PROTEIN: A PROver with a Theory Extension INterface*

Peter Baumgartner and Ulrich Furbach

Universiat Koblenz
Institut fUr Informatik
Rheinau 1
56075 Koblenz, Germany

Tel.: +49-261-9119-426, +49-261-9119-433
E-mail: {peter, uli}@nfornatik. uni -kobl enz. de

Abstract. PROTEIN (PROver with a Theory Extension INterface) is a PTTP-
based first order theorem prover over built-in theories. Besides various standard-
refinements known for model elimination, PROTEIN also offersavariant of model
elimination for case-based reasoning and which does not need contrapositives.

PROTEIN isacompl etetheorem prover for first order clauselogic. It ischaracterized
by the following features:

— PROTEIN is based on the PTTP implementation technique [Sti88] for model di-
mination [Lov69].

— PROTEIN offers aternative inference rules for case analysis [Lov87, BF93]. In
this setting no contrapositives are needed, and hence the systemiswell suited as an
interpreter for digunctivelogic programming.

— PROTEIN includestheory reasoning [Sti85, Bau92, Bau94] in avery genera way.
An auxiliary program can be used to derive a suitable background reasoner from a
given Horn theory in afully automatic way.

— PROTEIN includes severa cal culus refinements and flags.

The idea of the PTTP implementation technique (“Prolog Technology Theorem
Prover”) [Sti88] isto view Prolog as an “amost complete” theorem prover, which has
to be extended by only afew ingredientsin order to handle the non-Horn case. By this
technique the WAM-technology and other benefits of optimizing Prolog compilers are
accessible to theorem proving. A disadvantage of PTTR, according to Stickel ([Sti9Q]),
isthat “the highinference rate can be overwhelmed by itsexponentia search space’ and
therefore PTTP might bewell suited for easy problemswhereas*it isunsuitablefor many
difficult theorems for which more conventiona theorem provers have demonstrated
success’.

Our system provesthat PTTP can be used even for many challenging problemsfrom
thetheorem proving literatureif PTTP isunderstood only asakernel system, which has
to be augmented by additiona features, like theory handling or case anaysis. Thisis
donein PROTEIN.

* This research was sponsored by DFG within the “ Schwerpunktprogramm Deduktion”.

The case-analysis style of reasoning came up with various (non-theory) calculi
which do not need al contrapositives ([Lov87, Pla88]). A detailed comparison of those
calculi can befound in [RL92].

In [BF93] we have made a small change to modd dimination which aso avoids
contrapositives and has some distinguished features. This modification of model elimi-
nation is called restart model elimination; its distinguished festure are, first, that it can
bevery easily implemented within a PTTP-framework, and, second, the better informed
search dueto additional ancestor literals.

Theory reasoning wasintroduced by M. Stickedl within theresol ution cal culus[Sti85];
for model eliminationit is defined an investigated in [Bau92].

Technically, theory reasoning means to relieve a calculus from explicit reasoning
in some domain (e.g. equality, partial orders, taxonomic reasoning) by taking apart the
domain knowledge and treating it by specia inference rules. In an implementation,
thisresultsin a universal “foreground” reasoner that calls a speciaized “background”
reasoner for theory reasoning. See [BFP92] for an overview.

Fortunately, the calculus' features “ case-analysis reasoning” and “theory reasoning”
arefairly compatiblewith model eimination[Bau94]. In [BF93, BF94] we have shown
that “case analysis’ — in the non-theory setting — requires only a small change to the
calculus. PROTEIN isthe respective implementation for theory reasoning.

Furthermore PROTEIN includes several cal cul usrefinements and flags such as unit-
lemmas, factorisation, ground reduction steps (reduction steps not affecting variables
can be handled irrevocably in the proof search) and regularity?.

Theory Reasoning with Completed Theories

Theory reasoning comes in two variants: total and partial theory reasoning. Total
theory reasoning generalizes the idea of finding complementary literas in inferences
(e.g. resolution) to a semantic level. For example, in theory resolution the foreground
reasoner may select from some clauses the literal set {a < b,b < ¢, ¢ < a}, passit to
the background reasoner® which in turn should discover that this set is contradictory.

The problem with total theory reasoning is that in general it is undecidable which
literal sconstituteacontradictory set. Asasolution, partia theory reasoning triesto break
the “big” total steps into more manageable, decidable, smaller steps. In the example,
the background reasoner might be passed {a < b,b < ¢}, compute the new subgoal
a < ¢ and returnit to the foreground reasoner. In the next step, the foreground reasoner
might call the background reasoner with {a < ¢, ¢ < a} again, which detects a trivia
contradiction and thus concludes this chain.

PROTEIN currently offersthefollowing: for total theory reasoning theinput clauses
may contain a call to a Prolog-predicate. The theory then is implicitly defined via
the enumeration of all answer substitutions to the Prolog-predicate. For the sake of

2 Regularity means that proof attempts which repeat the same subgoal along a branch can be
discarded; the regularity restriction hasto be relaxed for the case-analysisvariant.
8 assumethat < isinterpreted as a strict ordering

classification we have here atotal theory-extension step with a theory-complementary
set consisting of exactly oneliteral. As a possible application we think of reasoning by
examples [KM S93].

The implementation of partial theory reasoning is currently tailored for the method
of linearizing completion [Bau93]. Linearizing completion isasaturation techniquethat
transformsagiven Horn clause set 7 intoa“ completed” set, which admits(in resolution
terminology) both linear and unit-resulting proofsfor 7 -unsatisfiable litera sets. Such
a system then can be used as complete background reasoner for partial theory model
elimination.

Implementation and Practical Experiments

Both PROTEIN and a tool for linearizing completion are implemented in ECLiPSe,
ECRC's Prolog dialect. ECLiPSe extends Prolog by various features, with the most
relevant ones for us being sound unification and delayed subgoals. While the use of
sound unification is obvious, the delayed subgoa mechanism is used to implement the
regularity restriction. Regularity isrealized by delaying a set of constraints, where each
congtraint states the syntactical inegquality of two path literas. A delayed constraint is
checked (waked up) each time a change to one of itsvariable occurs.

We ran several examples known from the literature with PROTEIN and a high-
performancemodel elimination prover. Table 1 containstheruntimeresults(in seconds),
obtained on a SPARC 10/40. The first four columns refer to different versions of
PROTEIN. Column 5 contains datafor Setheo [LSBB92] in itslatest version (Version
3.0).

PROTEIN was run in default mode, except where indicated in Table 1. In default
mode it includes the regul arity restriction and the ground-reduction refinement. Setheo
was aso run in its default mode, which then makes use of the following refinements
and constraints: subgoa reordering, purity, anti-lemmas, regularity, tautology and sub-
sumption.

The exampl e referred to as Non-obviousis taken from the October 1986 Newsl etter
of the Association of Automated Reasoning®. The selected theory here consists of a
transitive and symmetric relation p and a transitive relation ¢. In the Graph example
a graph with a transitive and symmetric reachability relation is traversed. The Eder-
examples are described in [LSBB92]. The Bledsoe examples are thefirst two of thefive
givenin [Ble90]. The example referred to by = # 0 — z2 > 0isto prove thistheorem
(z isuniversally quantified) from calculus. Case analysisis carried out according to the
axiomX >0 v X=0 v -—-X>0.

For the theory variants of PROTEIN, the background cal culus was obtained com-
pletely automatical by thelinearizing completion tool in apreprocessing phase. For the
theories we have selected appropriate Horn-subsets of the input clauses. The runtime
of the linearizing completion tool was sufficiently small and need not be mentioned.
In case linearizing completion would yield an infiniteinference system for background

* Entries such as MBC/ MBC006- 1 refer to the respective TPTP-names[SSY 94]. All examples
were drawn from that problem library without modification — only the theory part had to be
selected by hand.

Example | ME | Restart-ME | TME | Restart-TME || Setheo

Non-obvious 0.3 2.7 16 11 (0.15% 0.5
VBC/ M5Q006- 1

Eder45 0.7 34 (18 - - 1.0
Eder58 220 110 - - 32
Graph 10.8 o 0.2 70 (0.8%) 3.0
t#0—2°>0 24 0.7 22 0.6 0.8
Pelletier 48 59 | 12 (069 04 | 09 (01%? 0.2
SYN SYNO71-1

Pelletier 49 o0 297 16 15 o0
SYN SYNO72-1

Pelletier 55 392 o0 21 254 35
PUZ/ PUZ0O01- 2

Lion& Unicorn 588 00 21 00 47
PUZ/ PUZ005- 1

Bledsoe 1 o0 7.4%3 - - 87
ANA/ ANAOO3- 4

Bledsoe 2 00 323 - - 00
ANA/ ANAOO4- 4

Wos 4 22 20 0.3 26 13
GRP/ GRP008- 1

Wos 10 o0 - 14 - 850
GRP/ GRP001- 1

Wos 11 9.6 - 11 - 0.7
GRP/ GRP013- 1

Wos 15 384 - 47 - 478
GRP/ GRP035- 3

Wos 16 302 - 0.02 - 13
GRP/ GRP036- 3

Wos 17 o0 - 01 - 23
GRP/ GRP037- 3

Entries: Numbers: runtimes (seconds) — oo ho proof within reasonable time bound —

“-" Not applicable—

Remarks: 1 — With selection function, 2 — With (back) factoring, 3 — With Lemmas

Fig. 1. Runtime Resultsfor various provers: ME — plain model elimination version of PROTEIN;
Restart-ME — case-analysis style reasoning; TME and Restart-TME — respective versions with
theory reasoning extensions.

reasoning — in the Wos exampl es from group theory — a finite approximation was used.
Thesdlected theory consistshereof equality (except f-substituivity) and the associ ativity
of the group operation.

Concerning the search strategy we used iterative deepening with the costs of exten-
sion steps uniformly set to 1. The same costs are used for case analysis steps.

Theruntimeresultssuggest to usthat indeed both variants— restart vs. non-restart —
arevaluable: every variant obtai nsproof not obtai nabl eto the other variant. Furthermore,
the application of theory reasoning very often helps to find a proof more quickly. If no
suitabletheory isat hand, the*empty” theory can be used which instantiates TME (resp.

Restart-TME) to ME (resp. Restart-ME).
In order to obtain the PROTEIN system please contact
pet er @nf ormat i k. uni - kobl enz. de.

References

[Baug2]

[Bau93]
[Baug4]

[BF93]

[BF94]

[BFP92]

[Ble90]

[KMS93]

[Lov69]

[Lov87]

P. Baumgartner. A Model Elimination Calculus with Built-in Theories. In H.-J.
Ohlbach, editor, Proceedings of the 16-th German Al-Conference (GWAI-92), pages
30-42. Springer, 1992. LNAI 671.

P. Baumgartner. Linear Completion: Combining the Linear and the Unit-Resulting
Restrictions. Research Report 9/93, University of Koblenz, 1993.

P. Baumgartner. Refinements of Theory Model Elimination and a Variant without
Contrapositives. In Proc. ECAI’94, 1994. (to appear).

P. Baumgartner and U. Furbach. Model Elimination without Contrapositives and its
Applicationto PTTP. Fachbericht Informatik 12/93, Universitat Koblenz, 1993. (short
version in Proc. CADE-12).

P. Baumgartner and U. Furbach. Model Elimination without Contrapositives. In
Proc. 12th Inter national Conferenceon Automated Deduction. Springer, 1994. (in this
volume).

P. Baumgartner, U. Furbach, and U. Petermann. A Unified Approach to Theory Rea-
soning. Forschungsbericht 15/92, University of Koblenz, 1992. (submitted to Journal
of Automated Reasoning).

W. W. Bledsoe. Challenge Problems in Elementary Calculus. Journal of Automated
Reasoning, 6:341-359, 1990.

Manfred Kerber, Erica Melis, and Jorg Siekmann. Reasoning with Assertions and
Examples. Technical Report SEKI Report SR-93-10, Universitat des Saarlandes,
Fachbereich Informatik, 1993.

D. Loveland. A Simplified Version for the Model Elimination Theorem Proving
Procedure. JACM, 16(3), 1969.

D.W. Loveland. Near-Horn Prolog. In J.-L. Lassez, editor, Proc. of the 4th Int. Conf.
on Logic Programming, pages 456—469. The MIT Press, 1987.

[LSBB92] R. Letz,J. Schumann, S. Bayerl, and W. Bibel. SETHEO: A High-Performace Theo-

[Plag8]
[RL92]
[SSY94]
[Stigs]
[Stigg]

[Sti90]

rem Prover. Journal of Automated Reasoning, 8(2), 1992.

D. Plaisted. Non-Horn Clause L ogic Programming Without Contrapositives. Journal
of Automated Reasoning, 4:287-325, 1988.

D. W. Reed and D. W. Loveland. A Comparison of Three Prolog Extensions. Journal
of Logic Programming, 12:25-50, 1992.

G. Sutcliffe, C. Suttner, and T. Yemenis. The TPTP problem library. In Proc. CADE-
12. Springer, 1994.

M.E. Stickel. Automated Deduction by Theory Resolution. Journal of Automated
Reasoning, 1:333-355, 1985.

M. Stickel. A Prolog Technology Theorem Prover: Implementation by an Extended
Prolog Compiler. Journal of Automated Reasoning, 4:353-380, 1988.

M. Stickel. A Prolog Technology TheoremProver. InM.E. Stickel, editor, Proc CADE
10, LNCS 449, pages 673—675. Springer, 1990.

