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Abstract. Three real world applications are depicted which all have in
common, that their core component is a full first order theorem prover,
based on the hyper tableau calculus. These applications concern infor-
mation retrieval in electronic publishing, the integration of description
logics with other knowledge representation techniques and XML query
processing.

1 Introduction

Automated theorem proving is offering numerous tools and methods to be used
in other areas of computer science. An extensive overview about the state of the
art and its potential for applications is given in [9]. Very often there are special
purpose reasoning procedures which are used to reason for different purposes,
like e.g. knowledge representation [22] or logic programming [15].

The most popular methods used for practical applications are resolution-
based procedures or model checking algorithms. In this paper we want to demon-
strate, that there is an important potential for model based procedures. Model
based theorem proving can be based very naturally on tableau calculi [19], and
in particular there is a line of development, which started with the SATCHMO
approach [28] and was later refined and extended towards the hyper tableau
calculus [8].

In this paper three real world applications are depicted which all have in
common, that their core component is a full first order theorem prover, based
on the hyper tableau calculus. I.e. deduction is not used to produce or verify the
software, but a deduction system is a part of the running application system.
The three applications are

– information retrieval in electronic publishing

– reasoning in description logic and knowledge representation

– query answering and optimization in XML databases
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These applications all stem from research and development projects, which
are not dealing with automated reasoning primarily. The model generation the-
orem prover was an obvious tool for the purposes of these projects, because in
each of the tasks it was not only a yes/no answer required, moreover was the
model to be returned by the prover the answer to the query in the respective
application.

In the following section we shortly depict the hyper tableau prover and on
this basis we can describe the applications in the successive sections.

2 Theorem Proving with Hyper Tableau

2.1 Features

In the hyper tableau approach application tasks are specified using first order
logic — plus possibly non-monotonic constructs — in clausal form. While a
hyper tableau prover can be used straightforwardly to prove theorems, it also
allows the following features, which are on one hand essential for knowledge
based applications, but on the other hand usually not provided by first order
theorem provers:

1. Queries which have the listing of predicate extensions as answer are sup-
ported.

2. Queries may also have the different extensions of predicates in alternative
models as answer.

3. Large sets of uniformly structured input facts are handled efficiently.
4. Arithmetic evaluation is supported.
5. Non-monotonic negation is supported.
6. The reasoning system can output proofs of derived facts.
7. The system can be used as reasoner for a description logic, enhanced with

rules and ABox reasoning capability.

Hyper tableau is a “bottom-up” method, which means that it generates in-
stances of rule1 heads from facts that have been input or previously derived.
Derived facts are stored as lemmas. This has the heuristic effect of avoiding
redundant re-computations and supports the use of the calculus for model gen-
eration, since it makes it possible to detect when a fixed point of rule application
is reached.

If a hyper tableau derivation terminates without having found a proof, the
derived facts form a representation of a model of the input clauses.2

1 We use Prolog notation for clauses throughout this paper: A clause is viewed as rule
“Head :- Body.”, where Head consists of its positive literals, combined by “;” (or),
and Body consists of its negative literals, combined by “,” (and). If a clause contains
only positive literals, i.e. is a fact or a disjunction, it is notated as “Head.”, if it
contains only negative literals, as “false :- Body.”.

2 The Herbrand model output consists of all ground instances of the derived facts.
Since the derived facts must not necessarily be ground, in some cases they can
characterize an infinite model.
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A rule head may be a disjunction. In hyper tableau, disjunctions are handled
by exploring the alternative branches in a systematic way. Backtracking can be
used to generate one model after the other.

Of the features listed above, items 1 and and 2, the generation of answer
sets, are made possible through model generation.

Large sets of uniformly structured input facts play a role comparable to
base relations of databases in conventional applications, however nested and
incomplete data structures can be represented by terms. So item 3 benefits from
implementation techniques used in database systems, which can smoothly be
integrated with the hyper tableau method.

The handling of special language constructs, items 4 and 5, is facilitated by
two aspects of the controlled way in which the hyper tableau calculus builds up
data structures: First, it does not generate new clauses with negative literals,
which means that only input clauses have negative literals, and so information
about the context in which special predicates will be evaluated is statically avail-
able at preprocessing. Second, the implementation of nonmonotonic operations
such as negation as failure is facilitated by the possibility to detect when a fixed
point of inferencing is reached. Intuitively speaking, we then know, that it is not
possible to infer certain information, and can use this knowledge positively.

Regarding item 6, many first order theorem provers can output the proofs
of refutations, albeit often in an idiosyncratic syntax that makes it difficult to
process them further. For model generation, it is additionally desirable, that
derivations of the facts belonging to a model are available.

Item 7, the practical suitability as a processor for description logic extended
by rules and ABox reasoning, is a consequence of the other features. It is de-
scribed in more detail in section 4.

2.2 A Small Example

The following example illustrates how our hyper tableau calculus based system,
KRHyper, proceeds to generate models. Figure 1 shows four subsequent stages
of a derivation for the following input clauses:

p(a). (1)

q(X, Y) ; r(f(Z)) ; r(X) :- p(X). (2)

false :- q(X, X). (3)

s(X) :- p(X), not r(X). (4)

KRHyper provides stratified negation as failure. The set of input clauses is
partitioned into strata, according to the predicates in their heads: if a clause c1

has a head predicate appearing in the scope of the negation operator not in the
body of c2, then c1 is in a lower stratum than c2. In the example, we have two
strata: the lower one containing clauses (1), (2) and (3), the higher one clause
(4).

Stage (I) shows the data structure maintained by the method, also called
hyper tableau, after the input fact (1) has been processed. One can view the
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Fig. 1. Stages of a KRHyper derivation

calculus as attempting to construct the representation of a model, the active
branch, shown with bold lines in the figure. At step (I), this model fragment
contradicts for example with clause (2): a model containing p(a) must also
contain all instances of q(a,Y) or of r(f(Z)) or r(a). The model fragment is
“repaired” by derivating consequences and attaching them to the hyper tableau:
The corresponding instance of clause (2) is attached to the hyper tableau. Since
it has a disjunctive head, the tableau splits into three branches. The first branch
is inspected and proved contradictory with clause (3). This state is shown in
(II).

Computation now tracks back and works on the second branch. With the
clauses of the lower stratum, no further facts can be derived at this branch,
which means, that a model for the stratum has been found, as shown in step
(III). Computation then proceeds with the next higher stratum: s(a) can be
derived by clause (4). Since no further facts can be derived, a model for the
whole clause set has been found, represented by the facts on the active branch:
{p(a), r(f(X)), s(a)}, as shown in (IV).

If desired, the procedure can backtrack again and continue to find another
model, as shown in state (V). Another backtracking step then finally leads to
the result, that there is no further model.

2.3 The KRHyper System

Our system, KRHyper, implements the hyper tableau calculus by a combination
of semi-naive rule evaluation [29] with backtracking over alternative disjuncts
and iterative deepening over a term weight bound. It extends the language of
first order logic by stratified negation as failure and built-ins for arithmetic.

For the applications described here, this system is used “embedded” in dif-
ferent ways: As knowledge maintenance and processing unit in the server com-
ponent of a client-server system and as target system for the transformation of a
higher level language, a knowledge representation language based on description
logic.
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3 Living Book — Electronic Publishing

Living Book [7] is an electronic book system based on the Slicing Information
Technology (SIT) [13] for the management of personalized documents: Docu-
ments or textbooks are fragmented into small semantic units, so called slices
or units, such as e.g. the definition of a concept, an example, an exercise or a
paragraph. Slicing Information Technology evolved from an electronic library
system for mathematics, the ILF Mathematical Library, which was developed
within the Deduction research program of Deutsche Forschungsgemeinschaft in
the nineties.

Meta data play an important role to describe dependencies among slices,
which may originate from a single document or from different ones. Keywords
can be assigned to slices to indicate their contents. The process of “slicing”, i.e.
fragmenting and annotating given documents such as manuals or mathematical
textbooks, is partially automated, but usually needs some further manual work.

The Living Book system has a client-server architecture, which is shown in
figure 2.
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Fig. 2. Living Book — system architecture

3.1 The User View

A client side program, the SIT-Reader, offers all functionality of the system to
the user through a common Web browser; figure 3 shows a screenshot.
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Fig. 3. Living Book — screenshot

To use the system, the
user can mark units, like
e.g. analysis/3/1/153 and
analysis/3/1/16 repre-
senting e.g. theorem 3.1.15
in the analysis book to-
gether with its proof.
Then she can tell the sys-
tem that she wants to
read the marked units
and gets a generated PDF
document containing just
those units. If the user
thinks that this informa-
tion is not sufficient for
her understanding, she
can tell the system to in-
clude all units which are
prerequisites of the units selected.

But also more information about the user’s profile can be incorporated in
generating tailored documents: she may select a certain chapter, say e.g. chapter
3 containing everything about integrals in the analysis book. But instead of
requesting all units from this chapter the user wants the system to take into
account that she knows e.g. unit 3.1 already, and she possibly wants just the
material that is important to prepare for an exam. Based on the units with their
meta data, the deduction system can exploit this knowledge and combine the
units to a new document (hopefully) fitting the needs of the user.

In conclusion, we not only have the text of the books, we have an entire
knowledge base about the material, which can be used by the reader in order
to generate personalized documents from the given books. If we are running the
system with three books in combination, we have alltogether more the 12.000
facts and between 50 and 100 rules in the knowledge base.

3.2 The Knowledge Management System

From the viewpoint of deduction, the most interesting component of Living Book
is the knowledge management system on the server side. As shown in figure 2, the
knowledge management system handles meta data of various types: Types of
units (Definition, Theorem etc), Keywords describing what the units are about
(Integral etc), References between units (e.g. a Theorem unit about Integral
refers to a Definition unit), and what units are Required by other units in
order to make sense.

Further, a User Profile stores what is known and what is unknown to the
user. It may heavily influence the computation of the assembly of the final docu-

3 “/” is a binary function symbol, written as right-associative infix operator.
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ment. The user profile is built from explicit declarations given by the user about
units and/or topics that are known/unknown to him. This information is com-
pleted by deduction to figure out what other units must also be known/unknown
according to the initial profile.

3.3 The Logic Behind

On a higher, research methodological level the deduction technique used in the
knowledge management system is intended as a bridging-the-gap attempt. On
one side, our approach builds on results from the area of logic-based knowledge
representation and logic programming concerning the semantics of (disjunctive)
logic programs (see [10] for an overview). On the other side, our KRHyper system
used in Living Book is built on calculi and techniques developed for classical first
order classical reasoning. To formalize our application domain we found features
of both mentioned areas mandatory: the logic should be a first order logic, it
should support a default negation principle, and it should be “disjunctive”. To
our knowledge, such a “cross-over” is novel, and therefore we will motivate the
logic used by some examples now.

First order Specifications. In the field of knowledge representation, and in
particular when non-monotonic reasoning is of interest, it is common practice
to identify a clause with the set of its ground instances. Reasoning mechanisms
often suppose that these sets are finite, so that essentially propositional logic
results. Such a restriction should not be made in our case. Consider the following
clauses, which are actual program code in the knowledge management system
about user modeling:

unknown unit(analysis/1/2/1). (1)

known unit(analysis/1/2/ ALL ). (2)

refers(analysis/1/2/3, analysis/1/0/4). (3)

known unit(Book B/Unit B) :- (4)

known unit(Book A/Unit A),

refers(Book A/Unit A, Book B/Unit B).

The fact (1) states that the unit named analysis/1/2/1 is “unknown”;
the fact (2), the _ALL_ symbol stands for an anonymous, universally quantified
variable. Due to the /-function symbol (and probably others) the Herbrand-
Base is infinite. Certainly it is sufficient to take the set of ground instances of
these facts up to a certain depth imposed by the books. However, having thus
exponentially many facts, this option seems not really a viable one. The rule (4)
expresses how to derive the know-status of unit from a known-status derived so
far and using a refers-relation among units.

Default Negation. Consider the following program code, which is also about
user modeling:4

4 The not operator has been illustrated by the example in section 2.2.
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%% Actual user knowledge:

known unit(analysis/1/2/ ALL ). (1)

unknown unit(analysis/1/2/1). (2)

refers(analysis/1/2/3, analysis/1/0/4). (3)

%% Program rules:

known unit inferred(Book/Unit) :- (5)

known unit(Book/Unit),

not unknown unit(Book/Unit).

unknown unit inferred(Book/Unit) :- (6)

unit(Book/Unit)

not known unit inferred(Book/Unit).

The facts (1), (2) and (3) have been described above. It is the purpose of
rule (5) to compute the known-status of a unit on a higher level, based on the
known units and unknown units. The relation called unknown unit inferred,
which is computed by rule (6) is the one exported by the user-model computation
to the rest of the program.

Now, facts (1) and (2) together seem to indicate inconsistent information, as
the unit analysis/1/2/1 is both a known unit and a unknown unit. The rule
(5), however, resolves this apparent “inconsistency”. The pragmatically justified
intuition behind is to be cautious in such cases: when in doubt, a unit shall
belong to the unknown unit inferred relation. Also, if nothing has been said
explicitly if a unit is a known unit or an unknown unit, it shall belong to the
unknown unit inferred relation as well. Exactly this is achieved by using a
default negation operation not, when used as written, and when equipping it
with a suitable semantics5.

Disjunctions and Integrity Constraints. Consider the following clause:

computed unit(Book1/Unit1) ;

computed unit(Book2/Unit2) :-

definition(Book1/Unit1,Keyword),

definition(Book2/Unit2,Keyword),

not equal(Book1/Unit1, Book2/Unit2).

It states that if there is more than one definition unit of some Keyword, then
(at least) one of them must be a “computed unit”, one that will be included
in the generated document (the symbol ; means “or”). Beyond having proper
disjunctions in the head, it is also possible to have rules without a head, which
act as integrity constraints.

5 Observe that with a classical interpretation of not, counterintuitive models exist. We
use a variant of the perfect model semantics for stratified disjunctive logic programs.
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4 Knowledge Representation Beyond Description Logic

In this section we will argue that automated deduction techniques, in partic-
ular those following the model computation paradigm, are very well suited for
knowledge representation purposes. This is an argument leaving the mainstream
of knowledge representation research, which currently has its focus on the devel-
opment of description logic (DL) systems. We want to point out that we consider
the DL direction of research extremely successful: it led to a deep insight into
computational properties of decidable subclasses of first order reasoning; it made
clear some interesting links to non-classical logics, and, moreover, DL systems
are nowadays outperforming most modal logic theorem provers. Despite of these
successful developments we find two reasons which motivate our approach to use
a first order theorem prover for knowledge representation purposes instead of
dedicated description logic systems.

First, even the key researchers in the field of description logics are stating
some severe deficiencies of their systems (e.g. [18]): research into description
logics focused on algorithms for investigating properties of the terminologies,
and it is clear that for realistic applications the query language of description
logic systems is not powerful enough. Only recently the community investigates
seriously the extension of description logic systems towards ABox and query
answering, which is not trivial [24, 23].

Second, the most advanced systems are essentially confined to classical se-
mantics and do not offer language constructs for non-monotonic features (which
are a core topic in another branch of the knowledge representation community).
Although there are some results on extending DL languages with nonmonotonic
features [4], it seems that this direction of research is vastly unexplored.

Additionally, it has been widely recognized that adding to the terminological
language of DL a complementary knowledge representation scheme based on
rules (as used in logic programs) would greatly improve expressivity. This issue
is currently addressed in particular within the Semantic Web context, but no
really convincing solution has been found so far [6, 16, 17].

According to the just said, our focus is on the development of a language and
system that combines a terminological language with a rule like language and
nonmonotonic features. The specifications may be “mixed”, in the sense that
concepts and roles defined in the terminological part may be used or further ex-
tended/constrained in the logic program part. Regarding computation with such
specifications, we follow a model-computation paradigm. That is, a bottom-up
procedure is employed that computes a (minimal) model of the whole speci-
fication. (The usefulness of the model-generation paradigm in general and in
particular in conjunction with DL will be argued for below and in other parts of
this paper.) The computation is using a naive transformation of the description
logic syntax into first order predicate logic. Clearly, we are loosing decidability
in the general case; however, being careful with the definition of knowledge bases
in the application, we can retain decidability. With respect to performance we
give some figures in the conclusion.

In the following we will roughly sketch the system we are targeting at.
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4.1 Kernel + KRHyper

Our approach is oriented at the paradigm of logic programming and model-based
theorem proving. Instead of starting with a small and efficient kernel language
like ALC,6 which is stepwisely extended towards applicability, we start with a
rather general DL language and the rather general language of first order logic
programs, and then we identify sub-languages that are decidable and practically
feasible.

Our approach is a transformational one, which embeds DL into logic program-
ming by translating DL constructs into logic programming constructs. This way,
the semantics of the original specification is given the semantics of the resulting
logic program. The largest subclass that we can handle is that of the Bernays-
Schönfinkel fragment extended by a default-negation principle. The user of our
system can decide to stay within this class or whether she wants to use some
language constructs which leave this class.

Our approach can be summarized as

Kernel + KRHyper

where

– Kernel is an OIL-like language which is augmented by some additional con-
structs, like non-monotonic negation and second-order features (reification).

– KRHyper means the extended first order predicate logic which can be pro-
cessed by our system. As a logic programming system, it provides rules,
axioms, constraints and concrete domains.

4.2 The Kernel Language

OIL class definitions, e.g.

class-def defined carnivore

subclass-of animal

slot-constraint eats

value-type animal

have a similar concrete syntax in our kernel language. Most parts of OIL are
covered, in particular all kinds of class definitions, inverse roles, transitive roles
etc. The constructs from the Kernel language are translated to our logic pro-
gramming language following standard schemes.

Beyond this, we are able to handle the following points which are mentioned
explicitly as missing in [18]:

6 I.e. concept descriptions are formed using the constructors negation, conjunction,
disjunction, value restriction and existential qualification.
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Rules and Axioms. In addition to constructs in the syntax of the knowledge
representation language we can use arbitrary formulae as constraints, rules or
axioms. For instance, we can state in the rule part

dangerous(X) :- carnivore(X), larger than(30,X).

to express sufficient conditions for being dangerous. The larger_than relation
would be defined by the user as a binary predicate.

Using Instances in Class Definitions. Although it is well known (cf. [3]) that
reasoning with domain instances certainly leads to EXPTIME-algorithms, it is
very clear that exactly this is mandatory in practical applications. For instance,
the previous example could also be supplied as7

dangerous <= carnivore & larger than(30).

in the terminological part.

Default Reasoning. In our system we included a closed world assumption, such
that we can use a default negation principle “\+ ” following the perfect model
semantics. Default negation may be used both in the rule part and in the termino-
logical part. For the latter case, the previous example might more appropriately
be written as

dangerous <= carnivore & \+ smaller than(30).

Switching Back and Forth. One may switch back and forth between the termi-
nological part and the rule part, by keeping in mind that concepts translate into
unary predicates, and that roles translate into binary predicates.

ABoxes. Concrete instances of concepts (roles) are handled via unary (binary)
predicates. This is a very natural and well-understood method for model gener-
ation procedures. For instance, from

dangerous <= carnivore & \+ smaller than(30).

and the ABox consisting solely of

carnivore(leo).

the model generation prover will derive dangerous(leo). Unlike as in other
systems, no grounding in a preprocessing phase takes place, and the system is
capable of computing with ABoxes consisting of tens of thousands of objects.

7 Notice that description logic languages such as OIL usually permit concept defini-
tions via equivalences (<=> in our syntax) or via necessary conditions (=> in our
syntax). However, we start off with a concrete ABox that is assumed to implicitly
represent a model of some TBox, and that can be extended to an explicitly repre-
sented model by using sufficient conditions, as shown.
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Limited Second-Order Expressivity. Very often it is necessary to treat statements
of the language as objects and to apply procedures for some kind of evaluation to
them. This can be done in our context by meta-language constructs à la Prolog.
For instance, via concept_instance(Concept,Instance) one has access to the
Concept names where Instance is an instance of. For example,

all dangerous(X) :-

call(findall(Z,

(dangerous(Y), concept instance(Z,Y)),X)).

describes as a Prolog-list all the concepts that have an instance of the dangerous
concept.

4.3 Sample Application

This method of using Kernel + KRHyper for reasoning in description logic is
the core of an application we built for a major German bank. It is a knowledge
management system, which is used as decision support for the communication
department of the bank. An important characteristic of this system, is that it
contains besides the TBox a large ABox, containing press articles and excerpts
thereof. The reasoning mechanism is Kernel + KRHyper which in particular has
to deal with the ABox. The system is extended with a graphical user interface,
which allows easy modifications of the ABox and the TBox and which supports
the usual queries one wants to get answered from knowledge base. The system
is realized as a client-server architecture and can be used via an ordinary web
browser. This knowledge management system is already in use in the bank and,
currently it is extended versus automatic learning-based mechanisms, in order
to extend the knowledge base.

Working on this application brought two rather trivial, but nevertheless im-
portant aspects to our attention. One is, that the user of such an application
does not care at all, which technique is inside the system. From a deduction
point of view, we are happy seeing a theorem prover running as part of an ap-
plication software, the user, however, is only interested in things like reliability,
efficiency and costs. We learned, that the use of an existing theorem prover helps
to meet exactly these requirements. The second lesson we learned is, that it is
extremely difficult for non-computer-scientists to use a language of description
logic for defining concepts or to express complex queries. Although we defined a
Windows-like graphical user interface, we found that users encounter difficulties
to use it. Currently we are redesigning the interface of the system, such that
the knowledge representation format is completely hidden behind functionalities
which are only from the application domain.



13

5 Flexible Database Queries for XML Data

In the last years, semistructured data and in particular XML played an increasing
role within the database community. Databases for XML data have evolved in
the context of database integration tasks (Enterprise Application Integration,
EAI ); these databases have a strong focus on data that is structured irregularly,
is implicit, incomplete and therefore often result in large schemas [1].

Various query languages for semistructured data have been proposed in order
to deal with the complex and nested structure of these data. Many languages
use path queries [26, 14, 12, 2, 25] which have emerged as an important class of
browsing-style queries on the Web. Navigational database access by these path
queries require the user to know lot of structural details. It has been pointed out
that declarative query constructs are needed in order to reduce or even avoid
explicit navigation through the data [20, 11].

Here, we present an approach that relies on the assumption that techniques
from logics and in particular knowledge representation, as e.g. subsumption of
XML types [27] may be useful for querying XML data.

5.1 Example

<university>

<researcher>
<name>Smith</name>
<publications>

<monograph>
<title>Basics of databases</title>

<author><name>Smith</name>
</author>

<isbn>7899</isbn>
<subject>DB</subject>

</monograph>

<article>
<title>Flexible queries</title>

<author><name>Smith</name>
</author>
<author><name>Miller</name>

</author>
<proceeding>VLDB 2000

</proceeding>
</article>

<publication>
<title>XML Schema</title>

<author>

<name>Smith</name>
</author>

</publication>

</publications>
</researcher>

<-- more researcher elements -->
<library>

<books>
<book>

<title>Databases</title>

<author>
<name>Smith</name>

</author>
<isbn>1234</isbn>

</book>

<book>
<!-- more book elements -->

</book>
</books>

<library>
</university>

Fig. 4. Example XML data

Let us consider an example XML document representing a university with
a library and researchers working in the university. A library consists of books
where each book has a title, an author and an isbn. Researchers have a name and
an associated set of publications as e.g. articles, monographs or some general kind
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of publication without further specialization. Figure 4 shows an excerpt from the
represented data.

UNIVERSITY
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BOOK
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ROOT
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multi valued relationship
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Fig. 5. Schema for database from figure 4

The content of a database is described by means of a schema; often for XML
data Document Type Definitions (DTDs) are used. Recently, XML Schema [31]
has evolved with the advantage, that user defined types can be represented;
furthermore, besides referential relationships between elements of the XML data,
XML Schema provides the possibility to model generalization and specialization
relationships. Figure 5 uses a graphical notion to represent an example schema
for the database in figure 4.

5.2 Querying the Data

Existing query languages use path queries, that navigate along the structures of
the XML data. For instance, in order to access the name of all researchers of
a university in XPath [30] we use /university/researchers/researcher/name.
Path queries usually allow some form of “abbreviation”. For instance, with
//researcher/name we address all descendants of the “root” that are researcher -
elements and navigate to their names. However, because path queries work di-
rectly on the XML data and not on the schema, it is not possible to query
those elements from a data source, that belong to the same type or concept. In
particular, in order to ask e.g. for all kinds of publications, we would have to
construct the union of path queries navigating to publication, book, article and
monograph, explicitly.

This problem has been addressed in [21], where the notions and the issues
have been described. One possibility is to add a concept based query facility by
means of graph based technology. Another possibility, presented here, is to rely
on existing technologies and in particular systems from the area of description
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logics [5]. In DL, retrieving instances from a certain concept is a well known
requirement and standard services are available out-of-the-box in existing DL
systems such as RACER [22].

Fig. 6. Tree representation of XML
documents

In order to use the DL-system, we
represent the types in an XML schema
by concept expressions in DL as follows.
For every type c in the schema with at-
tributes (outgoing edges) a1, a2, . . . , an

leading to types t1, t2, . . . , tn a concept
expression

c ≡ ∃a1.t1u∃a2.t2u. . .u∃an.tn.

is introduced. Specialization edges from
c to c′ are represented by inclusion de-
pendencies

c v c′.

Furthermore, the data in an XML
database is represented by ABox-facts.
To this end, we represent each element
in the database by a unique object identifier (see figure 6 for illustration). The
appropriate ABox representation is sketched as follows. For every element o be-
ing an instance of concept c we introduce the fact

o : c

(e.g. o36:Book) and furthermore, if the element o has a child o′ with tag name a

we write:

(o′, o) : a.

For instance, (o35, o37) : book. This representation is used when using standard
services from DL-systems. For instance, we now can use the service retrieve-
instances applied to the concept PUBLICATION, in order to retrieve PUBLICA-

TION, MONOGRAPH, BOOK and ARTICLE elements. Flexible query processing
therefore makes use of TBox-reasoning (finding the relevant concepts and paths
from the database description) and combines this with ABox reasoning and the
retrieval of instances.

5.3 Path Completion

By path completion we mean, roughly, the problem of deriving from a concept
name in a schema (the start concept) and an end concept a path through this
schema connecting the start and the end concept. Such a path then can imme-
diately be turned into a fully specified (e.g.) XPath query. Notice that this way
the problems with XPath queries as explained in Section 5.2 can be avoided.
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Fig. 7. Result of a KRHyper run. See text for
explanation.

The question remains how to
compute path completions. To
this end, we propose to build
on the DL formalization as de-
scribed above. Then, it seems
natural to appeal to some stan-
dard service offered by contem-
porary DL-systems and let it
compute the path completion.
Unfortunately we did not find
a way of doing so. However, we
succeeded in finding a solution
based on model computation. It
works as follows:

1. The start concept, say, cs,
is populated by filling the
ABox with a : cs, where a

is a fresh name.
2. The DL specification of

the schema graph is trans-
formed into clause logic, us-
ing the well-known standard
mapping. Also, the (single-
ton) ABox a : cs is trans-
formed into a fact cs(a).

3. To the clause logic part
the following two clauses
are added, where false :-

ce(X) is the clause logic
transformation of the con-
cept ¬ce:

end :- ce(X).

false :- not end.

Now, speaking figuratively,
computing a minimal model of
the thus obtained clause set
corresponds to labeling in the
schema graph the start concept and propagate the label according to the concept
hierarchy and via the roles encountered. Appealing to minimal model compu-
tation is an issue in order to avoid unwanted population of concepts. Notice
that “substitution groups” [31] in the schema graph may introduce disjunctions
in the head of the clauses, which may lead to different models or models that
do not populate the end concept. It is exactly the purpose of the clauses in
3. above to avoid the latter problem. Observe that as small as the use of the
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default negation operator “not” may seem, it is a very useful feature to filter
out unwanted models. The figure on the right shows the result of running our
KRHyper prover, where the start concept is RESEARCHER and the end concept
PUBLICATION u ∃title.>.

6 Conclusion

The KRHyper theorem prover is an integral part of all three applications, that
derive from quite different fields. Contrasting schemes that limit the use of a
prover to the setup or configuration of an application, in our case the prover
is a continuously used core component of the depicted systems. Any concerns
about performance degradation imposed by the use of a full featured KRHyper
system did not come true. Comparisons with a widely respected DL reasoner
rendered KRHyper superior with respect to execution time as well as memory
consumption. Based on these experiences we are continuing to investigate the
applicability of deduction systems in upcoming projects.
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