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Abstract. In this paper we present an ordered theory resolution calswnd prove
its completeness. Theory reasoning means to relieve aloaléwm explicitly drawing
inferences in a given theory by special purpose inferendesr(e.g. E-resolution for
equality reasoning). We take advantage of orderings (eiigplffication orderings) by
disallowing to resolve upon clauses which violate certaaximality constraints; stated
positively, a resolvent may only be built if all the selecliéerals are maximal in their
clauses. By this technique the search space is drasticaliggal. As an instantiation for
theory reasoning we show that equality can be built in bydrigtunification.
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1. Introduction

The resolution principle(Rob69) is an important and well investigated calculus for au-
tomated reasoning. In this paper we will enrich the resolution calculus vitdmeework
for ordered theory reasoning.

Theory reasonind(Sti85) means to relieve a calculus from explicit reasoning in some
problem domain (e.g. equality, partial orders) by taking apart the domain knowledge and
“building it into” the calculus by means of dedicated inference rules (e.g. paraarodul
tion, E-resolution for equality). Theory reasoning is a very general schemdasdhas
many applications, among them are the following: Reasoning with taxonomical knowil
edge (confer e.g. the Krypton syste(BFL83)), building in the theory of equality, build-
ing in theory-unification (e.g. AC-unification, universal unification for equationabt

ries based on narrowing), combination of theorem provers with functional progregmm
languages, building in arithmetic, reasoning with generalized clausese \ieliterals

in these clauses are conjunctions of ordinary literals, and building in the axibthe
“reachability” relation in the translation of modal logic to ordinary first arlbgic.

The advantages of theory reasoning compared to ordinary reasoning are the following:
for the first, the theory inference system may be specially tailored forhghery to be



reasoned with; thus higher efficiency can be achieved by a clever reasonéakibst
advantage of the theories' properties. For the second, theory resolution stepsr@are m
“macroscopic’than ordinary resolution steps, in the sense that they mayeagabn

more than two literals and so can hide a lot of computation that is not relewatitd
overall proof plan. Thus proofs become shorter and are more compact, leading to bette
readability.

Orderingrestrictions are a very effective technique to prune the huge search spang com
up in the search for a proof. In our understandingmfered resolutiora partial ordering

on the literals is used to disallow resolving two clauses which violataicemaximality
constraints of the selected literals; stated positively, a resomagtonly be built if all the
selected literals are maximal in their clauses.

By “ordered theory resolution” we mean the combination of both methods, i.e. imposing
ordering restrictions on theory resolution. Thus we combine the advantage of theory
reasoning with the advantage of ordering restrictions.

Our calculus can deal with arbitrary theories, provided that they are esgliesas a
universally quantified formulae, e.g. as a set of clauses. This restristiomtivated

by our intended application of a Herbrand-theorem for the completeness proof; such a
theorem can only be applied for universally quantified formulae. For this casmmwe
prove the completeness of the calculus. This is our main result.

The rest of the paper is structured as follows: in section 2 we will infiynd@scribe the
calculus by an example. In section 3 the calculus is formally defined, anctiorse
we prove that our calculus can immediately be instantiated to rigid E-aidit Section
5 contains the completeness proof. Section 6 deals with related work. Riveltraw
some conclusions in section 7.

2. An Example

Let us compute an example to demonstrate the main ideas. Assume the taxonomical
theory 7 be defined by the following clause set:

(T-1) VX : boy(X) — person(X) ;; A'boy is a person.

(T-2) VX : girl(X) — person(X) ;» A girl is a person.

(T-3) VX, Y : person(X) A child(X,Y) — person(Y) ;» A child of a person
;; IS a person.

Furthermore letS be the following clause set (in a logic programming style notation):

(1) boy(a) ;; Some facts



(2) child(a,b)
(3) child(b,c)
(4) sex(a, male)
(5) sex(b, female)
(6) sex(c, male)
(7)  child(X,Y) — descendant(X,Y) ;; Children are descendants
(8) child(X,Y)Adescendant(Y, Z)— descendant(X, Z) ;; Transitivity of descendant
(9)  person(X) A person(Y)A
sex(X, Z) N sex(Y, Z) — samesex(X,Y) ;; Same sex of persons
(10) descendant(X,Y) A samesex(X,Y) — ;» “Query”

The clauses (1) — (6) inS are some facts about individualsb, c; clauses (7) and (8)
definedescendantship and (9) defines what it means for two persons to have the same
sex. Finally, clause (10) asks whether there existsXaand anY such thatY” is an
descendant ok, and both have the same sex.

S is unsatisfiable in the theory , as can be seen by instantiatiiigwith « andY with ¢

in clause (10). We will now develop a formal proof by ordered theory resolution.deror
to do so an ordering on the literals is needed. For this example the followingrayder
works fine:

e Forterms we ordet >~ b > c.

e For predicate symbols we ordeumesex > sex > person > child > descendant.
The ordering for predicate symbols not listed is immaterial.

e For literals with different predicate symbols the previous ordering on theirqati
symbols is used (thus e.ghild(X,Y) > descendant(X,Y)).

e For literals with the same predicate symbol but different sign, the posstiyesater
than the negative (thus e.descendant(X,Y) = —descendant(X,Y)).

e For literals with same predicate symbol and same sign the above termngrderi
is used (thus e.g.person(a) > person(b)). If variables appear, comparison is
undefined (thus e.gerson(X) andperson(Y') are incomparable).

As mentioned above, only maximal literals in clauses (these are “pdteriiiggest”
literals, i.e. literals that can be made biggest in a clause by instanjiabay be selected

for ordered theory inferences. Thus by the choosen ordering the following controled us
of clauses is achieved: sinekild > descendant only thechild-literals can be selected in

(7) and (8). So (infinite) resolution among clauses (7) and (8) andekeendaniiteral

in (10) is avoided; in other words, (7) and (8) are “blocked” unlesscthikl -literal is
resolved away. But even if thehild -literals are resolved away ifY) and(8), say for
example with clause (2), no infinite resolution among the resulting clauses

(7")  descendant(a, b)
(8") descendant(b, Z) — descendant(a, Z)



will occur, because if8') only the positivedescendantliteral may be selected for reso-
lution. Thus there exists no ordered theory resolvent ant@hgnd(8'). This example
demonstrates one of the main applications of ordering restrictions: they heipidarafi-
nite and redundant derivations in proofs. Note that below we will show that compkste
is not affected by this restrictions.

An example for a legal theory resolution step is the following:

Ex1: boy(a) V boy(c)
child(a, b)
child (b, c)
—person(Y) V descendant (Y, Z)
boy(c) V descendant(c, Z)

The selected and thus maximal literals are underlined. By resolution on tiaelenel

it can be seen that the conjunction of the selected literal¥ isunsatisfiable. Thus an
ordered theory-resolution step can be applied. As usual, a most general sustitate:

{Y + c¢}) has to be computed, and the resolvent can then be built by an application of
the substitution to the disjunction of the nonselected literals.

A complete proof of the example is as follows (the selected literals inltheses are un-
derlined, the double-lined inferences indicate true theory resolution, wheresingihe
lined inferences indicate ordinary resolution; the labels show the used subsstirt
case of ordinary resolution, or the instances of theory clauses that justifyutheéhgory
resolution steps):



(9) person(X) A person(Y) A sex(X, Z) A sex(Y,Z) — samesex(X,Y)
X'+ X
Y Y (10) descendant(X',Y") A samesez(X',Y') —
-
descendant(X,Y’) A person(X) A person(Y') A sex(X,Z) A sex(Y,Z) —

X <+a
Z « male (4) sezx(a, male)

/

descendant(a,Y’) A person(a) A person(Y') A sex(Y, male) —

Yo (6) sez(c, male)
/

descendant(a, c) A person(a) A person(c) —

boy(a) — person(a)

1) boy(a
/() y(a)

boy(a) — person(a) descendant(a, c) A person(c) —
person(a) A child(a, b) —_—

b 1) b 2) child(a.b) _(3) child(b
) oot W beyta) (@) chidlab) () chitat, )
— person(c)

descéndant(a, c) —

X +a

Zc (8) child(X,Y) A descendant(Y, Z) — descendant (X, Z)

/
child(a,Y) A descendant(Y,c) —

Y «b (2) child(a,b)

/

: hild (X,Y) —
descendant (b, c) — &3) Cb]”ld(ba c) ( ’
Vool / descendant(X,Y)
descendant (b, c)
S
O

3. The Calculus

3.1. Preliminaries
A clauses asetof literal§ L+, . . ., L, }, often writtenad.; V...V L,. Instead of L}UR
we will also write L vV R. A unit clausecontains exactly one element.

As motivated in the introduction we take apart the knowledge of the domain (i.e. the
theory) from the program clauses. More technically, theoms of the theorgor simply
thetheory) 7 is a satisfiable set of clauses.

Concerning model theory it is sufficient to consider Herbrand-interpretationsvaimish



assign a fixed meaning to all language elements short of atoms; thus we déferbiand-

) interpretationto be any total function from the set of ground atoms$#eue, false}. Let

T be a theory. AHerbrand-)7 -interpretationis an interpretation satisfying the theory
T . Since we are dealing witli-interpretations only, the prefik- can unambigiously be
omitted in the sequel.

A clause setV! is satisfiableiff there exists an interpretation that simultaneously assigns
trueto all ground instances of its members, or else utnsatisfiable

3.2. Orderings

Next we will introduce orderings, which our inference rules below will take athge of.

DEFINITION 3.1

(ORDERING) Let > be a partial ordering on terms and letdenote the strict subset
of ». Let > satisfy the following conditions, whereX,Y) € Term x Term or
(X,Y) € Literal x Literal:

1. > is stable, i.e. for all substitutions if X > Y thenXo > Yo.
2. > is total on ground terms and is total on ground literals.

As usualwe defin&l <Y iff Y > X andX < Y iff Y = X. Let M be a literal set. A
literal L € M is thebiggest literal inM iff for all L' € M, L’ # L it holds thatl’ < L.

L € M ismaximal inM iff forall L' € M it holds thatl. £ L' (or, equivalently, iff there
does notexistd’ € M s.t. L < L'). maz(M) denotes the set of all maximal literals of
M. O

An example for such an ordering are the extensions from terms to literals ofethe
known simplification orderings (e.g. recursive path orderings, lexicographic pain-or
ing) which are mainly used in the term rewriting paradigm. But note that we deqoire
the ordering to be noetherian. This is not required since in contrast to termimgveal-
culi in our calculus no chains are built at all. Note also that in the orderinigenéls we
make no assumption about the treatment of the negation sign. Hences & atom we
may allow to compared < —A or -A < A, whatever seems more appropriate for the
application.

See(Der87) for an overview about orderings.

Examples:1. The literalperson(father(z)) is both, the biggest and a maximal element
in

{person(father(z)), person(z)}, while person(x) is neither the biggest nor maximal.

2. {child(z,y), child(y,z)} has no biggest element, since with= {y <« father(z)}

we havechild(x,y)o1 < child(y,z)o; and withoy = {z « father(y)} we have



child(y, x)os < child(z,y)os (if the arguments othild are lexicographically ordered).
However, both elements are maximal.

3.3. Substitutions

As with non-theory calculi the refutations should be computed at a most general leve
this is usually achieved by most general unifiers. In the presence of theorievdrw
unifiers need not be unique, and they are replaced by the more general and dual concept
of theory refuting substitutions

DEFINITION 3.2

(THEORY REFUTING SUBSTITUTION Let £ be a literal set. £ is 7-complementa-
ry! iff for all ground substitutionsy the setLy is 7-unsatisfiableé £ is minimal
T -complementaryff £ is T -complementary and all subsefs C L are not7-
complementary.

We say thatC is (minimal) 7 -refutable byo iff Lo is (minimal)7-complementary.

A set of substitutions is eomplete and most general setfofrefuting substitutions fo£
(or short: CSR(L)) iff

1. forallo € CSRr(L): L is T-refutable by (Correctness)

2. for all substitution® such thatl is 7 -refutable byg:
there exists @ € CSR+ (L) and a substitution’ such tha = oo'|var(0)
(Completeness)

The members ofCSR(L) are also callednost generall —refuters (MGR) forL. The
prefix T - is often omitted in the sequel. a

Example: Assume the theory consists solely of (T-1) from the example in the introduc-
tion: 7 = {Vz : boy(z) — person(z)}. Consider the set

S = {boy(x), —person(father(y))}. S'is T -refutable by MGRo = {z <« father(y)}

because every ground instancesef = {boy(father(y)), —person(father(y))} is un-
satisfiable in the theory (T-1)S is even minimally refutable by, as any true subset

of So can be ground instantiated to an (T-1)-satisfiable set. The substitutiodz «
father(z)} is not a refuting substitution faf, becaus&y = {boy(father(z)), —person(father(y))}
is not complementary. This can be seen by applying,tbay{z < a,y < b} to Sy and

finding a model.

this definition is intended as a generalization of standard “syntactically leongmtary” which
means that two literals are syntactic complementary iff one of them is tjegtina of the other.
2 Lo is the set that results from applyiagto the elements of



3.4. The inference rules

Next we will apply the previous concepts of orderings and theory refuting substitutions in
the inference rules of our calculus.

DEFINITION 3.3
(OTR-CaLcuLus) Let T be atheory. The inference rules of the ordered theory resolu-
tion calculus (OTR-Resolution) are defined as follows:

Ordered Factoring:
if (1) o is a most general

C (syntactical) unifier for some
CO' {Lla"'aLn}gC;

and (2)L,c is maximal inCo

Ordered theory resolution:

if (1)
o € CSRr({L4,...,Ly,}) for
¢, ... G, somel, € C4,...,L, € C,,

Cio —{L U...U(Cho —A{L,
(o= tha}) (Cne = {Lu}) and (2)L;o is maximal inC;o

(fori=1...n)

The inference rules of the ordered theory resolution cakcul

In these inference rules, tHg are called theselected literalsLet M be a clause set. An
OTR(T)-derivation ofC,, from M is a sequencé’,...,C, where eaclC; € M or is
obtained by an application of the above inference rulek wariable disjoint copies of
clauseg’;, ...C;, wherej; < 1,...,j; < 4. A ground derivatioris a derivation where
every clause is ground. refutation ofM is a derivation of the empty clauséfrom M.
O

If two literals are syntactically complementary then they grecomplementary in any
theory 7 . Hence the ordered resolution inference rule subsumes the well-known standard
resolution rule (modulo ordering).

As an example for an ordered theory resolution inference see the example Extioms
2 again; in the same section also a complete refutation can be found.

A standard problem in resolution calculi is the question whether tautologieslaigses
of the formA v —A v R are neccessary for refutational completeness. In standard non-
theory resolution, tautologies may savely be deleted. The following examplesghatv



this isnotthe case for theory resolution: let the clause set be
M, Z{AVB, ﬁVﬂB}

and let the theory state thatl“is logically equivalent taB”. Assume an ordering such
that the underlined literals are maximal in their clausks. is theory-unsatisfiable, and
although there exists a refutation, the only ordered theory resolvent of the claudes
is the clauseB v — B, which is a tautology.

4. Treating Equality by Rigid E-unification

In (GNPS90 a first order calculus with equality is defined. The base calculus is An-
drews method of mating€And81)), and equality is treated by a device callégid E-
unification The base calculus is not of crucial importance here, but the treatment of
equality is, since the results obtained by these authors are immediatelyadybglio our
calculus when instantiating the theory to equality.

In the mentioned calculus, inferences are carriechaadulo an equational theoryore
precisely, instead of computing the well-known most general unifier, the keyeponé
rigid E-unifieris used (GNPS90, Problem 2):

Given a finite set = {u; = vy,...,u, = v,} of equations and a paiwu, v) of
terms, is there a substitutiensuch that, treatind/c as a set of ground equations,

* -
uo =g, vo, thatis,uc andveo are congruent moduléo (by congruence closure)?

The substitutiow is called arigid E-unifier ofu andwv.

Most exciting, the authors show that rigid E-unificatiordecidable This result is ap-
plicable in our calculus if we can show that rigid E-unifiers coincide withBrefuting
substitutions (again, if the theory is equality), because then we can compute toagtle
of refuting substitutions with a rigid E-unification algorithm.

In order to compare concepts, the following observation is helpfis: a rigid E-unifier

of (u,v) wrt. Eiff Eo U {-uoc = vo} is E-unsatisfiable, when all variables are treated
as constant$. This reformulation will be the starting point for the comparison to rigid
E-unification. More formally we arrive at the following proposition.

3In the following argumentation variables are treated as constants: fantiidf direction note
*

thatuo =g, vo implies by reflexivity of equality thatuo = vo is false in all E-interpretations;
for the if-direction recognize that equality can be axiomatized in defingie)@nd thus a single
“query” ~uo = vo suffices for E-unsatisfiability; thusoc = vo is a logical consequence of a set

of positive equation&c. Then by Birckhoff's completeness theorem éE(, vo



ProOPOSITION4.1
Let M be a literal set and be a substitution. Theh! is E-refutable by iff Mo is
E-unsatisfiable, where the variablesMt are treated as constants.

PROOF Let X be the set of variables dffo.

(Only if) We prove the contraposition. Thus l&fc be not E-unsatisfiable; hendéo
is E-satisfiable. Lef* be a model forM o where the variables of/o are treated as
constants. Definé := {z < sk”|z € X} wheresk” is drawn from aX-indexed set of
new constant symbols. As a consequence of this definitfer is ground. Let/ be the
partial interpretation that is equal 16 but is undefined for (the constant¥) Definels«
as the interpretation that extentgvith the assignment&*(sk*) = I*(z) forallz € X.
By structural induction we see th&¥(Lof) = I* (Lo) for all L € M. With I* being a
model for Mo we have thus found a ground substituttbs.t. Mof is E-satisfiable. So
Mo is not E-refutable, and the contraposition is proved.

(If) We prove the contraposition. Thus assume that by some grounding substitution
Mo0 is E-satisfiable. Lef be a (Herbrand-) model. Lét* be the interpretation that
extendsl by I*(z) = z0 (for all z € X) wherex is treated as a constant ir.

By structural induction we see thafLof) = I*(Lo) for all L € M. With I being a
model for Mof we have thus found a modéf for Mo where the variables are treated
as constants. Hence the contraposition is proved. Q.E.D.

For our purpose the main application of the equivalence results in this sectmhudd

in rigid E-unification into the resolution calculus. To the best of our knowledgeighis
an original result. We conclude this discussion with the note that rigid E-umifircé
NP-complete.

5. Soundness and completeness

Soundness can be stated as follows:

THEOREMS5.1
(SOUNDNESS Let T be a theory and! be a clause set. If there exists @TR(T)
refutation ofM thenM is T -unsatisfiable.

It is much more difficult to prove theompletenessvhich shall be done next.

There is a canonical way for completenes proofs of first order calculi: first shew
desired result for the ground case, and then apply a lifting lemma to shovinéhgitdund
refutation can also be carried out with variables. We will also fellbis strategy.

The proof technique for the ground case is interesting of its own; it is a geneiatiodt
the technique based on the “excess literal parametaB710)). Informally, the excess

10



literal parameter is a measure for the complexity of clause sets, anda@etisting of

unit clauses only have the lowest complexity. Now, to show completeness tfudusa
one has to split an unsatisfiable clause set into unsatisfiable sets of mwplexity, and
“assemble” the existsing refutations of these split sets into a refutafidine original

set. However in this process more care need to be taken in our case thanoinginal
unordered case: in the unordered case the splitting may be carried anyoon-unit
clause and omnyliteral in that clause; this does not work in the ordered case. We have
to select for splitting that clause that contains shaallestiteral wrt. all literals occuring

in non-unit-clauses.

In the following letmin(X) denote the smallest literal wrt< occuring in a clause or
clause seiX'. By ground totality of< (definition 3.1) such a literal always exist.

LEMMA 5.2

Let M be a ground clause set ahde M be a ground unit clause. Suppose thatoes
not occur in a non-unit clause M. Then there does not exist a derivation of a non-unit
clauseL v R.

PROOF Assume, to the contrary that that there exists a derivation of some non-aunstecl
LV R. Let

D=0C,...,C,, LVR

be a shortest derivation (i.e. with minimal index Sincel does not occur in a non-unit
clause inM, L v R cannot be inM. HenceL Vv R is derived in an (un-)ordered theory
resolution step. The last inferencelinis of the form

Ci,...,Ci. FLVR

L must occur in one of the claus€s, ..., C;,. Let B be such a clause. B must contain at
leasttwo literals, the one that is resolved upon in the inference,/an8lo B is a non-unit
clause and containinf. HoweverB is obtained in a shorter derivation thanv R in D.
Contradiction to the assumption thatis the shortest derivation. Q.E.D.

LEMMA 5.3

Let M be a ground clause set andRee M. LetL be a literal such that (1) < min(R)
and such that (2). is < than all literals occuring in non-unit clauseshifi. Let M' =
M — {R}U{LV R}. Suppose that there exists an ordered derivation of some litgral
from M.

Then there exists an ordered derivatiolwgf from M' whereC),' = C,, orC,' = C, Vv L.
Furthermorel. is the smallest literal in every clause that contains it in that deong3).

PROOF. Let
D= Cl, .. .,Ck

be the given derivation. By induction gnwe will construct the desired derivatiap.
If £ = 0 then the lemma holds immediately by settiby = D, which is the empty
derivation. Otherwise, ik > 0 we distinguish 3 disjoint cases.

11



1. Cy = R. LetD' = LV R. By (1) aboveL is the smallest literal in the single clause
in that refutation and thus (3) holds.

2. C,, # RbutCy € M. Inthis case’;, € M'. SoD' = C}, is the desired derivation;
If Ck does not contaitd then (3) holds immediately, or else (3) follows from (2).

3. Cy ¢ M. C, must be obtained by an ordered theory resolution step. Suppose that

Cy is inferred from the clauseS;,, ..., C;,. By definition of derivation; < k
(for all 5 = 1...k) and hence by the induction hypotheses there éxistdered
derivationsD,’, ..., D, of clauses’;,’, ..., C;,' of M', where

Cij,:Ci' or CZ'].I:L\/CZ'J.

Since (3) holds for these derivations the maximal Iiterad?;]d is the same as the
maximal literal inC;; . HenceC,' can be obtained in an ordered theory resolution
from the clause€’;,’,...,C; ', whereC,' = C, or C}' = LV Cy. Thus by
concatenatind,’, ..., D," andC}' we obtain an ordered derivatid of C,’

It remains to show that (3) holds f@r,’. If no C;;" containsL thenC,' also does

not containZ and (3) holds immediately. Otherwise, suppose to the contrary that
P < L for some literal P in C}' (%)

SinceP occurs inC}' it must occur also in one of the claus(ésj’. Let B be such
a clause.B must contain at leasto literals, the one that is resolved upon in the
inference, and®. So B is a non-unit clauséxx).

By (2) P cannot occur in a non-unit clauseii. Also P cannot occur in a non-unit
clause inM’ (x * x). Proof of (x * x): assume to the contrary thRtoccurs inM’.
SinceM' differs from M only in the clausd. Vv R, which is inM' but notinM, P
must occur inL Vv R and thus inR. However, by (1)L < min(R) which contradicts
the assumptio® < L in (x). So(x  *) is proved.

From (xxx) it follows that P occurs as a unit-clause iv’. But then by lemma (5.2)
there does not exist a derivation Bfas deduced iffx). From this contradiction it
follows that the assumptiofx) is wrong. Thus (3) is proved.

Q.E.D.

LEMMA 5.4

(GROUND COMPLETENES$ Let T be a theory andl, be an unsatisfiable ground clause
set. Furthermore suppose a complete inference system f@s given. Then there exists
a ground OTR-refutation a¥/,,.

PROOF Since we deal with ground clauses here, the notions of “complementary” and
“unsatisfiable” are equivalent and will be used interchangeable in the proof.

Let M be a literal set. Theh(M) denotes the number of occurences of literald/immi-
nus the number of clausesit (k(M) is called theexcess literal parametén ((AB70))).
Now we prove the claim by induction dr{M).

12



1. |k(M) =0} M must be a set of unit clauses
M ={Li,...,L,}

SinceM is unsatisfiable a (groundydered theory resolutiostep can be applied to
Ly, ..., L,. This step results in the empty clause. Hence we have found a refutation

Li,...,L,, O
for M.

2. |k(M) > 0| Suppose that the result holds for unsatisfiable ground clausé®gets
such thatk(M') < k(M). Sincek(M) > 0, M contains at least one non-unit
clause. Letl,,;, be the smallest literal wrt=< of all literals occuring in non-unit
clauses inV/. Hence there exists a clau§e= L,,;, V R whereL is a literal andR
is a non-empty clause. Now consider

ML =M - {C}U {me}, and
Mg =M — {CYU{R)}

Both M; and My are unsatisfiable, since otherwise a model for one of them were
a model forM, which contradicts the assumption thet is unsatisfiable. Since
k(M) < k(M) we can apply the induction hypothesis and obtain an ordered refu-
tation of M7,.

Now ConsiderMg. Sincek(Mpg) < k(M) we can apply the induction hypothesis
again and obtain an ordered refutatiom\éf,. SinceL,,;, < min(R) we can apply
lemma (5.3) and obtain either an ordered refutatiod@f—{ R} U{L,;n VR} = M

or an ordered derivation of,,;,. In the first case we have immediately found
the desired refutation; in the second case we append to that derivation thee abov
refutation of M, and thus obtain an ordered refutation\éf

Q.E.D.

Next we turn to lifting. As a preliminary we need the following lemma thates that the
notion of maximality can be lifted from instances to more general terms.

LEMMA 5.5
Let S be a literal setL be a literal inS, o andé be substitutions such that < §. If
L§ € maz(S0) thenLo € maz(So).

PROOF
L§ € maz(S96)
(By def. of max)<= VL' € S§:Lé AL
(0 =00')<= VL' € (So)o': (Lo)o' A L'
(Contrapos. of stability of »)=— VL" € So: Lo £ L"
(By def. of max)<= Lo € maz(So).

Q.E.D.
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LEMMA 5.6

(LIFTING LEMMA) Supposéd is a substitution and'é is an ordered theory resolvent of
some clause€6 ...C,0. Then there exists a derivation of a clausefromC; ...C,,
obtained from zero or one application of an ordered factoring step, followed imgle s
application of an ordered theory resolution step such@tas an instance of” .

PROOF In the given ordered theory resolution step, ev€f§ (i = 1...n) takes the
form:

where thel;f are the selected literals. For every cladsef is a unifier fork; (i > 1)
literals

E = {Li,la .- 'aLi,ki}

Now let~, be a most general unifier fdf;, i.e. L;1v; = L, x,7:. We may assume that
introduces no new variables 9. L;0 is the selected literal i6;0 and thus is maximal.
By lemma (5.5)L; is maximal inC;. ThusC;~y can be derived frond’; by an application
of an ordered factoring step.

Let
T=7--Tn

Since allC; are variable disjoint, ang; introduces no new variables it follows that
Civi = Ciy = Lipy V Ry

Since; is most generall; ;6 is an instance oL, ;y, say byd;:
Lz’,19 = Lz‘,ﬂ(si

Clearly we may assume thgtacts only on variables if; ;y. Furthermore, since afl;y
are variable disjoint we may build

§=01...0,
and obtain
Ci0 = (Ciy)d; = (Cyy)d
In the given resolution step the selected literals may be written as

{(L1.17)0, - .- (Ln17y)d}

By definition of ordered theory resolution this set7s-complementary. Henceis a 7
-refuting substitution fo{ L, 1, ... L, 1v}. FurthermorgL;y)d is maximal in(C;7y)é
(*). By the completeness property in the definition of complete set of refutefs 3dd
there exists also a more general substitutiod § such that

{(L117)o, ... (Ly1v)o}
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is T -complementary. By lemma (5.5) it follows from (*) théL, ;v)o is maximal in
(Cyy)o. Thus we can apply an ordered theory resolution stefCtoy, . .., C,,v} with
selected literald.; 17, .. ., L, 17y yielding the resolvent

C'=(Riy)o V...V (Ryy)o
It remains to show that the given resolvent
CO=Ri0V...VR,0

can be obtained fromd”’ by instantiation. This however follows immediately from the
completeness property of most general refuters again, since by that propertgxisése
a substitutiorw’ such that = oo’. Thus

co =
(RiY)SV ...V (Ryy)d =
(R1y)oo' V...V (Ryy)oo' =
(Riyo)o' V...V (Ryyo)o' =
C'o’
Q.E.D.

THEOREM 5.7
(COMPLETENESS OF ORDERED THEORY RESOLUTIONLet 7 be a theory and/! be a
T -unsatisfiable clause set.Then there existO@mR (T )-refutation ofM .

PROOF The proof employs an adapted version of the Skolem-Herbrand-Godel theorem
for theory reasoning. In its basic version the theorem states that a claugeisensat-
isfiable iff there exists a finite sét/, of ground instances of clauses fra which are
unsatisfiable; for our purpose however we need the clainTfansatisfiability. But the
theorem holds for this case too, as can be seen by adding the axioms of the Tha®ry
first-order clauses t§ and applying the basic version.

Thus suppose thdl, is a finite unsatisfiable set of ground instances of clauses ftom
By the ground completeness (lemma 514) has a refutation. By induction on the length
of the refutation and applying the lifting lemma in each step this proof canrbedaut
on the variable level, using most genefAl-refuting substitutions. Q.E.D.

6. Related Work

Related work comes from two sources: the onerdering restrictionsand the other is
theory reasoningWe will discuss both of them.

Early ordered resolution approaches (butthebryresolution) are described itGL73)).
There, insemantic resolutiothe ordering is carried out on the predicate symbols only. As
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a drawback of comparing the predicate symbols only the restriction is not at\weffas
could be when “looking inside the literals”. In the same book, Ol-resolution igitbest
It avoids that drawback, but is incomplete. In another approach (OL-Resolutioth vghi
similar to model elimination) the idea of selecting maximal literals aay be imposed
ononeparent clause, but not on both parent clauses.

Recent work in equational reasoning is mainly based on rewriting techniquesi@and t
superposition inference rule, which is an order restricted specializafi paramodula-
tion. Ordered inference systems for first order logic with equality were propbge
e.g. (BG90; HR86; ZK88). In our calculus, an equationally unsatisfiable literal set is
searched by selecting one literal franultipleclauses. These whole set is resolved away
in the inference step. In contrast to that, the superposition-based caloulil&se” our
inference step by a sequence of more fine-grained superposition steps.

Now we turn to the related work in theory reasoning. Theory reasoning was ineddyc
M. Stickel within the general, non-linear resolution calcul(Btig85; Sti83). There, one
main inference rule is callegarrow theory resolutiopwhich resolves upon a conjunction
of theoryliterals. There exists also a variant calleite theory resolutiomhich resolves
upon a conjunction oflauses Using Stickel's terminology, our theory inference rule is
narrow theory resolution.

Our work distinguishes from Stickels in several aspects: for the firshave lifted our
inference rules to full first order logic, while the original work defines a grouncubag
only; for the second, and more important, our calculus is fully ordered.

Since Stickel's pioneering work, the scheme was ported to many calowisltone for
matrix methods ((MR87)), for the connection methodRet90), for connection graphs
((0S921) and for model elimination(Bau91). However, no ordering restrictions are
applied in these calculi.

7. Conclusions

In the preceeding text we have presented a resolution calculus for ordered réreesg-
ing and proved its completeness. Furthermore we showed that theory reasamibg c
instantiated to rigid E-unification.

Further work should be done on crucial notions in theorem proving such as “subsumption”
and “simplification”. In practice, the inference steps may become “taefdor certain
theories due to long computations by the theory reasoner. It may turn out to be more
appropriate to simulate a theory resolution step as defined in the text by sorakels
inference steps. For example, one might say that a rigid E-unification stdpecsimu-

lated by a sequence of paramodulation steps. For that purpose we are currently working
on variant of the calculus that includegpartial ordered theory resolution rule.
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