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Abstract

We give modifications of model elimination which do not necessitate the use of
contrapositives. These restart model elimination calculi are proven sound and com-
plete and their implementation by PTTP is depicted. The corresponding proof pro-
cedures are evaluated by a number of runtime experiments and they are compared
to other well known provers. Finally we relate our results to other calculi, namely
the connection method, modified problem reduction format and Near-Horn Prolog.

1 Introduction

This paper demonstrates that model elimination and hence PTTP can be defined such
that it is complete without the use of contrapositives. We believe that this result is
interesting in at least two respects: it makes model elimination available as a calculus
for non-Horn logic programming and it enables model elimination to perform proofs of
mathematical theorems by case analysis.

Let us first explain what we mean by the term “without the use of contrapositives”.
In implementations of theorem proving systems usually n procedural counterparts L; <
LiA---ALi_1ANLiz1A-+-AL, for a clause L, V- - -V L, have to be considered. Each of these
is referred to as a contrapositive of the given clause and represents a different entry point
during the proof search into the clause. It is well-known that for Prolog’s SLD-resolution
one single contrapositive suffices, namely the “natural” one, selecting the head of the
clause as entry point. For full first-order systems the usually required n contrapositives
are either given more ezplicitly (as in the SETHEO prover [Letz et al., 1992]) or more
implicitly (as in the connection method by allowing to set up a connection with every
literal in a clause [Eder, 1992]). The distinction is merely a matter of presentation and
will be given up for this paper. Now, by a system “without contrapositives” we mean

*A shorter version will appear under the title “ Model Elimination Without Contrapositives” in Proc.
of the CADE’94.



more precisely a system which does not need all n contrapositives for a given n-literal
clause.

Model elimination [Loveland, 1968] is a calculus, which is the base of numerous
proof procedures for first order deduction. There are high speed theorem provers, like
METEOR [Astrachan and Stickel, 1992] or SETHEO [Letz et al, 1992]. The im-
plementation of Model elimination provers can take advantage of techniques develo-
ped for Prolog. For instance, SETHEO compiles the input clause set into a genera-
lized WAM architecture. Stickel’s Prolog technology theorem proving system (PTTP,
[Stickel, 1988]) uses Horn clauses as an intermediate language, which can even be pro-
cessed by conventional Prolog systems [Stickel, 1989]. Hence, it should be straightfor-
ward to use model elimination and PTTP in the context of non-Horn logic program-
ming. Indeed this possibility is discussed in various papers; however it is discarded
by some authors because of the necessity to use contrapositives (e.g. [Loveland, 1991,
Plaisted, 1988]). The argument is given by Plaisted [Plaisted, 1988] explicitly: “In ge-
neral, however, we feel that the need for contrapositives makes it difficult to view model
elimination as a true programming language in the style of Prolog, since the user has less
control over the search.” Suppose, for example we are given an input clause!

prove(and(X, Y)) « prove(X) A prove(Y)

which can be used within a formalization of propositional calculus. A possible contrapo-
sitive is

—prove(X ) « —prove(and(X, Y)) A prove(Y)

The procedural reading of this contrapositive is somewhat strange and leads to an unne-
cessary blowing-up of the search space; in order to prove —prove(X) one has to prove
prove(Y') — a goal which is totally unrelated to ~prove(X) by introducing a new variable.
Such observations had been the motivation for the development of calculi which need
no contrapositives, e.g. Loveland’s NearHorn-Prolog. Gabbay’s N-Prolog [Gabbay, 1985]
when restricted to clause logic is general enough to be instantiated to both NearHorn-
Prolog and problem reduction formats ([Plaisted, 1988], see also Section 5 below; [Reed
and Loveland, 1992] contains a comparison of these).

Another motivation for the new calculi is as follows: in proving theorems such as
“f x # 0 then 22 > 0” a human typically uses case analysis according to the axiom
X <0V X =0V —X <0. This seems a very natural way of proving the theorem and
leads to a well-understandable proof. Our modified model elimination procedure carries
out precisely such a proof by case analysis. Experimental results with similar examples
from calculus and a comparison with other proof procedures are presented in this paper.

The calculi we derive in this paper are a very small modification of model elimination
and hence allow for Prolog implementation techniques. They are complete without the use
of contrapositives and hence well-suited for logic programming and for theorem proving
by “case analysis” or “splitting”.

ITaken from [Plaisted, 1988].



As a more theoretical contribution we will show that one of the NearHorn-Prologs,
namely InH-Prolog ([Loveland and Reed, 1989]), can be seen as one of our modified
model elimination procedures, i.e. NearHorn-Prolog is nothing but a variant of model
elimination.

As a final point, we discovered that the connection method ([Bibel, 1987, Eder, 1992],
[Baumgartner and Furbach, 1993] contains a comparative study) is complete without
contrapositives and without any change to the calculus. This surprising result is due to
a relaxed complementary-literal condition which subsumes the above-mentioned small
change in model elimination.

This paper is organised as follows: in the following section we review the model
elimination calculus we use as a starting point of our investigation. In section 3 we
define various variants of this calculus and give soundness and completeness proofs of the
weakest one. In section 4 we describe the corresponding PTTP-procedures and give a
comparative study of various implementations.

2 Review of Tableau Model Elimination

As a starting point we use a model elimination calculus that differs from the original one
presented by [Loveland, 1968]; it is described in [Letz et al., 1992] as the base for the
prover SETHEQ. In [Baumgartner and Furbach, 1993| this calculus is discussed in detail
by presenting it in a consolution style [Eder, 1991] and comparing it to various other
calculi. This model elimination manipulates trees by extension- and reduction-steps. In
order to recall the calculus and to state a running example consider the clause set

{{Pa Q}v{_'Pa Q}’{_'va}v{_'Pa_'Q}},

A model-elimination refutation is depicted in Figure 1. It is obtained by successive
fanning with clauses from the input set (extension steps. Additionally, it is required that
every inner node (except the root) is complementary to one of its sons. An arc indicates
a reduction step, i.e. the closing of a branch due to a path literal complementary to the
leaf literal.

In the following we use a formal presentation of the calculus along the lines of [Baum-
gartner and Furbach, 1993]. Instead of trees we manipulate multisets of paths, where
paths are sequences of literals.

A clause is a multiset of literals, usually written as the disjunction L, V...V L,. A
connection in a set of clauses is a pair of literals, written as (K, L), which can be made
complementary by application of a substitution. A path is a sequence of literals, written
as p = (Ly,..., Ly). Ly is called the leaf of p, which is also denoted by leaf(p); similarly,
the first element L, is also denoted by first(p). ‘o’ denotes the append function for literal
sequences. Multisets of paths are written with caligraphic capital letters.

Definition 2.1 (Tableau Model Elimination) Given a set of clauses S.
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Figure 1: A Model Elimination Refutation

e The inference rule extension is defined as follows:
PU{p} LVR

R

where all the following holds:

1. PU{p} is a path multiset, and LV R is a variable disjoint variant of a clause
in S; L is a literal and R denotes the rest literals of L V R.
2. (leaf(p), L) is a connection with MGU o.
3. R=(PU{po(K) | K € R})o.
e The inference rule reduction is defined as follows:

Pu{p}
Po

where

1. PU{p} is a path multiset, and
2. there is a literal L in p such that (L, leaf(p)) is a connection with MGU o.

e A sequence (Pi,...,P,) is called a model elimination derivation iff
P, is a path multiset {(L;),...,(L,)} consisting of paths of length 1, with
Lyv...VL,in S (also called the goal clause), and

P;11 is obtained from P; by means of an extension step with an appropriate
clause C, or

Pi+1 is obtained from P; by means of a reduction step.

The path p is called selected path in both inference rules. Finally, a refutation is a
derivation where P, = {}. O



Note that this calculus does not assume a special selection function which determines
which path is to be extended or reduced next. Correctness and completeness of this
calculus follows immediately from a result proved in [Baumgartner, 1992].

3 Restart Model Elimination Calculi

Let us now modify the calculus given above, such that no contrapositives are needed.

In order to get a complete calculus, we have to assume that there exists only one
goal, i.e. a clause containing only negative literals, which furthermore does not contain
variables. Without loss of generality this can be achieved by introducing a new clause
goal where goal is a new predicate symbol and by modifying every purely negative clause
B, ---B, to goalBy --- B,. In the following we will refer to clause sets S satisfying that
property as clause sets in goal-normal form. Note that since the goal literal is attached
only to purely negative clauses the Horn status of the given clause set is not affected
by the transformation. Furthermore, besides the goal-normal form we will only allow
derivations which start with the goal clause goal.

Soundness of this transformation is evident. Completeness holds as follows:

Theorem 3.1 (Completeness of Model Elimination) Let S be an unsatisfiable clause set
in goal-normal form. Then there exists a tableau model elimination refutation of S with
goal clause goal. Furthermore, if S is Horn then no reduction steps are required in this
refutation.

Proof.  From [Baumgartner, 1992] we learn that model elimination is complete if the
goal clause is contained in some minimal unsatisfiable subset of the input clauses. Since
every clause in S\ {goal} contains at least one positive literal, this set is satisfiable (take
the interpretation that assigns ¢rue to every positive literal). Hence goal is contained in
every minimal unsatisfiable subset of §. Thus tableau model elimination with the above
assumptions is complete.
For the second part observe that every literal along every path in a refutation of a Horn
clause set is negative. This is due to the fact that in extension steps the single positive
literal of the extending clause is not considered in the formation of the resulting path
multiset. Hence reduction steps are impossible for syntactical reasons. O
We are now ready to modify the calculus, such that no contrapositives are necessary.
This will be done in three steps:

e As a base we define a restart model elimination by a small modification in the
definition of tableau model elimination, with the result, that no contrapositives are
needed.

e We then weaken this calculus by introducing a selection function, which determines
which positive head literal can be used for an extension step and finally,

e as a further weakening we introduce strict restart model elimination ; by disallowing
reduction steps with a positive leaf literal.



A completeness proof is given for the weakest variant, i.e. strict restart model elimi-
nation with selection function. Completeness of the stronger variants follows from this
result as a simple corollary.

Definition 3.2 (Restart Model Elimination) Assume the following line additionally given
between conditions 1 and 2 in the definition of extension (Def. 2.1).

la. if leaf (p) is positive then let p := p o (first(p)) in the following conditions 2 and 3.

An extension step with lengthening according to 1a above is called a restart. The calculus
of restart model elimination consists of the inference rules restart and reduction. O

If a clause A;---A,B; - By, is written in a sequent style (this notation will also be
used from now on)

Al,--wAn(_Bl,---;Bm

then it is clear that, for syntactical reasons extension steps are possible only with head
literals A’s and not with B’s from the body. Thus it is possible to represent clauses as
above without the need of augmenting them with all contrapositives; only contrapositives
with conclusions (i.e. entry points) stemming from the positive literals are necessary.

The price of the absence of contrapositives is that whenever a path ends with a positive
literal, the root of the tree, i.e. the clause —goal has to be copied and the path has to be
lengthened with that literal. Note that there is only a restriction on the applicability of
extension steps — reductions are still allowed when a path ends with a positive literal.

In Figure 1 there is one extension step, which is no longer allowed in restart mo-
del elimination, namely the extension of the path (=@, P). Note that with our as-
sumptions on goals, this path becomes p = (—goal,— @, P) in restart model elimina-
tion. There is no reduction step possible and since leaf(p) is positive, we lengthen p to
p' = (—goal,—~Q, P,—goal) in a restart step, which can finally be extended to the path
multiset

{(=goal,~Q, P, =goal, =P}, (~goal, ~Q, P, ~goal, ~Q)}

The complete restart model elimination refutation is depicted in Figure 2.

It is obvious that for reasons of efficiency a proof procedure based on this calculus must
provide some refinements. For example, the use of lemmata might reduce the amount of
redundancy introduced by restart steps. In the example from Figure 2 the restart led to
the newly introduced paths ending with =P and — (), respectively. When processing the
tree from left to right it is obvious that solving —P would be unnecessary, since there is
already a closed subtree containing —P as a root; thus a proof procedure would benefit
extremely from the possibility of using lemmata and/or caching [Astrachan and Stickel,
1992]. In our example, however, we are lucky, the same effect could be achieved by a
reduction step. These and other topics concerning proof procedures are discussed in the
following section.
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Figure 2: A Restart Model Elimination Refutation (positive goal-nodes are not displayed).

Selection Function

Now we weaken the calculus by introducing a selection function on head literals.

Definition 3.3 (Selection Function) A selection function f is a function that maps a clause
Ay, .. A, By,...,B, withn > 1toanatom L € {4,,...,A,}. Lis called the selected
literal of that clause by f. The selection function f is required to be stable under lifting
which means that if f selects Ly in the instance of the clause (4y,..., 4, < By, ..., Bn)Y
(for some substitution ) then f selects L in Ay,..., A, < Bi,..., Bp.

Now let f be a selection function, and assume the following line additionally given between
conditions 2 and 3 in the definition of restart (Def. 3.2).

2a L is selected in C by f.

This modified calculus is called (restart) model elimination with selection function. a

Assume there is a path p in our running example with leaf (p) = =P and the selection
function gives f(P, @ <) = @, then it is not allowed to perform an extension step with
P, () —. Positive literals not selected by f can only be used within reduction steps. Note
that the proof from Figure 2 is a proof with the above assumed selection function.

Strict Restart Model Elimination

As a further restriction we force the calculus to perform restarts whenever they are
possible, i.e. if a leaf of a path is a positive literal it may not be used for a reduction step.
Since for these leaves extension steps are possible only through a restart, we call this
calculus strict restart model elimination. This restriction is motivated in several ways:



first, a comparable restriction is formulated within Plaisted’s modified problem reduction
format ([Plaisted, 1988], see also Section 5 below) and we would like to evaluate it within
our framework; second, strict restart model elimination minimizes the search in ancestor
lists, which occasionally results in shorter runtimes to find a proof. See also [Plaisted,
1990] for restrictions on accessing ancestor lists within a non-restart calculus.

Definition 3.4 (Strict Restart Model Elimination) The inference rule reduction is modi-
fied by adding the following line after condition 2 to the definition of reduction (Def. 2.1).

3. and leaf (p) is a negative literal.

Such reduction steps are called strict reduction steps. Strict restart model elimination
is defined to be the same as restart model elimination, except that “reduction step” is

replaced by “strict reduction step”.

O

Alltogether we get the following inference rules in strict restart model elimination:

The inference rule extension is defined as
follows:

PuU{p} LVR

where

1. PU{p} is a path multiset, and LV R
is a variable disjoint variant of a
clause in S; L is a literal and R de-
notes the rest literals of LV R.

la. if leaf(p) is positive then let p := po
(first(p)) in the following conditions
2 and 3.

2. (leaf(p), L) is a connection with
MGU o.

3. R=(PU{po(K) | K € R})o.

The inference rule reduction is defined as
follows:

P U{p}
Po
where

1. PU{p} is a path multiset, and

2. there is a literal L in p such that
(L, leaf(p)) is a connection with
MGU o, and

3. leaf(p) is a negative literal.

For the rest of this section we deal with soundness and completeness of restart model
elimination. For the soundness we refer to soundness of clausal tableau calculus, while

completeness is proven directly.

Theorem 3.5 (Soundness) Restart model elimination is sound.




Proof. Soundness of the calculus follows immediately by showing that every restart
model elimination proof can be mapped to a proof in the free variable semantic tableau
calculus ([Fitting, 1990]). In particular, an extension step with a clause C is mapped
to a @ tableau extension step with clause C' and subsequent application of an MGU for
branch closure. For the restart step note first that a restart step must always be followed
by an extension step for syntactical reasons. But then, if C' is the clause used for that
extension step, we can also carry out a 8 tableau extension step with C', also followed by
closure with an MGU. Finally, reduction steps have a direct counterpart by closure with
an MGU. O

Theorem 3.6 (Completeness) Let f be a selection function and S be a clause set in goal-
normal form. Then there exists a strict restart model elimination refutation of S with
goal < goal and selection function f.

Since a strict reduction step is by definition also a reduction step we obtain as a
corollary the completeness of the non-strict restart model elimination.

Since a selection function restricts the set of permissible derivations, completeness
without selection function follows immediately from completeness with selection function.

The proof of the theorem proceeds by assuming a set S§9 of ground instances of
clauses of S which is unsatisfiable. Such a set exists according to the Skolem-Herbrand-
Lowenheim theorem (see e.g. [Gallier, 1987] for a proof). Then by ground completeness
(which is to be proven below) a refutation on the ground level exists. Although not quite
trivial, lifting can be carried out by using standard techniques (see e.g. [Chang and Lee,
1973, Lloyd, 1987]). In particular, by stability under lifting (Def. 3.3) it is guaranteed that
the selection function will select on the first order level a literal whose ground instance
was selected at the ground level.

Ground completeness reads as follows:

Lemma 3.7 (Ground Completeness) Let f be a selection function and S be an unsatis-
fiable ground clause set in goal-normal form. Then there exists a strict restart model
elimination refutation with selection function f of S with goal clause — goal.

Proof. Informally, the proof is by splitting the non-Horn clause set into Horn sets,
assuming by completeness of model elimination refutations without reduction steps, and
then assembling these refutations into the desired restart model elimination refutation.
There, reduction steps come in by replacing extension steps with split unit clauses by
reduction steps to the literals where the restart occurred.

For the formal proof some terminology is introduced: we say that a path multiset P
“contains (an occurrence of) a clause Aq,..., A, < Bi,...,By” iff for some path p it
holds

{pO<A1>,...,pO(An>,po<—|B1>,...,po<—|Bm>} cP

If we speak of “replacing a clause C' in a derivation by a clause C'U D” we mean the
derivation that results when using the clause C' U D in place of C in extension steps.
Also, the same literal L € C must be used to constitute the connection.



By a “derivation of a clause C” we mean a derivation that ends in a path multiset
which contains (several occurrences of) the clause C.

Let k(S) denote the number of occurrences of positive literals in .S minus the number
of definite clauses® in S (k(S) is related to the well-known excess literal parameter). Now
we prove the claim by induction on £(5).

Induction start (k(S) =0): M must be a set of Horn clauses. By Theorem 3.1 there
exists a model elimination refutation of S with goal < goal without reduction steps.
Furthermore, for syntactical reasons, in every extension step only the single positive
literal (and never a negative literal) of the extending clause can be selected. Thus, this
refutation is also a strict restart model elimination refutation.

Induction step (k(S) > 0): As the induction hypothesis suppose the result to hold
for unsatisfiable ground clause sets S’ in goal-normal form with £(S’) < k(S).

Since k£(S) > 0, S must contain a non-Horn clause

C:Al,AQ,...,An <—Bl,...,Bm
with n > 2. W.l.o.g. assume that A; is the literal selected by f in C. Now define n sets

Sl = (S\C)U{A1<—B1,,Bm}
Sy = (S\ C)U {4}

S0 = (S\ 0) U{Au}

Every set S; (i = 1...n) is unsatisfiable (because otherwise, a model for one of them
would be a model for §). Furthermore, it holds k(S;) = k(S) — n + 1 < k(S). Thus,
by the induction hypothesis there exist a strict restart model elimination refutations R;
with goal clauses < goal of §;, respectively.

Now consider R; and replace in R; every occurrence of the clause A; «— Bi,..., By,
by C. Call this derivation R{. Since A; is the sole positive literal in A; < By,..., By,
A; must have been selected in the extension steps with that clause in R;. Thus the
corresponding extension steps in R} with C are legal in the sense of the restriction to the
selection function.

R} is a derivation of, say, k; occurrences of the positive unit clauses 4; (j = 2...n)
from the input set S. Now every A; can be eliminated from the input set S according
to the following procedure: for j = 2...n append R}_l k; times with the refutation R;,
thus introducing k; restart steps at the paths ending in A;. Note here that the restart
step produces exactly the same goal clause < goal as is in R;. Let R be the refutation
resulting from these k; restart steps at leaf A;. Rj is a restart model elimination refutation
of SU{4;,...,A,}. In order to turn R} into a refutation of S U {4;,1,..., A}, replace
every extension step with A; in the appended refutations R; by a reduction step to the
positive path literal A;. The resulting refutation R;- is a desired strict model elimination
refutation of S U {4;11,...,4,}.

Finally, R, is the desired strict restart model elimination refutation of S alone. O

2A definite clause is a clause containing exactly one positive literal.



Regularity in Restart Model Elimination.

Regularity means for ordinary model elimination that it is never necessary to construct a
tableau where a literal occurs more than once along a path. Expressed more semantically,
it says that it is never necessary to repeat in a derivation a previously derived subgoal
(viewing open leaves as subgoals).

Regularity, or an approximative implementation of it, tends to be one of the more
useful refinements of model elimination. Unfortunately, regularity is not compatible to
restart model elimination. This can be seen easily as the goal-literal is copied in restart
steps, thus violating the regularity restriction. Hence at least the goal literal has to be
excluded from the regularity restriction, because otherwise restart steps are impossible!
But even with this exception completeness is lost in general, since after a restart step it
might be necessary to repeat — in parts — a proof found so far up to the restart step.

However the following observations allows to define a somewhat weaker notion of
regularity: First, the proof of Lemma 3.7 proceeds by splitting the input clause set into
Horn sets and then assembles the existing non-restart refutations Ry, ... R, into a restart
refutation R]. Since this assembling is done “blockwise” (the R;s are not interleaved
among each other and keep their structure) some properties of the R;s carry over to their
respective occurrence in R!. In particular, the regularity of the R;s carries over in this
way. Hence we define a path as blockwise regular (version 1) iff every pair of occurrences
of identical literals (unequal to —goal) is separated by at least one occurrence of the
literal —goal. A derivation is is called blockwise reqular iff every path in every of its path
multisets is blockwise regular. From these considerations and definitions it follows with
Lemma 3.7:

Lemma 3.8 Restart model elimination is complete when restricted to blockwise regular
refutations (version 1).

Since all the R;s are refutations of Horn clause sets this regularity restriction applies only
to negative literals along a path. Thus we might derive a path p = —goal---A---—goal--- A
which is blockwise regular. We wish to extend blockwise regularity to forbid such du-
plicate occurrences of positive literals, and say that a branch is positive reqular iff all
the positive literals occurring in it are pairwise distinct (not identical). Extending the
preceding definition, we define a branch to be blockwise regular (final version) iff it is
blockwise regular (version 1) and positive regular. Fortunately it holds:

Theorem 3.9 Restart model elimination is complete when restricted to blockwise reqular
refutations (final version).

Proof. By the preceding lemma it remains to prove the restriction to positive regular
paths. Again, this can be done by analyzing the proof of Lemma 3.7: while for the
induction start positive regularity is trivial, for the induction step the following obser-
vation can be used: consider the splitted sets Ss,...,S, and the associated unit clauses
Ay € 8,,..., A, € S,. Without loss of generality the S;s can be supposed to be minimal
unsatisfiable. Now, if A; € S; then S; does not contain a disjunctive clause of the form
C =A4;,B,...,B, «— Ci,...,C, where k > 1 (because otherwise S; were not minimal



unsatisfiable). By a similar line of reasoning it holds that if A; ¢ S; then S; does also not
contain such a clause C. In any case, for this syntactical reason, a branch containing A;
cannot come up in the refutation R; of S; (which can be supposed to be regular by the
induction hypothesis). Thus, in the assembling of the R;s into the final refutation R/,
the occurrence of A; which caused the restart step remains the only occurrence of A4;. In
other words, positive regularity holds for this branch, and hence more generally also for
the whole refutation R;,. O

4 PTTP without Contrapositives

As exemplified by PTTP (“Prolog Technology Theorem Prover”) [Stickel, 1988, Stickel,
1989], Prolog can be viewed as an “almost complete” theorem prover, which has to
be extended by only a few ingredients in order to handle the non-Horn case. By this
technique the benefits of optimizing Prolog compilers are accessible to theorem proving.
First we will briefly review the standard approach, and then we will describe the necessary
modifications to obtain restart model elimination.

The PTTP-approach transforms a given clause set into a Prolog program. The trans-
formed Prolog program must execute the clauses according to some complete proof proce-
dure. Model elimination turns out to be particularly useful for this, since it is, like Prolog,
an input proof procedure. In particular, the transformation from the input clauses to
Prolog works as follows (see [Stickel, 1988] again for details):

e An input clause such as
C— ANB

is transformed into a Prolog clause
(1) c :- a, b.

Additionally, since in the model elimination calculus every literal in a clause can
equally well serve as an entry point into the clause, all contrapositives are needed.
In this case these are

(2) not_a :- not.c, b.

(3) not.b :—- a, not_c.

This example also shows how negation is treated, namely by making it part of the
predicate name.

e Prolog’s unsound unification has to be replaced by a sound unification algorithm.
This can either be done by directly building-in sound unification into the Prolog
implementation, or by reprogramming sound unification in Prolog and calling this
code instead of Prolog’s unsound unification.

e A complete search strategy is needed. Usually depth bounded iterative deepening
is used. The strategy can be compiled into the prolog program by additional para-
meters, being used as “current depth” and “limit depth”. The cost of an extension



step can be uniformly 1 (depth bounded search), or can be proportional to the
length of the input clause (inference bounded search).

e The model elimination reduction operation has to be implemented. This can be
realized by memorizing the subgoals solved so far (the A-literals) as a list in an
additional argument, and by Prolog code that checks a goal for a complementary
member of that list. Of course, this check has to be carried out with sound unifi-
cation.

The Prolog clause (1) from above then looks like

1) c(Anc) :- a([-alAnc]), b([-blAnc]).

where Anc is a Prolog list which contains the ancestor literals (called A-literals in
[Loveland, 1968]); code for reduction steps then looks like

(Red-0) c(Anc) :- member(c,Anc).
(Red-notC) not_c(Anc) :- member(-c,Anc).

Next we will turn to restart model elimination. We assume the clause set to be
in goal-normal form. In the following transformation the same precautions regarding
sound unification and complete search strategy have to be obeyed. The rest of the
transformation then works as follows:

e For restart model elimination with selection function every input clause
Al,...,An — Bl,...,Bm

with selected literal A; is transformed into the Prolog clause

G a (i)(Anc) :- Db.1([-b_1lAncl),...,bm([-b_m|Anc]),
solve_pos(a_1,Anc),

solve pos(a (i — 1),Anc),
solve pos(a (i + 1),Anc),

solve_pos(a-n,Anc).

Here, the call to solve_pos(Literal, AncestorList) means to solve a positive literal
in the context of the given ancestor list. This can be done according to the inference
rules of restart model elimination either by a reduction step or by a restart step.
The following code mirrors this:

(Reduction) solve pos(Lit,AncList) :- member(-Lit,AncList).
(Restart) solve_pos(Lit,AncList) :- goal([Lit|AncList]).

Since we assume goal-normal form, the original goal clause — namely < goal —
is known a priori. Thus, instead of copying in restart steps the root literal, it is
equivalent to hard-code a call to goal into the body of the Prolog clause. Note that



for Horn clauses only the single “natural” contrapositive is produced. In the above
example only the contrapositive (1) is produced, while (2) and (3) are not.

Obviously, the ordering of subgoals in this transformation can be altered, thus
allowing for different search strategies.

Furthermore, code for reduction steps has to be added as in the above transforma-
tion.

o If strict restart model elimination is to be implemented, only reduction steps from
negative literals towards positive ancestor literals are required. Consequently, ne-
gative ancestor literals need not to be stored. Since reduction steps from positive
literals are not carried out, the (Reduction) clause can be deleted. But then the
calls to the (Restart) clause can be unfolded. Altogether, this simplifies the trans-
formation to the following format (for the same clause as above, and also with A;
being selected):

cy a (i)(Anc) :- Db_1(Anc),..., bm(Anc),
goal([a_1]Ancl),

goal([a_(7 —1)|Anc]),
goal([a_(i + 1)|Anc]),

goal([a n|Anc]).

e Finally, for both versions the Prolog program gets its query
Q 7- goal([]).

Even in the case of strict restart model elimination it is not necessary to include
-goal in the ancestor list, since due to the construction it cannot be subject to a
reduction step.

Experimental Results

The aim of this section is just to demonstrate that restart model elimination is more than
a theoretical concept. We want to present some first experiments, which we interpret to
be encouraging enough to follow this way.



Restart Strict Restart
Model Elimination Model Elimination MPRF
Theorem w/o Selection w. Selection w/o Selection w. Selection (Normalized)
Non-Obvious 13.6 21.7 > 1000 > 1000 257.7
0.71 6.53
Eder45 3.3 2.0% 3.2 14.74
19.44 19.74
1.72 1.72 1.62 8.82
0.88 1,2 8.21:2
Eder58 > 1000 > 1000 > 1000 > 1000
152.82 45.92 428.92
45.9 1,2 11.0 12
Steamroller 4.9 6.8 > 1000 > 1000 4492
29.03
T#0— 0.21 0.083 4 0.20 0.0844
z2>0 > 1000* > 10004
Bledsoel 132.8 12.0 > 1000 > 1000
11.52
Bledsoe2 > 1000 45.8 > 1000 > 1000
43.12
Natnum3 18.0 0.38 11.2 0.26
0.081
Wos4 109.3 > 1000 > 1000 > 1000
23.82%¢
Wos 11 10.6 214.5
(Horn) 205.73
Lukasiewitz > 1000 ~ 285
(Horn) 73.82

Remarks: 1 — With (incomplete) regularity restriction . 2 — With lemmas. 2a — With anti-lemmas.
3 — "nosave” flag cleared. 4 — Depends from selected literal.
Figure 4: Runtime results (in seconds) for various provers.

We implemented the restart model elimination calculus in the way described above
in the theorem proving system PROTEIN ([Baumgartner and Furbach, 1994]). Both the
implementation language and the target language for the compiled code is ECL'PS®, an
enhanced Prolog-dialect, running on a SPARC/2. In the implementation we made use of
only one non-standard Prolog feature of ECL'PS¢, namely sound unification.

We ran several examples known from the literature, and some new ones. We compared
several versions of the prover, varying in strict restart model elimination vs. (non-strict)
restart model elimination, and selection function vs. no selection function; the first four



Restart ME ME
Model Elimination PTTP Setheo
Theorem (No Contrapositives!) || (Contrapositives)
Eder58 45.9 11.5 50.0
Steamroller 4.9 0.93 0.43
z#0— 0.083 15.2 2.87
z2>0
Bledsoel 11.5 > 1000 130.0
Bledsoe2 43.1 > 1000 22.7
Natnum3 0.26 0.08 0.08

Figure 4: No-Contrapositive Provers vs. Contrapositive Provers

columns in Figure 4 contain the runtime results. Column 5 (MPRF) contains the results
for the Modified Problem Reduction Format prover (see also the section on related work
below). The option “nosave flag cleared” means that caching is enabled. The data, taken
from [Plaisted, 1988], were obtained on a SUN 3 workstation, whereas the other provers
ran on a SUN Sparc Station 2. Hence, for normalisation the times for the MPRF prover
were divided by 7.

Optionally, the provers written by us extend the base calculi by the following features:
(Unit)-lemmas (currently all lemma candidates are stored), Anti-Lemmas (i.e. failure to
prove a goal within a given depth bound is recorded), ground reduction steps (in reduction
steps where no substitution is involved no further proof alternative needs to be explored),
blockwise regularity as defined at the end of Section 3.

Unless otherwise noted in Figure 4, only the ground-reduction flag was set in our
provers; for iterative deepening, the threshold was increased in each iteration by 1, and
each extension step was uniformly charged with a cost of 1.

Furthermore, we also found it interesting to run standard model elimination provers
which use contrapositives. These experiments given in Figure 4 demonstrate that in some
cases, namely the examples from real-analysis, restart model elimination results in better
performance, whereas in the usual benchmarks the results with restart based procedures
are in the same order of magnitude.

The one referred to as ME-PTTP in column 2 is a PTTP-prover closely following
the ideas from [Stickel, 1988, Stickel, 1989] implemented in the same environment as our
restart provers (in fact, it requires only setting a flag to switch calculi), and hence runtime
results are easily comparable. Column 3 (Setheo) is the well-known Setheo prover [Letz
et al., 1992] in its latest version (Version 3.0). Setheo was run in its default mode, which
then makes use of the following refinements and constraints: subgoal reordering, purity,
antilemmas, regularity, tautology and subsumption,

The examples run were the following:

The one referred to as Non-Obvious is taken from the October 1986 Newsletter of the



Association of Automated Reasoning and consists of the following clauses:

— p(a,b)
— q(c,d)
p(X,Y),q¢(X,Y) <
p(X,Z) — p(X,Y),p(Y,Z)
Q(XaZ) — Q(X’Y),Q(Yaz)
q(X,Y) — Q(YaX)

The paper [Astrachan and Stickel, 1992] investigates caching and lemmaizing techniques

within Horn problems. This example, however, is included as one of a few non-Horn

problems. The report is 653 secs for the METEOR prover, and 1.42 secs with lemmaizing.
The Eder{m){n) examples consist of the clauses

— p(X),p(f™(X))
p(X), p(f"(X)) <

For the steamroller example we used the formulation from [Manthey and Bry, 1988].
Although this example seems to be a domain of the standard model elimination provers,
restart model elimination behaves quite well.

The example referred to by z # 0 — 2 > 0 is to prove this theorem (z is universally
quantified) from calculus, partially given by the formulas

X>0 VvV X=0 v —-X>0 Axiom.
X>0 AN Y>>0 — X+4+Y>0 Axiom.
X>0 AN Y>>0 — XxY >0 Axiom.
—Xx—-Y=XxY Lemma.

where = is equality and > is a strict ordering. The transformation to clauses was done
in a way avoiding the use of equality as much as possible, much as in [Wos, 1988].

The Bledsoe examples are the first two of the five given in [Bledsoe, 1990].

Natnum3 is more relevant to logic programming; it computes in simple integer arith-
metic:

— even(s(s(s(s(s(s(s(s(0)))))))))
— 0dd(0)
even(s(X)) < odd(X)
odd(s(X)) « even(X)
even(X), odd(X)

The Wos4 example is a well known example from group theory [Wos, 1988]. Finally,
Wos11 and Lukasiewicz are two Horn examples. The latter is:

— th(i(i(i(a, b), a)

H(Q) — th(P), th(i(P, Q)
th(i(i(i(X, Y), Z),i(i(Z, X),i(U, X))))

)

Now let us summarize the results. Compared among each other each of the 4 versions
of restart model elimination has its justification by dedicated examples. In the parameter



space non-strict restart vs. strict restart model elimination we prefer as the default stra-
tegy the non-strict version, since whenever the strict version found a proof in reasonable
time, the non-strict version did as well; but on most examples the strict version failed or
behaved poorly, while the other version found a proof (Non-Obvious, Eder58, Bledsoel,
Bledsoe?2, Steamroller, Wos/).

In the parameter space selection function vs. no selection function we will not strictly
prefer the one to the other. Note the extreme dependence on the “right” choice in the
z # 0 — 2% > 0-example, while in the Eder-examples the right choice is not that crucial.
On the other side, the Wos4 and Steamroller example obviously require the use of several
contrapositives.

From this results we learn that the selection function should be carefully determined.
Here, heuristics are conceivable such as “always select a biggest (in some ordering) head
literal” in order to work in a decreasing direction. The selection function can even be
determined dynamically within the bounds of Definition 3.3.

Currently, the user has to supply the selection function for a given input clause. This
function is inherited to all instances of that clause. Here we see potential for further
improvements.

But even at the moment our restart provers can well compete with the MPRF prover,
which is according to our classification, closest to the strict restart prover with selection
function (see also the next section). Since caching helps a lot in MPRF as in Non-Obvious
and Steamroller, we also intend to include it in our provers (see also [Astrachan and
Stickel, 1992] for practical results on caching). On the other hand, as our experiments
suggest, the MPRF prover might benefit a lot from relaxing the calculus towards the
absence of a selection function and away from strict reduction steps.

Ordinary model elimination as implemented by ME-PTTP and Setheo is sometimes
faster than restart model elimination. This also holds for some examples from [Chang
and Lee, 1973] and surely several others. In the case of Setheo this may especially be due
to the numerous refinements not present in the other provers. However there are enough
interesting cases where restart model outperforms ordinary model elimination. Note in
particular the dramatic speedup for the example from calculus.

5 Related Work

Connection Method. The connection method [Bibel, 1987] is an analytic calculus closely
related to model elimination. Clause sets are called matrices there, and a path through
a matriz is obtained by taking exactly one literal from every clause in the matrix. The
method proceeds by systematically checking all paths through the matrix to contain
complementary literals. If this is the case, a refutation has been found.

A somewhat higher-level formulation of the connection method can be found in [Eder,
1992], and in [Baumgartner and Furbach, 1993] we showed that this connection method
can, in steps, simulate model elimination. The converse, however, is not true for the
following essential difference between the connection method and model elimination: in
model elimination in extension steps a complementary pair of literals (called connection)



must be established between the leaf literal where the extension occurred and some
literal of the extending clause. In the connection method this restriction is dropped, and
so every literal along the path (or even none) may be part of the connection.

This property is also the key for the observation stated in the introduction, namely
that the connection method is complete without the use of contrapositives. In order to
see this, recall that a restart step consists of copying the first literal of the path, followed
by an extension step. Thus, copying is not necessary if the first literal in the path is
accessible for the connection — as is the case in the connection method. Hence we get
as a corollary to theorem 3.6, the completeness of strict restart model elimination with
selection function:

Corollary 5.1 The connection method is complete for input sets in goal-normal form,
even if no contrapositives are used.

Problem Reduction Formats. In [Plaisted, 1988] two calculi named simplified problem
reduction format and modified problem reduction format are described. They are goal-
oriented, and neither of these needs contrapositives. We will discuss both of them.

The simplified problem reduction format (SPRF) is a variant of the Gentzen sequent
calculus (see e.g. [Gallier, 1987]). A sequent is pair, written as I' — L where T is a list
of literals, and L is a literal. From the model elimination point of view a sequent I' — L
corresponds to the path I o (L), i.e. the goal L is to be proven in the context (ancestor
list) T

Clauses are translated to inference rules operating on sequents; a clause L < Ly, ..., L,
is translated into the inference rule

r— 1, I—L,
I'—- L

where I' is a variable.

The interesting case is to see how model elimination restart steps can be mapped to
derivations in SPRF. Suppose we have in a restart model elimination derivation a leaf
—p and wish to extend with the clause p, ¢ < r. After copying, the situation looks as
follows:

-p
[\
b q -

" ‘

r

-p <—— By restart



This situation can be mirrored in SPRF by the following partial proof:

not(q) — not(q) not(q) — r

Ry
not(q) — p q—P

= Splzt.

The Split rule is in effect the cut-rule, and R; stems from the clause p, ¢ < r. While the
sequent not(q) — not(q) is an instance of an axiom, the boldface sequents are unproved.
Note the close relationship to restart model elimination: the sequent ¢ — p immediately
corresponds to the goal —p with ancestor list =p o ¢ in restart model elimination; it
is even identical in strict restart model elimination, as negative ancestors need not be
stored. For the other sequent not(q) — r note that the corresponding goal -7 in restart
model elimination does not have the ancestor not(q). If additional information — such as
not(q) — is considered as an advantage for proof finding, this is a shortcoming of restart
model elimination. The situation however can easily be repaired either by an explicit
change to the calculus, or by incorporating a more general factorization ruled.

In this way, restart model elimination steps can be mapped to partial SPRF proofs.
The converse, however, is not true. This is due to the fact that the splitting rule can
be applied in every proof situation, i.e. to every sequent derived along a proof. In other
words, a case analysis p or —p can be carried even to goals totally unrelated to p.

Thus, in sum, the restart model elimination is more restricted than SPRF.

The modified problem reduction format (MPRF) avoids the problem of uncontrolled
application of the splitting rule. This is formally carried out by an additional syntactical
layer between “sequents” and “inference rules”. An alternate presentation in tree format
was defined by [Mellouli, 1990]. Similar mappings as carried out for the SPRF convince us
that the MPRF is operationally closely related to strict restart model elimination. More
precisely, MPREF' explained in our terminology means that a restart step may occur with
any negative literal along the current path, not just the topmost goal literal. Plaisted
suggested to try for the proof search all negative literals, beginning from the current leaf
and processing towards the root node. The advantage of doing so is to avoid useless
re-solving of a goal too near to the root. But, in general, it cannot be predicted which of
these goals results in a succesfull proof. Hence, in the worst case the topmost goal literal
has to be used for a restart step eventually, and all previous proof attempts are useless.

Another notable difference between restart model elimination and MPRF is that rest-
art model elimination enables the use of the negative literals along the paths for reduction
steps. As our experiments show this is quite valuable.

Near-Horn Prolog. As already mentioned in the introduction, there is a close relation
to Loveland’s Near-Horn Prolog, especially to the InH-Prolog variant from [Loveland and
Reed, 1989]. Instead of one tableau in our model elimination calculi, Inh-Prolog deduc-
tions consist of a sequence of Prolog-like computations, called blocks. The activation of

3Factorization means that a branch may be closed if its leaf is identical to some brother node of a
predecessor of this leaf.



such blocks corresponds to our restart extension steps. If we agree that Prolog stepwisely
transforms a goal set G into the empty goal set, then the Prolog-like computations in
InH-Prolog deal with triples of the form G # A { D }. Here, the list A is called active
heads and the list D is called deferred heads. These components can easily be explained
from the viewpoint of restart model elimination: the active heads A corresponds to the
positive literals of the path in restart model elimination which was most recently selected
for a restart step; consequently, since A is a left-ended stack the leftmost literal in A is
the literal which caused the restart step. In the Prolog-like restart blocks every literal in
A may be used in the role of a unit input clause (“cancellation step) in order to get rid
of a goal literal. The deferred heads D correspond to the remaining positive leaf literals
of the path multiset; they will cause new restart blocks (or restart steps) at a later time.

Let us compare our refutation from Figure 2 with the following InH-Prolog refutation.
In this example no deferred head occurs.

7- GOAL
- P,Q
- Q,Q % factorisation to simplify presentation!
- Q #P % P from disjunctive clause is deferred
- # P % Block finished
restart
?-GOAL # P
-P,Q #P % cancellation (reduction)
-Q#P
-P#P % cancellation
- #P h

The cancellation steps in this derivation correspond to the two reduction steps in the
right subtree of Figure 2. The derivation from the left subtree does not have a counterpart
in the above InH-Prolog refutation, because of the factorisation step we performed in the
first block; this, of course, would have been possible in the restart model elimination
refutation.

The reduction steps starting from positive leaf-literals have no counterpart in InH-
Prolog - within a block there are only extension or cancellation steps. The latter corre-
spond to reductions with a negative leaf-literal.

On the other side, the concept of a strong cancellation pruning rule of InH-Prolog
has (so far) no counterpart in restart model elimination. By this rule, a certain class
of refutations is discarded. Stated positively, and in the terminology of restart model
elimination, only those refutations are acceptable in which a literal which caused a restart
step is used in a (any) subsequent reduction step. Thus restart steps not relevant for the
proof are filtered out. The completeness of this restriction can be seen again by analyzing
the completeness proof of Lemma 3.7. In brief, a restart step applied to A, B «+ C causes
by the splitting rule Horn refutations with A «+ C and B. Now, if the given clause set is
supposed (without loss of generality) to be minimal unsatisfiable, then also the splitted



sets contain minimal unsatisfiable subsets containing A < C and B, respectively. Hence
these clauses must be used in the Horn refutations, and consequently, the restart step
occurring at B must be followed by a reduction step to B.

Summarizing on all these considerations we conclude that InH-Prolog is a variant of
strict restart model elimination without selection function. As a consequence we see that

our PTTP implementation of strict restart model elimination is an implementation of
InH-Prolog.

SLWV-Resolution. In [Pereira et al., 1991] a theorem prover that retains the procedural
aspects of logic programming is defined. This so-called SLWV resolution system is based
on SL-resolution, a linear resolution format. SLWYV saves contrapositives and uses case
analysis as an additional inference rule. To this end the usual resolution step from SL-
resolution is modified such that besides the current goal any ancestor is allowed to be
expanded. In our terminology this would mean that every negative literal along a path
can be copied in a restart step. As the authors of [Pereira et al., 1991] explain, this
freedom clearly increases the search space when compared to Near-Horn Prolog in the
case of near-Horn problems. As a further difference to our restart model elimination,
SLWV-Resolution needs a completely new framework. Pereira et.al. had to redesign the
PTTP-implementation technique for their prover, whereas we were able to implement
restart model elimination by a small change of our existing prover.
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