
PROTEIN: A PROver with a Theory Extension INterface
�

Peter Baumgartner and Ulrich Furbach

Universiät Koblenz
Institut für Informatik

Rheinau 1
56075 Koblenz, Germany

Tel.: +49–261–9119–426, +49–261–9119–433
E-mail:

�
peter,uli� @informatik.uni-koblenz.de

Abstract. PROTEIN (PROver with a Theory Extension INterface) is a PTTP-
based first order theorem prover over built-in theories. Besides various standard-
refinements known for model elimination, PROTEIN also offers a variant of model
elimination for case-based reasoning and which does not need contrapositives.

PROTEIN is a complete theorem prover for first order clause logic. It is characterized
by the following features:

– PROTEIN is based on the PTTP implementation technique [Sti88] for model eli-
mination [Lov69].

– PROTEIN offers alternative inference rules for case analysis [Lov87, BF93]. In
this setting no contrapositives are needed, and hence the system is well suited as an
interpreter for disjunctive logic programming.

– PROTEIN includes theory reasoning [Sti85, Bau92, Bau94] in a very general way.
An auxiliary program can be used to derive a suitable background reasoner from a
given Horn theory in a fully automatic way.

– PROTEIN includes several calculus refinements and flags.

The idea of the PTTP implementation technique (“Prolog Technology Theorem
Prover”) [Sti88] is to view Prolog as an “almost complete” theorem prover, which has
to be extended by only a few ingredients in order to handle the non-Horn case. By this
technique the WAM-technology and other benefits of optimizing Prolog compilers are
accessible to theorem proving. A disadvantage of PTTP, according to Stickel ([Sti90]),
is that “the high inference rate can be overwhelmed by its exponential search space” and
therefore PTTP might be well suited for easy problems whereas “it is unsuitable for many
difficult theorems for which more conventional theorem provers have demonstrated
success”.

Our system proves that PTTP can be used even for many challenging problems from
the theorem proving literature if PTTP is understood only as a kernel system, which has
to be augmented by additional features, like theory handling or case analysis. This is
done in PROTEIN.
�

This research was sponsored by DFG within the “Schwerpunktprogramm Deduktion”.



The case-analysis style of reasoning came up with various (non-theory) calculi
which do not need all contrapositives ([Lov87, Pla88]). A detailed comparison of those
calculi can be found in [RL92].

In [BF93] we have made a small change to model elimination which also avoids
contrapositives and has some distinguished features. This modification of model elimi-
nation is called restart model elimination; its distinguished feature are, first, that it can
be very easily implemented within a PTTP-framework, and, second, the better informed
search due to additional ancestor literals.

Theory reasoning was introduced by M. Stickel within the resolution calculus[Sti85];
for model elimination it is defined an investigated in [Bau92].

Technically, theory reasoning means to relieve a calculus from explicit reasoning
in some domain (e.g. equality, partial orders, taxonomic reasoning) by taking apart the
domain knowledge and treating it by special inference rules. In an implementation,
this results in a universal “foreground” reasoner that calls a specialized “background”
reasoner for theory reasoning. See [BFP92] for an overview.

Fortunately, the calculus’ features “case-analysis reasoning” and “theory reasoning”
are fairly compatible with model elimination [Bau94]. In [BF93, BF94] we have shown
that “case analysis” – in the non-theory setting – requires only a small change to the
calculus. PROTEIN is the respective implementation for theory reasoning.

Furthermore PROTEIN includes several calculus refinements and flags such as unit-
lemmas, factorisation, ground reduction steps (reduction steps not affecting variables
can be handled irrevocably in the proof search) and regularity2.

Theory Reasoning with Completed Theories

Theory reasoning comes in two variants: total and partial theory reasoning. Total
theory reasoning generalizes the idea of finding complementary literals in inferences
(e.g. resolution) to a semantic level. For example, in theory resolution the foreground
reasoner may select from some clauses the literal set � � � � � � � � � � � � � , pass it to
the background reasoner3 which in turn should discover that this set is contradictory.

The problem with total theory reasoning is that in general it is undecidable which
literals constitutea contradictoryset. As a solution, partial theory reasoning tries to break
the “big” total steps into more manageable, decidable, smaller steps. In the example,
the background reasoner might be passed � � � � � � � � � , compute the new subgoal
� � � and return it to the foreground reasoner. In the next step, the foreground reasoner
might call the background reasoner with � � � � � � � � � again, which detects a trivial
contradiction and thus concludes this chain.

PROTEIN currently offers the following: for total theory reasoning the input clauses
may contain a call to a Prolog-predicate. The theory then is implicitly defined via
the enumeration of all answer substitutions to the Prolog-predicate. For the sake of

2 Regularity means that proof attempts which repeat the same subgoal along a branch can be
discarded; the regularity restriction has to be relaxed for the case-analysis variant.

3 assume that � is interpreted as a strict ordering



classification we have here a total theory-extension step with a theory-complementary
set consisting of exactly one literal. As a possible application we think of reasoning by
examples [KMS93].

The implementation of partial theory reasoning is currently tailored for the method
of linearizing completion [Bau93]. Linearizing completion is a saturation technique that
transforms a given Horn clause set � into a “completed” set, which admits (in resolution
terminology) both linear and unit-resulting proofs for � -unsatisfiable literal sets. Such
a system then can be used as complete background reasoner for partial theory model
elimination.

Implementation and Practical Experiments

Both PROTEIN and a tool for linearizing completion are implemented in ECLiPSe,
ECRC’s Prolog dialect. ECLiPSe extends Prolog by various features, with the most
relevant ones for us being sound unification and delayed subgoals. While the use of
sound unification is obvious, the delayed subgoal mechanism is used to implement the
regularity restriction. Regularity is realized by delaying a set of constraints, where each
constraint states the syntactical inequality of two path literals. A delayed constraint is
checked (waked up) each time a change to one of its variable occurs.

We ran several examples known from the literature with PROTEIN and a high-
performance model elimination prover. Table 1 contains the runtime results (in seconds),
obtained on a SPARC 10/40. The first four columns refer to different versions of
PROTEIN. Column 5 contains data for Setheo [LSBB92] in its latest version (Version
3.0).

PROTEIN was run in default mode, except where indicated in Table 1. In default
mode it includes the regularity restriction and the ground-reduction refinement. Setheo
was also run in its default mode, which then makes use of the following refinements
and constraints: subgoal reordering, purity, anti-lemmas, regularity, tautology and sub-
sumption.

The example referred to as Non-obvious is taken from the October 1986 Newsletter
of the Association of Automated Reasoning4. The selected theory here consists of a
transitive and symmetric relation � and a transitive relation � . In the Graph example
a graph with a transitive and symmetric reachability relation is traversed. The Eder-
examples are described in [LSBB92]. The Bledsoe examples are the first two of the five
given in [Ble90]. The example referred to by � �� 0 � � 2 � 0 is to prove this theorem
(� is universally quantified) from calculus. Case analysis is carried out according to the
axiom � � 0 	 � � 0 	 
 � � 0.

For the theory variants of PROTEIN, the background calculus was obtained com-
pletely automatical by the linearizing completion tool in a preprocessing phase. For the
theories we have selected appropriate Horn-subsets of the input clauses. The runtime
of the linearizing completion tool was sufficiently small and need not be mentioned.
In case linearizing completion would yield an infinite inference system for background

4 Entries such as MSC/MSC006-1 refer to the respective TPTP-names [SSY94]. All examples
were drawn from that problem library without modification — only the theory part had to be
selected by hand.



Example ME Restart-ME TME Restart-TME Setheo

Non-obvious 0.3 2.7 1.6 1.1 (0.15 1) 0.5
MSC/MSC006-1
Eder45 0.7 3.4 (1.8 1) - - 1.0
Eder58 22.0 110 - - 32
Graph 10.8 � 0.2 7.0 (0.8 2) 3.0
� �� 0 � � 2 � 0 2.4 0.7 2.2 0.6 0.8
Pelletier 48 5.9 1.2 (0.6 2) 0.4 0.9 (0.1 1 �2) 0.2
SYN/SYN071-1
Pelletier 49 � 297 1.6 1.5 �
SYN/SYN072-1
Pelletier 55 392 � 21 254 3.5
PUZ/PUZ001-2
Lion&Unicorn 588 � 21 � 47
PUZ/PUZ005-1
Bledsoe 1 � 7.4 1 �3 - - 87
ANA/ANA003-4
Bledsoe 2 � 32 1 �3 - - �
ANA/ANA004-4
Wos 4 22 20 0.3 26 13
GRP/GRP008-1
Wos 10 � - 14 - 850
GRP/GRP001-1
Wos 11 9.6 - 1.1 - 0.7
GRP/GRP013-1
Wos 15 384 - 47 - 478
GRP/GRP035-3
Wos 16 302 - 0.02 - 13
GRP/GRP036-3
Wos 17 � - 0.1 - 23
GRP/GRP037-3
Entries: Numbers: runtimes (seconds) – � no proof within reasonable time bound –

“-” Not applicable –
Remarks: 1 – With selection function, 2 – With (back) factoring, 3 – With Lemmas

Fig. 1. Runtime Results for various provers: ME – plain model elimination version of PROTEIN;
Restart-ME – case-analysis style reasoning; TME and Restart-TME – respective versions with
theory reasoning extensions.

reasoning – in the Wos examples from group theory – a finite approximation was used.
The selected theory consists here of equality (except f-substituivity)and the associativity
of the group operation.

Concerning the search strategy we used iterative deepening with the costs of exten-
sion steps uniformly set to 1. The same costs are used for case analysis steps.

The runtime results suggest to us that indeed both variants — restart vs. non-restart –
are valuable: every variant obtains proof not obtainable to the other variant. Furthermore,
the application of theory reasoning very often helps to find a proof more quickly. If no
suitable theory is at hand, the “empty” theory can be used which instantiates TME (resp.



Restart-TME) to ME (resp. Restart-ME).
In order to obtain the PROTEIN system please contact

peter@informatik.uni-koblenz.de .

References

[Bau92] P. Baumgartner. A Model Elimination Calculus with Built-in Theories. In H.-J.
Ohlbach, editor, Proceedings of the 16-th German AI-Conference (GWAI-92), pages
30–42. Springer, 1992. LNAI 671.

[Bau93] P. Baumgartner. Linear Completion: Combining the Linear and the Unit-Resulting
Restrictions. Research Report 9/93, University of Koblenz, 1993.

[Bau94] P. Baumgartner. Refinements of Theory Model Elimination and a Variant without
Contrapositives. In Proc. ECAI’94, 1994. (to appear).

[BF93] P. Baumgartner and U. Furbach. Model Elimination without Contrapositives and its
Application to PTTP. Fachbericht Informatik 12/93, Universität Koblenz, 1993. (short
version in Proc. CADE-12).

[BF94] P. Baumgartner and U. Furbach. Model Elimination without Contrapositives. In
Proc. 12th International Conferenceon Automated Deduction. Springer, 1994. (in this
volume).

[BFP92] P. Baumgartner, U. Furbach, and U. Petermann. A Unified Approach to Theory Rea-
soning. Forschungsbericht 15/92, University of Koblenz, 1992. (submitted to Journal
of Automated Reasoning).

[Ble90] W. W. Bledsoe. Challenge Problems in Elementary Calculus. Journal of Automated
Reasoning, 6:341–359, 1990.

[KMS93] Manfred Kerber, Erica Melis, and Jörg Siekmann. Reasoning with Assertions and
Examples. Technical Report SEKI Report SR-93-10, Universität des Saarlandes,
Fachbereich Informatik, 1993.

[Lov69] D. Loveland. A Simplified Version for the Model Elimination Theorem Proving
Procedure. JACM, 16(3), 1969.

[Lov87] D.W. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor, Proc. of the 4th Int. Conf.
on Logic Programming, pages 456–469. The MIT Press, 1987.

[LSBB92] R. Letz, J. Schumann,S. Bayerl, and W. Bibel. SETHEO: A High-Performace Theo-
rem Prover. Journal of Automated Reasoning, 8(2), 1992.

[Pla88] D. Plaisted. Non-Horn Clause Logic Programming Without Contrapositives. Journal
of Automated Reasoning, 4:287–325, 1988.

[RL92] D. W. Reed and D. W. Loveland. A Comparison of Three Prolog Extensions. Journal
of Logic Programming, 12:25–50, 1992.

[SSY94] G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In Proc. CADE-
12. Springer, 1994.

[Sti85] M.E. Stickel. Automated Deduction by Theory Resolution. Journal of Automated
Reasoning, 1:333–355, 1985.

[Sti88] M. Stickel. A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler. Journal of Automated Reasoning, 4:353–380, 1988.

[Sti90] M. Stickel. A Prolog TechnologyTheorem Prover. In M.E. Stickel, editor, Proc CADE
10, LNCS 449, pages 673–675. Springer, 1990.


