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Abstract

We introduce and discuss a number of refinements for restart model elim-
ination (RME). Most of these refinements are motivated by the use of RME
as an interpreter for disjunctive logic programming. Especially head selection
function, computation rule, strictness and independence of the goal clause are
motivated by aiming at a procedural interpretation of clauses. Other refine-
ments like regularity and early cancellation pruning are techniques to handle
the tremendous search space. We discuss these techniques and investigate
their compatibility. As a new result we give a proof of completeness for RME
with early cancellation pruning; we furthermore show that this powerful re-
finement is compatibel with regularity tests.

Keywords: Theorem proving, restart model elimination, disjunctive logic program-
ming, pruning techniques.

1 Introduction

Restart Model Elimination (RME) has been introduced as a variant of model
elimination in [Baumgartner and Furbach, 1994a/ as a calculus which avoids con-
trapositives and which introduces case analysis. The restart modification has been
successfully incorporated into high performance theorem provers like PROTEIN
[Baumgartner and Furbach, 1994b] and SETHEOQ. In [Baumgartner et al., 1995]
it was demontstrated that variants of this calculus can be used for computing
answers for disjunctive logic programming.

In this paper we want to present various refinements of RME and we discuss
their interrelationship. It turns out that some refinements very well support the
procedural reading of disjunctive program clauses A; V...V A, < B; A... A
B, these are e.g. head selection function or strictness. Other refinements, e.g.
regularity, independance of goal clause or early cancellation pruning aim at cutting
down the search space. Unfortunately some of these refinements are not combinable
without loosing completeness.



One result of this paper is a table of completeness results with respect to the
combination of refinements for RME (Table 1 below). Another original result is
completeness of “early cancellation pruning”! in combination with regularity and
what we call “independence of the goal clause”.

In the following section we recall basic restart model elimination calculus, and
in Section 2 we introduce refinements. The main results of this paper are then
presented in Section 3.

1.1 Restart Model Elimination (RME)

In this section we will describe restart model elimination as the basis for refine-
ments in the rest of the paper.

We will state some basic definitions. A clause is a multiset of literals, usually
written as the disjunction L; V...V L,. Clauses can be alternatively represented
with an arrow. A; V...V A,, < B; A... N\ B, is a representation of the clause
A/ V...VA,V-B; V...V -B,, where the As and Bs are atoms. Clauses with
m > 1 are called program clauses with head literals A; and body literals B;, if
present. Clauses of the form < B; A ... A B, are called negative clauses in the
sequel.

From now on we assume our clause sets to be in Goal normal form, i.e. there
exists only one negative clause which furthermore does not contain variables. With-
out loss of generality this can be achieved by introducing a new clause < Goal
where Goal is a new predicate symbol, and by replacing every purely negative
clause =By V...V =B, by Goal < By A--- A By,.

We are now turning towards the calculus. Throughout this paper, we consider
a variant of ME which uses so-called ME tableaux as basic proof objects, see [Letz
et al., 1994], rather than ME chains [Loveland, 1978].

We consider literal trees, i.e. finite, ordered trees, all nodes of which, except
the root, are labeled with a literal. The labeling function is denoted by A. Such a
literal tree is also called a tableau and it is represented as a set of branches, where
a branch (of length n) is a sequence [Ny-Ny-...-Ny] (n > 0, written as indicated)
of nodes such that Ny is the root of the tree, N; is the immediate predecessor of
Niyq for 0 < i < n, and N, is a leaf; the functions First and Leaf return the
first labeled, resp. last node of a branch, i.e. First([Ny - N;-...- N,]) = N; and

Throughout this paper, the letter N is used for nodes, L, K denote literals,
and the symbols p, ¢ are used for branches; like branches, branch-valued variables
are also written with brackets, as in [p]. Branch sets are typically denoted by

!Early cancellation pruning was introduced in [Loveland and Reed, 1991] within the context
of a nearHorn-Prolog variant, InH-Prolog.
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the letters P, Q,.... We write P, Q and mean P U Q (multiset union is intended
here). Similarly, [p], @ means {[p]}, Q. We write N € [p] iff N occurs in [p]. A
substitution o is applied to a branch set P, written as Po, by applying o to all
labels of all nodes in P. We say that branch set P is more general than branch set
P’ iff P§ =P’ for some substitution 4.

Now let [p] be a branch [Ny - Ny -...- N,]. Any contiguous subsequence of
[p] (possibly [p] itself) is called a partial branch (through [p]). The concatenation
of partial branches [p] and [¢] is denoted by [p - ¢]; similarly, [p - N] means the
extension of [p] by the node N. We find it convenient to confuse a node with its
label and write, for instance [p - L], where L is a literal, instead of “[p - N], where
N is labeled with L”; the meaning of L € [p] is obtained in the same way; also, we
say “node L” instead of the “node labelled with L”.

In order to memorize the fact that a branch contains a contradiction, we allow
to label a branch with a “x” as closed; we insist that if a branch is labelled as closed
then its leaf is complementary to some of its ancestor nodes. Branches which are
not labelled as closed are said to be open. A literal tree is closed if each of its
branches is closed, otherwise it is open.

Equality on branch sets is defined wrt. the labels and the “closed” status. More
precisely, suppose given branches [p] and [p’] stemming from (not neccessarily
different) branch sets P and P’ with respective labeling functions A and X'; define
/\[Ng -Ny-...- Nn] = </\(N1), .. ,A(Nn», [p]* =N [p,]* iff [p] =N [p’], where
p] =ax [p] iff A[p] = N'[p']. Equality for branch sets, i.e. P = P', is defined as
the usual multiset extension of “=j /.

By the previous definitions literal trees are introduced as static objects. We
wish to construct such literal trees in a systematic way. This is accomplished by,
for instance, the restart model elimination calculus.

Definition 1.1 (Branch Extension, Connection)

The extension of a branch [p] with clause C, written as [p] o C, is the branch set
{lp- L] | L € C}. Equivalently, in tree view this operation extends the branch [p]
by |C| new nodes which are labelled with the literals from C. A pair of literals
(K, L) is a connection with MGU o iff o is a most general unifier for K and L. O

Definition 1.2 (Restart Model Elimination)

Given a clause set S in Goal normal form. The inference rules eztension step,
reduction step and restart step on branch sets are defined as in Figure 1. The
branch [p] is called selected branch in all three inference rules. A restart step

followed immediately by an extension step is also called a restart extension step.
O

Note that like in the usual tableaux model elimination calculus (cf. [Letz et al.,
1994]), an extension or a reduction step can be applicable to a negative leaf. To



Restart Model Elimination (RME)

Extension Step:

[p], P A;V...VA, <~ B/N...ANB,
([p-Ai]*,[p]O(AI V...VA;i_ VA1 V...VAy, < B; /\.../\B,J,P)O

if
1. AyV..VA, < B/AN...ABy, (withm >1,n>0andi€ {1,...,m})

is a new variant (called eztending clause) of a clause in S, and

2. (Leaf ([p]), A;) is a connection with MGU o. In this context A; is called
the eztension literal.

Reduction Step:

[p], P
(Iplx, P)o

if (L, Leaf ([p])) is a connection with MGU ¢, for some node L € [p].

Restart Step:

[p], P
[p] o First([p]), P

if Leaf ([p]) is a positive literal.

Figure 1: Inference rules for RME.
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a positive leaf, a reduction step or a restart step can be applicable, but never an
extension step. We need one more definition before turning towards derivations:

Definition 1.3 (Computation Rule)

A computation rule is a total function ¢ which maps a tableau to one of its open
branches. It is required that a computation rule is stable under lifting, which means
that for any substitution o, whenever ¢(Qo) = [g]o then ¢(Q) = [¢]. O

The role of a computation rule is to determine in a derivation the selected
branch for the next inference step:

Definition 1.4 (Derivation)

Let S be a clause set in Goal normal form and ¢ be a computation rule. A restart
model elimination derivation (RME derivation) of branch set P, with substitution
o1...0n via ¢ from S consists of a sequence (([~Goal] = Py),Pi1y... ,Pn) of
branch sets, where for i = 1...n:

1. P; is obtained from P;_; by means of an extension step with an appropriate
variant C of some clause from S and MGU oy, or

2. P; is obtained from P;_; by means of a reduction step and MGU o, or

3. P; is obtained from P;_; by means of a restart step.

Any branch set which is derivable by some RME derivation is also called a RMFE
tableau. O

In each case the selected branch of the inference is determined by c. Quite
often we will omit the term “via ¢” and mean that ¢ is some arbitrary, given
computation rule.

Finally, a RME refutation is an RME derivation such that P, is closed. The
term “RME” is dropped if context allows.

Notice that due to the construction of the inference rules, P; is obtained from
Py by an extension step with some clause Goal < B; A--- A B, € S and with
empty substitution. This clause is called the goal clause of the derivation.

Note that in extension steps we can connect only with the head literals of
input clauses. Since in general this restriction is too strong, because it destroys
completeness, we have to “restart” the computation with a fresh copy of a negative
clause. This is achieved by the restart rule, because refutations of clause sets in
Goal normal form always start with First([p]) = —Goal, and thus only extension
steps are possible to = Goal, which in turn introduce a new copy of a negative
clause (cf. Figure 2, right side).
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Figure 2: Model Elimination (left side) vs. Restart Model Elimination (right side). In
order not to overload the notation, positive Goal nodes are not displayed (applies also to
the figures below).

2 Refinements of RME

2.1 Refinement: Head Selection Function

We have mentioned that the restart model elimination calculus can be used as a
basis for logic programming with clauses which contain disjunctions in their head.
By dissallowing extension steps at positive leave literals we assure that program
clauses can only be used for an extension step such that one of the head literals
form the connection. Hence our calculus supports the distinction into head- and
body literals: only head literals are used for “calling a program clause”. This was
one important step towards a procedural reading of disjunctive program clauses.
We now go one step further, by introducing a head selection function. This is a
means to distinguish one single head literal, which is then the only one allowed
to use for an extension step (this concept is also present in Plaisted’s Problem
Reduction Formats [Plaisted, 1988], but not for the nearHorn Prolog family). In
our example restart model elimination refutation from Figure 2 we used the clause
PV @ + for an extension step at a leaf literal — Q. Now, if the P literal is to be
the distinguished literal, then this extension step would be impossible. This is a
severe restriction of the calculus, but it can be applied and combined with some
other refinements (but not all) to still yield a complete calculus.

Definition 2.1 (Head Selection Function)

A head selection function f is a function that maps a clause A; V...V A, < B; A
...ABp, withn > 1 toanatom L € {Ay,...,Ap}. Lis called the selected literal of
that clause by f. The head selection function f is required to be stable under lifting
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which means that if f selects Ly in the instance of the clause (A; V...VA, < B/ A
...ABp,)y (for some substitution ) then f selects Lin A;V...VAy, < BiA...ABp,.
[l

Note that this head selection function has nothing to do with the selection
function from SLD-resolution which selects subgoals. The latter is called in our
setting the computation rule (Def. 1.3).

Definition 2.2

Let f be a head selection function. A RME derivation is called a derivation with
selection function f if it is a RME derivation such that in every extension step
only the selected literal A; from an input clause A; V...V A, < By A...\ By, is
used for a connection (leaf(p), 4;). O

A head selection function oviously allows to distinguish one single head literal
to be used as the only entry point during the whole derivation. Hence we arrived
at a calculus which does not need contrapositives at all: from the restart property
we know that the contrapositives which have a negative clause in its head can
be discarded and in a derivation with selection function we know that only the
selected single positive literal has to be used. Our small example derivation from
the right part of Figure 2 uses the clause PV @ < two times for an extension step.
In both cases () was used for the connection; hence if we assume a head selection
function which gives () as a sected literal this tableau is a refutation with selection
function.

2.2 Refinement: Strictness

RME with selection function allows a procedural reading of a single program clause,
since extension steps use a clause A; V...VA;V...VA, + B; AN...NBy, as a
procedure via the head A; which is determined by the selection function. There
is however still a problem with the procedural interpretation, namely to explain
how the remaining head literals are treated throughout a derivation. There are
two possibilities to further derive from a positive leaf literal: either the branch
can be closed by performing a reduction step or a restart has to be done. In the
right part of Figure 2 both possibilities are contained. The literal P is used in an
reduction step, hence it is the leaf of a closed branch and the rightmost branch
containing the P was extended by a restart step. In strict restart derivations we
forbid reduction steps at positve leaf literals. This refinement has been discussed
in [Baumgartner and Furbach, 1994a] and hence we ommit a formal treatment.

In this strict setting we can assume that reduction steps only occur that close a
branch with a negative literal. These reduction steps are interpreted very naturally
by the following view to the restart concept. Let A; V Ap < B be a program clause
Ay be the selected literal. Then a call to this clause can be done via A; within



a refutation and in addition one has to prove the original goal with the extra
assumption As. Instead of adding the fact Az to the clause set for this additional
prove, strict restart model eleimination allows the closing of branch by reduction
steps to the branch literal A, which obviously has the same effect.

2.3 Refinement: Independence of the Goal Clause

In order to arrive at a really goal-oriented calculus, one wants to restrict the
starting branch set to be derived from a negative clause. In the case of logic
programming this is well known and straightforward: there is one goal, namely the
query, from which the proof prodedure works backwards. Note that in our Goal
normal form this is also the case; there is < Goal as the only negative clause and
we required a derivation (Py,Py,...,Pn) to start with a branch set Py which
corresponds to this + Goal.

However this Goal is a new predicate symbol, which was introduced to replace
every purely negative clause -B; V...V B, by Goal < B; A--- A\ B,. Remember
that due to definition of a derivation and the construction of the inference rules,
‘P; is obtained from Py = —Goal by an extension step with some clause Goal <+
By A---ABy, € S and with empty substitution. This clause is called the goal clause
of the derivation. What we really want, is to be independant of this goal clause:

Definition 2.3

A (refinement of the) RME caculus is called independent of goal clause if every
derivation (([~Goal] = Py),P;) with goal clause from a minimal unsatisfiable
subset of the clause set S can be extended to a refutation, if a refutation exists. (]

Take as an example the RME refutation in the figure on

the right; once we extended with the goal clause Goal < P, we ~Goal
can be sure that this tableau can be extended to a closed one. ‘
Note that for the subsequent restart steps it may be necessary -P

to use other goal clauses in order to ensure completeness of the SN

calculus. Still, this restriction may prune down the search space P 6‘2 -
significantly: assume you have a consistent set of clauses ST, ~Goal
including negative clauses as well. The latter can be understood ‘
as integrity constraints. If you now add the negation of a query -~Q

*

as a further negative clause to yield S, you can be sure , that
every minimal unsatsfiable subset of S contains this negated
query and you know that you can start the derivation with this goal clause. If
your calculus is independant of goal clause you never need backtracking over this
point.
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2.4 Refinement: Regularity

The regularity check for model elimination says that it is never necessary to con-
struct a tableau where a literal occurs twice (or even more often) along a branch.
Expressed operationally, it says that it is never necessary to repeat a previously
derived subgoal (viewing open leaves as subgoals). For a semantic interpretation
take the view that a branch constitutes a partial interpretation, and any clause
containing a literal from the branch would be satisfied by this interpretation. Hence
this clause need not be considered for “eliminating” the interpretation given by the
branch. From a logic programming perspective this can be seen as a very simple
loop check.

Regularity is easy to implement, at least approximately, and it is one of the
most effective restrictions for model elimination procedures. Unfortunately, the
regularity check is not compatible with RME. This is rather easy to see since after
a restart step it might be necessary to repeat —in parts— a refutation derived so
far up to the restart step. However, what can be achieved is blockwise regularity.

Definition 2.4 (Blockwise Regularity)

Let [p] be branch written as follows, where the As and Bs are atoms:

[p]:[_.Bll..._.Blgl . Al -—|B12---—|B,;22-A2---A”_1 =B} =By ]

Then [p] is called blockwise regular iff

1. A # Al for 1 <i,j<n—1,i#j (Regularity wrt. positive literals), and

2. B} # B} for 1 <I1<mn,1<i,j<k,i#j (Regularity inside blocks).

A branch set is called blockwise regular iff every branch in it is blockwise regu-
lar. Similarly, a derivation is called blockwise regular iff each of its branch sets is
blockwise regular. O

For example the restart model elimination derivation in Figure 2 is blockwise
regular.

2.5 Refinement: Early Cancellation Pruning

This refinement is motivated as a kind of relevancy test for restart steps. Recall
that a restart step occurs at a positive leaf, say A. If below this leaf in the rest
of the derivation another restart step could be applied, early cancellation pruning
allows this step only if the reason for the previous restart — the literal A — was
used for an reduction step until then. If this is not the case, one has to backtrack. In
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Figure 3, the derivation c) is an example: early cancellation pruning would forbid
a restart step at leaf D because the literal B was not used.

The easiest way to define this refinement is to use a “static” property of RME
tableaux:

Definition 2.5 (Weakly Connected RME)

A node L in a branch [Ly--- Lg - Lgyg - -+ Lyp) with n > k is called the leafmost
positive node of that branch iff Ly is positive and Lgy¢,..., L, all are negative.
An inner positive node L in a branch [p] is weakly connected in [p]? iff it is the
leafmost positive node of [p] and Leaf ([p]) = L.

A RME tableau P is called weakly connected iff every inner positive node L is
weakly connected in some branch in P.

O

We are interested in a calculus refinement corresponding to the just defined
weakly connected RME tableaux. This is done as follows:

Definition 2.6 (RME with Early Cancellation Pruning)

We allow to label positive nodes in RME tableaux by the symbol “r” (meaning:
used for reduction steps). If node L is labeled in this way we will write L". The
calculus RME with early cancellation pruning (RMEP) consists of the inference
rule “extension step” of Def. 1.1 and the following inference rules:

Labeling Reduction Step:
[p-L-q], P
([p-L" - ql*x, P)o

if (L, Leaf ([p - L- q])) is a connection with MGU o.

Restricted Restart Step:

[p], P
[p - First([p])], P

if Leaf ([p]) is a positive literal, and the leafmost positive inner node of
[p], if it exists, is labeled with r.

The notion of derivation is taken from Def. 1.4. A RMEP refutation is a derivation
of closed RME tableau where every inner positive node is labeled with r. (I

2As opposed to the “fully” connected nodes in ME tableaux.
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This refinement is essentially due to [Loveland and Reed, 1991] and was called
strong early cancellation pruning rule in Inh-Prolog. Since in our framework it
would be difficult to formulate the rejection of a derivation — which is what
a pruning rule is about — we defined a positive formulation. As will be shown
below, this restriction drastically changes the calculus’ properties.

The idea of the early cancellation pruning is to achieve a relevance check: a new
“case” by means of a restart step applied to [--- L' --- L] may only be examined
if the previous case L' turned out to be “relevant” for the derivation of the new
case L. Here, “relevant” means that L' is the target for a reduction step. The term
“early” means that the reduction step targetting at L' can be required to come
before the next restart step. In other words, L' must be an inner leafmost positive
literal in some branch with complementary leaf.

Notice that in the definition of RMEP we do not use the definition of weakly
connected RME tableau. Instead we rely on a simple and cheaply implementable
labeling mechanism. It is thus not immediately clear that RMEP is correct wrt.
the construction of the intended weakly connected RME tableau. Therefore we
state:

Proposition 2.7 (RMEP constructs Weakly Connected RME Tableaux)
Any strict RMEP refutation of S ends in a closed, strict and weakly connected
RME tableaux for S.

Proof. Let P be the closed RME tableaux constructed in a strict RMEP refutation
of S. Assume, to the contrary, that P is not weakly connected. Hence there is an
inner positive node L which is not the leafmost positive node of some branch
[p] with Leaf([p]) = L. Since P is a refutation all branches are closed, and, by
definition of RMEP refutation, all inner positive nodes are labeled as r. The subtree
below L is non-empty (because L is an inner node) and can be written as the
branch set

Pr=A{[l¢g-L" qi]*,---,[q-L" - qu]x} CP

where each [g¢;] (i = 1,...,n) is a non-empty sequence of nodes. Let
PL={[qg- L™ ¢]x€Pr | [¢] =g} —L], for some ¢, and i = 1,... ,n}

be those branches from Py which use the node L as a target for a reduction step.
This set must be non-empty, because the node L is labeled with r. Each [q]’ |, where
[q-L"- q]'- - = L] € P}, contains a positive node Kj, because otherwise there is no
contradiction to “weakly connected”. That is, [qJ’] takes the form

[¢;] = [5j - Kj - 5;], for some [s;], [s;].

Since Kj is positive, the refutation would have had to restart at the intermediately
derived branch [q- L"-s; - Kj]. Recall that the RMEP restricted restart step requires
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that the leafmost positive inner node of this branch is labeled with r, which is L"
here. Hence, prior to this restart step there must be some reduction step targeting
at the node L. Let [¢- L" - q;, -~ L]x € P}, be that branch to which the first reduction
step to L is executed. This reduction step closes the branch [¢- L- g;, - ~L]. However,
as derived above for all members of P}, the branch [¢;] must contain a positive
node Kj and thus is of the form

[qr] = [sK - K * s;], for some [si], [s]-

Hence, a restricted restart step must have been previously occured to [q- L- sg - Ki].
However, this is impossible, because the leafmost inner positive node — L — is
not labeled with r. Hence, the assumption about the existence of the inner node L
contradicting the “weakly connected” property must have been wrong. Therefore,
P is weakly connected. n

The converse of Proposition 2.7 does not hold in full generality. The problem is
the usage of a possibly incompatible computation rule. Most of our calculi variants
allow for arbitrary computation rules. The notable exception are the variants which
employ the early cancellation pruning. In these cases we have to restrict to the
following class of computation rules.

Definition 2.8 (Negative Preferrence Computation Rule)

A negative preferrence computation rule is a computation rule ¢ such that whenever
a positive inner node L is contained in an open branch [p] with positive leaf, and
L is contained in an open branch [p’] with negative leaf, then ¢ does not select [p].
O

In other words: as long as possible, this computation rule selects an open branch
with a negative leaf. But: this applies only “locally”, below a restart point Ng. It
may well be possible that a restart occurs, although there are still open branches
with negative literals left.

Of course, any computation rule selecting an open branch with negative leaf
as long as one is present, is also negative preferrence computation rule. Such a
computation rule is implicitly used in Loveland’s InH-Prolog.

For the converse of Proposition 2.7 it suffices for our purposes to restrict to
the ground case, because we give a lifting lemma for derivations below and require
that the computation rules are stable under lifting, cf. Def. 1.3.

Proposition 2.9

For any closed, weakly connected RME tableau P for a ground clause set S and any
negative preferrence computation rule there is a RMEP refutation of S ending inP.
Furthermore, if P is strict (and/or blockwise regular), then the RMEP refutation
is also strict (and/or blockwise regular).
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Together with a proof of the existence of closed, strict and weakly connected
tableaux (for unsatisfiable clause sets) we get a completeness result?.

Proof. We construct a derivation Py, ... , (P, = P), for some n. The top clause in
Py consists of the corresponing rootmost tableau clause in P. The transition from
Pi to Piyq (for i =0,... ,n — 1) is done according to the following procedure.

Case 1: If the given computation rule ¢ selects a branch of the form [p - —A] € P;
and P contains a branch of the form [p - ~A]x, then this branch is to be closed in
a labeling reduction step, yielding P; ;.

Case 2: If ¢ selects a branch of the form [p - —~A] € P; and the previous case
does not apply, then P contains a branch with prefix of the form [p - = A] and a
tableaux clause of the form AV R (for some clause R) below the node —A. Further,
P contains a branch [p-—A4 - Alx. Hence perform an extension step to [p-—A] with
clause A V R to obtain P;4 ;.

If neither of the previous cases applies, then ¢ selects a branch of the form
[p . A] € P;.

Case 3: If P contains a branch of the form [p - A]x, then this branch is to be
closed in a labeling reduction step, yielding P;y;. If P is strict, then this case
cannot apply, and hence the strict version of the reduction step suffices.

Case 4: If case 3 does not apply, then P contains a branch of the form [p-A-—Goal].
In order to derive this branch by means of a restart step, recall that we have
to have that the leafmost positive ancestor node of A in [p - A], if it exists, is
labeled with r. This, however, must hold for the following reason: suppose, to the
contrary, [p - A] = [¢ - B - —=Goal - ¢' - A] (for some [gq] and [¢']), where node B
is the leafmost positive ancestor of node A, and B is not labeled with r. Recall
that P is weakly connected. This means that P contains a branch of the form
[¢-B-~-Goal - =By ---=B, - =B]x. With [¢ - B - =Goal - ¢' - A] € P; it follows
that some P; with j < i contains [¢g - B - ~Goal - ~B;]. Due to the negative
preferrence computation rule, this branch must be selected before [¢- B-—Goal-q'- A]
is selected. Hence we get eventually, using the appropriate extension step (cf.
case 2) [q - B - =Goal - =By - ~By]. Repeat application of this argument gives
us [¢ - B - —=Goal - =By -+~ By - =B]. Also this branch must be selected before
[¢- B-—Goal - ¢’ - A] is selected. Hence by application of a labeling reduction step
(cf. case 1) we end up with [¢- B"-—Goal - =By -~ By, - ~B]*, which is also contained
in P;. Thus B, which is also the leafmost positive ancestor of 4 in [p - A] € P; is
labeled with r. This, however, plainly contradicts the assumption that B is not
labeled with r. Therefore the restart step can be applied to [¢ - A] as suggested
above, which gives us P; ;.

3All proofs are contained in the long version of this paper.
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In sum, all four cases advance the construction of the derived tableau so far
towards the given tableau P (we feel no need to make the induction explicit here).
Hence we end up with P itself. [ |

3 Properties

The purpose of this section is to discuss the various refinements described above.
Each refinement was motivated in some way, so the question arises to what extent
they can be combined, Unfortunately, not all of them are compatible to each other.
That is, some combinations cause incompleteness. Further, these incompatibilities
are “inherent”, in the sense that completeness cannot be recovered by relaxing
other refinements, such as giving up “regularity” or “strictness”. Table 1 contains
a summary of both, these negative results, and the positive results.

Selection Indep. of | Complete-
Calculus | function | Regularity | goal clause | ness
(0) ME - Full Yes Yes
(1) RME with Blockwise | No Yes
(2) without | Blockwise | Yes Yes
(3) RMEP | with - - No
4) without | Blockwise | Yes Yes

W

Table 1: Summary of properties of model elimination variants. means “does

not apply”.

3.1 Negative Results

The negative results (the “no” entries in Table 1) are shown by appropriate coun-
terexamples to the assumption that the combination of the indicated features
would yield a complete calculus.

“Head selection function” is incompatible to “early cancellation prun-
ing”. This addresses line (3) in Table 1. Consider the following clause set:
My={ « A, AVD+«+, A< BAD, BVC+, A+ C}.

There is no RMEP refutation of the Goal normal form of M; with a head selection
function which selects in M; the underlined atoms in the clause heads. Figure 3
shows an exhaustive case analysis: either the derivation contains a negative leaf
=D and gets stuck because the sole clause containing D in the head is AV D, but
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D is not selected. Or, the other derivations are not weakly connected, so that a
restart step at the positive branches is not permitted. There are some variations
of these derivations by re-using clauses on a branch, but all of these run into the
same problems. On the other side, there is a RMEP refutation of the Goal normal
form of M; without selection function. Hence, in sum, the concept “head selection
function” is not compatible to RMEP.

—Goal l G‘oal —Goal - Ga‘al
T
A =B '-D! A =C A -C A D
* * /\ * /\ * ‘
C B c B —Goal
,,,,,,,,,, * | * | |
|
1No extension | —Goal —Goal -A
;step possible ! | | N
””””” -A -A A =C
Not weakly T~ N N
|
connected A =B 1-D J A D c B
* * *
a) b) c) d)

Figure 3: “Selection Function” is incompatible to “Early Pruning”.

“Head selection function” is incompatible to “independence of the goal
clause”. This addresses line (1) in Table 1. Consider the following clause set,
which was also used in Section 2.

My={ <P, «Q, PVQ<«}.

It is easy to see that there is no RME refutation (and hence no RMEP refutation
either) of the Goal normal form of M, with goal clause Goal <+ @ and a head
selection function which selects P in P V ¢ <. However, chosing Goal < P
as the goal clause admits a RME refutation. In sum, the concepts “head selection
function” and “independence of the goal clause” are incompatible for all considered
RME variants.

3.2 Positive Results

A standard strategy for completeness proofs of related calculi is to prove com-
pleteness of the weakest variants only, i.e. the variants, the refutations of which
can stepwisely be simulated by the other variants. For instance, strict RME is
weaker than non-strict RME. For the case of restart model elimination there are
the following two weakest variants:
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e RME with “head selection function”, but without “independence of the
goal clause. This addresses the “completeness” entry in line (1) in Table 1.
See [Baumgartner et al., 1995] for a proof.

¢ RME without “selection function” but with “independence of the goal
clause” and with “early cancellation pruning”. This addresses the “com-
pleteness” entries in lines (2) and (4) in Table 1. The result is as follows*:

Theorem 3.1 (Ground completeness of Blockwise Regular Strict RMEP)

Let S be a minimal unsatisfiable ground clause set in Goal normal form, ¢ be
a negative preferrence computation rule. Then, for any clause G = (Goal +
By A---ABy) € S there is a strict RMEP refutation via ¢ with top clause < Goal,
goal clause G which derives a closed, regular, strict and weakly connected RME
tableau.

3.3 Proof of Theorem 3.1

It turns out to be advantageous to first prove the existence of the claimed RME
tableau in a slightly more specific setting than in the statement of Theorem 3.1.
Later, we will prove that such RME tableaux can be constructed in refutations.

Lemma 3.2 (Existence of Weakly Connected RME Tableaux)

Let S U{A <} be a minimal unsatisfiable ground clause set in Goal normal form.
Then there is a closed, regular, strict and weakly connected RME tableau P with
top clause < Goal such that the unit clause A < is used within the first block.
More precisely, P contains a branch [Ly --- Ly, - 7 A - Alx such that Ly,... , L, all
are negative.

Proof. Let k(S) denote the number of occurrences of positive literals in S minus
the number of non-negative clauses® in § (k(S) is a measure for the “Hornness”
of S; it is related to the well-known excess literal parameter). Now we prove the
claim by induction on £(S5).

Base case: k£(SU{A <}) = 0. Then SU{A <} must be a set of Horn clauses. By
well-known completeness results for ME (see e.g. [Loveland, 1978; Baumgartner,
1992; Letz et al., 1994]) there exists a regular ME refutation of SU{4 «} with top
clause <~ Goal. The claimed properties trivially hold for the tableau P constructed
in this refutation: observe that all open branches of any derivable tableau consist of
negative literals only, and every closed branch ends in a positive leaf. In particular,

*For space reasons we can only cite the relevant results. We will state the ground version only.
Lifting to the first-order case can be done along the lifting proof in [Baumgartner et al., 1995].
We recall only that both the “computation rule” and the “head selection function” were defined
to be stable under lifting (Defs. 1.3 and 2.1), which enables lifting them to the first-order level.

5 A non-negative clause is a clause containing at least one positive literal.
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P contains a branch [L; --- L, - 7A - A]x as desired (the fact that A < must be
used in the refutation at all follows from the precondition that S U {4 «+} is
minimal unsatisfiable: if A < would not have been used, the refutation would
witness that S alone is unsatisfiable, which is by soundness of ME a contradiction
to the minimal unsatisfiablity of S U {4 «}).

Induction step: £(SU{A4 <}) > 0. As the induction hypothesis assume the result
to hold for clause sets S’ U {A’ +} satisfying the preconditions and k(S' U {4’ +
) <E(SU{A<+}).

Since k(S U {A <}) > 0 there is in S a disjunctive clause
A/ V-~ VA, <~ B N---ANB, (m>2,n>0) .
By Lemma 3.4 thereisa i € {1,... ,m} and a set
S'C((S\{A;V+-VA, < B AN---ANB,})U{4; &< B; A---AB,})

such that S’ U{A <} is minimal unsatisfiable. §' U {4 <} still is in Goal normal
form. Hence, by the induction hypothesis there is a closed, regular, strict and
weakly connected RME tableau P’ for S'U{A <} such that < A is used in the first
block. Now replace every occurrence of the tableau clause 4; < B; A---AB,, in P’
by A;V---VAp < By A---ABy,. This leaves us with an open tableau for SU{A +}
whose open branches all end in a literal from {Ay,... ,A;—7, Aiv1,... , Am}. Now
we delete from this tableau all subtrees below all rootmost positive inner nodes.
More formally, replace every branch of the form [p - A’ - ¢]x by [p - A'], where [p]
consists of negative nodes only, A’ is a positive node and [g] is non-empty. Let P"
be the resulting open tableau. P” can be thought of to be constructed in a RME
derivation of S U {A <} which stops at the first positive nodes in each branch.
Notice that A <« still is used in the first block (in the sense given in the lemma
statement) in P”.

Every open branch in P” now takes the form [p - A’], for some [p] consisting
of negative nodes only, and A’ is a positive node, stemming from some disjunctive
clause from S.

We will define a suitable literal tree to be put below each [p - A’] in P” such
that the desired weakly connected RME tableau P comes up. Let [p - A'] be one of
those branches. It suffices to show the construction for this branch. A’ stems from
a clause

Ayv.---VAL , «~BiAN---ABlL,eS (m'>2,7>0),

where A’ = Aj for some j € {1,...,m'}. Since S U {4 <} is given as minimal
unsatisfiable, we can find by Lemma 3.3 (setting C = A’ + there) a set

S"C(SU{A«})\{4,Vv---VA,, < B A---AB}}
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such that S” U {A’ +} is minimal unsatisfiable. Clearly, k(S” U {4’ +}) < k(S U
{4 +}) (we replace a disjunctive clause by definite unit clause and possibly delete
clauses). Since S”" U{A’ +} still is Goal normal form, we can find by the induction
hypothesis a closed, regular, strict and weakly connected RME tableau P" for
S"U{A" <} with top clause <~ Goal such that the unit clause A’ «+ is used within
the first block. The plan of attack is to put P below [p - A’] in P” and remove
applications of A’ .

More precisely, define first

Q={lp-4"-qlx | [gxeP"}

as the literal tree to be obtained from P" by putting [p - A’] on top of it. The
unit clause A’ < is used in P"”'| not neccessarily only in the first block. But any
usage of A’ <+ is limited to leaf positions (this follows from the definition of RME
tableau). Thus @ contains branches of the form [p-A’-¢'-—A’- A']% for some branch
[¢' - —A"- A']x € P". Next replace each of these branches in @ by [p- A’ ¢' - —A']x
and obtain Q'

Since by the induction hypothesis A’ < is used in the first block in P, i.e. P"
contains a branch of the form [¢’ - =A’ - A'|x where [¢'] consists of negative nodes
only, the node A’ is weakly connected in the corresponding branch [p-A’-¢'-— A']x in
Q'. From the induction hypothesis we further learn that P is weakly connected.
Thus, together, Q' is weakly connected as well.

Furthermore, every branch in @’ is blockwise regular, because the blockwise
regularity of P" carries over to Q'. The critical case is the node A’ which is with
respect to positive nodes the only difference between the branches in P and Q’.
However, P is a tableau for S” U {4’ «}, which is minimal unsatisfiable. This
implies that S” cannot contain a disjunctive clause with a head literal A’. But
then, A’ can occur only in a branch in P at leaf position (as observed above).
These usages, however, were eliminated in the transition from @ to Q’. Hence @’
is blockwise regular.

The final step is to replace [p - A’] in P” by the branch set @’. When this
construction is carried out for all branches of this form, we arrive at the claimed
tableau P for S U {4 «}. [ |

Lemma 3.3
Let S be a minimal unsatisfiable ground clause set with L; V---V L, € S (n > 1).
Then for every subclause C C L; V ---V Ly, there is a set

Sc C(S\{Ls V-V Lyp})

such that S¢ U {C} is minimal unsatisfiable.

Proof. It is clear that (S\{L; V---V L,})U{C} is unsatisfiable, because otherwise
a model for this set would constitute a model for § itself. Let S;, C (S\{L;V:--V
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L,})U{Sc} be any minimal unsatisfiable subset. It suffices to show that C' € Sy,
because then S¢ := S}, \ {C} proves the lemma.

Hence suppose, to the contrary, that C ¢ S;,. But then S;, C S, and the strict
inclusion contradicts the given fact that S is minimal unsatisfiable. |

Lemma 3.4
Let S U{A <} be a minimal unsatisfiable ground clause set containing a clause

A;V---VA, <~ B;\N---\NB, (m>2,n>0) .
Then there isa i € {1,... ,m} and a set

S"C((S\{A1V---VAyp+ By AN---AB})U{4; + By A---ANBy})
such that S" U {A <} is minimal unsatisfiable.

Proof. Let

Si C((SU{A+}H\{41V---VAy, < B AN---ANBy})U{Aj < By A---ANBy})
(forj=1,...,m) (1)
be any m minimal unsatisfiable sets. Such sets exists by Lemma 3.3. We show that

A <€ §;, for some i € {1,...,m} . Setting then §' = S; \ {4 <} proves the
lemma.

Hence suppose, to the contrary, A «¢ S;, for j = 1,... ,m. It holds that

S/:( U Sj\{Aj<_Bl/\"'/\Bn})U{A1V"'VAm<—B1/\"'/\Bn}

j=1,....m

is unsatisfiable. Proof: suppose, to the contrary, S’ is satisfiable. Let Z be a model.
SinceZ |=A;V---V Ay < By A--- A By, we distinguish two cases:

Case 1: 7 |= By, for some k € {1,... ,n}: But then
ITE(S'"U{4;+ B/A---AB,})2DS; (for any j € {1,... ,m}).

In other words, S; would be satisfiable, which plainly contradicts the unsatisfia-
bility of S;.

Case 2: 7 |= A;, for some j € {1,... ,m}: But then

ITE(S'U{4;+ B/A---AB,})D8S; .
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As in the previous case, S; would be satisfiable, which plainly contradicts the
unsatisfiability of S;.

Thus, together, S’ is unsatisfiable. Now, if A «¢ §;, for j = 1,...,m, as
supposed above, then also A <—¢ S’ by construction of S’. Also by construction,
S" C SU{A «}. But with 4 «¢ S’ we have even S’ C S, and since S’ is
unsatisfiable we have a contradiction to the minimality assumption of S U {4 «}.
Hence the assumption must have been wrong and thus A <€ §;, for some i €
{1,...,m}, as remained to be shown. [ |

Now we can turn to the proof of the completeness result.

Proof.(Theroem 3.1) With respect to the previous Lemma 3.2 the crucial point is
to find an argument for the “independence of the goal clause”, i.e. that the claimed
refutation exists for the desired goal clause G = (Goal < B; A--- A By) € S. For
this, let Top be a new predicate symbol (wrt. the given signature) and define

G' = Goal + B; A++- A\ By, Top
§'=(S\{G}H U{G"} U{Top «} .

It is easy to see that S is minimal unsatisfiable iff S’ is minimal unsatisfiable. Fur-
thermore, S’ is in Goal normal form and thus meets the requirement for Lemma, 3.2.
Hence let P’ be the closed tableaux according to Lemma 3.2. The topmost clause
in P’ is, by definition < Goal, and the clause immediately below it must be G'.
Reason: G’ is the sole Goal-clause which is extended with the Top-literal. If any
other Goal-clause would have been used, it would be impossible to use Top < in
the first block (cf. Lemma 3.2), a requirement which, however, we can insist on by
Lemma 3.2.

In order to turn P’ into a closed tableau for S (but not for S’) one simply
has to replace in P’ every tableau clause G’ by G. In the resulting tableau P the
Goal-clause is G, as desired. Finally apply Proosition 2.9 to obtain the claimed
refutation. |

4 Conclusions

We turn to related work. Among the various calculi sharing the idea of avoid-
ing contrapositives, the closest relative to RME is certainly inheritance near-Horn
Prolog (InH-Prolog) [Loveland and Reed, 1991]. See [Baumgartner and Furbach,
1994a] for an anchor and a comparison of RME to InH-Prolog. In the present pa-
per, RME and InH-Prolog even get closer due to the “early cancellation pruning”
refinement (RMEP, as we call our calculus); the early cancellation pruning refine-
ment was introduced for InH-Prolog in [Loveland and Reed, 1991] and was termed
“strong” there. Nevertheless, we think that our RMEP variant is an original con-
tribution, as it can be seen as a solution to some open issues for InH-Prolog. These
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are the following refinements which were not considered for InH-Prolog: the first
is the possibility to use any computation rule. Currently, this is more a theoretical
device and we did not yet explore its practical relevance. The second is the block-
wise regularity refinement. Regularity is known as one of the most effective pruning
methods for ME calculi and should thus be included in the strongest possible way.
The third is the independence of the goal clause. At a first glance it might seem
that not much is gained by it, because at restart extension steps any negative
input clause must be considered for a restart step anyway. While this might be
true to some extent for typical, minimal unsatisfiable benchmark examples, we ex-
perienced the value of the refinement for more real-world like examples. We tried
clause sets containing about 1200 clauses, stemming from a program verification
task of the correctness of a WAM compiler. Thereof, 85 clauses are negative, and
the theorem to be proven is a negative clause as well. The clause set is highly
non-minimal unsatisfiable, and considering each of the 85 negative clauses as a
goal clause makes it impossible to find refutations in acceptable time (about half
an hour). On the other side, taking advantage of the independence refinement, the
refutations show up immediately in many cases by taking the theorem as the only
goal clause.

There are many more refinements conceivable. We indicate some of those. In
[Baumgartner et al., 1995] we investigated RME as a calculus for answer compu-
tation. In particular, we showed that a certain variant called ancestry RME has
nice properties for the computation of definite answers®. It should be possible to
further refine RMEP in this way.

Another refinement could be called local proof confluence: whenever a RME
tableau T is derived such that all open branches end in positive leaves, it should
be possible to continue this tableau T' to a refutation (if one exists at all). The
benefit would be to not backtrack over 7', thus saving a lot of search.
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