
Constraint Model Elimination
and a

PTTP-Implementation

Peter Baumgartner � Frieder Stolzenburg

Universität Koblenz � Rheinau 1 � D–56075 Koblenz
email:

�

peter,stolzen

�

@informatik.uni-koblenz.de

Abstract. In constraint logic programming, proof procedures for Horn clauses
are enhanced with an interface to efficient constraint solvers. In this paper we
show how to incorporate constraint processing into a general, non-Horn theorem
proving calculus.
A framework for a new calculus is introduced which combines model elimina-
tion with constraint solving, following the lines of Bürckert (1991). A prototype
system has been implemented rapidly by only combining a PROLOG technology
implementation of model elimination and PROLOG with constraints. Some ex-
ample studies, e.g. taxonomic reasoning, show the advantages and some problems
with this procedure.

1 Introduction: Programming with Constraints

One of the most traditional disciplines in artificial intelligence (AI) is theorem proving.
In the early days, it was concentrated mainly on developing general proof procedures for
predicate logic. According to the shift within wide parts of AI research towards special
domain dependent systems, automated reasoning and theorem proving nowadays aim
at incorporating specialized and efficient modules which are suited for handling special
parts or domains of knowledge. Examples of this paradigm are the combination of theo-
rem provers with taxonomic reasoning [BGL85], equality handling, theory unification
or the rather general scheme of theory reasoning [BFP92].

As another paradigm constraint logic programming (CLP) is established as an active
research field of its own. For an overview, see [Van89, JM94]. In CLP usually SLD-
resolution based proof procedures are considered and are enhanced with an interface
to a constraint solver. Since constraint solving has been combined so successfully with
logic programming, the question arises, whether it is possible to incorporate constraint
processing into theorem proving calculi. The merits of this combination would be that
specifications can be written then in full first order logic (as opposed to definite programs
used in CLP), and at the same time advantage can be taken of known constraint solving
procedures.

Surprisingly, rather few research has been done in this direction (not counting the
numerous approaches of those kinds of two-level reasoning that can be seen as special
instances of constraint handling). Only in [Bür91, Bür94] the familiar resolution calculus
in general was extended with a framework for constraint handling. In this constrained
resolution, clauses enhanced with constraints replace the traditional clauses.

Syntactically, the constraints are formulæ that are attached to some variables
clauses; semantically, the constraints filter out valid assignments for the variables.
resolution inference rule is modified accordingly by accumulating the constraints
parent clauses and additionally stating the unification task of the selected literals
constraint. In a refutation, the thus combined constraints must be solved eventually
not necessarily immediately after an inference step. In other words, constraints
treated lazily.

Constrained resolution is related to theory reasoning, especially theory resolution
[Sti85]. On the one hand, constraint reasoning is more general than theory reasoning,
as constraints may be treated lazily. Furthermore, no concrete theory unifiers
be computed during proof search. Instead it suffices to establish the satisfiability
the accumulated theory unification problems. On the other hand, constraint reasoning
more special than theory reasoning, as in constraint reasoning the foreground theo
be a conservative extension of the background theory. In [Bür91, 13-14] it is
that (wide) theory resolution can be understood as (a modification of) constrained
resolution.

1.1 The Proposal: Model Elimination with Constraints

As an alternative to this constrained resolution, we propose to enhance model elimina
with a general framework for constraint handling. The model elimination calculus
a goal-oriented, linear and refutationally complete calculus for first order clause
[Lov68]. It is the base of numerous proof procedures for first order deduction. There
high speed theorem provers like PROTEIN [BF94] which approach the inference
of today’s PROLOG implementations.

Our approach is similar in spirit to constrained resolution. However, there
notable differences. For the first, model elimination is a linear, goal-directed
whereas resolution is a non-linear, bottom-up calculus. By these properties,
elimination is closer to the SLD-resolution of PROLOG than constrained resolution.
a consequence we need a new completeness proof and cannot take the one in
62-67]. The second difference concerns implementation. Model elimination
implemented in a straightforward way on top of existing PROLOG implementations
using the so-called PTTP-technique [Sti89].

Even better, as is shown in Section 4, the constraint handling mechanism
underlying PROLOG dialect can be used. Such a cheap and rapid but rather
implementation is not available for constrained resolution.

2 The Calculus of Constraint Model Elimination

We will now introduce the framework for constraint model elimination (CME).
better understanding, we will interleave the theory of CME with a well-known
from the literature.

Example 1. The Lion and Unicorn puzzle is stated as problem 45 in [Smu78
natural language description of the problem is as follows.
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1. The lion lies on Monday, Tuesday and Wednesday.
2. The unicorn lies on Thursday, Friday and Saturday.
3. Both tell truth on other days.
4. Both say yesterday was one of their lying days.
5. Prove that today is Thursday.

It is a general observation of AI research that the description of a problem can be
separated as follows. On the one hand, there is an internal, background part of the
problem description that refer to the knowledge base of the system. Here, the system
knows procedures, e.g. special unification algorithms or constraint solvers, to treat these
problem constraints. On the other hand, we have the external, foreground part where
deep reasoning may be necessary. But general heuristics may be applied.

The reader may ask how to divide a problem description into the foreground and
background part. Quite often, the implicit given knowledge of a problem description is
a good candidate for the background part as in the Example 1. Another idea is to choose
that part as background part for which we have efficient constraint solvers at hand. The
rest becomes the foreground part. But, the more we put in the background, the more
elegant and efficient the problem can be treated.

2.1 Preliminaries

Let the notions alphabet, clause set, closed formula, domain, empty clause, equality,
formula, interpretation, literal, model, term, validity, and variable assignmentbe defined
as usual. We will now formalize the notion of background part as a constraint system.
A constraint system (or constraint theory) consists of a set of constraint symbols (or
constraints) and a set of constraint models [BBH

�

90, 6].

Definition 1 (constraint system). A

�

-interpretation is an interpretation of (exactly)
the symbols of the alphabet

�

. The notion

�

-formula is defined in a similar manner.
A constraint system

�

which is also called restricted quantification system in [Bür91,
50] consists of:

1. an alphabet

�

with equality �; the restriction theory must interpret � with the
equality relation (see below);

2. a theory over

�

, the restriction theory which can be given by a distinguished class

�

of

�

-interpretations; we do not require

�

to be a first order theory, but of course
it could be given by some axioms; for computational reasons, it is often useful to
restrict to first order theories;

3. a set of open (i.e. not closed)

�

-formulæ, the constraints; we will give examples
for constraints at the end of this subsection; the constraints must at least be closed
under conjunction

�

and under instantiation of variables.

As just said, the restriction theory must interpret � with the equality relation. At
least, this must be the syntactical equality, for which Robinson’s well-known unification
algorithm yields the constraint solver. But it is also possible to use special unification
theories, e.g. AC or set unification [Sto93, Sto94], or an equational theory in general.

3

In our example, we will model today as a constant and yesterday as a binary p
Then, the alphabet

�

consists of the predicates � and yesterday, and the constants
monday, � � � , sunday, and lion and unicorn. The restriction theory

�

0 is given
following formulæ. The symbol

��

denotes the logical exclusive or.

	 
 � �  � � 
 � � �  ��
� � �

� � 	 
 � �  � � � � � � 

 � � 	 � � � �  � � 
 � � �  � � � �
� �  � �
� � �

�  � � 	 � � � �  � � � � � �  � � �
	 � � � �

Definition 2 (constraint clauses). Let
�

be a constraint system and

�

an alphabet
that

� � � � �, i.e.

�

contains only new predicate and function symbols. A
is called a constraint clause if

�

is a disjunction of

�

-literals

�

1

�
� � �
� �� and

restriction formula.
Let

� � �

be a

�

-interpretation. An interpretation

� �

is called

�

-expansion
iff it is an interpretation of

�  �

(with the same domain) such that the reduct
wrt.

�

is

�

. Let

� � �
be a

�

-interpretation and

� �

an expansion of

�

. A
an interpretation to a subsignature is given by forgetting about the denotations
symbols that are not in the subsignature.

In the last definition, we enforced that every

� �

must be a conservative
sion of the restriction theory. On the one hand, this is a restriction of our framework
(and of constrained resolution) that we cannot mix symbols of the foreground
background part. But on then other hand, that reduces search space and allows
modular architecture of systems with constraints.

Definition 3 (satisfiability). If an interpretation

� �

together with a variable assignment

! satisfies a literal set

�

we write

� � �
� !

� " � �

. See [Llo87, 13-14] for a definition
satisfiability.

We define the satisfiability of a constraint clause

� # � in

� �

, written

� �

as follows:

� � " � � # � iff for all variable assignments ! :

$ % &

(where

$

variables in

� # � and

&

is the domain of

�

) with

� �
� !

� " � � it holds

� � �
� !

�

� � " � ' � ( �

).
We say that a clause set

)

is satisfiable in

� �

iff

� � " � � # � for every clause
Furthermore, a clause set

)

is defined to be satisfiable in

�

iff

)

is satisfiable� � � �

. The notion of “unsatisfiability” is defined via “not satisfiable”.

Now we are able to define the problem as a constraint clause set. Let us introduce
predicates lying/2 and says/3 in

�

where lying(X,Y) means X lies on Y, and says(X,Y
means X says on Y that he lies on Z. We conclude that if a being

*

says on
lies on

+

then he must lie either on

,

or on

+

, but not on both days. The facts
3 of the problem description can be formulated in a straightforward manner.
express information 4 and 5 by some constraint clauses. This is expressed by
in Figure 1.

2.2 Constraint Derivations

The last clause in Figure 1 is an empty constraint clause with a satisfiable but non-valid
constraint. Usually (i.e. in plain first order logic), we need only one empty clause
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0. � � � � � � �
�

�
�

� 	 
 � � �  � � �
�

� 	 
 � � �  � � �
�

� 	

� � � � � � �
�

�
�

� 	 
 � � � �  � � �
�

� 	 
 � � � �  � � �
�

� 	

1.

� � �  � � �
�

� 	 � � � � � �  � � � � �  � � �

� � �  � � �
�

� 	 � � � � � �  � � � � � � � � � �

� � �  � � �
�

� 	 � � � � � �  � � � � � �  � � � � �

2.

� � �  � � �
�

� 	 � � � �  � � � �  � � � � � � � � � � �

� � �  � � �
�

� 	 � � � �  � � � �  � � � � � � � � �

� � �  � � �
�

� 	 � � � �  � � � �  � � � � � � � � � � �

3. � � � �  � � �
�

� 	 � � � � � �  � � � � � � � � � � �

� � � �  � � �
�

� 	 � � � � � �  � � � � � � � � �

� � � �  � � �
�

� 	 � � � � � �  � � � � � � � � � � �

� � � �  � � �
�

� 	 � � � � � �  � � � � �  � � �

� � � �  � � �
�

� 	 � � � �  � � � �  � � � � �  � � �

� � � �  � � �
�

� 	 � � � �  � � � �  � � � � � � � � � �

� � � �  � � �
�

� 	 � � � �  � � � �  � � � � � �  � � � � �

� � � �  � � �
�

� 	 � � � �  � � � �  � � � � �  � � �

4. � � � � � �
�

�
�

� 	 � � � � � �  � � � � � � � � � � � � � � � � � � � �
�

� 	

� � � � � �
�

�
�

� 	 � � � �  � � � �  � � � � � � � � � � � � � � � � � � � �
�

� 	

5.

� � � � � � � � � � � � � � � �

Fig. 1. Constraint clauses for the Lion and Unicorn puzzle.

order to show unsatisfiability. But in the constraint case, in general we need a derivation
of the empty clause for every model

� � �

, as we will see later on.
Before we will show how to prove the query, we will introduce the constraint

model elimination calculus. We will introduce it analogously as in [Bür91]. The model
elimination is formulated as a tableau calculus similar to [Bau94].

Definition 4. Two literals

�

and

� �

are complementary written

� � � � iff

�

is a positive
and

� �

is a negative literal or vice versa, and it holds

� � � � � where

� � �

is equal to

� �

but
with different sign. – A path  is a finite sequence of

�

-literals

! �

1 � � � � �
�
�

"

. A finite set
of paths

#

is called tableau.

The complementarity relation � can be reduced to � . Without loss of generality let
us assume that

� �  � �

1 � � � � �
� �
�

and

� � � $  � 	

1 � � � � �
	�
�

where � %

0. Then

� � � �
denotes the constraint �

1

� 	

1

�
� � �
� � � � 	� . Hence, we could do it in Definition 6

below without � . However we will use the meta-level symbol � at the object level in
order to abbreviate notation.

Definition 5. We will now define some operations:

1.

& � ! �

1 � � � � �
�
�

" � � �� (leaf of a path)
2.

' � # � � � ( ) *
� � + ) (
� �

(formula of a tableau)
3.

, � �

1

�
� � �
� ��
� � - ! �

1

"
� � � � �

! �
�

" .

(initial tableau)
4.

! �

1 � � � � �
�
�

"
�
� � - ! �

1 � � � � �
�
� �
� " " � � � .

(concatenation)
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Definition 6 (constraint derivation). Let

)

be a constraint clause set. A pair
called constraint tableau iff

#

is a tableau and

/

is a constraint. We will now define
relation

0
1 between constraint tableaux given by the following inference rules:

(a) constraint extension step.

#  -  . # /

#   �
� # / � � � � & �  � � � � if

� � � # � � ) .

(b) constraint reduction step.

#  -  . # /

# # / � � & �  � � � � if

� �  .

In (a)

� � � # � must be a copy of a clause in

)

with fresh variables. In this

� � � # � is called the extending clause and

�

is called the extending literal.
Let

0�
1 denote the reflexive and transitive closure of

0
1 . We will call

, � � � #

constraint derivation in

)

with goal clause

� # � � ) .
Mostly, we are interested in derivations ending with an empty tableau

[BBH

�

90, 8] where
/

is a constraint. Please note, that we overloaded the

2

. It denotes an empty clause of foreground literals, too.

Based on this definitions we will state now our first main result. It holds for
constraint systems.

Theorem 7 (soundness and completeness). A constraint clause set

)

is unsatisfiable
iff for each

� � �

there is a clause

� # � � )

such that

, � � � # � 0�
1

2 # /

and

�

Completeness is proven by adapting the usual ground proof plus lifting technique.
But notice that we have to replace the Herbrand domain by any of the models
guished by the restriction theory. The ground proof is similar to that of ordinary
elimination [Bau93]. All the proofs are stated in detail in the long version [SB94

The last theorem is not very satisfactory, because we might need infinitely
empty tableau. In other words, we do not have a calculus (yet). In order to remedy
situation we have to restrict the constraint systems to those where only a finite
of such empty constraint tableaux are needed. These considerations motivate
definition.

Definition 8 (valid constraint, compactness, refutation). A set of constraints
called valid in

�

, written as

� " � /

iff for every

� � �

there exists a
such that for every suitable variable assignment ! it holds

� �
� !

� " � �. A constraint
stem is compact iff every valid set of constraints contains a finite subset, which
valid. A refutation is a finite set of derivations of empty tableaux

2 # / 3 ,

4 �

such that

� " � 5 /

1

�
� � �

� 5 /
� . We name the calculus defined here constraint

elimination.

For compact constraint systems every infinite refutation contains a finite
instance, if the restriction theory can be axiomatized in first order logic, the existence
of refutations is an immediate consequence of the compactness theorem of first
logic [Bür91, 68]. For Horn theories as restriction theories the derivation of
empty constraint tableaux (with valid constraint) is sufficient.

In the case of compact systems theorem 7 can be rewritten in the present terminology
as follows:
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Theorem 9 (Soundness and completeness of CME). A constraint clause set

)

is un-
satisfiable in a compact constraint system iff there exists a constraint model elimination
refutation.

2.3 An Example Derivation

Now, how can we prove the query of our Example 1? – We have to distinguish
between seven models

� � �

0. They are distinguished by the facts

	 
 � �  �

� 
 � � �  � � � � �
	 
 � �  � � � � � � . So, we can solve the puzzle if we prove for every

case that

)

is unsatisfiable. The case where

	 
 � �  � 	 � � � � � �  is trivial. The other
cases can be shown in a very similar manner. We solved the Lion and Unicorn puzzle
in an overall time of about 0.1s on a Sun4.

Figure 2 shows the derivation for

�

0 where

� 	 
 � �  � � � 4 � �  � � �

0. In this case,
we get the refutation by the fact that the unicorn lies on Thursday and Friday because
then he cannot say on Friday that he lies on Thursday. The clauses and formulæ that are
used in the constraint derivation and simplification steps steps are annotated. The arrow
denotes constraint simplification.

Figure 3 shows the proof as a tree. For matters of presentation we have included
the extending literals in the paths and marked these paths as solved with a �. It is
clear that the existential closure of the remaining constraints, namely

5 *
�
,
�
+

:

* �

� � 4 � 
 � � � , � � � 4 � �  � + � 	 � � � � � � , is valid.

�

� � � � � �
�

�
�

� 	 � � � �  � � � �  � � � � � � � � � � � � � � � � � � � �
�

� 	

� � �  � � �
�

� 	 � � � �  � � � �  � � � � � � � � � � �

� � �  � � �
�

� 	 � � � �  � � � �  � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � 	

� � � � �  � � � �  � � � � � � � � � � � � � � � � � � � �

� � � � � � � � �
�

�
�

� 	 �
�

� � � � �  � � �
�

� 	 �
�

� � � � �  � � �
�

� 	 � �

� � � � � �  � � �
�

� 	 �
�

� � � � �  � � �
�

� 	 � � � � � �  � � � �  � � � � � � � � � � � � � � � � � � � �
�

� 	

� � � � � �  � � �
�

� 	 �
�

� � � � �  � � �
�

� 	 � � � � � �  � � � �  � � � � � � � � � � � � � � � � � � � �

� � � � � �  � � �
�

� 	 � � � � � �  � � � �  � � � � � � � � � � � � � � � � � � � �

Fig. 2. Example derivation with annotations.

7

� � �  �

� � � � � �

� � � � �

	
	
	
	
	
	
		














 


�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� �

� � �
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�

�
�
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�

� 	 � � � �  � � �
�

� 	

� � � � � �
�

�
�

� 	 � � �  � � �
�

� 	 � � �  � � �
�

� 	

Fig. 3. Presentation of the proof as a tree.

3 An Application Domain: Taxonomic Reasoning

Let us now switch to a more realistic application domain for constraint model
nation, namely taxonomical reasoning. Our plan is to use a readily available constraint
solving mechanism for this. However, such constraint solving mechanisms are
designed to be used within a logic programming environment, and when employing
them in our more general situation of theorem proving we then face the following
problems:

– In CLP usually we have constraint simplification calculi for only positive
traints, but for constraint model elimination it is necessary that the calculus
also deal with negative constraints, i.e. negative constraint literals. Since
tive constraint such as $ /

in

� # $ /

is a positive information, this means
constraint theory may be extended in the course of the computation.

– After a CLP computation has derived the empty clause, the remaining constraints
are satisfiable but not necessarily valid. However, we require that the remaining
constraints are valid in the restriction theory

�

(cf. Definition 8). Satisfiability
validity amounts to the same only in case of generic restriction theories
which equivalent in some sense to one single interpretation).

3.1 Terminological Languages

As an example we will consider terminological reasoning [SSS91] which originated
with the KL-ONE system [BS85]. A common feature of such systems is the separation
of knowledge into a terminological part and an assertional part. The knowledge
classes of individuals and relationships between these classes is stored in the T-Box,
the knowledge concerning particular individuals can be described in the A-Box
68]. It is often useful to disallow terminological cycles.
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Usually a terminological reasoning system provides an (in)consistency and a sub-
sumption checking component. The constraint solving method of [SSS91] which ex-
pands the definition of concepts is a well-known method which tackles these problems.
But for the above-mentioned services, the A-Box plays no active role [BDS93, 116].
Introducing an A-Box leads to the problem of dealing with negative constraints which
will be further explained later on. We will now consider an example.

Example 2. This example follows that in [BGL85, 538-539]. The reader may verify that
the answer to the question in 8 is yes. Furthermore, we can say that Fred and Pat are the
persons who are asked for.

1. Persons are thinking animals.
2. Dogs are animals that do not think.
3. A noson is a person who has no sons, i.e. all his children are female.
4. Pat is Fred’s child.
5. Fred is a noson.
6. Every dog loves every animal.
7. Every person loves his child.
8. Is there a person who loves a female?

We can split the problem into three parts. Firstly, we have some terminological
knowledge about persons, dogs and nosons (sentences 1 to 3). Secondly, we have
some assertional knowledge (sentences 4 and 5). It can be expressed by means of the
membership predicate :/2 by using the concepts person, dog, noson etc. and the role
child. We will think of the relation loves as an ordinary predicate. Hence, the last
sentences (numbers 6 to 8) form the genuine hybrid part of the problem.

3.2 Implementing Hybrid Reasoning

Terminological reasoning, i.e. constraint solving method, can be implemented by cons-
traint handling rules (CHR) in ECLiPSe [FH94]. A CHR can be seen as a special kind
of a term rewriting rule, e.g

� *

:

�
�
*

: $ � � � ( � � 4 �. This implementation only
deals with positive constraints and cannot solve the universal satisfiability problem of
concept descriptions [BBH

�

90, 12-21]. But that is needed if we want to use an open
world semantics [BH91, 73]. That means, incomplete knowledge is permitted; there
may be instances or relationships not explicitly mentioned in the A-Box.

But for theorem proving purposes a closed domain semantics seems to be more
appropriate. That means, the taxonomic constraints remaining after the derivation of an
empty tableau must be a logical consequence from the given A-Box. Now, if we require
that the given A-Box represents a Horn theory, i.e. concept disjunction and existential
quantification is not allowed, then we can easily implement taxonomic reasoning within
our framework, since for Horn theories only one derivation of an empty tableau is
sufficient [Bür91, 69-72].

That will be explained in conjunction with the Example 2. Its formalization is as
follows. Here, we use the syntax of [SSS91, 5].

– T-Box:
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1.  � � � 
 � � � � � 4 � � � � 	 � 4 � � � �

2.

� 
 � � � � � 4 � � � � $ 	 � 4 � � � �

3. � 
 � 
 � � �  � � � 
 � � ' � � 4 � � :

� � � � � �

– A-Box:
4.

� � � � � �  � 	 � : � � 4 � �

5.

� � � � : � 
 � 
 �

– Hybrid part:
6.

� 
 � � � � � � 
� # � � :

� 
 � �  : � � 4 � � � �

7.

� 
 � � � � � � 
� # � � :  � � � 
 � � � � � 
�

: � � 4 � � �

8. $ � 
 � � � � � � 
� # � � :  � � � 
 � �  :

� � � � � � �

Let us now start a constraint derivation with the query 8. If we extend with
then we get the empty tableau

2 # � � :

� 
 � � � :  � � � 
 � �  : � � 4 � � � �  :
whose constraint is inconsistent as the constraint solver tells us, using the information
and 2. Hence, we must backtrack and extend with clause 7. That leads us to the
tableau

2 # � � :  � � � 
 � � � � � 
�

: � � 4 � � �  :

� � � � � � � whose constraint is consistent,
i.e. satisfiable. But we have to prove that it is valid by means of the A-Box. In
we take also the empty tableaux of clauses 4 and 5 into account, it is clear by rule
it is so. For this, the non-primitive concepts have to be unfolded with their definitions.

In our implementation, the T-Box is reached via CHRs. The A-Box facts are
via PROLOG rules. These rules are activated by a call to chr labeling/0
constraint simplification (expansion) phase by the ECLiPSe system. The hybrid
consists of clauses. There, the foreground literals are transformed by the PROTEIN
system whereas the background literals are treated by the ECLiPSe system as constraints.

3.3 Related Approaches

The implementation of terminological reasoning we used [FH94] follows the
[SSS91] which presents a PSPACE-complete algorithm. If we consider a more restricted
formalism, e.g. sorted logics or order-sorted feature structures where only functional
roles, i.e. features, are allowed, then we are able to build more efficient constraint
solvers. For example, the unification of sorts can be computed by a table
in nearly constant time. By this procedure, we got a proof of Schubert’s Steamr
problem within 7.4s on a Sun4. The formulation of a sort hierarchy by implications
unary predicates usually leads to blind search with exponential time behaviour
worst case.

4 A PTTP-Implementation

One of our aims by developing constraint model elimination was to get a rapid
nevertheless efficient implementation of constraint reasoning. The problem is that
are on the one hand some implementations of resolution, model elimination
calculi, but they are often hard-coded and it is difficult to enrich them with constraint
solvers. On the other hand there are constraint solvers and CLP languages
Horn logic. But recall that we are interested in full first order logic, not just Horn
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In order to combine these two worlds we propose to use model elimination as a
base calculus. This helps, because model elimination can be implemented by the PTTP-
technique [Sti89] on top of PROLOG, and, furthermore, the constraint mechanisms of the
underlying PROLOG system can be used. In our case we had the PTTP-implementation
of model elimination already at hand – the PROTEIN system [BF94] – which is im-
plemented in ECLiPSe-PROLOG [ECR94]. Since ECLiPSe features constraint solving
mechanisms, only small modifications were necessary to implement constraint model
elimination.

4.1 PROTEIN and PROLOG with Constraints

PROTEIN is based on the PROLOG technology implementation technique. The idea of
that is to view PROLOG as an almost complete theorem prover which has to be extended
by only a few ingredients in order to handle the non-Horn case. By this technique the
WAM-technology and other optimizing PROLOG compilers are accessible to theorem
proving. PROTEIN – itself written in PROLOG – compiles a given clause set into a set
of PROLOG clauses introducing some special code in order to treat reduction steps. This
set can be run like an ordinary PROLOG program. In the case of Horn clauses we get
nearly the efficiency of PROLOG. PROTEIN also includes several calculus refinements
and flags.

ECLiPSe [ECR94] extends PROLOG by various features with the most relevant
for us being sound unification and constraint handling. The constraint language CHIP
[Van89] is integrated which can deal with finite integer domain constraints. The CHR
library contains also boolean, lists and set constraints solver. The constraint solvers are
accessed by some special constraint predicates which may be built-in or user-defined.
ECLiPSe supports a new data structure called metaterm. A metaterm is a variable with
an associated attribute. It behaves like a normal variable, however when it is unified
with another term, an event is raised and a user-defined handler specifies what the result
of the unification will be. This in fact makes it possible to define any new data structure.
Hence, it is possible to implement special unification theories as restriction theories.

4.2 The Combination of PROTEIN and ECLiPSe

The combination of PROTEIN and ECLiPSe in order to implement constraints is not
difficult. For this, we need to declare the constraint predicates used in the clause sets
as PROLOG predicates in PROTEIN. These PROLOG predicates will not be treated
as ordinary input literals by PROTEIN, but instead they will be passed as PROLOG
goals to ECLiPSe. There, they will be treated by the built-in constraint mechanisms of
ECLiPSe according to our application.

But this trick alone will not suffice. Recall from Theorem 7 that for each model

�

of the constraint theory

�

a proof with some input clause

� # � as query has to be found.
Obviously, Theorem 7 can only be implemented in this direct way if

�

is given by
finitely many interpretations (as in the lion and unicorns example). In this case we can
design a proof procedure based on an outer loop, which enumerates all (representations
of) the interpretations in

�

, and an inner loop which enumerates proofs in the selected
interpretation.
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Control

1

2

6

7

3

4

5

2 Invoke proof search

1 Fetch "current" model

3 Solve Constraints

4 Report result

5 Report "Proof found"

6 All models checked?

7 Yes/No

ME Constraint
Solver

Model Store

Fig. 4. Architecture of PROTEIN with constraints.

We found it advantageous to implement the outer loop by extending the prover
Figure 4 depicts the overall architecture of the prover and indicates the working
outer loop. More precisely, the proof procedure is as shown in Figure 5.

This procedure has two sources for non-termination. Firstly, the call (2) might
terminate (because first-order logic is undecidable). Secondly, selecting models
might be done in an unfair way in step (1) (a sufficient fairness condition is
every model in

�

eventually). If the set

�

is infinite it is practically impossible
every model.

Hence, as an alternative to this strategy, we propose an implementation
Theorem 9. For this we have to presuppose a compact constraint system

�

. As
ned in Section 2 this covers the important case of first-order restriction theories.
even more restricted case, if the constraint theory admits a generic model (e.g.
theories), then only one derivation suffices.

Recall that Theorem 9 does not refer to an explicit enumeration of the interpretations
in the restriction theory. Instead it suffices to enumerate finitely many derivations
empty tableaux such that

� " � 5 /

1

�
� � �

� 5 /
� (

�

), where the

/ 3 are the constraints
stemming from the respective derivations of empty tableaux. We will not figure
control regime in greater detail here. The main difference is that the outer loop
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INPUT: constraint clause set

�

;
constraint solving decision procedure CSP(

�

) for every

�

in

�

repeat

�

outer loop

�

Instantiate the CSP for some

� � �

, and delete

�

from

�

; (1)
Invoke PROTEIN;

�

inner loop

�

(2)

�

It performs as follows wrt. constraints during the proof search:
The constraints are assembled and passed to CSP(

�

); (3)
CSP(

�

) reports "failure" or "solvable" to PROTEIN; (4)

�

�

Reaching this point implies that PROTEIN has terminated with a proof (5)

�

until

�

is empty; (6) (7)

OUTPUT: "

�

is unsatisfiable"

Fig. 5. The proof procedure.

longer be driven by interpretations, and the termination (steps 6 and 7) are replaced by
a proof of (

�

).
The inner loop is implemented by a transformation on the input clause set. In order

to explain this we first recall that model elimination is a top-down proof procedure
which proceeds on a dedicated goal clause, just as the SLD-resolution of PROLOG. In
the generalisation towards full first-order clauses we may have more than one negative
clauses, and each of these must in general be usable as a goal clause for refutations. On the
other side, it suffices to use the negative clauses alone as goal clauses, because for every
interpretation

� � �

every unsatisfiable clause set

)

must contain at least one negative
clause (because, otherwise, if

�

contains no negative clauses every interpretation

� � �

can be extended to a model for

)

by assigning

	 � � � to the positive literals).
By this the search space will be pruned considerably, and model elimination keeps

its goal-directed flavour. Technically, a negative input clause $ �

1

�
� � �

� $ �� is made
accessible as a goal clause by rewriting it to � 
 � � � �

1

�
� � �

� �� and adding the new
goal clause ?- goal.

We want to point out that there is a strong interaction between the model elimination
prover (ME) and the constraint solver (CSP). We are free to propagate and simplify
constraints immediately after a constraint derivation step while in some cases it may be
advantageous to delay constraint handling for efficiency reasons. This can be formalized
by a so-called simplification system.

5 Final Remarks

In this paper, we presented the constraint model elimination calculus which is sound
and complete. We proposed a PROLOG technology implementation. This procedure has
at least two advantages. Firstly, we can exploit the existing, rather efficient PROLOG
compilers. Secondly, it is possible to combine our calculus with existing constraint
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solvers very easily. In many cases a direct combination of existing solvers is
e.g. we can solve the

�

-queens problem very fast [Van89, 122-132]. As another
we solved the Lion and Unicorn puzzle in about 0.1s on a Sun4, which is quite

We are currently thinking of using our approach for disjunctive logic programming
[LMR92], i.e. CLP with full negation (see also [Stu91]) where the computation
(disjunctive) answers is needed [Fur91].

Another idea is it not only to use special constraints but to add inherent constraints
to clauses, i.e. constraints which improve efficiency but do not change the
of clauses. This holds for the so-called tautology pruning, e.g. the transitivity

� � � $  � *
�
, � � $  � , �
+ � �  � *
�
+ � �

is equivalent to

� # � * � � , � , � � +
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