from the example in the introduction:

7T: (T Va((mammal(z) A thinker(z)) — person(z))
(T-3) Vz(man(z) — person(z))

c: (1 {—person(fred), ~man(y)}
(2) {thinker(fred)}
(3) {mammal(z), man(z)}

We will show an inference step, using from clauses (1), (2) and (3) theliterals —person(fred),
thinker(fred) and mammal(z) (respectively) asa7 -refutableliteral set. It can easily be seen
that {X «— fred} isa T -refuter for this set (join the clause form of (T-1) to this set and find

3.4 Theory Resolution 25

a resolution refutation). Hence the following resolvent can be built (the selected literals are
underlined) :

{—person(fred),—man(y)}
{thinker(fred)}

{mammal(z), man(z)}
{=man(y), man(z)} with refuter o = {x «— fred}

It should be noted that sometimes factorization hasto be carried out for compl eteness reasons.
This can either be done by an extra inference rule, or by incorporating factorization into the
resolution inference rule. Since factorizationisnot central for theidea of theory reasoning, we
will skip over it for the moment.

The partial variant of theory resolution issimilar to the total theory resolution rule, except that
the resolvent additionally includes aresidue in the resolvent. Stickel’sground calculus allows
as resdues digunctions By V ... V B, of literals. Thedigunction B = B; V...V B; isa
residueof aconjunction A = A3 A ... A A,, if Aimplies B. Herewe will restrict ourselvesto
the important special case wherethe residueisasingle literal B;. A generalization would be
straightforward if desired.

Example. Using the example of above, we have that
({z « fred}, —thinker(fred))

isaresidue of
{=person(fred), mammal(z)}

whichisbuilt fromliteralsin clauses (1) and (3). Thuswearrive at thefollowing partial theory
resolution inference:

{—person(fred),—man(y)}
{mammal(z), man(z)}

{—thinker(fred)—~man(y), man(z)} with residue ({x < fred}, —~thinker(fred))

Now resolving this resolvent in an ordinary resolution step against (2) we could arrive a the
same clause as in the above total theory step. As a general property one could say that the
purpose of partial theory reasoning isto approximateatotal theory reasoning step in asegquence
of partial steps, followed by one single total step.

A problem of Stickel’soriginal definitionisthat it allows oneto derive many redundant clauses.
For example, inthetheory of strict orderingsfrome < b and b < ¢ onemight infer theresidue
a < c,but dsoresdueslike—a < zVz <c,—a<zV-z<z'Vz <e¢, Thusin
practice it is inevitable to seek for suitable restrictions. See again (Stickel, 1985) for a more
detailed discussion how redundant residues can be omitted.

So far we have discussed narrow theory resolution. In (Stickel, 1985) a more general variant

3.4 Theory Resolution 26

called wide theory resolution is defined. It differs from narrow theory resolution in that no
longer are only single literals of the clauses considered in inferences, but instead subclauses
are passed to the theory reasoner. This however complicates the theory reasoner, since it must
operate on clause sets instead of literal sets. Similar to the narrow case, atotal and a partial
variant can be defined.

3.4.2 Formal Definition

The total theory resolution inference rule can be defined as an instance of theory consolution.
For the total version we need two inference rules: total theory resolution and factorisation.
For the former n clauses have to be chosen and they have to be put into a format suitable for
the theory consolution operation. The simplification operation in theory consolution has to
be defined in such away that the consolvent corresponds precisely to the theory resolvent in
theory resolution. More formally we arrive at the following inference rule:

Definition 3.14 (Total theory resolution) Theinferenceruletotal theory resolution isdefined

asfollows:
7){ L]_}UR]_

PiLatur,
R

where
1. {Li} UR arepairwisevariabledigoint clauses (fori =1...n, n > 1).
2. {Ly,...,Ln} is7T -refutable.
3. The smplification of the product
Q=Puyur - Pk

isdonein the following way:

A) Qo isobtained from Q by application of the 7 -refuter o of {L1,...,L,} (which
existsby 2.)

B) Delete every path (L; o --- o Ly)o from Qo and obtain RE.
C) R€ isobtained from R® by shortening every path in R according to
f(Kyo-oKm) =K
wherei € {1,...,m} suchthatK; ¢ {Ly,...,Ln}o
D) R isobtained from R by deleting for every path all its duplicate occurences.

3.4 Theory Resolution 27

O

In simplification step C) the path sets computed so far are shortened to path sets of length
1. Thus resolution “forgets’ information that might possibly be useful later. Indeed, matrix
oriented calculi keep this information and make use of it. Below we will proof that this
definition is indeed correct wrt. the standard theory resolution inference. More precisely we
will show that

R = P(Rio—{L10})U..0(Rno—{Lno})

Aswith ordinary resolution, theory resolution requires for compl eteness reasons factoring, i.e.
sometimes in a refutation a parent clause ¢’ must be instantiated to C'o where o is a most
genera unifier of some literalsin C. This can be achieved in the consolution framework by
instantiating the theory consolution inference in the following way:

Definition 3.15 (Factorisation) The inference rule Factorisation is defined as follows:

Pc
R

where
1. o isamost general unifier for some {Ly,...,L,} C C.
2. The smplification of Pc is donein the following way:
A) Obtain PA = Pco.
B) No pathisdeleted, i.e. PA = PB.
C) No shortening is applied, i.e. f(p) = p for every path. Thisyields P¢ = PE.
D) R isobtained from R by deleting for every path all its duplicate occurences.

Building on these inference rules we define:

Definition 3.16 A total theory resolution refutation is defined as a theory consolution deriva-
tion where every theory consolution inference either isatotal theory resolution inference or a
factorisation inference. O

Example. Consider the theory and clauses as used above in the informal presentation of
theory resolution. We will redo the above inference step. So we consider again from clauses

3.4 Theory Resolution 28

(1), (2) and (3) the literals —person(fred), thinker(fred) and mammal(z) (respectively) as
T -complementary literal set. Then the following inference can be made:

—person(fred), ~man(y)
thinker(fred)

mammal(z), man(z)

man(z),~man(y)

Observe that the resulting path set encodes the same clause as in the example of the above
informal presentation. Let us have adetailed look at how thisresult can be achieved: in afirst
step the product of the path sets is computed:

Q = P1PPs = { —person(fred) o thinker(fred) o mammal(z),
—person(fred) o thinker(fred) o man(z),

)

)

—man(y) o thinker(fred) o mammal(z),

ﬁman(yg o thinker(fred) o man(z)}
Then Q issmplified:
A) TheT -refuter {z « fred} for theliteralsin the underlined path
—person(fred) o thinker(fred) o mammal(z) ()
isappliedto Q.
B) R? isobtained from Qo by deletion of (x)

RP = { —person(fred) o thinker(fred) o man(z), }
—man(y) o thinker(fred) o mammal(fred),
—man(y) o thinker(fred) o man(z)}

C) Shorten to the underlined pathsin R? and obtain, modulo multiplicity of paths:

R = { man(z),
—man(y),
—man(y)}
It can be verified that this shortening is indeed achieved by the specification of the
definition.

D) Obtain R from R ¢ by deleting the underlined path.
The partial variant of theory resolution is obtained in much the same way:

Definition 3.17 (Partial theory resolution) The inference rule partial theory resolution is
defined as follows:

3.4 Theory Resolution

29

PR]_U{L]_}

PryuiLa)
R

where

1. {Li} UR arepairwisevariabledigoint clauses (fori = 1...

2. Thereisamost general residue (o, Res) for {Ly, ..., Ln}.

3. The smplification of the product
Q=Puyuwr): - - (Paur,)
isdonein the following way:
A) Q hastheform
Q={lLio---oLyJUP
Obtain
{(Lyo---0Lp)ooRes}UPs’

n).

from Q by extensonwith a7 -residue (o, Res) for Ly o - - - o L, (Which exists by 2).

B) Let R®B = R”, i.e. do not delete any complementary path.
C) R€ isobtained from R® by shortening every path in R according to

f(Kio- oKy =K;
wherei € {1,...,m} suchthatK; € {Ly,...,Ln}o

D) R isobtained from R by deleting for every path all its duplicate occurences.

A partial theory resolution refutation is defined as atheory consol ution derivation where every

theory consolution inferenceis an “total theory resolution” or “partial theory resolution”

O

By shortening thepath (Li o - - -0 L,0)o o Res tothe path Res (dueto simplification step C) at
leat one occurence of such apath must be contained in the result) and shortening the other paths
to Pr,u..ur,0 8Sintota theory resolution, and finally “collapsing” all multiple occurrences
of paths into one occurrence, we obtain precisely the path set corresponding to the resolvent

of the

traditional inferencerule.

3.4 Theory Resolution 30

Example. Consider againthe sametheory and clauses asabove. Wewill show apartial theory
resolution step, using from clauses (1) and (3) the literals —person(fred) and mammal(z)
(respectively) to derivetheresidue —thinker(fred). Thenthefollowinginference can be made:

—person(fred), ~man(y)
mammal(z), man(z)
—thinker(fred), man(z), ~man(y)

Observe again that the resulting path set encodes the same clause as in the example of the
aboveinformal presentation. Let us have adetailed ook at how this result can be achieved: in
afirst step the product of the path sets is computed:

Q = { —person(fred) o mammal(z),
—person(fred) o man(z),
—man(y)

—man(y) o man(z)}

o mammal(z),

Then Q issmplified:
A) The above underlined path

p = —person(fred) o mammal(z)

is selected for finding a most general residue; a most general residue for p is
Res = ({X « fred}, ~thinker(fred))

So we obtain by replacement of po with
q = —person(fred) o mammal(fred) o —thinker(fred)

the path set
RA = { —person(fred) o mammal(fred) o —thinker(fred),

—person(fred) o man(z),
—man(y) o mammal(fred),

—man(y) o man(z)}
B) Let R? = R4, i.e. do not delete any complementary path.

C) The result of the inference rule must be the path set corresponding to the clause
—person(fred) V man(z) V —man(y). This path set, modulo multiplicity of paths,
is obtained from R? by shortening the paths such that the underlined subpathsin B) are
kept. Thisresultsin the path set

@ = {=thinker(fred), man(z), man(z), ~man(y)}

D) delete one occurrence of man(z) in R to obtain R.

3.4 Theory Resolution 31

34.3 Completeness

Compl eteness of the consol ution-styletotal theory resolution cal culusisobtained by simulating
another theory resolution resolution calculus known to be complete. This strategy was aso
used for the non-theory case in (Eder, 1991). As a preliminary we cite from (Baumgartner,
1992b) a theory resolution calculus. The calculus defined there takes advantage of ordering
restrictionswhichwewill omit below. Thisislegal for our purposes, since an orderedrefutation
alwaysis an unordered one aswell. Thus, the completeness result for the ordered calculus as
developed in (Baumgartner, 1992b) holds as well for the unordered case.

Definition 3.18 ((Baumgartner, 1992b), Clausal Theory Resolution Calculus) The infe-
rence rules of the clausal theory resolution (CTR) calculus are defined as follows:

Clausal factoring:

C { if o isamost general (syntactical) unifier
Co forsome{Ly,...,Lp} CC

Clausal theory resolution:
C ... G, {ifaisaT-refuter for {Li,...,Ln} for
(Cio — {Lio})U...U(Cho — {Lno}) | somel; € Cy,...,L, € C,

In these inference rules, the L;i’s are called the selected literals. Let M be a clause set. A
CTR-derivation of C, from M isa sequence Cy, ..., C, where each C; € M or is obtained by
an application of the above inference rules to k variable digoint copies of clauses C, ... G,
wherej; <i,...,jkx < i. A refutation of M is aderivation of the empty clause. 0

This calculusis complete:

Theorem 3.3 ((Baumgartner, 1992b), Completeness of clausal theory resolution) Let 7
be a theory and M be a 7 -unsatisfiable clause set. Then there exists an CTR-refutation of M.

Building on this, we can prove the consolution-style version compl ete:

Theorem 3.4 (Completeness of Total Theory Resolution) Let 7 be a theory and M be a
7T -unsatisfiable clause set. Then there exists a total theory resolution refutation of M.

Proof. The proof is in analogy to the corresponding theorem for the non-theory case in
(Eder, 1991). By the previoustheorem it suffices to show that every clausal theory resolution
refutation can be simulated by step within total theory resolution.

Since the definitions of derivation are the same in total theory resolution and clausal theory
resolution the only non-trivial task isto show how to smulate the inference rules:

3.4 Theory Resolution 32

1. Clausal theory resolution: Let
Res = (Rio — {Lio})U...U(R,0 —{L,0})

be the result of a clausal theory resolution step with selected literal Ly, ..., L, and refuter
o. We have to show that Res isthe same set of literals as the total theory consolvent R of
PruiLa}s - - - » PRou{La}, 1.6 We have to show that Res = R. Since R¢ isthe same as R
modulo multiplicity of occurences of same literalsthisis equivalent to prove

L € Resiff L € R¢ (1)

By the given clausal resolution step we know that { L, ..., L, } is 7 -refutableby o. Hence
condition 2) in the definition of total theory resolution is satisfied. Then in ssimplification, the
product @ isbuilt and o isapplied in step A). The resulting multiset ()o can be written as

Qo ={(Ki0---0K,)o | K; € {L;} UR;} 2
In Step B) 7 -complementary paths are deleted which yields

R? ={p|p€Qop#(Lio- L)}
Then in step C) we obtain

RC={f(p)|p€Qop#(Lio---L,)o}

Note that by definition, f has to select a literal that is unequal to Lo, ..., L,o but paths
containing only these literals are deleted. Thus f iswell-defined.

Now we can prove (1):
L€ Res iff Fi:L € Rio—{Lio}
iff (snceR;oc —{Lio} #{})L# Lio
iff (bydef. of R®) p; = (Lyo---0L; 1)0oLo(Liy0---0L,)0 €RE
iff (bydef. of f) f(p;) =1L
iff (bydef. of RY) L € R®
2. Clausal factoring: Let C'o be the result of aclausal factorisation step applied to C'. We
have to show that Co is the same set of literals R as obtained by factorisation of P, i.e.

we have to show that Co = R. Since R® = R? = R4 = Po isthe same as R modulo
multiplicity of occurences of same literalsthisis equivalent to prove

Le Coiff L€ Peo ©)
This however isatrivial consequence of
Le Ciff Le P

3.4 Theory Resolution 33

3.4.4 Constrained Resolution

In (Burckert, 1990a) the resolution calculusis extended with a framework for constraints, i.e.
semantic restrictions for quantified variables. The goal of this section is to show the relation
between this resolution principle and theory resolution as defined above.

In order to sketch the idea of the constrained resolution calculus (see (Burckert, 1990b;
Burckert, 1990a; Burckert, 1992) for details) consider a clause like

Va(—person(z) V sleep(z) V eat(z))

stating that “persons sleep or eat”. In the spirit of constrained resolution this should be
expressed as a formula (z sleeps or eats) over a restricted domain (z is a person), i.e. the
clause:

Y(z : person(z))(sleep(z) V eat(z))

Asintheory resolution, constrained resol ution distingui shes between foreground reasoning and
abackground reasoning. The background reasoning isformalized by arestricted quantification
system (RQS), which consists of a signature A with equality, a theory over A (caled the
restriction theory R), and a set of open A-formulae (called the restrictions). The restriction
theory might be given by a class of A-structures or by some A-axioms. The restrictions, such
as person(z) in the above example, play the role of an interface between foreground and
background reasoner.

The foreground language is defined by RQ-formulas over a signature Z, which consist of the
usual first order formulasbuilt from Z and of formulas¥(z : R)F and3(z : R)F where F isa
RQ-formulaand R isarestriction. The signatures > and A must share the same set of function
symbols (they can always be extended in such a way) but must be digoint in the predicate
symbols. Then the model-theoretic semantics of the RQ-formulasis confined to those models
that also obey the restriction theory R.

Let us continue the above example. Here an RQS named Tax might consist of the following
ingredients:

Tax: Ag: Predicate symbols. man, person, function symbols: joe
Axiomsfor Ryp: {man(joe),Ve(man(z) — person(z))}
Restrictions: {person(z)}

In order to complete the example we need a signature > and a set of RQ-formulas. Building
on the above clause and leaving % implicit, we give the following set of RQ-formulas to a
foreground reasoner:

(1) Y(z:person(z))(sleep(z) V eat(z))

3.4 Theory Resolution 34

(2) —sleep(joe)

As an alternative notation for RQ-clauses one usually leaves quantifiersimplicit and separates
the restrictionswith’ //* from therest of the clause:

C:
(1) sleep(z) V eat(z) [/ person(z)
(2) —sleep(yoe) /] true

The semantics of an RQ-clause P // @ can dternatively be given by relativizing to the
implication () — P.

Two RQ-clauses can be resolved by the RQ-resolution rule, which can be described as fol-
lows: select from digoint variants of the clausestwo literals P (s, ..., s,) and = P(t1, ..., 1,)
(respectively), and build the resolvent by joining the rest of the clauses; the restriction of
the resolvent is obtained by inheriting the restrictions of the parent clauses together with the
confrontations s; = ¢, of the arguments of the selected literals. As an optimization it suffices
to consider only those resolvents whose restriction is R-satisfiable. Thus we can build from
(1) and (2) by selecting the sieep-literals the resolvent

(3) eat(z) // person(z) Az = joe

As a difference to ordinary resolution it does not suffice to derive a single empty clause in
order to obtain arefutation. A refutation has been found if for each model A in the constrained
theory R thereisan empty RQ-clause 0 // R suchthat R issatisfiedby A, i.e. A = R.
In other words, if it can be shown that every model in ‘R implies a contradiction (the empty
clause) then the RQ-clause set is R-unsatisfiable.

Constrained resolution derivations can roughly be mapped to theory resolution derivations as
follows: for every set S of selected literalsin atheory resolution derivation in the correspon-
ding constrained resolution derivation a restriction S comes up, where § is interpreted as a
conjunction of literals. Since the solution of the restrictions can be delayed until al other
literals are resolved away, constrained resolution can be seen as a “lazy” strategy for theory
resolution. Note however that no instantiation takes place in RQ-inferences. For example, in
(3) the variable z is not instantiated to joe. Things are different in theory resolution. Let us
compute the same example in theory resolution. The theory consists of the axioms R r, and
the clauses specification is as follows:

3.4 Theory Resolution 35

(1") —person(z) V sleep(z) V eat(z)
(2") —sleep(joe)

In constrained resolution the person-literal is shifted to the constraint part as demonstrated
above. So only one resolvent can be built. Theory resolution admits two possible resolvents.
As afirst possibility we could derivein a syntactic step

—person(z) V sleep(z) V eat(z)

—sleep(joe)
person(joe) V eat(joe)

with R r refuter {z « joe}. Sincethe theory-literal person(z) isnot selected this inference
roughly corresponds to the constrained resolution inference. As another possibility we could
select person(z) in (17) and obtain

—person(z) V sleep(z) V eat(z)

sleep(joe) V eat(joe)

with Ry refuter {z «— joe}, since {—person(joe)} is Rr-complementary. In both cases,
however, z will be instantiated.

Here, constraint resolution is clearly advantageous compared to theory resolution. While
theory resolution blindly has to guess a refuter®, constrained resolution may delay this until
more informationis available.

However constrained resolution has a serious drawback. Informally, the RQ-formulas must
not alter the meaning of a predicate symbol in A defined by the restriction theory R. More
technically, only interpretations for RQ-formulas are considered whose reduct to A is one of
themodelsin R, i.e. every RQ-interpretation is a conservative extension of amodel in R. As
a sufficient criterion to achieve this, the digointness of the signatures w.r.t. predicate symbols
(see above) isused.

This property marks an important difference between constraint resolution and theory resolu-
tion, since in theory resolution aso non-conservative extensions of the background theory are
allowed: theforeground theory might “cut off” some models of the background theory. Thisis
advantageous because it allows one to split definitions for certain predicate symbols across the
background and theforeground theory. Take asan exampleequality, i.e. the background theory
is equality, where one usually has (positive) equations also in the foreground specification.

3Consider e.g. AC-unificationwhich has an exponential number of solutionsin the number of variables

3.5 Theory Model Elimination 36

3.5 Theory Model Elimination

Model elimination is a refutational complete calculus for first order clause logic (Loveland,
1968). Not quite correctly, but instructively it can be seen as restricted version of linear
resolution with ancestor resolution, where ancestor resolution is restricted to s-resolution
(subsumption resolution: the ancestor clause minus its literal resolved upon must subsume
the near parent clause). Furthermore, the clauses are sequences (“chains’) rather than sets of
literals. However, collapsing multiple occurrences of equal literalsin a sequence is achieved,;
furthermore in its strong version, unifiable literals may be collapsed into a single occurrence
by the factorization rule.

The calculus presented in this section is not exactly model elimination, even in the non-
theory case; the main difference is that our calculus does not contain such improvements as
collapsing multiple occurrences of equal literalsinto one occurrence. This could be achieved
in our calculus by adding an additional factorisation inference rule; however we fedl that
this topic is not essential for our purposes here, so it will not be considered any further. On
the other hand, for our calculus we have the independence of the computation rule, i.e. we
may nondeterministically select the next subgoal to be processed. So, Loveland’s original
computation rule is covered. For lack of a better name, and because of the many similarities
we prefer to speak of “model elimination”. A discussion of the differences compared with
Loveland’s calculus can be found in (Baumgartner and Furbach, 1992). The theory model
elimination calculusisintroduced in (Baumgartner, 1992a).

Next we will informally explain a tree-oriented version of theory model elimination. Then,
after the formal definition based on theory consolution is given completeness will be proved.

35.1 Informal Explanation

We will follow the lines from (Letz et al., 1992) and define the inference rules as tree-
transforming operators. Then the calculus is much in the spirit of semantic tableau with
unification for clauses (see (Fitting, 1990)), but with an important restriction. This restriction
will be explained below and justifies using the new name — “tableau model elimination” —
instead of qualifying it as “analytical tableaux for clauses with unification”.

Equally, this calculus can be seen as a restriction of semantic tableau with unification for
clauses (see (Fitting, 1990)). This restriction will be explained below.

Example. Thisisan excerpt from the example in the introduction:

7T: (T Va((mammal(z) A thinker(z)) — person(z))
(T-3) Vz(man(z) — person(z))

3.5 Theory Model Elimination 37

c: (1 {—person(fred), ~man(y)}
2 {thinker(fred)}
(3) {mammal(z), man(z)}

Model eliminationtriesto construct asemantictableau, whereevery branchis7 -complementary
(“closed”). Wehaveto pick aclause and construct aninitial tableau; selecting clause (1) yields:

/

—person(fred) —man(y)

We will show a theory extension step, using from the left branch —person(fred) and from
clauses (2) and (3) theliterals thinker(fred) and mammal(z) (respectively) as a7 -refutable
literal set. Itcan easily beseenthat { X — fred} isa7 -refuter for thisset (join the clause form
of (T-1) to this set and find a resolution refutation). Hence the tableau can be extended at the
left branch with clauses (2) and (3) in such away that abranch |abelled with the complementary

literal set comes up:

—person(fred) —man(y)

thinker(fred)

AN

mammoal(fred) man(z)

*

The path containing the set of 7 -unsatisfiableliteralsisclosed, i.e. it is marked with an asterix
and the 7 -refuter is applied to the whole tree.

Such a closing of a path can aso be done by the second inference rule, the reduction step:
if a path contains a set of literals that are theory complementary by some 7 -refuter o, it
can be closed and the MGR is applied to the entire tree. The branch ending in man(z) can
be closed in a reduction step, because by (T-3) the literals man(z) and —person(fred) are
7T -complementary by 7 -refuter {z « fred}.

This process has to be repeated until a tree is derived where all branches are marked with a
star. Then arefutationis found.

3.5 Theory Model Elimination 38

3.5.2 Formal Definition

In the formalisation of this calculus we need only one inference rule, namely the extension
rule, because the reduction rule will become an instance of the extension rule:

Definition 3.19 (Total theory model elimination) The inference rule total theory extension
is defined as follows:
P U {p}

,PR]_U{L]_}

Prou{L)
R

where
1. P U {p} isapath set.
2. {Li} UR areparwisevariabledigoint clauses (fori = 1...n).

3. for some subset q of theliteral set of front(p) theset qU {last(p), L1, ..., Ly} isminimal
T -refutable. Let S bea CSR for that set.

4. The simplification of the product
Q=((PUpH)(Pruy - -+ Prouf)
isdonein the following way:

A) Qo isobtained from Q by application of a 7-refuter o € S for {q,Ly,...,Ln}
(which existsby 2.)

B) Delete(polyo---olLy)o from Qo and obtain RE.

C) Let F bethefernof Ly VRy,...,L,V Ry withtrunk Ly o - - - o L,. Then obtain R
from R® by shortening to the path set that is specified as follows:

RE=(PU{pHF\{Lio-oLn}))o

D) Delete some duplicate occurrences of some pathsin RC to obtain k.

A total model elimination refutation is defined asalinear theory consolution derivation where
every theory consolution inferenceisa“total theory model elimination”. O

In terms of the traditional calculus, the path set P U {p} isintended to represent the tableau
that is extended at its branch p. Then the effect of C) isto append to p the fern formed from
the clauses to extend with. It is due to the design of “derivation” and “simplification” that

3.5 Theory Model Elimination 39

a sequence of tableau in a (traditional) theory model elimination derivation can be mirrored
by a sequence of path sets in the consolution-style theory model elimination. Of particular
importance here is step D) in simplification, where it is not exactly specified how many
duplicate paths should be removed: at the one extreme, if al but one occurrences of a branch
are removed then in effect more paths may get closed than in the corresponding traditional
extension step; at the other extreme, if no path is removed then, speaking in the terminology
of the original calculus, some additional branches may come up which are copies of already
present branches. Thus, if the original calculus is to be precisely expressed in terms of the
consolutions framework, step D) must be somewhere “in the middle” between both extremes.

Condition 3. might seem a bit complicated. Informally it expresses the requirement that the
leaf, as well as all literalsin the extending branch together with some literalsin the extended
branch form aminimal 7 -complementary set. Thus this condition generalizesthe conditionin
the non-theory case that in an extension step aleaf A must be closed with a clause containing
—A (of course thisisthe ground case and has to be lifted).

In the tree calculus by the extension step a branch gets closed. The corresponding action here
isto delete that branch in simplification step B).

Note that “ Reduction step” is an instance of extension step in case » = 0.

Example. Consider the theory and clauses as used above in the informal presentation. We
will redo the above inference step. The initial tree to which we apply the extension step is
represented by the following path set obtained from (1):

PU{p} = {-person(fred), ~man(y)}

Here we choose p = —person(fred). Clauses (2) and (3) yield the following path sets:
P1 = {thinker(fred)}
Py = {mammal(z), man(z)}

The path sets P U {p } together with the path sets P, and P, are to be combined in thefollowing
inference step:

—person(fred), ~man(y)
thinker(fred)
mammal(z), man(z)

—person(fred) o thinker(fred) o man(z), ~man(y)

Observe that the resulting path set encodes the same tableaux as in the example of the above
informal presentation. Let us have adetailed look at how thisresult can be achieved: in afirst

3.5 Theory Model Elimination 40

step the product of the path sets is computed:

Q= (PU{p})P1P2={ —person(fred) o thinker
—person(fred) o thinker

—man(y) o thinker(fred

y) o thinker(fred

fred) o mammal(z),
fred) o man(z),

o mammal(z),
oman(z)}

R e P

—man(
Then Q issimplified:
A) The above underlined path
—person(fred) o thinker(fred) o mammal(z) (%)
isselected for finding a 7 -refuter o; a7 -refuter for thispath is {z «— fred}.
B) R? isobtained from Qo by deletion of (x)

RP = { —person(fred) o thinker(fred) o man(z),
—man(y) o thinker(fred) o mammal(fred),
—man(y) o thinker(fred) o man(z)}

C) Shorten to the underlined pathsin R? and obtain, modulo multiplicity of paths:
RE = { —person(fred) o thinker(fred) o man(z),

—man(y)}

It can be verified that this shortening is indeed achieved by the specification of the
definition.

D) Obtain R from R ¢ by deleting the underlined path.

The partial variant of theory model elimination can be defined in much the same way as total
theory resolution is modified to partial theory resolution. Thisis omitted here.

3.5.3 Completeness

Completeness of the consolution-style theory model elimination is obtained by simulating
another theory model elimination calculus known to be complete, namely the calculus from
(Baumgartner, 1992a). To distinguish it from the above introduced model elimination, we will
call this calculus tableaux model elimination.

3.5 Theory Model Elimination 41

Tableaux M odel Elimination

In (Baumgartner, 1992a) tableaux are introduced as so called literal trees, i.e. multiset of
branches, which form a tree, the nodes of which are labelled with literals. Note that without
this distinction between nodes and their labels, we get our multisets of paths. A literal tree 7"
isobtained from aliteral tree T' by extenson with a clauseL; Vv ... V L, at a branch b iff

T'=T—-{b}U{bol;|:=1...nandl; islabelled with L;}
In this case we also say that 7" containsaclause Ly V ...V Ly rooted at b.

The term “to close a branch” means to attach an additional label “x” to its leaf in order to
indicate that the branch is proved to be 7 -complementary. A branch is open iff it is not
labelled in that way.

Definition 3.20 (Total Theory Tableau Model Elimination) Let M be aclause set and 7 be
atheory. Aninitial model elimination tableau for M with top clause C is a literal tree that
results from extending the empty tree (the tree that contains only the empty branch) with the
clause C.

A model elimination tableau (ME tableau) for M iseither aninitial ME tableau or aliteral tree
obtained by a single application of one of the following inference rulesto a ME tableau T:

Extension step: Letb=L;0...0Lx ;0LybeanopenbranchinT . Supposethereexist new
variantsC; = Kt v ...V KM (i = 1...n) of clausesin M. These clauses are called the
extending clauses and the sequence K1 o - - - o Kl is called the extending literals.

In order to describe the appending of the extending clauses, we define the literal tree T,
and the “actual branch to extend”, by, recursively asfollows: if n = Othen Tp := T and
b := b, else T, istheliteral tree obtained from T,,_; by extending with the clause C,, at
bn_1 and by, 1= by_1 o KL,

Let K be a subset of the literal set of b, with Ly, K{,...,K! € K. Borrowing a notion
from (Stickel, 1985), K is called the key set. If there exists a most general 7 -unifier
o for K, and Ko is minimal 7 -complementary, then total theory extension yields the
literal tree T,,o, and the branch b,o € Tyo is closed.

A total extension step withn = 0 is also called reduction step.* A derivation from M with
top clause C and length nis afinite sequence of tableaux Ty, Ty, ..., Tn, where Tp isan initia
tableau for M with top clause C, andfori = 1...nT; isthe tableau obtained from T;_; by one
single application of one of the above inference rules with new variants of clausesfrom M. If
additionally in T,, every branch is closed then this derivation is called a refutation of M. 0

4Thisnotionis kept for historical reasons

3.5 Theory Model Elimination 42

Tableau Model Elimination and M odel Elimination

The data structures of the two calculi —tableau model elimination and model elimination —are
already identical, since the trees from the tableau oriented calculus are defined as multisets of
paths. A key concept of tableau model elimination is the extension of atree; we can smulate
this operation very naturally with path multiplication from consol ution:

Lemma 3.1 Let T’ be a literal tree obtained from a literal tree T by extension with a clause
C=LiVv...VLyaabranchb,i.e

T=T-{blu{boli|i=1...n} andl;islabelled with L;,
then
T =T—{b}U({b} - Pc)

Theorem 3.5 Every total theory tableau model elimination derivation Ty, Ty, - - -, T isatotal
theory model elimination derivation.

Proof. Let T; bederivedfrom T;_1 by extension of path b withextendingclauses Cs, - - -, C,,
and extending literals K1, -- -, K,,,. Let o be the 7 -unifier for K, where K is a subset of the
extended path b’ (which is obtained by extension of b as defined in the definition of extension),
such that last(b), K1, - -, K,, € K. Hence, wecanwrite T;,_1 = P U {b} with an appropriate
pathsetP and ,ch = ,PR]'U{KJ'} with C]‘ = R]‘ U {K]} forl < 7 < m.

Note that the path 4’ is obtained by successive extensions of b with Cy, - - -, C,, @ theliteras
K;;i.e. thepath b’ consistsof aninitial part b followedby thetrunk of thefern F of C4, - - -, C,.

Now the path sets 71, P¢,, - - -, Pe,, arethe premise of the theory model inferencerule and
we haveto show that there existsaconclusion R, whichisequal to 7;. According to thetheory
model elimination rule we first have to compute the product

Q= (PU{b})(Pruiks} " - PRmu{km})

which is smplified as follows:

A) (o isobtained by applying the 7 -refuter o.

B) The closing of &’ corresponds to the deletion of the path (b o K1 o... 0 K,)o and thuswe
get RP

C)From R? we haveto shortentothe path set P U ({6}(F \ {K10...0 K, }))o

D) Delete those multiple occurrencesof pathsto obtain P U ({b}(T, \ {K10...0 K, }))o. O

Togehter with the completeness result for total theory tableau model elimination we get com-
pleteness of theory model elimination. Note that the following result is formulated for partial
theory tableau model elimination in (Baumgartner, 1992a). This requires a rather technical
condition (called acceptable), which can be ommitted in the case of total derivations. Since
we restrict ourselves to that case, we cite asimplified version of the completeness theorem.

3.6 Theory connection method 43

Theorem 3.6 ((Baumgartner, 1992a)) Let 7 be a theory and M be a 7 -unsatisfiable clause
set. Let C € M be such that C iscontained in some minimal 7 -unsatisfiable subset of M. Then
there exists a total theory tableau model elimination refutation of M with top clause C.

Theorem 3.7 (Completeness of total theory model elimination) Let 7 be a theory and M
be a 7 -unsatisfiable clause set. Then there exists a total theory model elimination refutation
of M.

Proof. From the completeness of theory tableau model elimination (theorem 3.6) we know,
that there exists a theory tableau model elimination derivation of the empty clause and from
theorem 3.5 we conclude that there is a theory model elimination refutation as well. O

3.6 Theory connection method

In the present section we discuss a theory version of the connection method according to W.
Bibel. According to the conventions of this paper we will consider only formulas in clause
form. The connection method is not restricted to that class of formulas. We will present
the classical version of the connection method following (Bibel, 1987)°. However, we will
transcribe this version into a refutational form. This way we allow the reader to concentrate
on the essential differences and similarities of the connection method in comparision with the
other calculi discussed in this paper.

3.6.1 Informal explanation

Let usintroduce some notions which are usually used in the context of the connection method.

Let usrecall from 3.1.1 that aset of clausesiscalled amatrix. Thefollowing notion generalizes
the notion of a connection from subsubsection 3.1.2. A 7 -connection in amatrix M isaset
of literals which contains from each clause from M at most one literal and which can be made
7T -complementary by instantiation. If the set of the elements of a path p through a matrix
containsa set « of literalsthen « issaid to span p. Let U be aset of sets of literals. Then U
spansthe matrix M if for every path p through M thereisaw € U that spans p. Now we can
formul ate the idea of the connection method.

In order to refute a clause set €' the connection method tries to find a set M of instances
of clauses from C such that there is some set of 7 -complementary sets of literals which
is spanning M. Under the name connection method there exists a variety of algorithms for
constructing systematically such an instance M. The approaches differ mainly in the data
structure which is used to represent the set of paths P which should be checked for the
existence of a spanning 7 -complementary set. Inthe version presented here P isthe fern of

SFor amore recent introductory presentation see (Bibel, 1992).

3.6 Theory connection method 44

Ci,...,C,withtrunk Lyo...0 L, whereforevery : = 1,...,n C; isasubclause of aclause
fromM andforiz,j, 1<... <1 <37 <...n C;and C; must not be subclauses of the same
clausein M. Then Lyo...0 L, _; iscaled theactual pathand L,, theactual goal. Thisnotion
reflects that the procedure tries as the next step to span the trunk or its extension.

Now let us consider a the following clause set C' and let us track some steps of a derivation
based on the connection method with the built-in theory 7 from our running example:

T
(T-1) Ya((mammal(z) A thinker(z)) — person(z))
(T-3) Va(man(z) — person(z))

(1) —person(fred), ~man(y)
(2) thinker(fred)

(3) mammal(z), man(z)

The clause set M which is actually under consideration is represented as a matrix where each
row represents the elements of a clause. We start the derivation with the fern of one clause,
namely clause (1), with trunk —person(fred). The elements of the actual path will bein a
dashed box. The actual goal will be pointed by a small arrow. The elements of each of the
clauses which form the fern are placed on the right of the corresponding elements of the trunk.
Thus, theinitial matrix looks as follows.

—person(fred) —man(y)
4 (4)

In our example we can try an extension step by entering new clause copies to the initial
clause set at the bottom of the matrix and applying a substitution to the extended matrix. This
extenson must yield a 7 -refutable extension of the actual path viathe actual goal. The actual
goal and the literals thinker(fred) and mammal(z) from clauses (2) and (3) (respectively)
forma 7 -connection. A 7T -refuter for that setiso; = {z «— fred}. So entering copies
of clauses (2) and (3), applying o to the matrix, marking the 7 -complementary path with a
connection (the triple arc) and putting the elements of the new actual path into dashed boxes

3.6 Theory connection method 45

yieldsthe following matrix.

mammal(fred) man(z)

L g : (5)

It remains to span the paths in the fern determined by the new actual path. As next step we
try a second inference rule, reduction that alows inferencing without adding new clauses to
the matrix. Consider —person(fred) from the first row and man(z) from the third row. By
theory clause (T' — 3) they are 7 -refutable with 7 -refuter o, = {2z «— fred}. S0 o, can
be applied to the matrix and the 7 -connection can be established as shown below. Now we
have spanned all paths starting from —person(fred). Thus, it remains to span paths starting
from —man(y). The actual path now is empty and the actual goal is —man(y). We arrive at
the following matrix.

—person(fred)

thinker(fred)

mammal(fred) man(z)

i : (6)

Here we |leave our sample derivation. We only mention that the derivation will be completed
if the fern will have length zero. Then every path through the matrix is spanned by a 7
-complementary set of literals.

3.6.2 Formal definition

The extension and the reduction step of the theory connection calculus may be expressed by
one single instantiation of the consolution rule.

Definition 3.21 (Total theory connection method) Let 7 beatheory and C a set of clauses.
The inference rule total theory inference is defined as follows:

3.6 Theory connection method 46

PrU{ps}
73RzU{Lz}

PraufLn}
R

where

1. PrU {p:} isafernof Cy,..., Cywithtrunc p; whereforj = 1,..., mC; isasubclause
of an instance of aclause from C.

2. {Li} UR arepairwisevariable digoint copies of clausesfrom C (fori = 2...n).

3. for some subset q of theliteral set of p; theset {q, Lo, ..., Ly} isminima 7 -refutable.
Let S beaCSR for that set.

4. The simplification of the product

Q= (PrU{p})(Prutey) - (Prufiay)
isdonein the following way:

A) Qo isobtained from Q by finding of a 7 -refuter o € S for {q,Ly,...,Ln}
(which existsby 3.)

B) All pathsd € Qo satisfying the conditions

tail(ps) < o, length(q') = length(py) + n and {q,Ls,...,La}o C o
will be deleted. Call the resulting set RE.

C) If Fisthefernof {L,} UR,,. .., {L,} UR,withtrunk Lyo - - o L, then obtain R
from R® by shortening to the path set that is specified as follows:

(REN (PLU ({p}(F\ {Lzo - oLn}))))o

In step B) some paths p may have been deleted such that K = last(p) satisfies
K € C,and K # L,,. Those paths belong to

PrU ({pi}(F\ {L2o---0oLn}))
Therefore we have to cut with Rg.
D) Let R = RC.

A total theory connection derivation is defined asalinear theory consolution derivation where
every theory consolution inferenceisa “total theory connection inference”. O

3.6 Theory connection method 47

Example. In order to illustrate the previous definition let us consider again the theory and
clause set as used above in theinformal presentation. We discussed in detail thefirst inference
step, an extension, in order to illustrate the model elimination case. Now for illustrating the
formalization of the theory connection method we will redo the second inference step of our
sample run which isareduction. After thefirst step we arrive at the following path set®:

PoU{p2} = {—person(fred) o thinker(fred) o man(z), ~man(y)}

Here we choose p, = —person(fred) o thinker(fred) o man(z). The path set P, U {p2} will
be processed in the following inference step:

{—person(fred) o thinker(fred) o man(z), ~man(y)}

{=man(y)}

The resulting path set encodes the same path set as in the example of the above informal
presentation. Let us have adetailled view how this result can be achieved: Since our product
consists of one factor wehave @ = P, U {p,}. Q issmplified asfollows. The instance of
the consolution rule has the form

PoU {p2}
R

(+)

where
1. p, denotes the path which isunderlinedin (). It hasamaximal lengthin P, U {p.}.
2. n=0.
3. Thesubset g is{—person(fred), man(z)}.
4. A) The above underlined path
—person(fred) o thinker(fred) o man(z) (%)
is selected for finding a 7-refuter 0 = {z « fred} for the 7 -connection
{—person(fred), man(z)}.
B) Rp isobtained from Qo by deletion of ()
Rp ={ —man(y) }
C) Shortening is neither possible nor necessary.
Re =TRs
D) Finally wehave R = R¢.

5This path set is the fern of {-person(fred), ~man(y)}, {thinker(fred)}, {man(z)} with trunk
—person(fred) o thinker(fred) o man(z)

3.6 Theory connection method 48

Itisastonishing how closely related thetheory model elimination and theory connection method
are.

e Mode eimination has a free selection function and thus allows the next subgoal to be
chosen in a don't care nondeterministically manner. In the presented version of the
connection method a trunk, i.e. a branch of maximal length, is selected for extension.
Thisrestriction makes sure that the set of unexamined paths obtained after the extension
may be represented as afern too (cf. proposition 1). In (Neugebauer and Schaub, 1991)
there has been proposed another representation of that set by a set of hooks instead of
afern. A hook represents the fern of {L1},{Lz},...,{Lu-1},{L.} U C, with trunk
LyolLyo---0L, 30 L,. Thisrepresentation alows the same flexibility like the tree
representation which is used in the tableaux model elimination.

e In step A) of smplification the role of the last literal of the path to be extended is
different: in the tree-notation of model elimination, the last literal corresponds to the
leaf of the branch, and that literal must be “essential” inthe 7 -complementary literal
set (i.e. without it, the set isno longer 7 -complementary). In the presented version
of the connection method, the last literal has no special meaning. Thus the model
elimination extension ruleis more restrictive than the connection method inferencerule.
In (Petermann, 1993b) has been proved that also the extension rule of the the connection
method may be restricted in that way without lost of completeness. Thus, the branching
rate in the search space might be restricted like in the model elimination.

¢ Instep B) the connection method ismore effectivethan model elimination, sinceall paths
which reach the actua clause and which become 7 -complementary by the 7 -refuter
aredeleted. In model elimination only one path is deleted.

There are many refinements of the connection method which cut the search space essentially.
For an overview see (Bibel, 1987) and (Letz et al., 1992)

Now let us formulate some results about the total theory connection method. First of all we
need a representation lemma 3.2 concerning ferns and two lemmata 3.3 and 3.4 concerning
their structure properties. The three lemmata may be proved by simple verification. Those
facts enable us to prove that a set of paths R obtained by atotal theory connection inference
from afern F isagain afern. This gives aformal justification of our definition of the total
connection inference rule.

Lemma3.2 Let F be the fern of {Cy},...,{Cn} with trunk Ly o --- o Ln. Then for each
i=1,...,nholds
G = {Li} U {last(p) | p € F, length(p) = i}.

Lemma 3.3 Every subset of afernisafern.

3.6 Theory connection method 49

Lemma 3.4 Let F beafernof {Cy},...,{Cy} withtrunkp=L;o---oL,andlet G beafern

(FA{pH U ({p}9)
isthefernof {C;},...,{Ci},{Cns1}, -, {Crim} WithtrunkL; o---oLpoLpy10-- -0 Lnym.

Proposition 1 Let
PrU {pi}
,PRzU{Lz}

PryuiLa}
R

be a total theory connection inference. Then Risa fern.

Proof. Letp; = Kjo0---0K,, wherem = Oisalowed. Then (cf. definition3.21) P,U{p1}is
afernof someclauses (1, . . ., C,, withtrunk p;. Let F' bethefernof { L,JUR,, ..., {L,}UR,
withtrunk L, o --- o L,. Then according to lemma 3.4

PrU ({p1} F)

isthe fern of
Cr,...,Cpn,{L2} URy,....{L,} UR,

with trunk py o Ly o --- o L,. According to lemma 3.3 Risafern because it is a subset of that
fern. O

Finally we give proof outlines of the soundness and completeness theorem for the total connec-
tion method.

Theorem 3.8 Soundness Let 7 be atheory and let C be a clause set. If there exist a copy of a
clause of C, an element L € C and a total theory connection derivation which starts from the
fern of C with trunk L then C is 7 -unsatisfiable.

Proof. Let7 beatheory andletC beaclauseset. Let Fy,. .., F; beatotal theory connection
derivation and let M; denote the set of copies of clauses from C' which have been used as
extension clauses up to the (: — 1)-thinferenceforeach: = 1,.... k. Moreover let U; denote
the set of 7 -connections which have been found up to the (¢ — 1)-th inference for each
i =1,.... k. Clam: U; spansall paths p through M; such that thereis no path ¢ € F; with
g < porg=p.Inordertoprovethisclamitissufficient to observethat F; containsall paths
through M; and that in each simplifaction step

within substeps A and B only those paths are del eted that are spanned by the considered
T -connection,

within substeps C path are only shortened and

3.6 Theory connection method 50

within substep D the set of paths remains unchanged.
Clearly, if F; = () then U;, spans M;,. 0

Theorem 3.9 Completeness Let 7 be a theory such that
1. theset of 7 -connectionsis decidable,
2. for each 7 -refutableliteral set u a complete set of 7 -refutersis enumerable.

If C isa 7 -unsatisfiable clause set then there exist a copy of aclauseof C ,anelementL € C
and a total theory connection derivation which starts fromthe fern of C with trunk L.

Proof. Let 7 beatheoryandlet C bea 7 -unsatisfiable clause set. >From the Herbrand
theorem proved in (Petermann, 1991b) follows that there is a set of instances M of clauses
of C and aset of 7 -complementary literal sets which is spanning M. There is a ground
total connection derivation of M. This may be shown using properties of minimal spanning
matings of ferns (cf. (Petermann, 1993b)). The decidability of the set of 7 -connections and
the enumerability of the CSR for each « allow tolift thisground derivation to atotal connection
derivation where each inference is effective. O

Discussion:

The decidability of the set of 7 -connectionsis necessary for the decidability of the derivation
relation. Sometimesit isnot necessary to know all 7 -connectionsand to be able to enumerate
T -refutersfor al of them. For example there is a fragment of first-order logic with equality
which is the image of the trandation of multi-modal logics following (Debart et a., 1990).
Different modal systemsmay be described by equational theories. Fortunately, after trandation
there occurs no equality sign in the formulas. This sinplifies considerably the the set of theory
connectionsto be considered. In order to describe this phenomenon in (Petermann, 1993b) has
been studied the notion of a complete set of theory connections.

The decidability whether CSRr(w) = § means in an implementation that whenever the
existence of a 7 -refuter for a 7 -connection is considered that in case of the non-existence
there will be a defined answer and not afailure.

The restriction that the actual goal is element of the actually found connection can be proved
by careful examination of minimal spanning sets of connection.

The partial variant of theory connection method can be defined in much the same way as total
theory resolution is modified to partial theory resolution. Thisis omitted here. The interested
reader is referred to (Petermann, 1993a). Paramodulation, relaxed paramodul ation and RUE-
resolution have been view as instances of a partial theory connection calculus. It is worth

4 Equality 51

mentioning that the resdue may have more than one literal if not only the paramodulation is
considered.

4 Equality

Being of such afundamental importancein mathematicsand nearly every areawhere deduction
applies, the equality relation deserves special treatment. Thus it is not surprising that in the
early days of theorem proving the equality relation was already built in. Viewed syntactically
“equations’ are simply literals, built from the predicate symbol “=" and written infix. Se-
mantically, the interpretation of “=" is comitted to an equivalencerelation that is closed under
equality replacement for all function and predicate symbols of the language (i.e. a congruence
relation). From the viewpoint of theory reasoning, we have to deal with the theory of equality
£ , which can be axiomatized by the following scheme:

E:Vz: z=z (Reflexivity)
Ve,y: z=y—y==u (Symmetry)
Ve,y,z: z=yANy=z—xz =2z (Trangtivity)
V&1, ..oy Ty, Yy T =y —
f(:z;l, ey By Ly Ty e ey wn) =
F21, o Tict, Yy Tigdy ooy Tn) for al n-ary function symbols
fadadl 1 < i < n (f-
Substitutivity)

Ve, ... 2,y (zi=y A
P(:pl, B 17 [P T 1 SR [P $n)) —
P(za,...,%-1,9Y,%i41,...,2,)) for al n-ary predicate symbols
Padadl 1 < i < n (P-
Substitutivity)

If we assume that we have only afinite number of predicate and function symbols (asisusually
the case) then this theory of equality isfinite too. Thus also “equality” could be dealt within
the trivial way: smply add the clause form of these axioms to a given specification and rely
on the no-theory calculus. This however is prohibited for well-known efficiency reasons. The
theory of equality should be handled at least as carefully as any other theory following the
discussion of the previous chapterse.g. 3.

4.1 Dealing with Equality via Total Theory Reasoning

Here we discuss the possibility of building in the theory of equality by total theory reasoning
following our discussion in section 2.1.

4.1 Dealing with Equality via Total Theory Reasoning 52

For agiven literal set we have to accomplish an £-refuter. For this purpose it might be useful
to know of the syntactical form of £-complementary literal sets. It is as follows (Petermann,
1991by):

EUp where E isaset of equationsand p consistseither of twoliterals P(ua, . . . , uy)
and = P(vy,...,v,) or of one negated equation —u, = v, with n = O such that
|:g/\E—>/\’UJZ'=’UZ'
1=0

Both cases have an obvious intuitive meaning. The sides of each term pair (u;, v;) might
become equal by subsequent substitutions of subtermswhich occur as one side of the equations
in E by the other side of such an equation. Obviously this raises a contradiction. Due to this
syntactic structure the dedicated reasoner has to solve the following problem:

Givenaset E of equationsand some pairsof terms (u;, v;). |Sthereasubstitution
o such that for all equations u,c = v;0 holdsthat Eo U {-u;0 = v;0} iS&-
complementary?

It can be shown (Baumgartner, 1992b) that this problem is equivalent to the so-called rigid
E-unification problem (Gallier and Snyder, 1990). It isformulated as follows:

Given a set £ of equations and some pairs (u;, v;). |s there a substitution o
such that al equations «;0c = v;0 are alogica £-consequence of Eo, where all
variables are treated as constants?

Let us consider the following clause specification in the spirit of the introductory example:

(4) —male(z) V father(firstchild(z)) =
(5) firstchild(fred) = sue
(6) male(fred)

A useful query isfor exampleto ask for the father of sue. Ananswer might befound by adding
the clause —father(sue) = y and refuting the thus obtained clause set /. This example will
be processed by the various approaches below. Of course thereis a trivia solution, namely
{y « father(sue)} which smply says that the father of Sue is the father of Sue. We will
suppose the deductions below to be controlled in such away that the more interesting answer
{y « fred} results. Refutationswhich return that answer rely on the fact that there are two
literal sets

{father(firstchild(z)) = z, firstchild(fred) = sue, —~father(sue) = y}

4.1 Dealing with Equality via Total Theory Reasoning 53

{=male(z), male(fred)}

which become £-complementary after the application of the substitution o = {z, y < fred}.
Using the notions from section 3.1.2 ¢ is an £-refuter for both literal sets. Let us consider a
total theory consolution refutation for /. We assume that the query {—father(sue) = y} has
been used as start clause. The refutation consists of two inferences.

{-father(sue) = y}, {firstchild(fred) = sue}, {father(firstchild(x)) = x, ~-male(x)}
{—father(sue) = fred o firstchild(fred) = sue o —~male(fred)}

{—father(sue) = fred o firstchild(fred) = sueo -male(fred)}, {male(fred)}
0

Let consider in more detail the interaction of the general and the dedicated reasoner during the
first inference. The substitution o has to be found by the dedicated reasoner for the literal set

L = {father(firstchild(z)) = =, firstchild(fred) = sue, ~father(sue) = y}

which has been supplied by the general reasoner. In our examplethe set £ isagood choicefor
acandidate for an £-complementary set. If the general reasoner made such a good choice then
the dedicated reasoner will return a rigid £-unifier, o in our case. Otherwise, the dedicated
reasoner will return the definitive answer that the choice was bad. In other words, rigid £-
unification is decidable, although NP-complete (Gallier et al., 1990). The hard problem is
that it is undecidable whether a set of equations £ in the £-complementary problem format
exists, or how many instances of equations are needed (see above). For example, in order to
extend the equation ¢(f(a),b) = ¢(a,f(b)) to an E-complementary literal set two instances
of the equation f(z) = = are needed, which are f(a) = « and f(b) = b. The substitution
{21 « a, 1, — b} isthe E-refuter.

The completeness of both connection and a model elimination calculi with total equality
reasoning follows from a general completeness theorem for total theory reasoning proved in
(Petermann, 1991b). In(Gallier et d., 1987) rigid £-unification has been built into the “ method
of matings’.

E-resolution (Morris, 1969) is a dlightly different realization of this kind of reasoning with
equality. Herefor agiven literal set p = {L, K} and clauses D and D', where L € D and
K € D’, both the set of equations £ and the appropriate £-refuter o for E U p are computed
by exhaustive paramodulating (see below) into p al equations which exist somewhere in
the given clause set until atrivial syntactical inconsistence is discovered. In order to obtain
completeness a level saturation strategy has been used. As the result of the computation,
the dedicated reasoner returns the set of equations £ = {es,...,e,}, the E-refuter o and
the clauses { C1, ..., C,} such that a total equality reasoning step may be carried out which
involvestheclauses D, D' and C4, ..., C,.

4.2 Dealing with Equality via Partial Theory Reasoning 54

4.2 Dealing with Equality via Partial Theory Reasoning

In the previous approach we had to guess in one step an £-complementary literal set and to
compute an £-refuter. Now we break this huge step into smaller ones. Two main ways to do
S0 have been studied.

Paramodulation-like setting: Weapply equationsby substituting “ equal sby equals’ in order
to transform termswhich are suspected to be equal. We are allowed to use unificationin
order to make an equation applicable. Thisis rather a bottom-up approach.

RUE-resolution-likesetting: We consider the“difference” between corresponding terms, in
order to determine some equations which are sufficient for their equality. Thisis rather
atop-down approach.

In both cases the considered rules are thought to produce either complementary pairsor negated
equations. Both cases will be viewed now as instances of partial theory reasoning.

421 Paramodulation-like Calculi

Let usrecall from section 4.1 that if an £-refuter o has been found for literal set £ U p then
corresponding term pairsin po may be made equal by substituting “equals by equals’ using
equations from Eo. In aparamodulation-like setting, the set £ U p and the E-refuter will be
approximated by number of single replacements of “equals by equals’. To be equal means
now “equal up to some substitution”.

Let us examine the co-operation between general and dedicated reasoner in this situation. The
genera reasoner now hasto supply literal sets

{Z[t],¢ = u}

where ¢’ denotes a subterm occurrencein L and ¢ = « isanondeterministic notation for either
the literal ¢t = « or thelitera « = ¢. L may contain the equality predicate. The dedicated
reasoner hasto return apair

(o, L[t «— u])

if amost general unifier o of ¢/ and ¢ exists. L[t «+ u] meansthat one occurrenceof ¢’ in Lis
replaced by «. Obvioudly, theliteral set

L={L[t],t=u, L}t « ul}o
is £-complementary. Thus, the pair

(o, L[t" « u])

4.2 Dealing with Equality via Partial Theory Reasoning 55

isaresidue for the literal set
(L[t 1 = u}.

A partial £-reasoning step using thisway of forming theresiduewill becalled aparamodulation
inference. t' is called the term paramodul ated into.

Although well-known we prefer to give a short example of paramodulation in order to ease
comparison with other approaches below. We return to our example from 4.1. We could com-
putethe father of sue by splitting thefirst total theory consol ution step into one paramodul ation
and one extension step. This fragment of the derivation has the following form:

{firstchild(fred) = sue}, {father(firstchild(z)) = z,—-male(z)}
{p1, p2}

{p1, p2}, {~father(sue) = y}
{firstchild(fred) = sue o ~male(fred)}

where

p1 = firstchild(fred) = sue
o father(firstchild(fred)) = fred o father(sue) = fred
p2 = firstchild(fred) = sue o —male(fred)

Themoreinterestingfirst step in that derivation isaparamodul ationinto theterm firstchild(z).
The pair
(o', father(sue) = fred) with ¢’ = {z « fred}

isaresidue for the set of literas
{firstchild(fred) = sue, father(firstchild(z)) = z}.
The path p; has been obtained by adjoining the path from the residue to the path

firstehild(fred) = sue o father(firstchild(fred)) = fred.

Obvioudly, the paramodulation inference is much simpler than the the computation of an £-
refuter. But this smplification must be paid for by a large search space introduced by the
chaining of paramodulation steps. In the present version paramodulation cannot use any hint
which equation should be applied for paramodulation in order to enable further reasoning steps
to bemade. Thus, the enormous search space will be entered without any guidance. Therefore,
improvements are urgently needed (see below).

4.2 Dealing with Equality via Partial Theory Reasoning 56

Paramodul ation has been built in to many calculi. Resolution with paramodul ationis compl ete.
For the resolution calculus, we arrive at the following well-known form of the paramodulation
inference rule (Robinson and Wos, 1969):
L[tV Ry t=uV Ry
(L[t/ — u] VRV Rz)U

with L, t, t and o as above and, as usual, the two clauses involved in the inference step being
variable digoint.

Several rules which restrict the applicability of paramodulation have been invented in order
to cut the search space. It is well known (see eg. (Chang and Lee, 1973)) that linear
paramodulation is complete provided that additionally the functional reflexive axioms are
added (e.g. (Furbach et al., 1989; Holldobler, 1989)). In (Peterson, 1983) it was shown
that these axioms are unneccesary in the unrestricted (no linear or set of support restriction)
resolution and paramodulation calculus. Furthermore he shows that it is not necessary to
paramodulate into variable occurrences. By these restrictions two sources for substantial
inefficiencesare eliminated. The refutation from above satisfiesthisrestriction. Asanexample
for a paramodulation step into a variable confer the following step, which paramodul ates into
the variable occurrence .

{—father(sue) = y}, {father(firstchild(z)) = z,~male(z)}
p3, ~father(sue) = y o ~male(fred)

where

p3 = —father(sue) =y o father(firstchild(z)) = =
o =father(sue) = father(firstchild(z))

In order to combinethe best of twoworlds, aset of support strategy and avoidance of paramodu-
lation into variables, in (Snyder and Lynch, 1991) an inference rule “relaxed paramodul ation”
is defined. The calculus essentially consists of thisrule, factorisation and a standard paramo-
dulation rule that, however, does not paramodul ate into variables. “Relaxed paramodul ation”
delays part of the unification and introduces the delayed parts as new subgoals into the resol-
vent. Thus, this rule may be applied even if paramodulation is not possible. The delay of
unification is necessary for preserving the completeness. The following sample clause set is
E-unsatisfiable, but it cannot be refuted by a set of support strategy with paramodulation. Let

d=c¢
~f(e(d), c(e)) = g(e(d), c(e))

4.2 Dealing with Equality via Partial Theory Reasoning 57

—f(c(d), c(e)) = h(c(d), c(e))
f(X’X):g(X) (Y):h(Y’Y)

be a set of equations with set of support {f(Y,Y)=A(Y,Y),f(X,X) = g(X,X)}. The
reason for paramodulation (without substituting into variables) to fail is that there is no way
to paramodulate from (Y, Y) into f(¢(d), ¢(e)) nor from ¢g(X, X) into g(¢(d), c(e)) nor
fromi(Y,Y)into h(c(d), c(e)). However, relaxed paramodulation from, say, f(Y, Y) =
R(Y,Y) into f(c(d),c(e)) is possible. This inference returns ({ },Y = ¢(d), Y =
c(e),h(c(d),c(e)) = h(Y,Y)) asakind of aresidue. All of these additional goals may be
solved by use of the equation d = e. This technique is much in the spirit of RUE-resolution
(Digricoli and Harrison, 1986) with the important restriction that the delayed subgoals (the
corresponding concept in RUE-resolution is “ disagreement set”) can be restricted to variable-
term pairs. Unfortunately the completeness of “relaxed paramodulation” with set of support
strategy has not been proved yet.

Asaconcluding improvement of paramodulation we will briefly sketch basic paramodulation
(Bachmair et a., 1992). The term “basic” was coined in (Hullot, 1980) in the context of
narrowing (section 2.2) and meansthe samething for paramodul ation: in basic paramodulation,
itisforbidden to paramodulate into occurrencesintroduced by previousinference steps. Stated
positively, paramodulationisallowed only into such occurrencesthat are already present in the
input set. For example, suppose that the clause P(z) vV Q(z) isresolved with = Q(g(f(a)))
yielding P(g(f(a))). Then P(g(f(a))) can beparamodulated with, say, f(«) = ato P(g(a));
however, this is no basic paramodulation step, since P(z) does not contain the f-term to be
paramodulated upon. Thus, basic paramodulation is a serious restriction of the applicabibilty
of paramodul ation. Moreover, in basic paramodulation it isnot necessary to paramodulateinto
variables; also it is compatible with ordering restrictions (section 4.2.3).

A paramodulation-like treatment of equality was carried out for the tableau method (Fitting,
1990) in (Jeffrey, 1967) and (Poppelstone, 1967), for model elimination (Loveland, 1978),
for the connection method (Petermann, 1991a) and for connection graphs (Siekmann and
Wrightson, 1980). Paramodulation with order-sorted theories has been considered in (Walther,
1983).

In the next parts of the paper we discuss in more detail two further alternatives for restrictions
of the paramodulation rule which have been considered in the literature:

1. Make the application of equations more goal-oriented: choose first candidates for a
complementary pair and look which equations should be used. Solve these equations by
paramodul ation.

2. Restrict the applicability of the paramodulation rule by order restrictions. For instance
make sure that clauses are not growing w.r.t. aterm ordering.

4.2 Dealing with Equality via Partial Theory Reasoning 58

422 RUE-Resolution-like

Let us discuss in more detail one strategy of making paramodulation more efficient. The
improvement is given by the following advice.

e Try to unify corresponding term pairsfirst.
e Paramodulate only into those terms which cannot be made equal this way.

Applying this strategy to the previous example the prover might “think”: Let’s try to make an
E-complementary literal set from —father(sue) = y and father(firstchild(z)) = .

Then the equation firstchild(z) = sue would be needed to achieve that goal. The hint, that
firstchild(z) = sue should be solved as a subgoal follows from the failure of the unification
algorithm’. Since on the outermost level the father-function symbols are the same in both
terms, it sufficesto provethat the argument terms of the left hand side, and the right hand side
are equal. In other words, the left hand side has to be “decomposed”® into the new subgoal
—firstchild(z) = sue. Theright hand sidesimmediately unify by, say, {y < z}. Thisexample
demonstrates the main idea of RUE-resolution: unify the terms “as much as possible”, and
prove equality of non-unifying termslater. In RUE-terminology the most general substitution
involved in thisis called a most general partial unifier and the non-unifying part is called the
disagreement set. For agiven unification problem several disagreement sets may exist. Let us
examine an examplerelated to that in subsection 4.1. 1n our terminology the example situation
can be formulated as the path

—father(sue) = y o father(firstchild(z)) = x o firstchild(z) = sue
which becomes £-complementary with the substitution ¢’ = [y < z]. Thus, the pair
(o, = firstchild(z) = sue)
formsaresidue for the literal set
{—father(sue) =y, father(firstchild(z)) = z}.

The new goal —firstchild(z) = sue may be solved together with the fact firstchild(fred) =
sue. The corresponding two step consolution refutation fragment looks as follows. The first
step is adding a residue, the second step isan extension. Let
q1 = —father(sue) =z
o father(firstchild(z)) = © o —firstchild(z) = sue

g2 = —father(sue) =z o —male(z)

"Suppose the unification is according to the transformational approach to unification (J.-P. Jouannaud, 1991).
Then thefailure already occurs after one application of the decomposition rule.

8A unification algorithm based on an transformational approach which also includes a decomposition rule can
be found in (J.-P. Jouannaud, 1991)

4.2 Dealing with Equality via Partial Theory Reasoning 59

{—father(sue) = y}, {father(firstchild(z)) = z,~male(z)}
{a1, 2}

{q1, 2}, {firstchild(fred) = sue}
{—father(sue) = fred o ~male(fred)}

L et uscomparethepresent tacticwiththe paramodul ationrule. Theunderlying £-complementary
literal set has asimilar structure:

{L(s[t]). t = u, L(s[t « u])}o’
But now we construct the pair
(o, =t =u)

astheresiduefor theliteral set

{L(s[t]), L(s[t « u]}.

The construction of the residue is now more goal-oriented. We have another restriction of the
general rule for computing the residue.

It should be noted that in general it is not possible for completeness reasons to restrict to the
“most specific’ disagreement set. This is the disagreement set that results from unification
“as much as possible”. An example below will show this. This claim may illustrated by the
following example (Anderson, 1970).

(1) P(f(z),9(y)), P(h(z),i(y))
(2 -P(f(a),g(d))

(3) —~P(h(b),i(b))

4 f(a)=Ff(c)

() h(c)=h(d)

A prover whichis allowed to paramodul ate only on unification failure comes up with aunifier
containing

either {z «— o} (if P(f(z),g(y)) fromthefirstand —=P(f(a), g(b)) from the second
clause are considered)

or {z «— b} (if P(h(z),:(y)) fromthefirst and =P (h(b),:(b)) from the third clause
are considered).

But the unique useful substitution {z < ¢} may be found only in a more flexible way. One
improvement is the so called RUE-resolution due to Digricoli (Digricoli and Harrison, 1986).

4.2 Dealing with Equality via Partial Theory Reasoning 60

There the prover isallowed to ook ahead for paramodulation possibilities before going deeper
applying the decomposition rule. In our example the prover is alowed to transform the
unification problem {f(z), f(«)} (caled disagreement set in (Digricoli and Harrison, 1986))
into {f(z),f(¢)} using thefourth clause. Thisway the substitution {z < ¢} may be detected
in fact. Nevertheless the inference rules are rather complicated and it is not known to the
authors whether the overhead is not too much.

Another improvement isbased on alevel saturation strategy asgiven and proved to be complete
in (Anderson, 1970). The connection graph cal culuswas extended with an equality handling in
the spirit of RUE-resolution by means of equality graphs (EGC-procedure) in (Blasius, 1987).
A matrix calculus with a RUE-resolution-like inference rule has been proved to be complete
in (Petermann, 1991c). A treatment of equality which is similar to the RUE-resolution was
carried out for the tableau method (Fitting, 1990) in (Reeves, 1987).

4.2.3 Ordering Strategies

Except rigid £-unification, for which experimental resultsare not yet available, all the methods
described so far for equality handling could not prove to be sufficient for really hard practical
problems. (Ohlbach and Siekmann, 1991) report various discouraging results with paramo-
dulation and the EGC-procedure within the connection graph calculus. As a solution, recent
research concentrates on the application of ordering restrictions. These methods can be
seen as extensions of term rewriting and the Knuth-Bendix completion procedure (Knuth and
Bendix, 1970). A good overview over term rewriting, completion and some of its extensions
can be found in (Plaisted, 1993).

Calculi and proof procedures for full first order order-restricted equational theorem proving
were proposed in (Bachmair, 1991; Bachmair and Ganzinger, 1990a; Bachmair and Ganzinger,
1990b; Zhang and K apur, 1988; Hsiang and Rusinowitch, 1986; Hsiang and Rusinowitch, 1987;
Kounalisand Rusinowitch, 1991; Rusinowitch, 1991; Kirchner et al., 1990; Socher-Ambrosius,
1990). These systems are basically paramodulation-like, however the possible inferences are
highly restricted by orderings, which have to be given as an input parameter. More precisely,
the given ordering - must satisfy the following properties (“compl ete reduction ordering”):

1. > isstable under substitution, i.e. s = ¢t impliesso - to foral s, ¢, 0.
2. = ismonotonic, i.e. s > ¢t impliesu[s] = u[t] foral s, ¢, .

3. = isground-total.

4. > iswell-founded.

The inference rules below make heavy use of such agiven ordering. One main application is
to direct the use of equations, i.e. to alow only one side of an equation as a paramodul ating
term. Which side of an equation ¢t = « is to be used, is determined by the ordering: if «

4.2 Dealing with Equality via Partial Theory Reasoning 61

has to substitute the term ¢ then « should be the smaller side of ¢ = ». However, in genera
only in the ground case can it be achieved that s # ¢ impliesthat either s > ¢ or ¢ >~ s (see
(Dershowitz, 1987) for an overview about orderings). In order to compute with non-variable
terms, the --relation is “lifted” to the condition “A”; this means that if in the ground case an
inferencewerelegal if ¢ - u, thenitislegal inthegeneral caseif ¢ A w. Similarly, for sets of
literalsthe notion of a*“greatest literal” liftsto that of a“maximal literal”: aliteral L ismaximal
relative to a set if for none of the literals K in that set holds L < K. Additionaly the term
ordering must be extended to equations and to literals; this can be done e.g. lexicographically.

Essentially the several order-restricted paramodul ation calculi restrict the above paramodul a-
tion inference rule in the following way:

L[t/]\/Rl t=uV Ry
(L[t/ — u] VRV Rz)U

1. L[t'|o is maxima relative to Rio and (¢ = w)o is maximal relative to Ryo (only
maximal literalsin clauses may be selected for the inference; also comparison is done
after application of o, since after instantiation more information is available, possibly
ruling out some inferences).

2. to # wo (thesubstitution of to by uwo must not causeagrowth of theliteral) andif L[t']o
isanequation L[t'lc = s[t'lo = rothens[t'|oc £ ro (it sufficesto paramodul ateinto
bigger sides of equations). In thiscase, theinferenceis called a superposition inference.

3. t"isnot avariable occurrence.

Let us compute our example with thisrestricted variant. We need an ordering. For the sake of
smplicity, assume that literalsare ordered male(s) > t1 = t, for any s, t, t,, and for function
symbols we order firstchild > sue, and assume e.g. arecursive path ordering based on this
ordering (see (Dersnhowitz, 1987) for an overview about orderings). The ordering among the
other function symbols does not matter. Suppose again that we want to refute

(7) -y = father(sue).

According to restriction 3. we cannot paramodulate into y in (7). Furthermore we cannot
paramodulate into sue with (5), because in (5) we have firstchild(fred) = sue and such a
step would violate restriction 2. Also we cannot use (4) to paramodulate into father(sue) of
(7), because in (4) male(z) = father(firstchild(z)) = = and hence according to restriction
1. Only =male(z) may be used in aninference. A legal step is to resolve (4) with (6), which
yields:

(8) father(firstchild(fred)) = fred

5 Conclusion 62

Now (5) can be used to paramodulateinto firstchild(fred) in (8), which yields
(9) father(sue) = fred

Now paramodulating (9) into father(sue) of (7), and afinal resolution with z = z completes
the proof.

It should be indicated by this example that ordering restrictions are a very effective tool for
disallowing many otherwise possible inferences. For example, the topmost step in the above
paramodulation refutationisno legal inferencein therestricted cal culus, because it violatesthe
restriction 1 and 2. Asagenera property these ordering restrictions seem to be only possible
at the price of giving up the linear, top-down strategy as in the unordered case. However, asan
improvement in this direction in (Socher-Ambrosius, 1992) a more goal-oriented completion
strategy is proposed.

As a special case, the term ordering might be strong enough to direct all the equations into
rewrite rules, which means that in inferences only the left side needs to be considered for
replacement by the right side. Sometimes the input clauses, short of the query, can be closed
under application of the above ordered inference rule and yield a finite clause set. Thisis
easier to achieveif additionally simplification techniques are applied (see again (Bachmair and
Ganzinger, 1991; Bachmair and Ganzinger, 1990b)). This finite set can be used to decide the
word problem in the given equational theory. In the infinite case a semi-decision procedure
results (see also (Hsiang and Rusinowitch, 1987) for such an “unfailing” procedure). This
shows that such calculi are closely related to the Knuth-Bendix completion procedure; indeed,
that procedure can be seen as an instance of them.

We are not aware of any research going on in a non-resol ution setting.

5 Concluson

We have presented a classification of theory reasoning methodsfor first order predicate calculi.
We have distinguished between literal, term and variable level reasoning. The main focus of
the paper is literal level theory reasoning, which is presented for various calculi in a uniform
manner. For this we used the consolution calculus, which was defined in a partial and a total
theory variant. This framework was then used in the main part of the paper to present theory
resolution, theory model elimination and atheory connection method. For the total variants of
these calculi we have proven completeness.

The advantages of such a uniform view of various calculi are both the possibility of using the
same formal machinery for different calculi, and the ability to investigate differencesin detail.

Since efficient equality handling is one of the central issues in theorem proving we have

REFERENCES 63

discussed thisin aspecia section. Again, we presented methodslike paramodulation and RUE-
resolution as special cases of partial theory reasoning in the framework of theory consolution.

References

Anderson, R. (1970). Completeness results for E-resolution. In Proceedings AFIP 70, Spring
Joint Comp. Conf., AFIPS Press, Reston VA, pages 653—656.

Bachmair, L. (1991). Canonical Equational Proofs. Progressin Theoretical Computer Science.
Birkhauser.

Bachmair, L. and Ganzinger, H. (1990a). Completion of First-Order Clauses with Equality by
Strict Superposition. In Proc. Second Int. Workshop on Conditional and Typed Rewrite
Systems, LNCS. Springer.

Bachmair, L. and Ganzinger, H. (1990b). On Restrictions of Ordered Paramodulation with
Simplification. In Stickel, M., editor, Proc CADE 10, LNCS449, pages427—-441. Springer.

Bachmair, L. and Ganzinger, H. (1991). Rewrite-Based Equational Theorem Proving With
Selection and Simplification. Technical Report MPI-1-91-208, Max-Planck-Institut fur
Informatik.

Bachmair, L., Ganzinger, H., Lynch, C., and Snyder, W. (1992). Basic Paramodulation and
Superposition. In Kapur, D., editor, Proc. 11th CADE, pages 462—476. Springer.

Baumgartner, P. (1992a). A Model Elimination Calculus with Built-in Theories. 1n Ohlbach,
H.-J., editor, Proceedings of the 16-th German Al-Conference (GWAI-92), pages 30-42.
Springer. LNAI 671.

Baumgartner, P. (1992b). An Ordered Theory Resolution Calculus. In Voronkov, A., edi-
tor, Logic Programming and Automated Reasoning (Proceedings), pages 119-130, St.
Petersburg, Russia. Springer. LNAI 624.

Baumgartner, P. and Furbach, U. (1992). Consolution as a Framework for Comparing Calculi.
Forschungsbericht 11/92, University of Koblenz. (to appear in Journal of Symbolic
Computation).

Bibel, W. (1987). Automated Theorem Proving. Vieweg, 2nd edition.
Bibel, W. (1992). Deduktion, volume 6.2 of Handbuch der Informatik. Oldenburg.

Blasius, K. (1987). Equality Reasoning Based on Graphs. SEKI-Report SR-87-01, Universitat
Kaiserdautern.

REFERENCES 64

Blasius, K. and Burckert, H.-J. (1989). Deduction Systemsin Artificial Intelligence. Horwood,
Chichester.

Brachmann, R., Fikes, R., and Levesque, H. (1983). KRYPTON: a functional approach to
knowledge representation. |EEE Computer, 16(10):67—73.

Burckert, H. (1990a). A Resolution Principle for Clauses with Constraints. In Stickel, M. E.,
editor, Proc CADE 10, pages 178-192. Springer. LNCS/LNAI 449.

Burckert, H.-J. (1990b). A Resolution Principlefor Clauses with Constraints. Research Report
RR-90-02, DFKI.

Burckert, H.-J. (1992). A Resolution Principlefor Clauses with Restricted Quantifiers, volume
568 of LNAI. Springer.

Burckert, H.-J.,, Herold, A., Kapur, D., Siekmann, J., Stickel, M., Tepp, M., and Zhang, H.
(1988). Opening the AC-Unification Race. Journal of Automated Reasoning, 4:465 —
474.

Chang, C. and Lee, R. (1973). Symbolic Logic and Mechanical Theorem Proving. Academic
Press.

Debart, F.,, Enjabert, P, and Lescot, M. (1990). Multi modal logic programming using
equational and order-sorted logic. In Okada, M. and Kaplan, S., editors, Proc. 2nd Conf.
on Conditional and Typed Rewriting Systems. Springer. LNCS.

Dershowitz, N. (1987). Termination of Rewriting. Journal of Symbolic Computation,
3(1&2):69-116.

Digricoli, V. J. and Harrison, M. C. (1986). Equality-Based binary Resolution. Journal of the
Association for Computing Machinery.

Eder, E. (1991). Consolution and its Relation with Resolution. In Proc. 1JCAI '91.

Eisinger, N. and Ohlbach, H.-J. (1993). Deduction systems based on resolution. In Gabbay,
D. M., Hogger, C., and Robinson, J., editors, Handbook of Logic in Artificial Intelligence
and Logic Programming. Volume1: Logical Foundations, pages 184—263. Oxford Science
Publications.

Fages, F. and Huet, G. (1986). Complete Sets of Unifiersand Matchersin Equational Theories.
Theoretical Computer Science, 43.

Fitting, M. (1990). First Order Logic and Automated Theorem Proving. Textsand Monographs
in Computer Science. Springer.

Furbach, U., Holldobler, S., and Schreiber, J. (1989). Horn equational theories and paramodu-
lation. Journal of Automated Reasoning, 3:309-337.

REFERENCES 65

Gallier, J. (1987). Logic for Computer Science: Foundations of Automatic Theorem Proving.
Wiley.

Gallier, J., Narendran, P, Plaisted, D., and Snyder, W. (1990). Rigid E-unification: NP-
Completeness and Applications to Equational Matings. Information and Computation,
pages 129-195.

Gallier, J. and Snyder, W. (1989). Compl ete Setsof Transformationsfor General E-Unification.
Theoretical Computer Science, 67:203 — 260.

Gallier, J. and Snyder, W. (1990). Designing Unification Procedures Using Transformations:
A Survey. Bulletin of the EATCS 40:273 — 326.

Galier, J. H., Raatz, S., and Snyder, W. (1987). Theorem proving using rigid e-unification:
Equational matings. In Logicsin Computer Science’ 87, Ithaca, New York.

Holldobler, S. (1989). Foundations of Equational Logic Programming, volume 353 of Lecture
Notesin Artificial Intelligence. Subseries of Lecture Notesin Computer Science. Springer.

Hollunder, B. (1990). Hybrid Inferences in KL-ONE-based Knowledge Representation Sy-
stems. Research Report RR-90-6, DFKI.

Hsiang, J. and Rusinowitch, M. (1986). A New Method for Establishing Refutational Com-
pletenessin Theorem Proving. In Proc. 8th CADE, pages 141-152. Springer.

Hsiang, J. and Rusinowitch, M. (1987). On word problems in equational theories. In Proc.
ICALP’ 87, pages 54—71. Springer, LNCS 267.

Hullot, J. (1980). Canonical formsand unification. In Proc. Conf. Automated Deduction, pages
318-334.

J.-P. Jouannaud, C. K. (1991). Solving Equationsin Abstract Algebras: A Rule-Based Survey
of Unification. In Lassez, J. and Plotkin, G., editors, Computational Logic — Essays in
Honor of Alan Robinson, pages 257-321. MIT Press.

Jaffar, J. and Lassez, J-L. (1987). Constrained Logic Programming. In Proc. of the ACM
Symp. on Principles of Programming Languages, pages 111-119.

Jeffrey, R. C. (1967). Formal Logic: Its Scope and Limits. McGraw-Hill.

Kirchner, C., Kirchner, H., and Rusinowitch, M. (1990). Deduction with Sybolic Constrains.
Revue D’ Intelligence Artificielle, 4(3):11-51.

Knuth, D. E. and Bendix, Peter, B. (1970). Simple world problemsin universal algebras.

Kounalis, E. and Rusinowitch, M. (1991). On Word Problemsin Horn Theories. Journal of
Symbolic Computation, 11:113-127.

REFERENCES 66

Letz, R., Schumann, J., Bayerl, S., and Bibel, W. (1992). SETHEO: A High-Performace
Theorem Prover. Journal of Automated Reasoning.

Loveland, D. (1968). Mechanical Theorem Proving by Model Elimination. JACM, 15(2).
Loveland, D. (1978). Automated Theorem Proving - A Logical Basis. North Holland.

McCharen, J., Overbeek, R., and Wos, L. (1976). Complexity and related enhancements for
automated theorem-proving programs. Computers and Mathematics with Applications,
2:1-16.

Meseguer, P. (1989). Constraint Satisfaction Problems. An Overview. AICOM, 2(1).

Morris, J. B. (1969). E-Resolution: An Extension of Resolution to include the Equality
Relation. In Proc. IJCAI, pages 287—294.

Murray, N. and Rosenthal, E. (1987). Theory Links: Applications to Automated Theorem
Proving. J. of Symbolic Computation, 4:173-190.

Neugebauer, G. and Schaub, T. (1991). A Pool-Based Connection Calculus. Unpublished.

Oberschelp, A. (1962). Untersuchungen zur mehrwertigen Quantorenlogik. Math. Annalen,
145:297-333.

Ohlbach, H. and Siekmann, J. (1991). The Markgraf Karl Refutation Procedure. In Lassez,
J. and Plotkin, G., editors, Computational Logic — Essays in Honor of Alan Robinson,
pages 41-112. MIT Press.

Petermann, U. (1990). Towards a connection procedure with built in theories. In JELIA 90.
European Workshop on Logic in Al, Springer, LNCS.

Petermann, U. (1991a). Building in equational theories into the connection method. In Pro-
ceedings of Symposium on Fundamentals of Artificial Intelligence Research, Smolenice.

Petermann, U. (1991b). How to build in an open theory into connection calculi. submitted to
J. on Computers and Artificial Intelligence.

Petermann, U. (1991c). Petermann U., Building in Equational Theories into the Connection
Method. In Proceedings of FAIR '91, 1st Int. Workshop., Fundamentals of Artificial
Intelligence Research, Smolenice, Czechosovakia, Sept. q 8-13, 1991, pages 185-199.

Petermann, U. (1993a). A framework for integrating equality reasoning into the extension
procedure. In Proceedings Workshop on Theorem Proving with Analytic Tableaux and
Related Methods, Marseille, 1993, pages 195-207.

Petermann, U. (1993b). Completeness of the pool calculus with an open built in theory.
In Gottlob, G., Leitsch, A., and Mundici, D., editors, 3rd Kurt Godel Colloquium *93,
number 713 in Lecture Notes in Computer Science, pages 264—277. Springer-Verlag.

REFERENCES 67

Peterson, G. (1983). A Technique for Establishing Completeness Results in Theorem Proving
with Equality. SAM Journal on Computing, 12(1):82-100.

Paisted, D. (1993). Equationa reasoning and term rewriting systems. In Gabbay, D. M.,
Hogger, C., and Robinson, J., editors, Handbook of Logic in Artificial Intelligence and
Logic Programming. VWolume 1: Logical Foundations, pages 184—263. Oxford Science
Publications.

Poppelstone, R. (1967). Beth tree methods in automated theorem proving. Machine Intelli-
gence, pages 31-46.

Reeves, S. V. (1987). Adding equality to semantic tableaux. Journal of Automated Reasoning,
3:225-246.

Ringeissen, C. (1992). Unificationinacombination of equational theorieswith shared constants
and its application to Primal Algebras. In Voronkov, A., editor, Proc. LPAR ' 92. Springer.

Robinson, G. A. and Wos, L. (1969). Paramodulation and Theorem Proving in First Order
Theorieswith Equality. In Meltzer and Mitchie, editors, Machine Intelligence 4. Edinburg
University Press.

Rusinowitch, M. (1991). Theorem-proving with Resolution and Superposition. Journal of
Symbolic Computation, 11:21-49.

Siekmann, J. and Wrightson, G. (1980). Paramodul ated Connectiongraphs. Acta Informatica,
13:67-86.

Siekmann, J. H. (1989). Unification Theory. Journal of Symbolic Computation, 7(1):207-274.
Snyder, W. (1991). A Proof Theory for General Unification. Birkhauser.

Snyder, W. and Lynch, C. (1991). Goa directed strategies for paramodulation. In Book, R.,
editor, Rewriting Techniques and Applications, Lecture Notes in Computer Science No.
488, pages 15 — 28, Berlin. Springer.

Socher-Ambrosius, R. (1990). Simplification and Reduction for Automated Theorem Proving.
SEKI-Report SR-90-10, Universitat Kaiserd autern.

Socher-Ambrosius, R. (1992). A Goal-Oriented Strategy Based on Completion. In Kapur, D.,
editor, Proc. CADE 11. Springer. LNAI 607.

Stickel, M. (1983). Theory Resolution: Building in Nonequational Theories. SRI International
Research Report Technical Note 286, Artificia Intelligence Center.

Stickel, M. (1985). Automated Deduction by Theory Resolution. Journal of Automated
Reasoning, 1:333-355.

Van Hentenryck, P. (1989). Constraint Satisfaction in Logic Programming. Logic Program-
ming. The MIT Press, Cambridge, Massachusetts, USA / London, England, UK.

REFERENCES 68

W. Nutt, P R. and Smolka, G. (1987). Basic Narrowing Revisited. Seki-Report SR-87-07, Uni
Kaiserdautern.

Walther, C. (1983). A Many-Sorted Calculus Based on Resolution and Paramodulation. In
Proc. 8th 1JCAI, Karlsruhe.

Zhang, H. and Kapur, D. (1988). First-Order Theorem Proving Using Conditional Rewrite
Rules. InE. Lusk, R. O, editor, Proc. 9th CADE, LNCS 310, pages 1-20. Springer.

