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Abstract. We present anew transformation method by which agiven Horn theory istransformed in such away
that resolution derivations can be carried out which are both linear (in the sense of Prologs SLD-resolution)
and unit-resulting (i.e. the resol vents are unit clauses). Thisis not trivial since although both strategies alone
are complete, their naive combination is not. Completenessis recovered by our method through acompletion
procedure in the spirit of Knuth-Bendix completion, however with different ordering criteria. A powerful
redundancy criterion helpsto find afinite system quite often.

The transformed theory can be used in combination with linear calculi such ase.g. (theory) model elimination
to yield sound, complete and efficient calculi for full first order clause logic over the given Horn theory.

As an example application, our method discovers a generalization of the well-known linear paramodulation
calculus for the combined theory of equality and strict orderings.

The method has been implemented and has been tested in conjunction with a model elimination theorem
prover.

1. Introduction

In proving mathematical theorems a problem can often be divided into two parts: the one
part, called the theory, describes common knowledge about some problem domain (e.g.
equality, orderings, set theory, arithmetic). The other part consists of the hypothesis and
the concrete theorem to be proved. This distinction can be modeled within automated
theorem proving by theory reasoning calculi such as theory resolution (Stickel, 1985) or
theory model elimination (Baumgartner, 1992a; Baumgartner, 1994). There, a“foreground
reasoner” (such as model elimination) is coupled with a “background reasoner” for
reasoning within the theory. In this scenario, it would be most useful to transform atheory
“once and for all” into a background reasoner which can process the theory far more
efficiently than it would be possible by supplying the theory axioms as input clauses.
Consider for example atransitivity axiom such as —(z < y) V —(y < z) V (z < z) for
strict orderings. This axiom can be used e.g. in ordinary resolution or model elimination
in almost any proof state and leads to an explosion of the search space.

It isthe purpose of this paper to define anew and general technique, which transforms
a given Horn theory into an inference system for background reasoning within theory

" This research was sponsored by the “Deutsche Forschungsgemeinschaft (DFG)” within the “ Schwer-
punktprogramm Deduktion”.



2 Peter Baumgartner

reasoning calculi. Currently, the transformation techniqueistailored towards the use with
linear, goal-sensitive (Plaisted et al., 1993) calculi such as model elimination (Love-
land, 1968) or linear resolution (Loveland, 1970). Our interest in linear calculi comes
from their successful application in automated theorem proving (see e.g. (Baumgart-
ner and Furbach, 1994b; Stickel, 1989; Stickel, 1990; Letz et al., 1992; Astrachan and
Stickel, 1992) for descriptions of running systems; the calculus of model elimination
was introduced by Loveland (Loveland, 1968; Loveland, 1978), more recent variants
are described in (Plaisted, 1990; Bollinger, 1991; Stickel, 1991; Baumgartner, 1992a;
Baumgartner and Furbach, 1994a; Letz et al., 1993)). In this paper we will concentrate
on the transformation technique alone; its place within e.g. theory model elimination is
briefly described in Section 1.1 below.

Our method works by saturating aHorn clauseset 7 under several deduction operations
until only redundant consequences can be added. The resulting (possibly infinite) system
T (T) enjoysthe following completeness property: for every (minimal) 7 -unsatisfiable
literal set £ and every literal G € L thereexistsalinear resolution refutation of Zo (7 )UL
with goal literal G, i.e. G is processed stepwise until the empty clauseis derived, and, all
inferences are donein aunit-resulting way, i.e. in an n-literal parent clauseat least n — 1
literals have to be simultaneously resolved against » — 1 complementary unit clausesin
order to carry out an inference.

Thus our technique — called linearizing completion — is a device for combining
the unit-resulting strategy of resolution (McCharen et al., 1976) with alinear strategy a
la Prolog in a refutationally complete way (See e.g. (Stickel, 1986) for an overview of
theorem proving strategies; it coversthe linearity and the unit-resulting restriction). This
isnot trivial, since although each strategy aloneis complete for Horn theories, their naive
combination is not. Furthermore we insist on completeness for an arbitrary goal literals
taken from the input set. All these properties are motivated by the intended application
within linear theory reasoning calculi. Thiswill beinsinuated in Section 1.1 below. For a
more detailed treatment we refer the reader to (Baumgartner, 1994).

As an example consider the theory 7 of strict orderings which is axiomatized by the
clauses

T={~(z<z2), (@<yA(y<z)—(z<2)}

Linearizing completion produces the following finite set Z,(7") of clauses:

Zoo(T): z <z — false (Irref)
<y — =(y <z) (Asym)
r<y,y<z — <z (Trans-1)
-(z < 2),y<z — —(z<y) (Trans-2)
z <y, (z<y) — false (Syn)

The associated operational meaning of, for instance, the clause (Trans-1) is “from literals
z < y andy < z infer theliteral z < z”. Consequently, we call such clauses inference
rules. Under thisoperational viewpointitisclear that (Trans-1) and (Trans-2) aredifferent,
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Linear and Unit-Resulting Refutations for Horn Theories 3
althoughthey arelogically equivalent. Now let £ bethe 7 -unsatisfiableinput literal set
L={-(a<b),c<ba<c}

In order to prove £ as 7 -unsatisfiable we can chain applications of the inference rules
from Z.(7) to L. If the godl literal —=(a < b) € L is chosen we find the following
refutation:

R = (_'(a' < b) i>‘Tr‘ans—Z _'(0: < C) K:c>-5yn false)

Here, the goal literal —(a < b) is transformed stepwise using literals from the input set
L (which are written on top of the arrows) according to the above mentioned operational
meaning of inference rules (Section 1.4 explains our notation in more detail).

Recall from above that we demand completeness for an arbitrary goal literals. This
need stems from the abovementioned intended application of linearizing completion
within linear, goal-sensitive calculi, because in such a setting the starting point for a
refutation — i.e. the goal — is fixed in advance. Thus, in the example, a refutation with
goadl literal a < ¢ € £ should also exist. It isasfollows:

<b —-a<b
Ry=(a < ¢ == fyans—1 6 < b a—>syn false)

The use of the (Trans-1) and of the (Trans-2) inferencerulesin the refutations R; and R»
should indicate that indeed both of them are needed for completeness.

1.1. LINEARIZING COMPLETION AND THEORY REASONING

As mentioned above the development of linearizing completion was initiated by the
desire to automatically construct inference systems for theory reasoning calculi. Theory
reasoning means to relieve a calculus from explicit reasoning in some domain (e.g.
equality, partial orderings) by taking apart the domain knowledgeand treating it by special
inference rules ((Stickel, 1985; Baumgartner, 1992b; Baumgartner, 1992a; Baumgartner,
1994); (Baumgartner et al., 1992) contains an overview). In an implementation, this
resultsinauniversa “foreground” reasoner that callsaspecialized “ background” reasoner
for theory reasoning. For example, in the treatment of mathematical problems, besides
equality, other relations such as strict and/or partial orderings are often used ((Bledsoe,
1990) contains challenging problemsin this domain).

In order to explain the réle of linearizing completion, we have to go alittle further into
the details of theory reasoning. Theory reasoning comesin two variants (Stickel, 1985):
total and partial theory reasoning. Total theory reasoning lifts the idea of finding syntac-
tical complementary literals in inferences to a semantic level. Let us briefly describe this
general mechanism in the case of theory model elimination as described in (Baumgartner,
1994). For this it is helpful if the reader is familiar with the tableaux notation of model
elimination ((Baumgartner and Furbach, 1993; Letz et al., 1992)).

As a sample theory let us consider strict orderings, i.e. transitive and irreflexive rela-
tions, and assume that the “<”-predicate shall be interpreted in this way. Then, for
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4 Peter Baumgartner

example, if in atableau abranchendingin —(a < b) isgiven (Tableaux | 1|in Figure 1a),
then theory model elimination might select additional literals {¢ < b, a < ¢} from input
clauses® and passthewholekey set {—(a < b), ¢ < b, a < ¢} tothebackground reasoner.
The background reasoner in turn should discover that thiskey set is contradictory. Finally,
the involved clauses are fanned (in any order) below the selected branch in such a way
that a branch containing the key set comes up (cf. Tableaux in Figure 1a). Since,
semantically, a branch is a conjunction of its literals the branch containing the key set is
marked with a“x” as solved; therest literals of theinvolved clauses (@ and R) constitute
new proof obligations.

Input Clauses: Theory:
—(a<b)V P Vz: =(z < z)
(c<b) VvV Q Ve, y,z: (2 <y)A(y <z)—(z<z)
(a<c¢) VR
total partial total
1 = 2 1 - |2 -~ |3
extension extension extension
=(a<b) P P -(a<b) P
c<b @
Er —(a<c)
T -unsatisfiable
T -unsatisfiable
Figure 1a Figure 1b.

Fig.1. A total theory modd elimination derivation (Fig. 1a) and apartial theory model €limination derivation
(Fig. 1b).

From a practical viewpoint total theory reasoning is problematic for some theories.
Since in general it cannot be predicted which literals constitute a contradictory set, the
total inferences might be overly complex, and thus most of the computation would be
carried out in the background reasoner. For instance, if the theory is* equality”, then total
theory reasoning reduces to therigid E-unifiability problem ((Gallier et al., 1987)). Even
worse, in general the background reasoner cannot be designed as an always terminating
procedure, because the 7 -complementary problem for the underlying theory might be

1 Literals from the considered branch may be selected as well.
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Linear and Unit-Resulting Refutations for Horn Theories 5

undecidable. In this case one has to interleave two enumeration procedures. For equality
reasoning such a procedure (E-resolution) was proposed in (Morris, 1969).

Theframework of partial theory reasoning offers a solution to these problems. Instead
of having to discover a contradictory set in one single “big” total step, the contradictory
set istried to be discovered in a sequence of better manageable, decidable, smaller steps.
In order to readlize this, the result of such a step is stored as a new proof obligation,
called the “residue”. Hopefully, the residue marks an advance in the computation of the
contradictory set.

Intheexample, the background reasoner might bepassedthekey set {—(a < b), ¢ < b},
compute the residue ~(a < ¢) and return it to the foreground reasoner. The input clauses
are used for extending the tableaux much asin the total case, except that instead of closing
abranch the residueiis added (Tableaux | 2| in Figure 1b).

Clearly, this partial version alone does not suffice since it never closes a branch.
Instead the total extension step is allowed as well, however in a very limited way. For
instance, in the next step, the foreground reasoner might continue on| 2 | by selecting the
literal & < ¢ from an input clause and calling the background reasoner with the key set
{~(a < ¢),a < c}. Sincethis set is complementary the resulting branch can be marked
as solved (Tableaux | 3]in Figure 1b).

However, in general, it is not evident which key setsfor inferences and which residues
have to be computed along the expansion of a branch. For soundness reasons the residue
must be alogical consequence (in some sense) of the passed literals. Clearly, for reasons
of search space explosion it is not appropriate to consider every such logical consequence
as aresidue. From this viewpoint, linearizing completion can be understood as a device
to compute a search-space restricted background inference system for partia theory
reasoning.

Figure 2 depictsthe architecture of such acombined system. Note that the background
inference system depicted there is just the system Z,(7) described at the end of the
previous section. Now, carrying out a total extension step wrt. Zo.(7") means to restrict
to those inferences which can be executed by simultaneously resolving away the premise
literals of an inference rule with conclusion false (such as z < z — false); partia
inference are restricted in much the same way, except that the (instantiated) conclusion of
theinferencerule (unequal to false, suchasz < zinz < y, y < z — z < z) constitutes
the residue.

With our intended strategy of using inference rules to describe extension steps, only
“few” possiblelogical consequencesare computed asresidues. For instance, in our exam-
ple theory of strict orderings, we learn from Z,(7') that it suffices to restrict the key set
of both partial and total inferencesto contain at most two literals.

Consequently, we obtain significant efficiency improvements when compared to the
naive approach, wherethetheories' axiomsare supplied asinput clauses(Section 9 reports
on practical experiments carried out with our theorem prover PROTEIN (Baumgartner
and Furbach, 1994b)).
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6 Peter Baumgartner

Input Clauses: Theory Model Elimination
(a<b) VvV P
(b<c)V Q >
(c<a) VR
Theory: gé?l Ta<c
Vz: —=(z < z)
Vz,y,z: (m < y) A (y < z) Background Inference System:
— (z < 2)
X< x— fase

Linearizing X<y — =y <X)
Completion X<y, y<z— X<z
(X< 2),y<z— =(x<2
-(x<y),x<y— fase

Fig. 2. Application of linearizing completion within partial theory model elimination.

It remains to link theory model elimination to the formalism of the previous section:
when viewing at extension steps in the way just outlined, the refutation R; above just
describes the theory reasoning necessary to expand the branch in tableaux | 1 | (Figure 1b)

until it is solved (tableaux ); the goal literal of such arefutation correspondsto the |eaf
literal of the branch to be expanded, and the literals written on top of “=" are part of the
key sets.

More generally, in (Baumgartner, 1994) it is shown that partial theory model elimi-
nation is complete, provided that the background calculus (using a notion of “refutation”
asin the present paper) enjoys the strong completeness property, saying that alinear and
unit-resulting refutation should exist for any theory-unsatisfiableliteral set and arbitrarily
selected goal literal?. The present paper thus complements the work in (Baumgartner,
1994) in that it shows how such background calculi can be obtained.

Thequestion arisesto what extent lineari zing compl etionistail ored towardsapplication
within linear, goal-sensitive calculi, such as theory model elimination. Although we
have presently not done it, it should be straightforward to use linearizing completion in
conjunction with less restricted calculi, such as Stickel’s theory resolution. In this case
the compl eteness demand for an arbitrary goal literal can be dropped (although it might

2 This result is shown by breaking all total extension steps of an existing total theory model elimination
into a sequence of partial extension steps; this sequence must exist due to the strong completeness property
of the background calculus.
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Linear and Unit-Resulting Refutations for Horn Theories 7

be advisable for efficiency reasons to keep it) and the completion requirements can be
relaxed a bit. This, however, is not touched by the present paper.

Theory reasoning is related to constraint reasoning (See (Burckert, 1991) for a con-
straint resolution calculus). On the one hand, constraint reasoning is more general than
theory reasoning, as constraints may be treated lazily. Furthermore, no concrete theory-
unifiers need to be computed during proof search. Instead it suffices to establish the
satisfiability of the accumulated theory unification problems. On the other side, constraint
reasoning is more specialized than theory reasoning, as in constraint reasoning the fore-
ground theory must be aconservativeextension of the backgroundtheory. Weare currently
designing a constraint model elimination calculus (Stolzenburg and Baumgartner, 1994),
and linearizing completion might turn out to be a useful tool in this context, too.

1.2. RELATED WORK

First we will comment on some systems with dedicated theory reasoning components. A
system for reasoning with (total) strict orderings was described in (Hines, 1992). It was
extended towards an inference rule for set inclusion (C) in (Hines, 1990). In (Bachmair
and Ganzinger, 1993) it is demonstrated that the “chaining” inference rule of (Hines,
1992) for transitive relations can be obtained by application of term-rewriting techniques
within a more general resolution calculi. Another more general (in the sense that it is
not restricted to a single background theory) theory reasoning systems is Z-Resolution
(Dixon, 1973), which builds in a theory consisting of two-literal clauses only. A more
recent improvement was given in (Ohlbach, 1990). Finally, automatizing the theory of
equality isaresearch topic of itsown. (e.g. “paramodulation” (Robinson and Wos, 1969),
or (Bachmair et al., 1992) for a much improved version).

In contrast to our approach, these inference systems are either tailored for one single
theory (and thus are not general), or are too restricted (the compilation of two-literal
clauses only). As a general method, in (Murray and Rosenthal, 1987) a matrix method
with built-in theories is presented. Unlike in Stickel’s theory resolution (Stickel, 1985),
and similarly to our setting (cf. Section 1.1 above), the theory is not considered as a black
box. Instead the theory 7 is supposed to be defined by a set of clauses. Thus (Murray and
Rosenthal, 1987) is even more genera than us as the restriction to Horn theories is not
necessary. They proposeto close 7 under application of binary resolution. Theresulting—
in general infinite— system 7" is used for total theory extension steps by simultaneously
resolving away all literals from a clause from 7~ against given literals in input clauses.
The idea of closing the theory under resolution is similar to our completion process.
As mgjor differences we have that, first, linearity is not relevant in their context, and,
second, they do not apply redundancy very heavily. For instance, only “subsumption”
is used as a redundancy criterion. Also, generation of new clauses is not restricted to
non-redundant clauses. Altogether, far more clauses will be generated than in our case.
See also Section 1.5 below for a more detailed discussion of linearizing completion and
resolution.
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8 Peter Baumgartner

To our impression, the related work most closest to oursis the approach of the special
relation rules (Manna and Waldinger, 1986). In the following discussion we will refer to
the extension presented in (Mannaet al., 1991).

(Extended) special relation rules are inference rules which are derived from certain
axiomatically given properties of relations. M ore specifically, monotonicity propertiesare
declarations of properties of relations “<1” and “<2", which determine the conditions
(including polarity) under which subterm replacements can be carried out. Alternatively,
these declarations can be described (disregarding polarities) by axioms of the following
form:

if w=<1v if u =<y
then r(...u...)<27r(...v...) then 7r(...v...)<2r(...u...)

Thisschemeis sufficient to cover many interesting relations, such asthe axioms (schemes)
“symmetry”, “transitiviy”, “P-substituivity” and “F-substituivity” which comprise —
short of “reflexivity” — the axioms of equality. For instance, “symmetry”, i.e. if v =
v then v = u, isimmediately seen to be an instance of the right scheme above. “Transi-
tivity” iscovered by instantiating in the right scheme* <,” with logical implication, “—".
Examples of other theories expressible in this language are ordering relations and subset
relations.

It isintended to read these axioms operationally in the way suggested by the notation.
The thus derived “specia relation (SR) inference rules’ are embedded into a resolu-
tion calculus, much like our inference rules are embedded into model elimination (see
Section 1.1).

The SR inference rules and the inference rules generated from our linearizing comple-
tion (LC) compare on the common domain as follows: both are “unit-resulting” (i.e. all
premise literals have to be resolved away simultaneously). The SR rules are fewer than
therespective L C rules. For instance, no extracontraspositiveisrequired for “transitivity”
(cf. Zoo (7T ') @bove). Thisis not surprising as no completion takes place. Furthermore, the
SR rules are more restrictive than the LC rules, since no replacement below the variable
level occurs (cf. Section 6 for adiscussion on that).

However, inthiscomparisonitisimportant to notethat the L C ruleswork in conjunction
with alinear, and hence more restricted, calculus than the SR rules. This restriction has
large impacts on the completion procedure.

Unlike our LCrules, the SR rulesareincomplete (Mannaet al., 1991). In the canonical
counterexample it would help to replace subterms below the variable level, which is
forbidden.

Theauthorsof (Mannaet al., 1991) first specul ated that the situation can berepaired by
adding more inference rules, called relation matching (RM) rules. These rules generalize
the well-known RUE-resolution inference rule (Digricoli and Harrison, 1986) towards
general monotonicity properties. Unlike the SR rules (amd our LC rules), the RM rules
are no longer unit-resulting, i.e. the conclusion might consist of more than one literal.
Furthermore, it is now necessary to deductively close the RM rules (similar as in in
our completion). In order to arrive at a finite system, variable elimination rules are
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Linear and Unit-Resulting Refutations for Horn Theories 9

used to simplify resolvents. However, these rules are sound only when making very
strong assumptions about the underlying rel ations; thisrestrictsthe method’ s applicability.
Finally, assaid in (Mannaet al., 1991), completenessis still open.

As an overall evaluation, we feel that our paper represents some progress towards
solving open issuesin the Manna, Stickel and Waldinger paper.

Other sources for related work are the completion techniques developed within the
term-rewriting paradigm. In fact, linearizing completion was inspired by Knuth-Bendix
completion (Knuth and Bendix, 1970) (cf. also Section 1.3 below) and its successors(e.g.
(Hsiang and Rusinowitch, 1987; Bachmair et al., 1986; Bachmair et al., 1989)).

Knuth-Bendix completion has been generalized to conditional equational theories
(e.g. (Kaplan, 1987; Dershowitz, 1990; Bachmair, 1991; Dershowitz, 1991a; Dershowitz,
1991b; Ganzinger, 1991)) i.e. definite clauses with built-in equality, and even to full first-
order equational theories, e.g. (Bachmair and Ganzinger, 1990; Zhang and Kapur, 1988;
Nieuwenhuis and Orgjas, 1990; Nieuwenhuis and Rubio, 1992; Bronsard and Reddy,
1992).

These approaches are often more general in a certain respect than ours: they allow for
equational specifications, whereas we do not have a dedicated treatment for equations>.
There are several waysto translate Horn logic into equational logic. As afirst method, at
least for propositional logic, aformula F' over usual logical connectives can be translated
into anequation F' = true whichthenis processed by aterm rewriting system for Boolean
algebra (Hsiang and Dershowitz, 1983; Paul, 1985; Paul, 1986). It is even possible to
model linear input strategies for Horn theories within specialized versions of extended
(by associative-commutative operators) Knuth-Bendix completion (see e.g. (Dershowitz,
1985)). However, the unit-resulting restriction and the independence of the goal literal are
not considered in those settings.

Anocther, straightforward, transation of Horn logic into equational clause logic results
from simply reading a literal A as the equation A = true (over a different signature).
Note that since we allow purely negative clauses such as —(z < z) in the specification to
be compl eted, this trandation requires full first-order clauses and not just definite clauses.
It is common to methods operating on such equational clauses that they rely heavily on
term-orderings for certain purposes: first, term-orderings are used to select — usually
only maximal — literals inside clauses for inferences; second, restricted versions of
paramodul ation are directed in an order-decreasing way; finally, redundancy is typically
defined employing term-orderings.

Here we see amajor difference between these techniquesand ours, asthe linearity and
the unit-resulting restrictions usually are not considered as a restriction for refutations
in the completed theory. While we insist on linearity of derivations, they consider, more
“locally”, derivations built from term-ordered inferences. Consequently, the notion of a
“goal” literal is not atopic of interest.

% Itisour goa toinclude equality at alater stage.
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10 Peter Baumgartner

An exception is (Bertling, 1990) which describes a procedure to complete towards a
combination of term-ordering restrictions and the linear restriction. However, the unit-
resulting restriction is not considered there.

As afurther difference, for linearizing completion the abovementioned independence
of the selection of the goal literal requires the presence of contrapositives of the same
clause, such as (Trans-1) and (Trans-2) above. In the term-rewriting paradigm thisis not
necessary.

All these observations indicate to us substantial differences between linearizing com-
pletion and the completion techniques described in the term-rewriting literature. To con-
clude, we cannot see how any of these approaches could be simply instantiated in such a
way that linearizing completion results. However, we can take advantage of many standard
notions and techniques developed in term-rewriting. This shall be sketched next.

1.3. RELATION TO KNUTH-BENDIX COMPLETION

As Knuth-Bendix completion (see (Knuth and Bendix, 1970; Bachmair et al., 1986;
Bachmair, 1991)), linearizing completion can be understood as a sort of compiler, which
compiles a specification once and for all into an efficient algorithm. There are also some
analogies in processing: Knuth-Bendix completion relates to equational theories and
ordered derivations as linearizing completion relates to general Horn theories and linear
derivations. Thus we use a different ordering criteria (“linearity” rather than “ordered-
ness’), and, second, we adopt a more general viewpoint and propose to treat arbitrary
Horn theories, not just equality.

Technically, we view a Horn clause {-Lj,...,—L,, L,+1} &s an inference rule
Li,...,L, — Ly4+1 Which stands operationally for a unit-resulting inference “from
La,..., L, infer L,.1". Linearizing completion proceeds by identifying sourcesfor non-

linearity in unit-resulting proofs* carried out with such inference rules. Non-linearities
correspond to “peaks’ in the term-rewriting paradigm. In analogy with these peaks, lin-
earizing completion has to invent a new inference rule that repairs the situation. Thisis
done by overlapping inference rules by the so-called Deduce transformation operation.
Possible nontermination comes in by saturating the rule set under this (and similar) oper-
ations. However by the use of redundancy criteria termination is achieved quite often
for practically relevant theories. If the completion does not terminate, we arrive at an
“unfailing” procedure, i.e. for every provable goal eventually enough inference ruleswill
be generated that are sufficient to prove the goal for such a system. Figure 3 summarizes
the rel ationships between Knuth-Bendix completion and linearizing completion. Some of
the concepts listed there will become clear as the text proceeds.

1.4. INFORMAL DESCRIPTION OF THE METHOD

Sincethe main part of this paper islengthy and quite technical, we prefer to supply abrief
and informal description of the method beforehand. Readers familiar with term-rewriting

4 More precisely: hyperresolution proofs
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Concept Knuth-Bendix Completion Linearizing Completion

Underlying Theory Equality Arbitrary Horn Theory T

Link Syntax-Semantics Birkhoff’s Theorem Soundness
and Completeness of Unit-
Resulting Resolution

Proof Task s<t Is (Ky,..., Kn}
T -unsatisfiable?

Object-Level Inferences by rewriterulesu — v by Inference Rules
Ly,...,Lp = Lpy1

Non-normal Form Proof s>t Non-linear  Unit-Resulting
Proof of {K3,..., Kn}

Ordering Criteria Orderedness Linearity and Unit-Resulting
Property

Removal of Peaks By critical pairsturned into By Deduced inferencerules

in Proofs rewrite rules

Normal form Proof Valley Proof Linear and Unit-Resulting

§ =Xy et Proof of {K3,..., Kn}
First-Order case Narrowing Proofs First-Order Derivations
Completeness Yes: unfailing Yes: unfailing

Fig. 3. Summary of Relationships between Knuth-Bendix completion and linearizing compl etion.

will note that in order to express our procedure and our results we have adapted from the
term-rewriting paradigm notions like completion, fairness, redundancy and others (see
e.g. (Bachmair et al., 1986)) to our needs.

At first we will explain our notion of alinear and unit-resulting proof. The underlying
calculus consists of inferencerules, which are expressions of the form

Ly, ..., Lp — Lpyq

where al L;s, 1 < i < n, are literals (caled premise literals), and L, 1 is either a
literal or false (called conclusion). The declarative meaning of an inference rule is the
implicationV((Ly A ... A L) — Lypy1). Ruleswith L, 1 = false are used to conclude
aproof.

As afirst step in linearizing completion, a set of inference rules is obtained by re-
writing a given Horn theory in an obvious way. Consider e.g. the following theory O of

strict orderings“ <”:

“(z<y)Va(y<z)Vz <z (Trans)
-(z < z) (I'rref)

From thistheory we construct aninitial inference system Zo( ©) that containsthefollowing
inferencerules:
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12 Peter Baumgartner

<y y<z — <z (Trans)
z <z — false (Irref)
z <y, (z<y) — false (Syn)

The first two rules stem from the theory immediately, while the additional Syn-rule is
used to treat syntactical inconsistencies. In general, a given Horn theory S is re-written
as an initial inference system Zo(S) (which is a set of inference rules) in the following
way: (1) every positive unit clause A becomes -A — false, (2) every definite clause
—A1V...V=A, V A, becomes Aq,..., A, — A,y1, (3) every completely negative
clause—A41V...V—A, becomesA;,..., A, — false and (4) for every predicate symbol
p therule p(Z), —p(Z) — false is added.

Now consider the following literal set:

M={a<b, b<c, c<d, d<a}

We would like to prove that M is O-unsatisfiable using the inference rules Zo(O) in a
linear and unit-resulting way. Theidea of alinear proof isto process stepwise aninitially
chosen goal until a solution is found. We call such initial goals “top literals’. Consider
a < b asatop literal. Next we have to select an inference rule from O to be applied to
a < b. Consider the (Trans) rulefor this. Theliteral a < b can be unified with the premise
literal z < y of the (Trans) rule. However, “unit-resulting” meansthat all premise literals
of the selected inference rule haveto be resolved (using a simultaneous unifier) with some
input literals. The input literal b < ¢ can be used for this purpose and the inference rule
can be applied then. Asaresult of this derivation step the (instantiated) conclusion of the
inferencerule is obtained, which is here a < ¢. We write derivation steps more formally
as

b<
a<b=—"Tpunso a<c

which means that from ¢ < b using the side literal b < ¢, the inference rule Trans and
the unifier o theliteral a < ¢ can be derived. We call such steps linear because the side
literals must be given immediately as a member of the input literal set. Later on we will
also temporarily consider non-linear derivations, for which the side literals — such as
b < ¢ —may aso be computed in derivations themselves.

A refutation now is simply achain of derivation steps, terminated by false. For the set
M thefollowing linear refutation exists (substitutions omitted):

b<c c<d d<a
a < b=———=>Trans @ < ¢ =——> Trans @ < d ——> Tyans @ < & = prpef false

Unfortunately, the strategy of simply writing the theory as an initia inference system
accordingto (1)-(4) doesnot result in asystem for which unit-resulting linear resolution is
complete. To demonstrate this a different example is needed. Assume the theory consists
of the clauses

S={-AVvB,-CVD, -BV-D}

The derived initial inference system then is as follows:
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Zo(S) : A— B A,—A — false
¢ — D B,-B — false

B,D — false C,-C — false

D,-D — false

Now let M1 = {A, C}. Thereexists, for instance, a(non-linear) Unit-Resulting refutation
of M1 U S (Figure 4) where the Unit-Resulting inferences are carried out as suggested by
the arrow-notation of the rulesin Zy(5).

A— B —>D

B D B,D — false
false

Fig. 4. A non-linear unit-resulting refutation of {A, C} U S where the inferences are carried out according
to Zo(S). The given input literals— A and C — are boxed.

However, no linear refutation of M; with top literal A exists (neither does one exist
with top literal C for reasons of symmetry); if A isgiven asthe top litera then only the
rulesA — B and A,—A — false contain the literal A in the premise and thus are the
only candidates to be applied. However, the latter is not applicable as — A isnot given in
M,, and application of the former yields B which also is a dead end (because D is not
contained in M; and thus B, D — false is not applicable). However D could be derived
from the input literal C' by an application of the rule ¢ — D. But then, however, due
to this auxiliary derivation the refutation would no longer be linear. The same argument
holdsfor the case of C' being chosen astop literal.

This problem is solved by linearizing completion by generating a new inference rule
that implicitly containsthe auxiliary derivation. This generation of new inferencerulesis
thecentral operationinlinearizing completion; it allowsanew inferenceruleto beobtained
from two present inference rules by unifying arule's conclusion with a premise literal of
another rule and forming a new rule from the collected premises and the conclusion of
the other rule. The new rule then isjoined to the present ones. Operations such asthis one
(and others) on inference systems are described by the device of transformation rules.
Returning to the last example one can generate anew inference rule by application of the
Deduce transformation rule in the following way:

¢ - D
D , B — false
c , B — false
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Usingthisnewrule C, B — false alinear refutation of M; can befound. Figure 5 depicts
this refutation in the same notation as in Figure 4; in our preferred notation it reads as
follows:

A=, B :C>B,0—>false false

A— B
B B, C — false
false

Fig. 5. A linear unit-resulting refutation, using the new rule B, C — false.

For a first order example of an application of Deduce consider again the system O
from above. Two copies of the (Trans) rule can be combined in the following way:

<y, Yy<z — <z
<y Yy < - <
<y, y<y Yy <2 — o<

wheretheunifierforz < zandz’ < y'is{z « z’,z < y'}. Inwords, thetransitivity rule
is unfolded once. Repeated application would yield infinitely many unfolded versions of
the transitivity rule, but fortunately our redundancy criterion helpsto find afinite system
here.

This concludes the informal presentation of the Deduce transformation rule. Unfor-
tunately, Deduce alone does not suffice to obtain completeness as desired. In order to
demonstrate the problem here consider the slightly modified example from above:

S§'"= Su{D}
M, = M;U{B}

Of course the old clause = C V D is not needed for the unsatisfiability of S’ U M; but
this is not important here. According to the transformation to initial inference systems
defined above, the unit clause D becomes the rule =D — false. The initia inference
system Zp(.S") looks as follows:

Z1(S) : -D — false
B,D — false
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Clearly, S" U M> isunsatisfiable, but thereis no Zo(S’)-refutation of M. In particular, the
rule B, D — false cannot be applied since there is no input literal D. On the other hand
theliteral D is*hidden” inthetheory and hasbeenturnedintoarule—D — false. Inorder
to obtain completenessit is hecessary to consider all such rules of theform =D — false,
where D is a positive literal, as an operational substitute for the side literal D in an
inference. This could be done either dynamically, i.e. during the proof search, or elsein
the compilation phase. In order not to spend extra time during the proof search we have
decided for the latter alternative. Similar to Deduce above, the necessary operations are
carried out by transformation rules. In order to solve the examplethe Unit2 transformation
ruleis used, which worksin this example as follows:

=D — false
B, D — false
B — false

Thus, one could say that, when the rules are read as their equivalent clauses, a unit
resolution step has been carried out. This is what Unit2 does. There exists a second
form, Unitl, which is like Unit2 but for the case when the second involved inference
rule contains only one literal in the premise. In both casesthe use of arule =D — false
instead of asideliteral D in aninferenceissimulated. It is easy to seethat { B} now has
aone-step refutation with the new rule B — false.

All these transformation rules — Deduce, Unitl and Unit2 — yield, when applied
properly, completeinference systemswrt. the desired linear and unit-resulting restrictions.
Thisis one of our central results. If Deduce is omitted, then completeness wrt. the unit-
resulting restriction alone results.

These results hold if the transformation rules are carried out in a fair way. Fairness
means that no possible application is deferred infinitely long. But then the rule generation
can beiterated and would result in infinite inference system quite often. For example, the
presenceof arulefor transitivity aone sufficesfor infiniteness (the transitivity rulewill be
unfolded without bound). In order to avoid this, additional transformation rulesare needed
for the deletion of inference rules. A powerful deletion rule is based on the concept of
redundancy. Informally, aninferenceruleisto beredundant if itsapplicationin aderivation
can besimulated by the other inferencerules. Asasufficient and reasonably implementable
condition we say that arule Ly, ..., L, — L,,1 isredundant in an inference system if
there existsalinear derivation of L, 1 frominput set Ly, . .., L, with any top literal from
{Ls,...,L,}. Forexample theonceunfoldedversionz’ < y,y < v/, 9’ < 2/ — 2’ < 2’
of the transitivity rule can easily be shown as redundant with this criterion.

Linearizing completion proceedsby repeated fair application of generating and deleting
transformation rules to the initial system. Generation can be further restricted: it isfair to
generate only new rules from persisting rules, i.e. rules that are generated eventually and
never deleted afterwards. Also, only mandatory generating transformation rulesneed to be
considered for this (thereis also an optional transformation rule which allowsthe addition
of acontrapositive of agiven rule). Furthermore the result of a generating transformation
rule need not be added if it can be shown to be redundant. The result of this process is
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a (possibly infinite) system that is closed under derivation of non-redundant inference
rules. Such systems are called “complete”, as they can be shown to be (refutationally)
complete.

There is one thing more to say about deletion: deletion of a redundant inference rule
must enable a refutation which is strictly smaller wrt. some well-founded ordering on
refutations than the refutation which uses the redundant inference rule. This property
is crucial for the completion process because it guarantees that an inference system
capable of proving a given proof task (provided it is provable at all, of course) will be
reached after finitely many steps®. Concerning implementation this means that we may
approximate stepwise infinite inference systems by ever increasing finite systems until a
system “large” enough for a concrete proof task is obtained.

We conclude this informal presentation with a note on traditional unit-resulting res-
olution and on hyperresolution. In traditional unit-resulting resolution (McCharen et al.,
1976) every literal from a n + 1 literal clause Ly V ... V L,41 can serve as the unit
resolvent. If this is to be modeled within our inference rules, al n + 1 contrapositives
i=1...n41)

Lla s aLi—la Li+17 Tt Ln+l — L

have to be used. For example, the transitivity axiom for strict orderings results in the
following three contrapositives:

1 z<y, y<z — z<z
2. z<z, y<z — <y
3 <y, <z = y<z

However, there are cases where not all contrapositives are needed. For example, one
of contrapositive 2 or 3 can safely be deleted without affecting completeness. Such
restrictions are expressible in our more fine-grained framework, while they are not in
traditional unit-resulting resolution framework. Thismotivated usnot to usethetraditional
formalism but to define a new one.

Hyperresolution (see e.g. (Chang and Lee, 1973a)) is a complete calculus for Horn
clauselogic. It implements abottom-up evaluation by starting from the given positive unit
clauses and deriving new unit clauses in a unit-resulting way. In our terminology, only
the “natural” contrapositives, such as 1, in the last example are needed for this. However,
hyperresolution alone does not suggest any completion procedure and yields inherently
non-linear refutations. But hyperresolution refutations will serve as a starting point for
the completeness proof of linearizing completion.

5 Thus our approach of proving termination issimilar to the approach of proof orderings (Bachmair et al..,
1986; Bachmair, 1987; Bachmair, 1991) in equational logic. Indeed we use a similar complexity measure,
based on multiset orderings. However we found it advantageous to extend the comparison of refutations by
additionally considering (optional) weights assigned to the used inference rules.

paper.tex; 31/08/1995; 11:12; no v.; p.17



Linear and Unit-Resulting Refutations for Horn Theories 17

1.5. LINEARIZING COMPLETION AND BINARY RESOLUTION

Asmentioned above, the Unit1 and Unit2 rules are instances of unit resolution. Similarly,
the Deduce rule works much like the traditional binary resolution inferencerule (seee.g.
(Chang and Lee, 1973b)). In fact, it is merely a suggestive notation for it which seems
appropriatefor our purposes. So the question might come up where linearizing completion
is different from ordinary resolution.

First, ordinary resolution does not have a restriction to certain contrapositives, as just
explained.

Second, every refutation in the linearizing completion paradigm can be simulated
stepwise by an ordinary resolution refutation in the following way, but the other direction
does not hold. Let 7o be the Horn clause theory subject to linearizing completion, M be
a7Tp-unsatisfiable literal set, and Gp € M bethe desired top literal of the refutation.

Thenarefutation in thelinearizing completion framework can bewritten asaresolution
refutation

76;717 s )7-71,; GO; Gla R Gn:false

where (1) the 7;'s are obtained from the 7; ;’s by application of binary resolution,
corresponding to the transformation rules of linearizing completion, and (2) the G;’s are
obtained fromthe G; _1’sand literalsfrom M by unit-resulting resolution, using anucleus
clause from 7,,. These unit-resulting steps could be simulated by sequences of ordinary
resolution steps, of course.

Itisapparent that thisrefutation isahighly structured one; evidently not every ordinary
resolution refutation is structured in that way. Thus, stepwise simulation in the other
direction does not hold.

Third, linearizing completion uses powerful redundancy criteriawhich are usually not
applied in ordinary resolution.

Fourth (connected with three), linearizing completion functions as a compiler, which
allowsfor careful analysisof theinput clause set independent of the proof task to be given
later. Thismeansthat 7,, can be computed once and for al. Thisis not doneto that extent
in ordinary resolution.

The rest of this paper is organized as follows: the next section recalls some prelimi-
naries. Section 3 introducesinference systems; it also contains the completeness of initial
inference systems for non-linear refutations. As mentioned in the introduction, deletion
of redundant inference rules is tightly coupled with associated orderings of derivations.
Section 4 describes our orderings and redundancy. Then we are prepared for the trans-
formation systems of Section 5. This section introduces the related important notions of
limit and fairness of a deduction, and also that of a completed inference system. There
it will be shown that the defined transformation rules and redundancy criterion never
lose a once found refutation. In Section 6 we will apply the material developed so far
to a non-trivial example. In Section 7 we carry on Section 5 and show that our trans-
formation systems have the complexity-reducing property, which means that eventually
a normal-form refutation will be reached. Then, in Section 8 the material developed so
far will be assembled into various completeness results; notably, first-order results are
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also contained. Section 9 describes some practical experiments carried out for linearizing
completion in combination with a theory model elimination theorem prover. Section 10
contains conclusions. Finally, a quite lengthy appendix contains the longer proofs of this

paper.

2. Préliminaries

Multisets arelike sets, but allow for multiple occurrencesof identical elements. Formally,
amultiset N over aset X isafunction N : X — IN. N(z) isintended as the “element
count” of z. We often say that z “occurs N (z) timesin N”. The multiset union N U M
of two multisets is described by the equation (N U M)(z) = N(z) + M(z), and the
multiset differenceby (N — M)(z) = N(z) — M(z), andtheintersectionisgiven by the
minimum function. Finally, two multisetsareequal, N = M iff N(z) = M (z) for every
z € X. Wewill use set-like notation with braces*{’ and ‘|}’ for multisets. For example
the set for which N(a) = 3and N(b) = 1 and N(z) = O for al other values can be
written as {a, a, a, b} . If aset is used below where amultiset were required, then the type
conversion is donein the obvious way.

A multiset with weight over a set X isatuple (N, w), also writtenas N, (or {...},)
where N isamultiset over X and w € IN. Thus, a multiset with weight is obtained from
an ordinary multiset by attaching some integer to it. As arecursive generalization, define
anested multiset with weight over a set X aseither an element from X or else asamultiset
with weight over a nested multiset with weights. For instance, {a, {b, ¢, {d}3},, e}, is
such a set over {a, b, c,d,e}. They will be used as a complexity measure for proofs
below.

Furthermorewe make heavy use of the datastructure ‘ sequence’. If in the computations
below a sequence appearswhere amultiset isrequired, the transformation from sequences
to multisetsis donein the obvious way.

Concerning substitutions we adopt the usual definitions (see e.g. (Lloyd, 1984)). The
functions dom and ran denote the domain and range of substitutions, respectively. Some-
timesit is necessary to restrict substitutions. Following (Siekmann, 1989) | meansthe
restriction of the substitution o to thevariableset V,i.e. o|y(z) = o(X) for all variables
z € V,andistheidentity otherwise. By o < § [V] weindicate that o is more general
than 6 on the domain V which meansthat existsasubstitutiony suchthat oy|y = 6| v .

Substitutions are applied to multisets and sequencesas expected. Unificationis extend-
ed to multisets of literals as follows: A substitution o is a unifier for N and M iff
No = Mo. Multiset unification is of type “finitary” (i.e. results in afinite complete set
of MGUSs). See (Buittner, 1986) for a unification algorithm.

We are mostly interested in Horn theories, which we formalize as follows: A clause
is a multiset of literals, writtenas L1 V --- V L. A Horn clause contains at most one
(occurrence of a) positive literal. A definite clause contains exactly one positiveliteral. A
unit clause contains exactly one literal. A purely negative clause contains only negative
literals. A (Herbrand) interpretation for agiven clause setis asubset of the Herbrand base
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which does not contain the literal false. Intuitively, aninterpretation just containsthetrue
atoms. More precisely, an interpretation I satisfiesaground atom A iff A € I, I satisfies
a negative ground literal - A iff A ¢ I, I satisfies an existentially (resp. universally)
quantified formula (withx € {A,V}) 3(L1 % --- x Ly,) (resp. V(L1 % - - - x Ly,) ) of literals
iff for some (resp. every) ground substitution ~y, I satisfies (L1 % - - - x Ly )7y, where “A”
and “V” are interpreted as usual. I satisfies a set of ground literals iff I satisfies every
literal init, and I satisfies a ground Horn clause ¢ iff I satisfies some literal in ¢. An
interpretation satisfies a Horn clause iff it satisfies every ground instance, and it satisfies
aHorn clause set iff it satisfies every clause in it. An interpretation satisfies a literal set
iff it satisfies every ground instance of every literal in that set. A Horn clause setis called
satisfiableiff it is satisfied by some interpretation, or elseit is called unsatisfiable.

A Horntheory 7 isasatisfiableset of Horn clauses. A 7 -interpretation isan interpreta-
tionwhich satisfies7 . Let M bealiteral set or aclauseset. Then M iscalled 7 -satisfiable
iff M is satisfied by some 7 -interpretation, otherwise M is called 7 -unsatisfiable. It is
easily verified that M is7 -unsatisfiableiff M is false in every T -interpretation.

3. Inference Systems

Inference systems play the samerole as sets of rewrite rulesin Knuth-Bendix completion:
they are used for inferences on the object-level. Inference systems are the objects of
computation by transformation systems which are introduced in the next section. This
section introducesinference systems and basic properties such as*linearity” of proofs.

An inference rule (or rule for short) is atriple P —, C, where P is a multiset of
literals, w is a non-negative integer and C' is aliteral. C may aso be the “new” literal
false, which is assumed to be distinct from all other literals. P is called the premise, w
is called the weight and C is called the conclusion of the inference rule. In the sequel
we will assume that w is always taken from some finite set W C IN. The weights are
motivated by the possibility of extended redundancy checks.

Some notational conveniences: ininferenceruleswewill oftenwrite L, ..., L, —, C
instead of {L1,..., Ly} —, C and P,Q —, C instead of P U @ —,, C, etc. Also,
the weight is often dropped if not relevant in the context. The declarative reading of an
inferencerule Ly, ..., L, —y CiSY(Li A-+- A Ly, — Ly1).

An instance of an inferenceruleis obtained by application of a substitution to both the
premise and the conclusion. Ground inference rules do not contain variables. A (ground)
inference systemis aset of (ground) inferencerules. If 7 isan inference systemthenZ9 is
defined as the inference system consisting of all ground instances of all rules from Z.

Next we define how inference shall be used. We say that a literal €'’ is inferred
from a literal multiset P’ by an inference rule P —,, C and substitution 6, written as an
inference

P’ =Py C,6 OI

iff P = P§and C§ = C'. By overloading of notation, P’ isalso called the premise, ¢ is
called the conclusion of theinferenceand P —,, C' iscalled the used inferencerule. The
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inferenceiscalled groundiff (P —,, C)é isground (notethat the premise and conclusion
of the inference thus are aso ground). We will often abbreviate P’ =p_, ¢ s C' t0
P = p_, ¢ C'oreven P = (' if context alows.

Next we are going to inductively define Z-derivations based on this notion of infer-
ence:

1. Theliteral Ly isan Z-derivation of L1 from input literals M with top literal L; and
length 1. Such aderivation isalso called trivial.

2. 1If

a) D, isanZ-derivation of L, frominput literals M withtop literal L1 andlength
n, and

b) D} ..., D™ (m, > 0)areZ-derivations (called side derivationsin this con-
text) of side literals LY, ..., L™, respectively, from M, al respective top
literals are contained in M, and

c) there existsan inferencerule P,, —,,, C, € Z, and
d) there exists a substitution 6,, such that

1 m
Ly, L'n,a s 7L'n.n == Prn—wnp, Cn,bn L’ﬂ+1

then
D% e ng

Dyt1 = (Dy Pn—uwp Cn,én Lnt1)

isaZ-derivation of L, from input literals M with top literal L, and length n + 1.

If context allows, the involved inference rule and/or the substitution 6, shall be
omitted.

3. Nothing elseisaZ-derivation.

Note that derivations are nothing but syntactically sugared terms over a respective
signature, and thus can be subject to structural induction. In non-trivial derivations the
principal (4-ary) construct symbol is “=-", which takes as arguments the derivation D,,
derived so far, the sequence D --- D™ of side derivations, the inference rule and the
substitution involved. We will often omit parenthesis and write

1 my
D}---D

1
Dpp1= (I =2 p ., 1y L2+~ L

Dl...pmn
= = Pp—wy Cn,bn L”H‘l) (1)

Occasionally, wewill usethe symbol € to denote the empty sequenceof derivations.

Some more terminology is convenient: if D isaderivation of L we also say that L is
the derived literal of D; the derivation D is called ground iff every of its inferences is
ground; D is called arefutation iff D is a derivation of false. An inference rule is said
to be used in D iff (some instance of) it is used in some inference in D. D is called
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linear iff every side derivation occurringinitisatrivial derivation. Otherwise D iscalled
non-linear. We will write
Ly =7 3 Ln
to denote the fact that a Z-derivation of L, from M with top literal Ly exists; similarly
the notation
D = (L1 =73 Ln)
meansthat D is such aderivation.

Note that a derivation does not instantiate the input literals. Thisis the same asin a
“rewriting” proof in the term rewriting paradigm. Carrying on this analogy, a derivation
relatesto afirst-order derivation (to be defined in Section 8) much like “rewriting” relates
to “narrowing” (Hullot, 1980).

The top literal plays the role of a goal to be proved. We are interested in arbitrary
goal literals, not just negative literals as usually defined for SL D-resolution. Positive goal
literals arise naturally: think e.g. of an inference system for strict orderings, containing a
rule X < X — false for irreflexivity. A provable query then is for example (in Prolog
notation) ?— —(a < a).

3.1. INITIAL INFERENCE SYSTEMS
As the first step of linearizing completion a given Horn theory 7 is re-written in a
straightforward way as a set of inference rules:

DEFINITION 1. (Initial Inference Systems) Let 7 be Horn theory and let W C IN be
afinite set of weights. Theinitial inference systemof 7', Zo(7), is the inference system
consisting of therules

1. - A — false for every positive unit clause A € 7, and

2. Ay, ..., Ay — false for every purely negative Horn clause =4, V...V —Ay € T
(k > 1), and

3. A1,..., Ay — B forevery definiteclause—-A;V...V-A, VB €T (k> 1),and
4. Q(z1,...,2n), " Q(z1,-..,z,) — false for every n-ary predicate symbol @ in7.

Furthermore, some arbitrary chosen weight w € W is attached to every rule in Zo(7').
Note that with the theory being satisfiable, the empty clause is not contained in 7. Thus
for every clausein 7 exactly one case applies.

EXAMPLE2. Let7 = {-AV B, -C Vv D, =BV =D, D} beaground Horn theory (it
was aso given as S’ in the introduction). Then an initial inference Zo(7') systemis

Io(T) : A —5 B A,—A —1 false
C —4 D B,-B —1 false

B,D —3 false C,-C —1 false

=D —g false D,-D —1 false
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Equivalence: Strict order:
x =X (Ref=) —(x < X) (IRef<)
X=y— y=x (Sym=)
X=y, y=z— x=2 (Transs) X<y, y<z— x<z (Trans<)
<-Substitution: f-Substitution:
x=X, x<y— X <y (Sub<-1) x=X — f(x) =f(x) (Subf)
y=VY, X<y— x<Vy (Sub<-2)

Fig. 6. Thetheory £S of equality and strict orderings with unary function symbol f.

Next let My = {4, C}. Thisisaderivation of false from My with top literal A (weights
are omitted):

C=c_pD

Dl = (A — A—-B B > B,D—false false)

D, is non-linear, since the second derivation step violates linearity. Figure 4 in the
introduction depicts the same derivation in an alternative notation which emphasizes the
tree character of derivations.

EXAMPLE 3. Asanon-trivial example consider thejoint theory £S of equality and strict
orderings (Figure 6). The predicate symbol = isinterpreted as an equivalencerelation and
the predicate symbol < isinterpreted asastrict ordering (i.e. asatransitiveand irreflexive
relation). Furthermore we haveincluded asingle function symbol f of arity 1, which gives
rise to the subgtitution axiomVz : =z = y — f(z) = f(y). The extension to a richer
signature is straightforward.

The corresponding initial systemisgivenin Figure 7.

3.2. COMPLETENESS OF INITIAL INFERENCE SYSTEMS

The completeness result (wrt. unit-resulting refutations) of initial inference systems is
needed as a starting point for the proof of the completeness result (wrt. unit-resulting and
linear refutations) of the generated inference systems. More precisely, thefollowing line of
reasoning applies: given a7 -unsatisfiableliteral set, by ground completenessthere exists
a— possiblenonlinear — refutationintheinitial inference system. By repeated generation
of new inferencerulesin afair way (see the introduction) eventually an inference system
is generated that admits a linear refutation. Furthermore, deletion of redundant inference
rules does not destroy linearity.

Thus, ground completenessisthe initial link between semantics and syntax and plays
much the samerole as Birkhoff’s compl eteness theorem (see (Huet and Oppen, 1980)) in
Knuth-Bendix completion.
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Equivalence: Strict order:
X=y,~(x=y) — false (Syn=) X<y (x<y) — false (Syn<)
=(X=Xx) — false (Ref) X< X— false (IRef)

X=y— y=x (Sym=-1)

X=y, y=z— x=2z (Transs) X<y, y<z— x<z (Trans<)
<-Substitution: f-Substitution:
x=X, x<y— X <y (Sub<-1) x=X —f(x) =f(x) (Subf)

y=Y, Xx<y— Xx<Y (Sub<-2)

Fig. 7. Theinference system Zo(ES)

Asexplained in theinformal presentation in the introduction, initial inference systems
constitute an “amost complete” calculus for the underlying theory (cf. the example of
the clause set S’ there again). As was previously stated, in order to obtain completeness
it is necessary to access al positive literals, no matter whether they are contained in
the input set or contained in the theory. Regarding this, we will dlightly differ from the
introduction in that we will not immediately compile away the “hidden” positive literals,
suchas—D — false. Instead it is more convenient for usto definefor an inference system
7 the set

punit(Z) ={A | -A — false € T}

as the set of positive unit clauses fromZ. For example, punit(Zo(€S)) = {z = z}, and
in Example 2 we find punit(Zo(7)) = {D}.

The set punit(Z) shall temporarily be accessible for derivations as additional input
literals (later their usage will be compiled away by respective transformation rules). But
then it is clear that the present formalism is just a reformulation of traditional Unit-
Resulting resolution (which is biased towards our completion application). Taking the
soundness and compl eteness of traditional Unit-Resulting resolution for granted, it isthus
not surprising that respective results can be obtained for our formulation. Neverthelesswe
will state the precise ground completeness result here, since it will be needed below.

LEMMA 4. (Ground completeness of Zo(7)) Let 7 be a ground theory (i.e. a theory
consisting of ground clausesonly) and M bea set of groundliterals. If M is7 -unsatisfiable
then L =7 7y mupunit(zo(7)) falsefor someL € (M U punit(Zo(7))).

For instance, it is easily verified that in Example 2 there exists a Zo(7 )-refutation of
{A} U punit(Zo(7)), but there does not exist aZo(7 )-refutation of { A} aone.

Proof. By definition of 7 -unsatisfiability, M is 7 -unsatisfiable iff M U 7 is unsat-
isfiable, where M is considered as a set of unit clauses. Since the unit-clauses of 7 can
be used as input literals (via punit(Zo(7))) an existing Hyper-resolution refutation of
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M U T can be reflected in our framework. For an explicit proof from scratch see the
appendix®.

We cannot be content with this completenessresult, since (1) theliterals punit(Zo(7))
are needed, and (2) alinear derivation may not always exist. For instance, there does not
exists a linear refutation of My = {4, C} in Example 2, neither with top literal A nor
with top literal C.

3.3. SUBDERIVATIONS

Below we will have to access and replace subderivations within derivations. For this let
D be aZ-derivation’

D=(I1 2 Ly Ly 25 Lop1)
It is apparent that
Dliji=(Li 25 Liva--- Ly 25 L)
for1 <4 <j < n+ lisaZ-derivation of L; with top literal L;, called an immediate
subderivation of D; it is denoted by D|; ;. Immediate subderivationswith j = i 4 1 are

also called derivation steps.
Derivations may be concatenated. If F isa J-derivation of the form

E E
E=(K = Ky Kp == Kpi1)

and L, 11 = K; then the concatenation of D and E, denoted by D - E, is defined as

D-E:(LléLz"'Ln%KléKZ“'Km@}Km-Fl)

Evidently, D - E existsasZ U J-derivationfrom M U N, where D (resp. E) isaderivation
from M (resp. N). It is easily verified that this concatenation is associative. Hence we
can omit parenthesis when writing expressionsas D - E - F'.

In order to recursively access subderivations we need the positions of derivations.
A position is a finite string over nonnegative integers and is written in Dewey decimal
notation. The empty string is denoted by A. The set of positions of D, P(D) isthe smallest
set satisfying:

1. Xe P(D).
2.i.j.r € P(D)if

a) DisoftheformLy = Ly... Li =% Lisq... Ly 22 L,,1wherel < i < n,

® Inthe sequel the proofs can often be found in the appendix.
" Inference rules and substitutions being omitted for brevity; the D;s stand for sequences of derivations.
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b) and D; is a sequence of the form D}--- DI ™*DI DI ... DFi where1 < j <
ki,
c) andr € P(D?)

Building on positions, subderivations can be introduced: let D be a derivation and
p € P(D). The (occurrence of a) subderivation of D at position p, D|y is defined
recursively asfollows:

(D ifp=2
D}|, if p =4.5.r and D isof theform

D|P = 1 Dp_1

LiZ Ly Li 25 Livq... Loy 25' L,

where D; ZDZ;L”'Dzj"'D'ki

N )

For instance, take

C E
X=(A B—D—F G—H N I)

thenX|1_1 = (B :C> D :E> F), X‘1.2 = (G — H) andX|1_1_2_1 =F.

For ease of notation we abbreviate the selection of an immediate subderivation of a
subderivation, i.e. (D|p)|4,6, 10 D|p 4.5. In Words, first p is used to locate a subderivation
in D and then this subderivation is returned inbetween the indices ¢ and b. For instance
X|1123=(D == F)and X|1211 = G.

Next we turn to replacement of derivations. Suppose D is an Z-derivation from M,
and suppose E isan J-derivation from N . Furthermore supposethat D|, , ; and £ have
the sametop literal and derived literal, respectively. Thenthe sequencewhich resultsfrom
replacing D|, 4,5 in D by E, written as D[E], , », evidently isanZ U 7 -derivation from
M U N with sametop and derived literal asin D.

For instance,
L N BSpEuLr c—=uH
X[D= M= Fl1123=(4 > 1)
More formally, replacement is defined as follows:
Dl1s-E-Dlpp, ifp=2x
D[E]P,a,b = D‘l,z' . (Lz' %Pi_’ozﬁi Li_|_1) . D|z’—|—l,n if p=i.g.7r

where D’ = D}... DI~'D![E], DI ... Dfi

7
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4. Orderingsand Redundancy

The transformation systems defined below allow for the deletion of redundant inference
rules. Redundancy in turn is based on orderingsfor derivations. Hence these notions have
to be introduced first.

4.1. ORDERINGS ON NESTED MULTISETSWITH WEIGHT

First we recall some preliminaries about orderings. In (Dershowitz, 1987) a detailed
survey can be found.

A partial strict ordering® > on a set X (of terms, for our purpose) is called well-
founded if there is no infinite (endless) sequence s; > s > ...s, > ... Of elements
from X . An ordering on termsis said to be monotonic iff sy > sy impliesf(...s1...) >
flois2..0).

Asusual wedefines < tifft = s,s < tiffs <tors=tands = tiff t < s. Below
we will order terms and integers, in which case = means the respective identity relation
(although any equivalencerelation can be used in principle), however with one exception:
finite multisets can bethought of asterms constructed from the variadic constructor symbol
“{.}". Henceforth equality of such termsis understood as multiset equality.

Partial orderings can be extended to partial orderings on tuples by comparing their
components— as usual —asfollows: Assume 7 sets X; equipped with n respective partial
strict orderings >; asgiven. Thenan n-tuples = (s1, ..., s,) islexicographically greater
than an n-tuple t = (t1,..., t,), written as s >, t iff s; >; ¢; forsomei (1 < i < n)
while s; = t; forall j < i.

Similarly, for agiven set X of terms with well-founded strict ordering > we will with
» denote the extension of > to (finite) multisets over X . » isdefined as follows:

X ={z, . s amp > {y, sl =Y

if a:i>-'yj1,...,yjk andX—{[xz]}% Y—{[yjl,...,yjk]}
forsomei, 1< i < m and
forsomeji,...,jk, 1< <...<jp <n(k>0)

Thus, X » Y if Y can be obtained from X by successively replacing an element by
finitely many (possibly zero) elements strictly smaller in the base relation.

Next we turn to multisets with weight (cf. Section 2). Since multisets with weight
are tuples, they can be compared lexicographically. The resulting ordering » i over
multisets with weight over aset X of termsthen reads as follows:

My >yw Ny = (M » Norelse(M =N andv > w))

where M,, N,, are multisets with weights over X. Thus we first compare the set-
components; if these are equal then the weight gives the decision.

8 astrict ordering is atransitive and irreflexive binary relation.
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It is well-known that the orderings > 1., and » are well-founded provided that the
orderings upon which they are based are also (see (Dershowitz, 1987) for an overview of
orderings). Thus s v is aso well-founded.

Orderings on multisets can be generalized to nested multisets(Dershowitz and Manna,
1979). For our purposeswe haveto go alittle further and to compare nested multisetswith
weight over a set of constants C. This ordering is nothing but a recursive path ordering
with status (see e.g. (Steinbach, 1990)) where the multiset constructor “{.}” is given a
multiset status, and the tuple-constructor (N, w) (to attach weights to multisets) is given
aleft-right status. The proof of proposition 7 below will make this more precise.

DEFINITION 5. (Nested Multisets with Weight) Let C' be a finite set of constants,
ordered by the well-founded ordering >, andlet W C IN be afinite set of weights. Define
the nested multiset ordering with weights, s yusw, recursively asfollows:

L X ={z,....zml, >~vmuw {y1,-- s by, =Y
if z; >=yuw Y forsomei=1...m,
or X »yw Yandov,we W,
where s 1w isthe extension
of s yarw to multisets with weight.
2. X = {]:L‘l,...,.’ltm]}v NMW Y
if ye Candz; »yyw yforsomei=1...m

3. T >NMW Y
if z,ye Candz >y

For termination proofs the simplification orderings are of particular interest; a simpli-
fication ordering on a set X of termsis defined as a monotonic partial strict ordering > on
X which possesses the subterm property, i.e. f(...s...) > s, and the deletion property,
e fleo.s..)=f(o..... ). Thelatter property isrequired only if f isavariadic function
symbol (such as the multiset constructor). Various simplification orderings are known,
among them the recursive path ordering (with and without status), the semantic path
ordering and lexicographic path ordering. Simplification orderings are interesting for the
following reason:

THEOREM 6. (Dershowitz, 1982; Dershowitz, 1987) Any simplification ordering on a
set X of termsis a monotonic well-founded ordering on X.

Fortunately we have:

PROPOSITION 7. The ordering »nww is a simplification ordering.

Proof. Nested multisets with weights to be compared by s 1w areterms built from
the variadic constructor symbol {.}, the 2-ary sequence constructor (.,.) and aset C' of
constants. Furthermore a finite set W C N is given. Now consider the recursive path
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ordering with status > rpos (Seee.g. (Steinbach, 1990)), where {.} is assigned a multiset
statusand (., .) is assigned alexicographical |eft-to-right status. The precedence > gpos
on function symbols uses the given well-founded ordering = on C; the set W is mapped
isomorphically (say, by ¢) to a set of new constants, and >prppg IS extended order-
isomorphically wrt. the ordering > on naturals. Finally, the constructor symbols {.}} and
(.,.) aregivenin >rpos moreweight than ¢(maz(W)). Thisimplies {.} >gpos ¢(w)
for every multiset.

With thisdefinition it can beverified by unfolding >  pos according tothe casesof term
structure, that » vy satisfies >gpog. In particular, the condition that the constructor
symbols {.} and (.,.) isgivenin >grpos more weight than ¢(maz(W)) implies that we
canobtain M, >gpos Ny, incase N isatrue subset of M (becausethen M, >grpos w
holds, asisrequired by > rpos).2 Thus, with > rpos being asimplification ordering (see
(Steinbach, 1990)), > ypw isaso.

4.2. DERIVATION ORDERINGS

In order to be as general as possible we introduce the following notion:

DEFINITION 8. (Derivation Ordering) A binary relation > on ground derivations is
caled a derivation ordering iff > is a well-founded and strict ordering. Now let D be
aderivation. A derivation ordering > is called monotonic iff D|,;; = G and G > F
implies D > D[F],;;, where F' is a derivation which agrees with G on top literal and
derived literal.

Next we will design an appropriate derivation ordering for linearizing completion. For
thislet D be a derivation

D=(I12 Ly L, 25 L),
and define the complexity of D, compl(D) as
compl(D) := {0, (compl(D1), wa), ..., {compl(D), wn)}
where for asequence D1D?- .. D™ of derivations we define

compl(DD?...D™) = U compl(D?) .

i=1..m

Thus, compl(D) isamultiset whose elements are nested multisets with weights over the
set {0}. compl(D) contains structural information about the derivation: it expresses the
shape (when read as a tree) of the derivation encoded as multisets, and occurrences of
input literals are mapped to the dummy element 0 at the leaves. Furthermore, the weight

% We conjecture that even without the restriction to finite W a simplification ordering results. This proof,
however, does not go through in that case.
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of aused inference rule comes into the complexity measure as the weight of the multiset
corresponding to the rule application. For instance, the derivation Dy in example 2 has

the complexity {0, {}s, {0, {}4} 5}
In order to compare two derivations D1 and D, we attach the artificial weight O to

them and use the nested multiset ordering with weights. More formally define
D1 > Lin D2 iff (compl(D1),0) »nmw (compl(D3),0)

where the base set X is {0} and the extended ordering is the empty ordering. Evidently,
aderivation D islinear (cf. Section 3) iff its complexity compl(D) is of the form

{0,40,.., 0}y, ---,{0,-.-, 0}, }

wherethe w; s are are the weights of the used inferencerules. The ordering > 1., is defined
in such away that when weights are neglected smaller derivations are “more linear”.
Fortunately we have:

PROPOSITION 9. Therelation >, isa monotonic derivation ordering.

4.3. REDUNDANCY

Building on orderings we come to redundancy. In order to be as flexible as possibly the
following definition is rather general and includes the notion of redundancy presently
used for the linearizing completion as a special case.

DEFINITION 10. (>-redundancy) Let > be a derivation ordering, and let Z be an
inference system. An inference rule P — C is caled >-redundant in Z (Z need not
necessarily contain P — () iff

1. P — Cisnotof theform K — false where K isalitera, and

2. for every inference system 7 with Z C 7 and every ground derivation
D = (In =>(5u1p—cyyo,m Ln)
which uses P — C there also exists aground derivation D’ < D of theform
D' = L =(q\(p—cys,u Ln -

»-redundancy meansthat any ground derivation in a possibly extended inference system
J using the redundant inference rule can be replaced by asmaller derivation wrt. > which
uses at most the input literals as given, and this derivation does not use the redundant
rule. The strict decreasing property is required since otherwise the redundancy of arule
in acertain inference system would not carry over to the inference system obtained asthe
limit of the completion process.
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Aninferencerule of theform K — false is never redundant dueto (1). The motivation
for this comes from the use of such rulesin therole of input literals in intermediate stages
of completion (cf. also the proof of Lemma 4 above). It turns out that the deletion of a
rule K — false in genera does not provide a substitute for this purpose, evenif the rule
would be redundant according to condition 2.

In general, --redundancy is undecidable. However, »-redundancy plays a vital role
in completion procedures. Thus at least a sufficient condition for >-redundancy should
be given in a more constructive way. For linearizing completion we offer the following
criteria

PROPOSITION 11. (Sufficient > ;,-redundancy criterion) Let Z beaninferencesystem
and P —,, C be an inference rule. Suppose that for every L € P there exists a linear
T\ {P —w C}-derivation fromP

D D Dn_u _
L=L1=p, ¢ L2 =2p 0 L3 ln1 =P, cLn=C

withn > 1 and such that for i = 1,...,n— 1it holds (P \ {L},w) »mw (Di,w;) In
this comparison the sequence D; of literalsis to be read as a multiset. Then P —,, C is
>~Lin-redundant in Z.

The proof is by induction on the structure of a derivation, thereby making use of the
monotonicity property of > 7, in the induction step.

Proposition 11 isvaluable, sinceit givesusamore“local” criteriato detect redundancy
than Definition 10. Informally, the condition (P \ {L}, w) » yw (D;, w;) means that
the -th derivation step either uses strictly fewer side literals (the set D;) than the side
literals P \ {L]} of aderivation step carried out with P —,, C, or else, thesideliteralsare
the same, but an inference rule of lessweight is used. This check hasto be donefor every
L € P according to the potential applications of the inference rule in a derivation.

EXAMPLE 12. Consider the following ground inference system:

(1) A,B,C —4 D

2 A,B,C —3 E

(3 E,C —sD
The rule (1) is > 14, -redundant in this system. Using Proposition 11 this is checked as
follows: for A astop literal consider the derivation A B;C;(l) D. It can bereplaced by the

derivation A 5%6;(2) E =C>(3) D; for the first derivation step we have

{B,Cl = ({4, B, C} \ {A})

Hence the weights must be considered, which yields 3 < 4. Thus the first derivation
step satisfies the condition stated in the proposition. For the second step we have {C} C
{B, C}, hence the weights do not matter. The case for B astop literal is similar, and for
thetop literal C' rule (4) can be used.
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EXAMPLE 13. Consider therule R = z < z',z' < ¢,y < 2/ — =z < 2z’ which
expresses a once unfolded transitivity rule Trans = z < y,y < z — z < z. We
clam that R is > i,-redundant in an inference system which contains Trans. Using
Proposition 11 thisis checked asfollows: for z < z’ astop literal consider the derivation

z'<y’ y'<2!
! >R T < 2’

<z

whose side literals are {z’ < y', 3’ < 2’}. It can be replaced by the derivation

; o'y )y ’
T<L ————Trans T <Y ———— Trans T < 2

Furthermore for the first derivation step it holds {z’ < ¢} C {z’ < ¥', ' < 2’} and for
thesecondstep {y’ < 2’} C {z' < ¢, y' < 2'}}. Similarly there exist derivationswith top
literdls 2’ < ¢’ and ¢’ < 2’. Weights are not needed for these derivations.

5. Transformation Systems

Transformation systems are the formal devicefor transformations of the inference systems
of the previous section. A transformation system transforms aninitial inference systemin
afair way by application of certain transfor mation rulesinto acompleted state. Compl eted
inference systems in turn are refutationally complete wrt. the desired linearity and unit-
resulting restrictions.

Transformation systems are a rather general device and alow for the construction of
awide range of restricted inference systems. In this paper we concentrate on the instance
“linearizing completion”.

DEFINITION 14. (Transformation system) A transformation rule D with premise P
and conclusion C is an expression of the form % where P isamultiset of inference rules
and C is an inference rule. By applying a transformation rule to a multiset of inference
rules P! we mean the matching of P to P’ by some substitution . The result of such an
application then is C'. A transformation rule can be labeled as mandatory or optional.
A transformation system consists of a set of transformation rules and a well-founded
ordering > on derivations.

Let S beatransformation system. TherelationZ +-s Z' oninference systems meansthat
7' isobtained from Z by either (1) adding the result of an application of atransformation
rule from S to variable digoint variants of rules in Z, or else (2) by deleting a -
redundant inference rule from Z. In case (1) the weight of the added inference rule
can be chosen arbitrarily. A S-deduction from an inference system Z; is a sequence
TotsIits -+ Fs I, Fs ---. Deductions may be of finite or infinite length.

Thetransformation system Lin consists of transformation rules givenin Figure 8. The
transformation rules Unitl, Unit2 and Deduce are labeled as mandatory, and Contrais
labeled as optional. As the derivation ordering we use > 1.;,, as defined in Section 4.
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Li1— C Ly — false

Unitl: To — false { If Lo = Lyo by MGU ¢
Unit2: L,P— C Ly — false If (1) P#0,and
' (P— C)o (2 (Li= Lp)o by MGU o
PGl L, Py — (G If (1) P,#0,and
Deduce: (P1, P2 — Co)o { (2) Cio = Lo byMGU &
Contra: LpP—>C O £ fal
ontra: T Po1I { # false

Fig. 8. Thetransformation rules of the transformation system Lin. Here, L and C areliteralsand Pisaliterd
multiset.

EXAMPLE 15. From the ground rules A — B and —A — false therule =B — false
can be obtained by Unit1'°. Consider the inference system Zo(7') of Example 2 again.
From B,D — false and =D — false we can obtain B — false by Unit2. Unitl
and Unit2 share the same purpose: to eliminate in derivations applications of literals
from punit(Z) (these are initially needed, as stated in Lemma 4). For instance, the set
{B} now has a one-step refutation in Zo(7) U { B — false}. From the rules C — D
and B, D — false in Example 2 the rule B, C —19 false can be Deduced. Deduced
rules are used to turn arefutation stepwise into a “more linear” refutation. Again, using
Zo(T) U {B, C —1p false} the refutation D1 from Example 2 of M1 = {4, C'} can be
linearized with the new rule. We have:

Di=(A=s_5B =C>B,C—>false false)

The complexity of D; is{0, {}s, {O} 10} and it can be verified that D1 > i, Di.
Fromthetransitivity rulez < y,y < 2z — z < zandacopy z' < ¢’y < 2/ —z' <

z' by Deducewitho = {y « 1z, z « 2’} oneobtainsz < z’,z' < ¢,y <2/ -z < 2.
From A, B — C by Contra-C, B — - A can be obtained.

10 Weights are not considered in this example.
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This Contra transformation ruleis an optional rule and thusis not labeled as mandatory.
Itis sometimesvaluablein order to cometo afinite system (Section 6 containsan example
for such a case). However, the Contra rule should be applied carefully sinceit increases
the search space of the generated inference systems; applying Contra exhaustively will
produce every possible contrapositive of a theory clause. This is clearly not intended.
Surprisingly, an application of the Contra rule may increase the deductive power of
an inference system: consider eg. Z = {A — B}. The only non-trivial Z-derivation is
A = B.However, whenZ isenriched with the contrapositive— B — — A, thederivation
-~ B = — A also exists. However its application does not increase the refutational power
of inference systems.

We collect for later use the following lemma, which states that redundancy persists
along transformation steps:

LEMMA 16. Let S be a transformation system with derivation ordering >. Suppose
P — Cis »-redundant in some Z, and suppose that Z +s J. Then P — C is also
»-redundantin 7.

Proof. If J isobtained by adding anew rule to Z the lemmaistrivial by the property
J D T inthe definition of redundancy (Def. 10). If 7 is obtained from Z by deletion of a
redundant rule then well-founded induction is used to eliminate every useof P — (' and
the deleted rule in derivations. See the appendix for the full proof.

We conclude this section with a hote on soundness. In order to achieve the soundness
of the overall approach, one has first to guarantee that all derivations obtainable from
initial inference systems are sound. This, however, is clear since they are nothing but
Unit-Resulting refutations. Second, one has to guarantee that derivations obtainable from
transformed inference systems are sound. The key to this result is the observation that
newly generated inference rules are just resolvents of present rules, and hence are logical
consequences of these.

5.1. LIMIT INFERENCE SYSTEMS

Theprocessof applying the transformation rules of atransformation system may terminate
or not. In order to treat both casesin auniform way it isuseful to definethe limit inference
system Z, which isfinite if the transformation system eventually does not produce new
inference rules any more and infinite otherwise.

DEFINITION 17. (Limit, (Bachmair, 1991)) The limit of a deductionZo - Z; + -+ F

I, ---isdefined as
Too i= U ﬂ Ij
i j>i
The elements of Z, are also called the persisting inference rules.

Thelimit Z, of adeduction is the set of inference rules generated eventually and never
deleted afterwards:
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LEMMA 18. Let Zp + Z; | ... be a deduction and suppose (P — C) € Z,. Then for
somek, andfor all i > ki (P — C) € T

Proof. By contradiction. Assume P — C' € 7., and suppose that for all £ exists an
i > ksuchthat P — C ¢ Z,. Hencewhenever P — C € Zy then P — C ¢ ;5% Zi-
Thus P — C ¢ Ui N>k Zi and hence by definition of Z,, P — C ¢ Zo.. Thishowever
contradicts the assumption of the lemma.

This result can be extended for derivations:

PROPOSITION 19. LetZg + 71 F ... beadeduction and let D bea Z2,-derivation (resp.
T derivation). Then for somek, D isalso aIE-derivation (resp. Zk derivation).

Proof. Let {r1,...,m} C Z be the (finite) inference system used in the given
derivation. For every r; ( = 1...n) by Lemma 18 it holds that for some k;, all 7 > k;:
rj € I;. Now take k := maz({ky, ..., k,}) and observethat {ry,...,r,} C Zj.

The next lemma extends Lemma 16 to the limit Z,, i.e. redundant inference rules
remain redundant in the limit:

LEMMA 20. Let S be a transformation system with derivation ordering >. Let Zg
I, F --- bea S-deduction. If for some k, P — C is >-redundant in Zy then P — Cis
=-redundant in Z .

Also the punit-literals persist:

LEMMA 21. Let 7o + Z; + --- be a deduction. If L € punit(Zy)? then also L €
punit(Z.)9.

Proof. L is aground instance of some L', where I/ — false € ;. By definition of
>-redundancy, arule I’ — false € I is never >-redundant and thus is never deleted.
Hence I/ — false € Z; for every i > k. Thus

(Wﬁfalse)ﬂl}g U ﬂIi:Ioo

i>k E>0i>k

By this the claim follows.

Lemma 20 and Lemma 21 imply the following central property:

LEMMA 22. Let S be atransformation systemwith derivation ordering . Let Zo - 71 +

--- bea S-deduction. If there exists a derivation D = (L =>*Ig MUpUNIt(Z9) L’) then there
k> k

L') with D’ < D.

*

also existsa derivation D' = (L = MUpUNt(z%,)

5.2. FAIRNESS AND COMPLETION

Deductionsmust befair, which roughly meansthat no application of amandatory transfor-
mation rule is deferred infinitely long. Fairnessis important sinceit entails that “enough”
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inference rules to obtain normal derivations are generated. Our definition of fairnessis
an adaption of standard definitions in the term-rewriting literature (see e.g. (Bachmair,
1991)).

DEFINITION 23. (Fairness) Let S be atransformation system with derivation ordering
>.A S-deductionZp - 71 + - - - = 7, - - - iscaledfair iff whenever 7o,  Zoo U{P — C'}
for some application of a mandatory transformation rule from S, then for some k, P —
C € T, uptorenaming, or P — C' is >-redundant in Z,.

Fairness states that it is sufficient either to generate an inference rule or to prove it
redundant from persisting inference rules only. This notion of fairness enables the use of
a “delete as many inference rules as possible” strategy in implementations, since a rule
once shown to be redundant is redundant in all subsequent stages (Lemma 20) and thus
need not persist.

Thenext central concept iscompletion which meansthat only redundant new inference
rules can be generated from an inference system. Completion is a useful concept since it
allows to characterize refutationally complete inference systems, which is a semantical
concept, in a more syntactical wayL.

DEFINITION 24. (Completion) Let S be atransformation system with derivation order-
ing >. Aninference system Z is completed (wrt. S) iff whenever Z s ZU {P — C'} by
application of a mandatory transformation rule from S then P — C € 7 up to renaming
or P — Cis>-redundantinZ.

Fairness, deductions and completion relate as follows:

THEOREM 25. Let S be a transformation system and Zp be an inference system. The
limit Z, of afair S-deductionZg - Z; - - - - iscompleted wrt. S.

Proof. By contradiction. Suppose Z, is not completed. Then, for some application
of a mandatory transformation rule from £ we have Zo, + Zo, U {P — C} such that
P— C¢I,andP — Cisnot>-redundantinZ (*). However, by fairness, for somez,
P — C €I or P— CisredundantinZ;. Thissuggeststhe following case analysis:

Casel: Suppose P — C € Ty. If P — C isnot deleted afterwards, i.e. for al i > k,
P— CeZjthenP — C €;>; Zi andthusalso P — C € Z,. Contradiction to (*).
Otherwise, if P — (' is deleted in some Z;, P — C must have been >-redundant in
Z;_1. Butthenby Lemma20 P — C'is>-redundant in Z,. Contradiction to (*).

Case2: If P — C is»-redundant in Z;, then by Lemma 20, P — C is »-redundant
in Zo. Contradiction to (*).

11 Note that the term “complete” has two distinct technical meanings here, and the refutational complete-
ness of a completed system depends additionally on how the inference rules are used (unit-resulting linear
hyperresolution, in this case), and what deduction rules are used to compl ete the system.
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6. Example: Equality plus Orderings

The purpose of this section is to demonstrate the application of linearizing completion to
anon-trivial example. We start with the theory of equality alone and then extend it with
strict orderings.

Consider the theory of equality in a language without function symbols and a 2-ary
predicate symbol P (Figure9).

Equivalence: P-Substitution:
x =X (Ref=) P(x,y), x=X — P(X,y) (SubP-1)
X=y— y=Xx (Sym=) P(x,y), y=Yy — P(xYy) (SubP-2)

X=y, y=z— x=2z (Transs)

Fig. 9. Thetheory of equality in alanguage with a 2-ary predicate symbol P.

The inference system in Figure 10 corresponds to that theory and it is completed wrt.
the transformation system Lin (Figure 8). The notation z = y is a nondeterministic
notation for z = y or y = z. If part of an inference rule, the rule has to be expanded to
both cases. This system was obtained as the result of afair deduction, starting from the

Equivalence: P-Substitution:
X=y~(x=y)—  fase (Syn=) P(x,y), ~P(x,y) —»  false (SynP)
—(X=X) — false (Ref=) P(x,y), X =¥ 5 P(X,y) (SubP-1-1)
Xx=y— y=x (Sym=1) P(xy), y=y — P(xy) (SubP-2-1)
X=y, y=z— x =2z (Trans=-1) -P(x,y), x=xX — =P(X,y) (SubP-1-2)
“(x=12), y=z—--(x=y) (Trans=-2) —P(Xy), y=Y —-P(xy) (SubP-2-2)

Fig. 10. A completed inference system.

initial inference system (Definition 1) associated with the theory. There, we gave aweight
of O to every rule. The system in Figure 10 then was obtained semi-automatically with
the assistance of our implementation (see Section 9 for a more detailed description) in the
following way: first we added the following contrapositives manually by application of
the Contra transformation rule:

-(z=vy), y=9y — -(z=19") Contrapositive of (Trans=)
-P(z,y), z'=z — —P(z',y) Contrapositive of (SubP-1)
-P(z,y), y' =y — —P(z,y) Contrapositive of (SubP-1)

All these rules were given the weight 0. Then the mandatory transformation rules of
Lin, i.e. Deduce, Unitl and Unit2 were applied repeatedly in an exhaustive way, until
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no more non-redundant inference rules could be generated. This part of the construction
was carried out fully automatically. The generated rules were given weights of somewhat
above 0. Alternatively, we can run the linearizing completion tool in a fully automatic
way. Then the same system results as in Figure 10 except that additionally the rule
-(z = y) — —(y = z) is generated as a contrapositive of the (Sym=-1) rule. This
happens due to a particular heuristic built into the completion procedure, which builds a
contrapositive rule if it can successfully be applied in the redundancy proofs of two or
more other inference rules.

This system also serves as an example for a useful application of the Contra rule,
which liesin the proof of redundancy: applying Deducetoz = y,y = z — z = z and
z=2z,~(x =2)— false resultsinz = y,y = z,—~(z = z) — false. In order to avoid
an infinite chain of applications of Deduce we would liketo show z = y,y = 2z, —~(z =
z) — false redundant. For the crucial case with —(z = z) astop literal thisis shown by
the derivation

~(z = 7) ==~ (Trans=-2) ~(¢ = 9) m;y>(5ynz) Jalse

which usesthe (Trans=-2) inference rule (which was supplied manually).

It has been widely studied in the literature how to efficiently mechanize the equality
relation. It may thus be interesting how the inference system in Figure 10 relates to
well-known approaches.

Themost prominent approach to deal with equality iscertainly paramodulation (Robin-
son and Wos, 1969) and its refinements. Briefly, the inference systemin figure 10 reflects
the linear paramodulation calculus for equational theories (see e.g. (Furbach et al., 1989))
without function symbols.

Linear paramodulation (the predicate symbol P shall not be considered) proceeds
by repeated subterm replacement in a given goa equation —(s = ¢) until atrivia goal
of the form —(s = s) has been reached. In order to obtain a corresponding refutation
in our system, we have to start with the top literal —(s = ¢). Subterm replacement in
paramodulation is mirrored in our system by the (Trans=-2) inference rule, while the
derivation of thetrivial goal in paramodulationis mirrored by an application of the (Ref=)
inferencerule.

Note that according to the (Trans=-2) inference rule it is sufficient to paramodulate
into the right hand side of a negative eguation. Technically thisisrealized by the absence
of certain contrapositives of the (Trans-=) inference rule.

When used as arule of inference within a linear calculus such as model elimination,
paramodul ation must also be defined for positive goal literals (see (Loveland, 1978)). This
is already achieved in our system.

Things become more complicated when function symbols are involved. For the sake
of smplicity assumeasingle 2-ary function symbol f asgiven. Thisimpliesfor thetheory
of equality additional substitution axioms:

r=z — f(xay) =f(£L‘I,y)
y=1vy — f(z,9) =f(z,y")
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The thus enhanced theory then can be completed in away similar to above. The resulting
system isinfinite and contains rules like

z =21, =(f(f(2,9),2) =w) = ~(f(f(z',9),2) =w)  (Inst-Par)

In general, such rules for subterm replacement are generated for arbitrary depth. These
ruleshavea soacounterpartinlinear paramodulation: itiswell-known (seee.g. (Holldobler,
1989)) that in linear paramodul ation the functional reflexiveaxioms, i.e. axiomsof theform
f(x,y) = f(X,y) are necessary for completeness. Equivaently, the additiona inference
rule instantiation can be used instead (see again (Holldobler, 1989)).

If derivations with our inference systems are lifted to first-order derivations (Sec-
tion 8.3), it is straightforward to show that an application of an instantiation inference
rule, followed by a paramodulation step, has the same result as carrying out a first-order
inference with a respective inference rule such as (Inst-Par).

These considerations about paramodulation lead us to the following conclusion: lin-
earizing completion did not discover an essentially new calculus for equality treatment.
However, it succeeded to re-invent a well-known and fairly efficient calculus, namely
linear paramodulation. Furthermore, this was done in an automatic way. As an instance
of ageneral completenessresult being proved in subsequent sections (in particular Theo-
rem 44), we thus obtain the completeness of linear paramodulation.

Carrying on this result we will expect numerous useful inference systemsto be devel-
opedinthefuture. Asageneralization of the above systemfor equality consider example 3
again. Applying afair Lin-deduction to theinitial system Zp(ES) results in the (infinite)
completed inference system depicted in Figure 11. Note that not all contrapositives of
the (Trans<) axiom haveto be generated. We think that thisinference system generalizes
the above inference rules for equality in a nice and useful way. Finite approximations of
this system can be obtained in a fully automatic way by our implementation.

We conclude with a note on RUE-resolution (Digricoli and Harrison, 1986). Since
our approach is successful on rediscovering paramodulation, the question arises whether
the inference rules of RUE-resolution could be derived as well. It seems like this is
not possible, mainly because in RUE resolution the conclusion of the inference rules
are clauses but not single literals. However, this unit-resulting property is central to our
approach.

7. Complexity-Reducing Transfor mation Systems

Up to now we have seen that the inference systems generated along a deduction never
increase the complexity of a once obtained derivation. However, in order to obtain com-
pletenesswrt. normal-form derivations (linear derivations) more is required: the transfor-
mation system has to eventually generate inference rules that will strictly decrease the
complexity of anon-normal derivation.

DEFINITION 26. (Nor mal Derivations, Order-Nor malizing Transfor mation System)
A set /' of ground derivations is called normal iff A/ is downward closed wrt. a given
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derivation ordering >, i.e. if D € N and D' < D for some ground derivation D’ then
D' € N. Inthe sequel N always denotes a set of normal derivations. As an example of a
normal set of derivations definethe set Lin G asthe set of al linear ground derivations.

Now let Z be an inference system and let S be atransformation system with derivation
ordering . Then S is called order-normalizing wrt. A/ iff whenever there exists a
ground derivation D = (L :>Z,g7 u L') suchthat D ¢ N then there exists a derivation
D' = (L —_—>’(‘I,)9’M L'"Ywith D" < D,whereZ’ = T orZ s I’ by onesingle application
of some mandatory transformation rule.

In words, an order-normalizing transformation system alows generation of a new
inference rule (if not present aready) that allows a decrease in complexity of a given
non-normal ground derivation. Note that not necessarily D’ € N. This property is not
required, because the derivation ordering > is well-founded. So we will eventually end
up with a normal derivation D’ € N for any given derivation D (see Proposition 28
below).

Asan examplefor an order-normalizing transformation system take “ linearizing com-
pletion”, which is order-normalizing wrt. linear ground derivations:

PROPOSITION 27. The transformation system Lin is order-normalizing wrt. LinG.

In essence, the proof uses the facts that the Deduce transformation rule is labeled as
mandatory and furthermore works towards strictly decreasing derivations wrt. the well-
founded ordering > 1.

Returning tothegeneral level, wefind that acompletedinference systemin conjunction
with order-normalizing transformation systemsyields normal derivations:

PROPOSITION 28. Let S be an order-normalizing transformation system wrt. A~ and
let 7 be a completed inference systemwrt. S. Whenever there exists a ground derivation
D= (L :>*Ig,,v, L") then there also exists a ground derivation D' = (L :>*IQ’M L") with
D’ € N and D’ < D, where - is the derivation ordering of S.

Proof. By well-founded induction on the derivation ordering >: either D € N and
we are done by taking D’ = D, or else by definition of order-normalizing transformation
systems there exists a derivation D" = (L ==, 5, L') with D" < D, whereZ' =1
or T s 7' by application of some mandatory transformation rule. If 7/ = 7 we can
immediately apply the induction hypothesis to D” to obtain the desired derivation D’.
Otherwise, 7’ = TU {P — C}. Since 7 is completed either (a) a variant of P — C
iscontainedin Z, or (b) P — C is >-redundant in Z. In case (a) we can replacein D"
every useof P — C by itsvariant from Z and obtain a Z-derivation alone (to which the
induction hypothesis can be applied). Now for case (b): either P — C is not used and
thus D" is a Z-derivation aone (to which the induction hypothesis can be applied), or
else, by definition of redundancy (Def. 10) there exists a Z9-derivation D" < D" of the
same kind as D". By applying the induction hypothesis to D" this concluding case is
done.
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Chaining ground completeness (Lemma 4), the completion property of limits (Theo-
rem 25) with Proposition 28 we can obtain normal refutations of M U punit(Z), where
M is some 7 -unsatisfiable literal set. Thus, a refutation might still use unit inference
rules being turned via punit(Z) into input literals. However, every use of aliteral from
punit(Z) represents a computation among the inference rules and should be avoided. In
order to admit normal refutations with input literals A alone, we will compilethe literals
punit(Z) into theinference system. Thesituation ismuch like normalizing above, but now
“normal” means “free of usages of elements of punit(Z)”. In order to obtain termination
when eliminating these cases we require the respective mandatory transformation rulesto
work strictly decreasing wrt. . Thisis captured in the next definition.

DEFINITION 29. (Punit-Normalizing Transformation System) The multiset of used
input literals of a derivation D is defined as

used(D) := {L | Listhetop literal of D|,, wherep € P(D)}

Thefunction used isextended homomorphically to sequencesand multisets of derivations
as expected.

Let S be a transformation system with derivation ordering > and let ' be a set of
normal derivations. Then S is called punit-normalizing wrt. A/ iff whenever there exists
anon-trivial ground derivation

D= (L :>*IH,MUpunit(I9) LI)
with D € N such that used(D) N punit(Z9) # 0 then there exists aderivation
D'=(K :>EI’)9,MUpunit((I’)9) L)

with D' < D where K € M U punit((Z')9) U{L} andZ’ =Z or T -s T’ by application
of some mandatory transformation rule.

“punit-normalization” means that whenever an inference rule L — false is used as
as an input literal L then a strictly smaller derivation exists. That derivation, however,
need not start with the same top literal L, but may as well start with a top literal from
M U punit((Z")9). Note that according to this definition it sufficesfor a punit-normalizing
transformation system to work on normal-form derivations only.

As an example take again “linearizing completion”, which is punit-normalizing wrt.
linear ground derivations. This is essentially due to the transformation rules Unit1 and
Unit2. See also example 15.

PROPOSITION 30. The transformation system Lin is punit-normalizing wrt. LinG.

Completed inference systems in conjunction with punit-normalizing transformation
systemsyield derivationsthat arefree of applicationsof inferencerules L — false asinput
literals L. Thisresult is similar to Proposition 28 for order-normal derivations:
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PROPOSITION 31. Let S be a punit-normalizing transformation systemwrt. A/, and let
7 be a completed inference system wrt. S. Whenever there exists a ground derivation
D = (L =, Mupunitcze) L) With D € N then there also exists a ground derivation

D' = (K =7y L) withD' < D, D' € N and someK € M.

Sinceweareinterested in both properties— punit-normalization and order-normalization
— we define:

DEFINITION 32. A transformation system S is called normalizing wrt. A iff S is both
order-normalizing wrt. A and punit-normalizing wrt. N.

Combining Propositions 27 and 30 we then obtain:

THEOREM 33. The Transformation systemLin isnormalizing wrt. the set LinG of linear
derivations.

8. Completeness

The goal of this section is to assemble the material of the previous sections into several
completenessresults. We will provetwo versions of general ground completenessresults.
“Genera” here meansthat no special derivation ordering is supposed. These results then
will beinstantiated for the case of linearizing completion and lifted to the first-order level
in Section 8.3.

8.1. GROUND COMPLETENESS

In purely equational logic and Knuth-Bendix completion, Birkhoff’s theorem links model
theory and proof theory: two ground terms are equal in an equational theory 7 —i.e. a
set of equations — iff they can be made identical by replacement operations using the
equations from 7. Since we deal with more general theories we proved in Section 3 a
corresponding result (ground completeness, Lemma 4). In order to apply it we find it
helpful to introduce the following notion:

DEFINITION 34. (Relative Completeness) An inference system 7 is called relatively
completewrt. an inference system 7 iff whenever

* !
L= 79 mupunit(g9) L

then also
L =14 mupunit(z9) r

Now we can turn towards completeness. We start with a general result:
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THEOREM 35. (General Ground Completeness Theorem) Let 7 beatheoryandlet S
be a normalizing transformation systemwrt. some set A/ of normal derivations. Suppose
an inference systemZ7 is completed wrt. S, and also supposethat 7 is relatively complete
wrt. Zo(7 ). Thenfor every 7 -unsatisfiableground literal set M thereexistsaZ9-refutation
D € NV of M with some top literal from M.

Proof. M is7T-unsatisfiableiff M is7 9-unsatisfiable. By ground completeness (Lem-
ma 4) L :>*IO(T9),MUpunit(Io(T9)) false for some L € M U punit(Zo(79)). With

Io(T9) C Zo(T)9 it follows L ﬁ}o(ﬂg Mupunit(To(T)e) Jolse. Since T is given as
relatively complete wrt. Zo(7') we find by definition
L :>;g7MUpum.t(Ig) false. With Z being given as normalizing wrt. V" we can first find

(by Proposition 28) an order-normal refutation D’ = (L =574 10 punit(ze) false) € N

and then we can find (by Proposition 31) a punit-normal refutation D = (K :>fd,g’ M
false € N') forsome K € M.

This theorem requires the existence of a completed and relatively complete inference
system wrt. Zo(7"). Such a system can be obtained in a constructive way asthe limit of a
fair deduction:

THEOREM 36. The limit Z, of a S-deduction Zo(T) Fs Z1 Fs Z»... is relatively
completewrt. Zo(7), where 7 isa theory.
Proof. Use Lemma 22, setting there Zop = Zo(7 ) and k = 0.

Thus we can instantiate the general ground compl eteness theorem:

COROLLARY 37. Let 7, S and NV asin Theorem 35, and let Z, be the limit of a fair
S-deduction Zo(7) Fs 71 Fs .... Then for every 7 -unsatisfiable ground literal set M
there exists a Z3-refutation D € A of M with some top literal from M.

Proof. By Theorem 36 Z, isrelatively complete wrt. Zo(7'), and by Theorem 257,
is completed wrt. S. Hence the corollary follows from the theorem.

Next wearegoing toinstantiatethiscorollary towards*“ linearizing completion” . Before
we do so observe that the corollary (aswell as the theorem) states completenessfor some
top literal chosen from the input literal set. However, as motivated in the introduction,
the intended application of completed inference systems as background reasoners within
theory reasoning calculi demands that we insist on a completeness result with respect
to every literal as top literal (see (Baumgartner, 1994) for a detailed treatment). This
“independenceof thegoa” property correspondsto e.g. linear resolution for Horn theories
whereit sufficesto start derivations with a negative clause. In practice this meansthat the
top literal need not be guessed in a don’t-know nondeterministic way, but can be chosen
apriori.

Fortunately, the transformation system Lin is powerful enough to generate inference
rules that allow rearrangement of a given linear derivation such that any literal used
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inside a derivation can be switched to the top position. Thisis expressed in the following
lemma:

LEMMA 38. (Top literal lemma) Let Z be a compl eted inference systemwrt. thetransfor-
mation system Lin. Supposethere exists a linear ground derivation D = (Ly =74 Ln)
with L; € M. Let T € M such that T € used(M). Then there exists a linear ground
derivation D’ = (T =74 Ln).

For instance, the inference system Z,(7) in the introduction is completed wrt. LinG.
Now consider again the refutation Ry of £ (also given in the introduction)'?. Since
a < c € used(L) there exists arefutation with top literal a < ¢, whichis R».

Note that the top literal lemma is not formulated within the general uninstantiated
completion theory, since in general it may be not useful to demand the completeness for
arbitrary chosen top literals for arbitrary transformation systems.

Now with the top literal lemma we can obtain the desired completeness result for
linearizing completion:

THEOREM 39. (Ground Completeness of “Linearizing Completion”) Let 7 be an
inference system completed wrt. the transformation system Lin. Let 7 be a theory and
suppose Z is relatively complete wrt. Zo(7"). Then for every minimal 7 -unsatisfiable
ground literal set M and every literal L € M there exists a linear refutation

D = (L =79 false)

Notethat arelatively completeinference system asassumed in thetheorem can be obtained
by application of Theorem 36.

Proof. By the general ground completenesstheorem (Theorem 35) there existsalinear
T9-refutation D € LinG of M. Since M isgivenasminimal 7 -unsatisfiable, theintended
top literal L must be used at |east once in the refutation (because otherwise the refutation
of M \ {L} implies by soundnessa contradiction to the minimality assumption about M).
Next apply the top literal lemma (Lemma 38) to D and obtain alinear refutation with top
literal L.

By the theorems and corollaries of this section the main results of our completion
technique for the ground case are established.

8.2. THEORY COMPLEMENTARITY AND THEORY REFUTERS

First order completeness of refutational proof calculi usually is formulated wrt. (theory-)
unsatisfiable input formulas. This is fine if one is interested only in simple “yes/no”-
answers. However, as mentioned in the introduction, our inference systems shall be used
asbackground reasonerswithin theory reasoning cal culi (such astheory model elimination
or theory resolution). For this task it is necessary to compute an answer substitution by

12° Although not ground, it will serve as an example equally well.
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the background reasoner to be passed back to the foreground reasoner. Thus we cannot
be content with refutational completeness alone. On the other hand, we obtain traditional
refutational completenessasacorollary of the completenesswrt. answer substitutions.

In non-theory calculi, the refutations are usually computed for efficiency reasons at a
most general level. Thisisalso adesirablegoal within theory reasoning. But then, however,
unifiers need no longer be unique, and thus have to be replaced by amore general concept.
In the presence of purely equational theories the concept of “complete set of unifiers’ is
well-known. Since we deal with arbitrary Horn theories and not just equational theories
we still have to be abit more general. This concept, which isformulated in adua way, is
called theory refuting substitutions. Below we will show that our inference systems can
be used to compute most general theory refuting substitutions.

DEFINITION 40. (Theory complementary, Theory refuting substitution) A literal set
M = {L4,...,L,} iscaled T-complementary® iff the existentially quantified formula
(L1 A ... A Ly) is T-unsdtisfiable. M is called minimal 7-complementary iff A is
T -complementary and all proper subsets are not 7 -complementary.

A substitution o is a (minimal) 7 -refuter for a literal set M iff Mo is (minimal)
T -complementary. A set of substitutionsis acomplete and most general set of 7 -refuting
substitutions for M (or short: CSRz(M)) iff

1. foral o € CSR7(M): Mo isT-complementary (Correctness)

2. for al substitutions 8 such that M6 is 7 -complementary:
thereexistsao € CSR7 (M) and asubstitution ¢’ such that § = oo’|dom ()
(Completeness)

The members of CSR7 (M) are aso called most general 7 —refutersfor M.

Our notion of theory refuter generalizes the notion of rigid E-unifier (Gallier et al.,
1990) to more general theories than equality (see (Baumgartner, 1992b)). A dual notion,
“unifier with respect to 7 -complementary literal sets’, has been studied within an affir-
mative setting in (Petermann, 1991).

EXAMPLE 41. Consider the theory £ of equality. The set
M ={P(z), y = f(y), ~P(f(2))}

clearly is £-unsatisfiable when read as a set of unit clauses. However it is not &-
complementary, since e.g. the ground instance P(a) A (a = f(a)) A =P(f(b)) of

Az,y,2 1 (P(z) Ay = f(y)) A—P(f(2)))

is not £-unsatisfiable. But the substitution o = {z « z,y « z} isa&-refuter since the
formuladz : (P(z) Az = f(z) A=P(f(z))) obtained from M ¢ is £-unsatisfiable (since
there does not exist a ground instance that is £-satisfiable).

13 this definition isintended as a generalization of standard “ syntactic complementarity” which means that
two literals are syntactically complementary iff one of them is the negation of the other.
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8.3. FIRST ORDER COMPLETENESS

First of al, the definition of “derivation” hasto belifted to thefirst order case:

DEFINITION 42. A first-order inferenceis defined in the same way as an inference (cf.
Section 3), except that the substitution § is replaced by a (Multiset-)MGU o for P’ and
P. More precisely, we say that aliteral C' isfirst-order inferred froma literal multiset P/
by an inferencerule P —,, C and substitution o, written as afirst-order inference

Pl :>P_)w0’a' C,

iff P’lo = Poand Co = C".

A linear first-order derivation of M is defined in the same way as a linear derivation
in Section 3, except that theinferences { L;, L}, . . ., L} = p,—c;,8; Liv1 arereplaced
by first-order inferences {L;,L},...,L]"} =>p,_.¢, 0, Li+1 Where L},... . L]" €
Moy -+ 0;_1 (thusin every step the so far computed substitution o1 - - - ;1 isapplied to
theinput set M). Furthermore the used inferencerule P; — C; hasto be anew variant of
some rule from Z. The answer substitution o of a linear first-order derivation is defined
aso = alaz---on,l\mw) ifn>1oreseo =e¢.

A (linear first-order) Z-refutation is defined as a (linear first-order) Z-derivation of
false.

We write Ly :>J‘I mo Ln toindicate that a linear first-order Z-derivation with
answer substitution o of L, from input literals M exists. Furthermore the notation

D= (L1 :%M,U L, ) meansthat D is such aderivation.

First order completeness is shown in a standard way which employs a lifting lemma
for derivations. However, a dedicated lifting lemma has to be proved for the derivation
ordering in use. Hence, first-order completeness will be formulated wrt. a derivation
ordering. Here we will show the case for linear refutations.

LEMMA 43. (Liftinglemmafor linear refutations) Let L1 bealiteral, M bealiteral set
and v be a ground substitution for L; and M. If there exists a non-trivial linear refutation
L1y =>*IQ,M7 falsethen there exists alinear first-order refutation Ly :>;;M,0 false such
thato <~ [var(M)].

Finally we obtain the completeness theorem for the case of linearizing completion;
it is the main result of this paper, and its proof employs most of the material presented
here.

THEOREM 44. Let 7 be an inference system completed wrt. the transformation system
Lin. Let 7 be a theory and suppose 7 is relatively complete wrt. Zo(7). Let M be a
minimal 7 -complementary literal set, L € M, and suppose «y is a 7 -refuter for M. Then
there exists a linear refutation

Df = (L =1, false)

with computed answer substitution o < v [var(M)].
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Proof. Since~yisaminimal 7 -refuter, M~ isminimal 7 -complementary. Hence also
the ground instance Ly of L € M iscontained in M.

By definition, M~ is 7 -complementary iff 3M is 7 -unsatisfiable (where M isread
as a conjunction). Clearly, all existentially quantified variables can now be skolemized
away, which preserves 7 -unsatisfiablity. Let +' be such a substitution which replaces all
variables in M~ by new constants. Hence M~~' is ground and is 7 -unsatisfiable. By
the ground completeness of “linearizing completion” (Theorem 39) there exists a linear
T9-refutation of M ~y~' with top literal Ly+'. Finaly apply thelifting lemma (Lemma 43)
to obtain the linear first-order refutation D of L.

9. Practical Experiments

Wehaveimplemented linearizing completion and combined it with our PT TP-based theory
model elimination prover, called PROTEIN (PROver with a Theory Extension Interface,
(Baumgartner and Furbach, 1994b)). Besidesthe more straightforward extension of model
elimination towards theory reasoning, PROTEIN also features a variant which relies on
“case-analysis’ reasoning similar to Loveland’s Near-Horn Prolog or Plaisted’s modified
problem reduction format. This variant is called restart model elimination ((Baumgartner
and Furbach, 1994a)). Both PROTEIN and the linearizing completion tool areimplement-
ed in ECLiPSe, ECRC's Prolog dialect.

We ran several examples known from the literature with PROTEIN and another high-
performance model elimination prover, SETHEO V. 3.0 (Letz et al., 1992). Table 12
contains the runtime results (in seconds), obtained on a SPARC 10/40. The first four
columns refer to different versions of PROTEIN. Column 5 contains data for SETHEO.

PROTEIN was run in default mode, except where indicated in Table 12. In default
mode it includesthe regularity restriction and the ground-reduction refinement. SETHEO
was also run in its default mode, which then makes use of the following refinements
and constraints: subgoal reordering, purity, anti-lemmas, regularity, tautology and sub-
sumption. Concerning the search strategy we used iterative deepening with the costs of
extension steps uniformly set to 1. The same costs are used for case analysis steps.

For the theory variants of PROTEIN, the background calculus was obtained auto-
matically by the linearizing completion tool in a preprocessing phase. In this setting,
PROTEIN implements the partial theory model elimination calculus as described in the
introduction.

For the theories we have sel ected appropriate Horn-subsets of the input clauses. These
werein most cases* natural” theories (such as equality and orderings). We observed that it
isimportant not to select a theory which would result in a (partially) completed inference
system of more than about 150 inference rules. In such casesthe local search spaceistoo
broad in order to be explored to significant depth.
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Restart- Restart-
Example ME ME | TME TME SETHEO
Non-obvious 0.3 2.7 1.6 11 05
VBC/ MBCO06- 1 0.151
Graph 10.8 o0 0.2 7.0

0.82

X#0—-x*>0 2.4 0.7 2.2 0.6 0.8
Pelletier 48 5.9 1.2 04 0.9 0.2
SYN SYNO71- 1 0.62 0.112
Pelletier 49 0 297 1.6 15 00
SYN SYNO72- 1
Pelletier 55 392 o0 21 254 35
PUZ/ PUZ001- 2
Lion&Unicorn 588 o0 21 00 47
PUZ/ PUZ005- 1
Wos 4 22 20 0.3 26 13
GRP/ GRP008- 1
Wos 10 00 - 14 - 850
GRP/ GRP00O1- 1
Wos 11 9.6 - 11 - 0.7
GRP/ GRP0O13-1
Wos 15 384 - 47 - 478
GRP/ GRP035- 3
Wos 16 302 - 0.02 - 13
GRP/ GRP036- 3
Wos 17 00 - 0.1 - 23
GRP/ GRP037- 3
Entries. Numbers: runtimes (seconds) — oo no proof within reasonable

time bound —“-" Not applicable—
Remarks: 1 —With selection function, 2 — With (back) factoring,

Fig. 12. RuntimeResultsfor variousprovers: ME —plainmodel elimination version of PROTEIN; Restart-ME
—case-analysis stylereasoning; TME and Restart-TME —respective versionswith theory reasoning extensions.

The weight of every inference rule in the initial system is set to 0. This value was
chosen heuristically. In general, lower values for weights imply that it is less likely that
the rule will be detected as redundant, while it is more likely that the rule is used in
the redundancy proof of a different rule. Higher values imply the opposite behavior.
The weights of the generated inference rules were determined heuristically: when newly
generated, an inference rule becomes the highest admissible weight such that redundancy
proofsusing thisrulestill succeed. It should be noted that these heuristics areimplemented,
and no user assignment of weightsis necessary.

The example referred to as Non-obvious is taken from the October 1986 Newsl etter
of the Association of Automated Reasoning®®. The selected theory here consists of a

14 Entries such as MSC/ MBC006- 1 refer to the respective TPTP-names (Sutcliffe et al., 1994). All
examples were drawn from that problem library (Version 1.1.0) without modification — only the theory part
had to be selected by hand.
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transitive and symmetric relation p and a transitive relation ¢. It can be completed to a
finite systemin afully automated way. In the Graph example agraph with atransitive and
symmetric reachability relation istraversed. Theexamplereferredtoby z # 0 — z2 > 0
isto provethistheorem (z isuniversally quantified) from cal culus. Caseanalysisiscarried
out accordingtotheaxiomX >0 VvV X =0 V —X > 0. Thetheory part of the
Pelletier examples consists of an equivalence relation and the completed system is finite.
The Wos examples are from group theory. Notably, it suffices to use the same theory to
prove all examples. Here we took equality (except function substitution axioms) and the
associativity of the group operation.

The runtime of the linearizing completion tool was either sufficiently small and need
not be mentioned (in case we have theories which are specia to one single example, as
for Non-obvious), or else the selected theory works for awhole class of examples (as for
the Wos exampl es) and its completion can be viewed as being done “beforehand”. In case
linearizing completion would yield an infinite inference system for background reasoning
—in the Wos examplesfrom group theory — afinite approximation was used. All examples
could be proved with the same finite approximation.

10. Conclusions

In this paper we have developed anew completion techniquefor Horn theoriesthat allows
for the combination of the linear and unit-resulting restrictions. The central operationisto
add new inference rules that detour violations of the linearity restrictionsin unit-resulting
refutations. A redundancy criterion allows deletion of many of the thus added inference
rules, which makes the resulting inference systems quite compact.

The completed inference systems can be used as efficient background reasonerswithin
theory reasoning calculi. Themethodisfully implemented and runsin cooperation with our
theory mode!l elimination theorem prover PROTEIN'®. On numerous examples drastic
speedups were obtained. Notably, the method works fine not only for single selected
examples, but also for whole classes of examples. We demonstrated this by completing
a subset of group theory for the Wos examples. Surely, other classes will have to be
identified in the future.

Some more notes on further work: it is possible to allow in derivation steps accessing
of previously derived literals as side literals. This corresponds to “ancestor resolution”
stepsin ordinary linear resolution. Asagain of this modification moreinferenceruleswill
become redundant.

Currently, the method is limited to Horn theories. It might be worthwile to design
an extension towards general, non-Horn theories. From the technical point of view, the
problem isthat unit-resulting resolution is not complete for this case. Hence we get a gap
in the completeness proof. It is conceivablethat splitting into Horn theories helps here.

55 The whole system is available in the World Wibe Web, using the URL
http://ww. uni - kobl enz. de/ ~peter/protein. htm .
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Thelinked inference principle (Veroff and Wos, 1992), isaresolution inferencerulein
the spirit of hyperresolution. Inits Unit-resulting variant, an inference steps consists of the
construction of awholeresolution treewith aone-literal clause asconclusion. Thissearch
at run-time could possibly be supplanted by our completion-based theory compilation.
However, thisis not yet worked out.

We think the method is general enough to be applicable to other ordering criteria; for
example one might think of term-ordering restrictions as applied in the term rewriting
paradigm, or the combination of term-ordering restrictions and linearity restrictions. Of
course, different restrictions require different transformation systems, but many of the
concepts and claims not related to a specific restrictions can be kept. Thiswill be donein
the near future.

Theavailability of unification algorithmsfor dedicated theories motivates usto extend
the method towards “completion modulo a built-in theory” E. By this, the combined
theory consisting of the Horn theory and £ would be subject to theory reasoning. In order
to do so one hasto use E-unification instead of syntactic unification during the completion
phase and in inferences using the completed system.

Finally, we are currently implementing a library of completed theories. It consists of
various kinds of orderings, equality and group theory. In order to facilitate its use, we
are implementing a program which scans an input file for respective axioms and replaces
them by the theory inference rules from the library.

Acknowledgments: | thank J. Dix, U. Furbach, O. Menkensand F. Stolzenburg for reading
earlier drafts of this paper. | am very indebted to three anonymous referees who read the
paper with great care and suggested numerous improvements.
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Appendix

This appendix contains the missing proofs from the main part of this paper. Also, if an
additional lemma is needed solely for a proof and has no further relevance outside the
scope of the proof, it is given here.

SECTION 3

LEMMA 4.(Ground completeness of Zp(7)) Let 7 be a ground theory (i.e. a theory
consisting of ground clausesonly) and M bea set of groundliterals. If M is7 -unsatisfiable
then L =7 1) mupunit(zo(7)) fISE Tor someL € M U punit(Zo(7)).

Proof. By definition of 7 -unsatisfiability M is 7 -unsatisfiable iff M U 7 isunsatis-
fiable, where M is considered as a set of unit clauses. By propositional compactness we
may assume now that M U 7 isfinite.

We apply induction on the size n of the atom set of M U 7 (the atom set of a Horn
clause set consists of all atoms occurring in clausesin it).

Base case (n = 1): M U7 must contain a positive literal A and a purely negative
clause—Atv...v-AF withk > 1 occurrencesof —A (the superscripts denotethe distinct
occurrences of the same literal - A).

Theliteral A andtheclause—A* Vv ...V —A¥ may be containedin M or in 7, which
resultsin the following cases:

If £t =1then—-A € T or-A € M.If =A € T then the same refutation as in case
k > 1 below exists. Therefore supposenow —A € M. Wehave A € M or A € T.If
A € M then arefutation

A ﬁ:A>A,ﬁA—>false false
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exists. If A € T thenby definition of Zy, = A — false € Zo(7). Inthiscasearefutation

-A =£>—|A—>false false

exists.

If ¥ > 1then—Atv...v =A% € T follows. By definition of Zg A*--- A* — false €
Zo(T). Wehave A € M or A € T. However, since atheory is satisfiable by definition,
A € T isnot possible. Hence A € M. Thusarefutation

1 A2... Ak
A" = 1 Ak fuse JOlsE

from M U punit(Zo(7)) exists.

Induction step (n > 1): M U7 must contain at least one positive unit clause. (proof:
if not, then every clause contains at least one negative literal. But then an interpretation
that assignstrue to every negative literal isamodel for M U 7. Contradiction). Thus let
A € M UT beapositive unit clause. If A € M then clearly A € M U punit(Zo(T)).
If A € 7 then =A — false € Io(T) and thus A € punit(Zo(T)). Thus always A €
M U punit(Zo(T)). Thisfact will be used below.

If M U7 containsaclause—A V...V —A the same argument asfor n = 1 applies.
This check guaranteesthat the following processing does not yield the empty clause.

Let 77, resp. M’, be obtained from 7, resp. M, by deleting every clause of the form
AV R (R may beempty), and then by replacing every clauseof theform—A'v...v—A*VR
(where—A doesnot occurin R, and R cannot beempty) by R.In7'U M’ neither A nor —A
occurs. Thustheatomsizeof M'U7" isn — 1. Furthermore M’ U7’ must be unsatisfiable,
because otherwise a model for M’ U 7’ can be extended to a model that assigns true to
A, which would be in turn a model for M U 7, and thus M would be 7 -satisfiable.
Hence we can apply the induction hypothesis and assume that a Zo(7"')-refutation of
M'" U punit(To(7')) exists. Let D’ be that refutation. We show how to transform D’
into aZo(7 )-refutation of M U punit(Zo(7)). For this, every derivation step involving a
positiveliteral B € M'U punit(Zo(7")) whichisnot contained in M U punit(Zo(7)) has
to be eliminated from D’ (subcase 1), and every derivation step involving an inference
rue P — C € Zp(7') which is not contained in Zo(7') has to be eliminated from D’
(subcase 1)16.

Subcase 1: We conclude from M’ C M that B ¢ punit(Zo(7)). From B €
punit(Zo(7")) it follows B € 7'. Since B ¢ punit(Zo(7)) it follows B ¢ 7. Hence
B € T' is obtained from —=A v ... v =A% v B € T by the replacement operation
described above. With A € M U punit(Zo(7)) and A4, ..., Ay — B € Io(T) aZo(T)-

derivation

Dp = (At 2220 B
B = (A" =—=-4,..,4,—B B)

of B from MUpunit(Zo(7T)) exists. HenceaZy(7')-derivation B from M'Upunit(Zo(T"))
occurringin D' can be replaced by the Zo(7 )-derivation D from M U punit(Zo(T)).

16 To be completely formal, this requires induction on the number of applications of the rule P — C and
theliteral Bin D’
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Subcase 2. We have P — C € Zo(7') but P — C ¢ Zo(7T). Here we distinguish
two cases: in the first case, P — C is of the form =B — false. Thus B € 7' was
obtained from =4 v ... v =A% v B € T by the replacement operation above. Hence
A,...,AF — B € To(T) and we can again find the Zo(7)-derivation Dg of B from
M U punit(Zo(7)). D' isof theform

D D
D'=(Ly =%, ... Ly =% g, B ==_p_juse false)

Now replace the last inference with =B — false by an inference with =B, B — false €
Zo(T) to obtain the refutation

D D D
Ll :1>R1 [ Ln :71}3” -B g—'B,B—{f{zlse false

Inthesecondcase P — C isnot of theform —B — false. By definitionof Zg, P — C
then must be of the form By,..., By — C, where the B;s are positive literals and C
is either a positive literal or false . Thus 7' containsa clause =By V...V =B; V C or
—B1 V...V —B, respectively. The further argumentation holds for both cases. Let us
therefore consider only the first case. =By V ...V = B; V C is obtained from the clause
—Alv ...=A4F v =By Vv...v-B; Vv C € T by the replacement operation above. So
AL, .. AR By,..., B — C € Io(T). Since A € M U punit(Zo(T)) every derivation
step
B, Dy--D,
in D' with By, ..., B; — C € ZIp(T") can bereplaced by an inference with
Al ... A¥ By,...,B; — C € Io(T) to obtain

Byq,...,Bj—C c

Al...AkDZ...Dl .

B

Al Ak By,..B—C C

SECTION 4
PROPOSITION 9. Therelation >, iSa monotonic derivation ordering.

Proof. By definition D >, E iff compl(D) » nyw compl(E). By Proposition 7,
» ypw isasimplification ordering and hence by Theorem 6 well-founded.
Monotonicity is proven by simple structural induction on the derivation, using in the
induction step the fact that »~ yaw IS monotonic. More formally, let D be a derivation
andsuppose D|, ; ; = G, F isaderivation which agreeswith G ontop literal and derived
literal and G > 1, F'. We haveto show D >, D[F]p ; ;.
Base case: if p = A then D = D|, isof theform

. D;_ D; n—
D= (Ll % Ly...L; Dﬁ Li_|_1...Lj,1 £>1L]/:j> Lj-}—l---Lnfl D:>1 Ln)

~

=G
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wherel < ¢ < j < n (thecase: = j isimpossiblesincethen G wereatrivial derivation,
whose complexity is a bottom element wrt. > ;). The complexitiesof G and D can be
written as

compl(G) = {0} URg

where R = {compl(D;)w,; - ., compl(Dj—_1)w;_,} 2
compl(D) = {0, compl(D1)uy, - - -, compl(Di_1)w, ,} URg
U{compl(D;)w;, - - - , compl(Dp—1)w,_,} (3)

Concerning the derivation F', compl(F') can be written as
compl(F) = {0} U Rp 4)

By definition, G > i, F' iff compl(G) » yyw compl(F'). But then it follows with (2)
and (4) by monotonicity property (Theorem 6) of » yaw (deleting identical elements
does not change the relationship among multisets with weights) R¢ = yuw Rr (*).
Now consider the derivation D[F], ; ;; its complexity is
compl(D[Fy ;) = {0, compl(D1)u,,- .., compl(Di_1)w, ,} U
Rp U{compl(Dj)w;, .-, compl(Dp_1)w,_,}
From (*) it follows again by monotonicity property of » yw (replacing a subset by a
smaller set makes the whole set smaller) compl(D) »yyw compl(D[F], ; ;) and thus

aso D > D[F])\,i,j-
Induction step: p isof theform k.1.r and thus D is of the form*’

D=1l Ly 25 Lpr. . L1 25 ), where

Dy = D,%...Dé...p:k
Hence compl(D) isof the form
compl(D) = {0, compl(D1),...,compl(Dg_1),

compl(DE) U --- U compl(D}) U--- U compl(D,*),
compl(Dk-I-l)a RN compl(Dn)]}

with D|;; = D}. In order to build D[F]y. . j We have to replace D} by D}[F],. This
means for the complexity of the new derivation
compl(D[Fl..rig) = {0, compl(Dy),..., compl(Dy_y),
compl(Djt) U -+ - U compl(DL[F],) U - -+ U compl(D*),
compl(Dgy1), - .., compl(Dy)}

17 Weights omitted.
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By the induction hypothesis D} =1, D[F],.
Thus by definition compl(D}) % nuw compl(DL[F],). Thus by monotonicity of >~
NMW CO’mpl(D) >NMW Compl(D[F]k.l.r,i,j) and hence D > Lin D[F]k.l.'r,i,j-

The following lemmais needed in the proof of Proposition 11.:

LEMMA 45. (Instantiation Lemmafor Linear Derivations) Supposealinear Z-derivation

D = (L1 =% Lp... Lot 258 L)

as given, and let -y be a ground substitution for L1, M and L. Then there exists a linear
ground Z9-derivation

D Dn—
L1y == Lovo...Lno1n1 L=y Lny
where; is some ground substitution for L;.

Thus, derivations may be ground instantiated; the additional (ground) substitutions ;
come in due to extra variables in the conclusion of inference rules, and these variables
have to be grounded in order to match the ground literal in the premise of the subsequent
derivation step.

Proof.

Induction on the length n of the derivation.

Base case (n = 1): trivial, simply take L,y asthe desired derivation.
Induction step (n — 1 — n): assume n > 1 and assume the result holds for derivations of
length n» — 1. The concluding derivation step of the givenderivation D ismore precisely

Dyp_1
Ln_l = Pp_1—Cp_1,0n-1 Ln

where {[Ln—l]} UD,_1=Pn_10,_1 (*) and Cp,_104-1 = Ly,

Next consider the prefix L, L Lr...L,_> Déf L,_1 of D. Let ~' be aground
substitution for L, 1. vy’ aground substitution for L1, M and L, 1 (becausey alone
is a ground substitution, as given). Hence, by the induction hypothesis there exists a
Z9-derivation

D' = (LY 28 Loyo... Lo 27n 2 p=d Ln_17vY')
Since L1y being ground it follows Ly = Liyy/. Similarly, since M~ is ground and all
literalsin the sequence Dy, are taken from M it follows that Dy isalso ground. But then
Dyy = Dyyvy'. By these considerations D’ isaZ9-derivation of L, 1y from M~ with
top literal Lyy.

With P, _10p—1 = {Ln—1}} U D,_1, as given, it follows that D’ can be extended by
means of the substitution " with one derivation step to a derivation

Dp—177'
D" = (Dl ) (L"_177I = (Pn—10n—1—Cn_10n-1)7Y "—10"—1’771))
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By the same arguments as for Dy, aboveit holds D,,_1y = D,,_1v+'; furthermore, with
L,y being ground and with L,, = C,, 0 it followsthat L,y = C, 107 = C,_107Y'.
Thus D" isaderivation of L,y from M~.

We have to show that D" is ¢ Z9-derivation, i.e. that the used inference rule in the
last step is contained in Z9. Since D,,_1+y is ground (as concluded above) and L,,_1v7'
is ground (by definition of 4') and C,,_10vv' is ground (because C,,_10vY = L,7) it
follows with (*) that (P — ()~ is aso ground. Hence from P — C € T it follows
(P — C)yy' € 79,and so D" isaZ9-derivation. Setting vy, 1 := 7' showsthat D" is
the desired derivation.

PROPOSITION 11. (Sufficient > in-redundancy criterion) Let Z bean inference system
and P —,, C be an inference rule. Suppose that for every L € P there exists a linear
T\ {P —w C}-derivation fromP

o D D Dn-1 _
L=L1 =p—y0 Lo =2pi,0 L Lot =Py, o Ln=C

withn > 1 and such that for i = 1,...,n— 1it holds (P \ {L},w) »mw (Di,w) In
this comparison the sequence D; of literalsis to be read as a multiset. Then P —, C is
>Lin-redundant in Z.

Proof. By contradiction. Suppose the assumptions of the proposition hold and P —
C is not > ;;-redundant in Z. Then by definition of > ;,;,-redundancy (case 1) P —
C is of the form K — false, or (case 2) for some inference system J 2 Z, some
ground literal L1, some ground literal set M and some ground literal L, there exists
a derivation D = (L :>zju{P_>C})g’M Ly) but there does not exist a derivation
D'= L1 =>4\ (p_cyo.u Ln With D' <psn D (*).

Case 1. Suppose P — (' is of the form K — false where K is a literal. By the
assumption of the proposition we know there exists a derivation such that for every side
literals D; of the i-th derivation step, D; C P\ {K} = 0 whichisimpossible, or elsethe
weight of the inference rule used in the :-th step is < 0, which is also impossible.

Case 2: We are given that at least one ground instance of P —,, C isused in some
derivation step G = D|, i +1 in D. W.l.o.g assume that no further ground instance
of P —, C isusedin G (by tracing into D and its subderivations always such a
“bottommost” derivation can be located).

We will show that there exists a (J \ {P — C})9-derivation F' with F' <1;, G
and which does not use P —,, C and which can replace G in D, i.e. we build D’ =
D[F]p.i it+1. Since > 1,4, is monotonic (Proposition 9) it then holds D' <;, D. Since F/
does not use a ground instance of P —,, C' the number of usages of ground instances
of P —, C in D' is1lessthanin D. Hence repeated application of this procedure
terminates and thus yields a (J \ {P —, C})9-derivation. But then by transitivity of
> rin We obtain a contradiction to (*).
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U0 = o

Replace

Fig. 13. Illustration of proof of Proposition 11.

Now for the construction of F' (cf. Figure 13): the derivation step G can be written
as

DI
G=L=nocp C

where P = {L}} U N, y isaground substitution, L' = Ly, C' = C~v and D’ isasequence
of derivations of N+; the complexity is

compl(G) = {0, compl(D")}

From the assumption of the proposition we learn that there existsaZ \ {P —, C}-
derivation

Dy

Fl=(l=L, 2. . 25L1,=0)

suchthat (D;, w;) «¥yw (N, w) (for 1 < i < n), where w; istheweight of theinference
rule used in the 7-th derivation step.

Applying the instantiation lemmato -y and F’ (Lemma45) yieldsa(Z \ {P — C})9-
derivation

F'= (L =Ly 22 . 2 [y = )

Notethat withZ C 7 it holdsthat " isa(J \ {P — C'})9-derivation aswell.
From (D;, w;) <X pyw (N, w) it follows

(D, wi) <pw (N7, w) )

Since D’ is a sequence of derivations of N~ we can find for every sequence D;yv C N+
a sequence D; C D' such that D) is a sequence of derivations of D;v. But then we
can replace every side derivation D;y in F” by D!, yielding still a (7 \ {P —, C})9-
derivation ”

! D[

F== .. 2 ¢
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with complexity
compl(F) = {0, (compl(D;), w1), - ., {(compl(D;,_1), wo_1)}

Now consider (5) again: either it holds D; ¢ N which implies by construction D; C D',
which in turn implies (D}, w;) «nuw (D', w); or elseit holds D; = N and w; < w,
which implies by construction D] = D’ and hence also (D], w;) <nuw (D', w). Thus
inany case F' < Lin G which was to be shown. This concludes the proof of case 2.

SECTION 5

LEMMA 16. Let S be a transformation system with derivation ordering >. Suppose
P — Cis »-redundant in some Z, and suppose that Z +s J. Then P — C is also
>-redundantin 7.

Proof. J is obtained from Z by deletion of a »-redundant rule (case 1), or by adding
anew rule (case 2).

Casel: Wehave J =7 \ {P' — ('} for somerule P" — C’ € 7 to be deleted. By
definition of redundancy we have to show that whenever

D= (I :>*(C(I\{P’—>C’})U{P—>C})Q,M Ly) (6)
and P — Cisusedin D then there exists a

D' = (L1 =\ pr—cpp\ (p— o, u n) (7
suchthat D' < D.

From Z\ {P' — €'} C T and (6) it follows D = (L1 =57 1p_cysu Ln)-
We are given that P — Cis »=-redundant in Z. Hence there exists a derivation D’ =
Ly =>(1\(p—¢yys,u Ln suchthat D' < D. Now, if no ground instance of P' — (" is
usedin D' then D' isdsoa ((Z \ {P' — C'}) \ {P — C})9-derivation, which proves
(7). Otherwise, application of Lemma 46 to D’ also proves (7).

Case2: Wehave J = Z U {P' — ('} for some new rule P/ — C'. By definition of
redundancy we have to show that whenever

D = (In = ((zu(p1— cpyu{p— ), Ln) ®

and P — C isused in that derivation then there exists aderivation

D' = (Ln =>((zu1pr— e\ (P—C)).01 Ln) )

suchthat D’ < D. Setting 7 := ZU{P' — C'} inthedefinition of redundancy (Def. 10)
rendersthis casetrivial.

Thefollowing lemmais needed in the proof of Lemma 20.
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LEMMA 46. If

1.D=(L ﬁ’(‘z\{P_)C})g L"), where P — Cisa >-redundant inference rulein Z, and

2. ifin D some ground instance of P — C’ is used, and
3.IfZHZI\{P — C'}=:J bydeletion

then there exists a derivation
D' = (L=(s\(pocyp L)

with D' < D.

Proof. Informally: if P’ — (' is deleted in 7 then it must be redundant in Z. By
redundancy the use of P/ — (' in any derivation D’ can be simulated by the remaining
rules of 7. However, that simulating derivation, say D" might use P — €, which should
not be used according to the lemma. Ontheother side, P — (' itself isgiven asredundant
in Z and hence can be simulated by the remaining rules. However, that derivation, say
D" possibly containsusages of P! — €’ again. Continuing this processwill not fall into
aloop due to strictly reduced complexity (D" < D" < D') in every new derivation and
well-foundedness of .

Now the formal proof: if P — C ¢ Z then the lemmaholdstrivialy by the definition
of »-redundancy.

Otherwise we apply well-founded induction on derivation orderings.

WithZ \ {P' — ('} C Titfollows D = (L =7, /). With P’ — C’ being deleted
fromZ, P’ — C' must have been >-redundant in Z. We are given that a ground instance
of P — C'isusedin D.Henceby definition of >-redundancy there existsaderivation

D' =1L :>EI\{P’—>C’})9 L (10)

with D’ < D. Now we distinguish two cases:
Case 1: No ground instance of P — C isusedin D'. But then by the existence of D’
wefindwith (10) thet D’ = L :>E(I\{P—>C})\{_P’—>C’})_§ L, which provesthelemma.
Case 2: A ground instance of P — (' is used in D'. First note that from Z \
{P'"— ('} C T by (10) it follows D' = L =7, L'. We are giventhat P — C is
»-redundant in Z. By definition of >-redundancy we conclude that there exists a deriva-
tion D" = L == 7\ (p_,¢y)s L' suchthat D" < D'(< D). Now apply the induction
hypothesisto D" and conclude the result from transitivity of >.
LEMMA 20. Let S be a transformation system with derivation ordering . Let Zp +
T, + --- be a S-deduction. If for somek, P — Cis >~-redundant in Zy then P — C is
=-redundant in Z,.

Proof. In order to prove the lemma suppose that

D= (L :>ZIOOU{P—>C})9,M L) (11)
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which usesagroundinstanceof P — C. Wehaveto show that there existsaderivation
D' = (L :>zIoo\{P_’C})gyM Ll) (12)

with D’ < D. As aconsequence of Proposition 19 some Z,, (m > 0) contains (at |east)
all thoseinferencerulesfrom Z,, the ground instances of which areusedin D. That is

D=(L :>zzmu{P_>C})g,M L) (13)

We distinguish two cases:

Casel: m > k. Wearegiventhat P — C'is>-redundantin Z;. Applying Lemma 16
m — k timeswe concludethat P — C' is>-redundantin Z,, aswell. Hence by definition
of »-redundancy we find with (13) aderivation D,

Dm = (L :>Zl—m\{P—>C})9,M Ll) (14)

with D,,, < D.

Case 22 m < k. By Lemma 18 every inference rule in Z,, is aso contained in Zj.
Thus with (13) D is aso (Zy U {P — C})J-derivation. We are given that P — C is
»-redundant in Zj,. Hence there exists aderivation Dy, = (L ==z, \;p_, ¢}y, L' With
Dy < l))

By taking n = maz(m, k) there exists in both cases a derivation

D, = (L :>2In\{P—>C})9,M LI)

with D,, < D.

We claim that for some l > n there exists aderivation D; = L :EII\{P_)C})g’M r
with D; < D, and the inference rules whose ground instances are used in D; are never
deleted afterwards, i.e. if (P — C')y € (Z; \ {P — C})9 isaground instance used in
DithenP' — C' € Z; \ {P — C} forevery j > L.

Thisclaimthen proves(12) and thusthelemmaby transitivity of > and by thefollowing
line of reasoning: suppose P’ — C’ € Z; \ {P — C'} for every j > [ then

P - ('€ ﬂ(Ij\{P—> Cc}) = (ﬂIj)\{P—> Cc}
Jjzl >l

c (UNm\{p-cy

1>0;5>1
=T \{P — C}
Hence if (P' — C")y € (Z; \ {P — C})? is aused ground instance in D; then also
(P — C")y € (I \ {P — C})9. Thus (12) follows.
It remainsto prove the above claim. Starting with D,, we construct a sequence

Dna Dn+17 Dn+27 s
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of derivations, wherefor 7 > n we define

( D] if Z;;1 is obtained from Z; by deletion of an inference rule P —
C", ground instances of which are used in D;, where D] =
(L :>(Ii+1\{P—>C})g,M_L') and D] < D;. Such aderivation D; exists
becausewith P — (' being »-redundantin Z, it follows by Lemma 16
that P — Cis>-redundantinZ,,Z,1,...,Z;. Now apply Lemma46.

L D; ese

Dz’—|—l =9

Note that in this sequence, deleting an inference rule P” — " ground instances of
which are used results in a strictly smaller derivation D] < D;. Since > is a derivation
ordering and hence well-founded, we arrive at the chain D,,, D, 11,...,D;, D, Dy, .. ..
Thus deletion of used inferences will not be continued infinitely. Stated positively, every
inference system 7;, 7,11, Z;+» contains every inference rule ground instances of which
areusedin D;. Thustheclaim aboveisproved, which concludesthe proof of thelemma.

LEMMA 22. Let S be a transformation systemwith derivation ordering . Let Zo - Z1 +

--- bea S-deduction. If there exists a derivation D = (L =>*Ig MUpUINIt(Z9) L’) then there
k? k

) L') with D' < D.

*

, o,
also existsa derivation D’ = (L =19 MUpNit(z%

Proof. Theproof issimilar to that of Lemma?20 above. Asaconsequenceof LemmaZ2l
every input literal from M U punit(Z}) isalso contained in M U punit(Z4,). Thusfrom
the assumption of the lemma it follows D = (L = L'). For ease of

I]g,MUpunit(Igo)
notation define N := M U punit(Z5,).
We claim that for some ! > k thereexistsaD; = L =>*Ig N L' with D; < D, and the

inference ruleswhose ground instances are used in D; are nelver deleted afterwards, i.e. if
(P"— C')y € I} isaground instance used in D; then P’ — C' € Z; for every j > .

This claim then proves the lemma by the following line of reasoning: suppose P’ —
C' € Z; for every 5 > [ then

P-C'e NG cUNT = I
j>1 1>05>1
Henceif (P’ — C')y € Z7 isaused ground instancein D; thenalso (P’ — C')y € T4,.
Thusthe lemmafollows.
It remains to prove the above claim. Starting with D := D we construct a sequence
Dy, D11, Dy, . .. Of derivations, wherefor 1 > k£ we define

D} if Z;;4 isobtained from Z; by deletion of an inferencerule P” —
C", ground instances of which are used in D;, where D! =

Diyq = (L =>Iig+17M L) and D] < D;. Such a derivation exists by
definition of the deletion operation.
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Note that in this sequence, deleting an inference rule P” — C" ground instances of
which are used results in a strictly smaller derivation D < D;. Since > is a derivation
ordering and hence well-founded, we arrive at the chain D,,, D, 11,...,D;, Dy, Dy, .. ..
Thus deletion of used inferences will not be continued infinitely. Stated positively, every
inference system 7;,7;11,Z;+» contains every inference rule ground instances of which
areusedin D;. Thustheclaim aboveis proved, which concludesthe proof of thelemma.

SECTION 7
PROPOSITION 27. The transformation system Lin is order-normalizing wrt. LinG.

Proof. Let Z be an inference system and D be a ground Z9 refutation of M which
is not linear, i.e. D ¢ LinG. We have to show that there exists a (Z’)9-derivation
D' <pim D of M, whereZ' = T or ' is obtained from Z by application of some
mandatory transformation rule.

Since D isgiven asanon-linear derivation at | east one side derivation is not asequence
of trivial derivations. Thus D can be written as

D;_ : D; Dy
DZ(L]_%LZU. :gLiDﬂLH_l:*}l...Ln_l :>an)
|

=:D"

where D; is that critical side derivation and D" := D|, ; ;4+1. More precisely, the sub-
derivation D" is of the form

DEYpM~
DII = (LZ = (L,K,M—>L’)’Y LZ—|—1)

where L; = Ly, D; = DEK7YDM7, DKV is a non-trivial derivation of K+, DM7 is a
sequence of derivations of M~ and (L, K,M — L')y € 79 is a ground instance of
L,K,M — L' € T (cf. Figure 14). We will show that there exists a (Z')9-derivation
D" <pin D" whereI' = T or I’ is obtained from Z by application of a mandatory
transformation rule from Lin. Then we define D’ := D[D"], ; ;4+1. By monotonicity of
> 1in (Proposition 9) theniit follows D’ <;, D, which wasto be shown.

In general, the derivation DX is of the form

N
DEY = (J; SN Joooidm-1 fmss Im D=§(J,N—>J')6 J'6)

v

_-DJ6

where m > 1, J,, = Jé, DV is a (possibly empty) sequence of derivations of N§,
J'6 = Kyand (J,N — J')6 € 79 isaground instance of J, N — J' € Z. Without
loss of generality suppose that J,N — J' is variable digoint from L, K, M — L.
Consequently we may assume that the domains of § and « are digoint, too. Hence
(J,N — JY)y = (J,N — JY6 and (L,K,M — L')éy = (L,K,M — L')y.
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Replace Ry: H ——-#--—0»
deduce

Fig. 14. Illustration of proof of Proposition 27 (ground case).

Together with with J'6 = K+ it follows that J'6y = Kév. In other words, §v is a
unifier. Hence there exists aMGU ¢ and a substitution ¢ such that 6y = 0¢|4m(s+)- BY
the existence of this MGU, the mandatory Deduce transformation rule can be applied to
L,K,M — L' and J, N — J' by unifying J' and K with o. Theresult is the inference
rueR :=(L,J,N,M — L')o.

Now either a variant of R already is contained in Z, and in this case define 7’ := 7.
Otherwise define 7/ := 7 U {R}. Since R¢ is ground and D’%, DNé and DM" are
appropriate ground Z9-derivations (and hence also (Z’)?-derivations) there exists the
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(Z")9-derivation

D — (Li DJépNépM~
Note that D" and D" coincide in top and derived literals. Hence the replacement as
suggested above can be done. It remains to show D" <, D". By definition of >,
this is the same as to show compl(D"") < yyw compl(D"); for this proof the weights
of the involved inference rules can be neglected, since decreasingnessfollows alone from
properties of multiset orderings:

>R¢ Lit1)

compl(D") = {0, compl({DE} U DM}
= {0, compl(DEY) U compl(DM7)}
10,40, compl(Ey), .., compl(Ep_1), compl(D¥ 7}
Ucompl(DM )}
= {0, compl(D”%) U {compl(DN)} U compl(DM)}
=nuw {0, compl(D?®) U compl(DNY) U compl(DM7)}
= {0, compl(D' DN DM}
= compl(D")

The transition =y is justified by property of nested multiset ordering (replacing a
multiset by true subsetsis decreasing).
This concludes the proof.

PROPOSITION 30. The transformation system Lin is punit-normalizing wrt. LinG.

Proof. Let Z be an inference system and let

Dp41

D D
D=(T1 =2 Tp...Tp 25 Tp1 Tpi2)

be the given non-trivial linear ground Z9 derivation from M U punit(Z9) such that
used(D) N punit(Z9) # 0. We have to show that there exists a (Z")9-derivation D’ <,
D of M U punit((Z')9), where ' = T or I’ is obtained from Z by application of
some mandatory transformation rule, and the top literal of D’ is Ty or a literal from
M U punit((Z')9). Since D isgiven asnon-trivial it holdsn > 0.

Let Ly € used(D)Npunit(Z9)where Lyisagroundinstanceof aliteral L € punit(Z).
Two cases apply: (1) Ly occursinsome D; (1 € {1...n+ 1}) or (2) Ly = T;.

Case 1: (cf. Figure 15) D contains a derivation step of the form

LYEy~Em,

D" = D|y;i+1=(T; —>(T' L \B},.... Ejy,— C )’ Cv') *)

where (T}, L' El, ,El.. — C)y' € I9 isaground instance of therule
T, L' Ej,.. —>CGI Tjy = Ty, L'y = Ly, B}y = E; (forj = 1...m;) and
Cy = Tz+1 or 07 = false. The further reasoning holds for both cases. We will show
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Lry
BH - 0O -
D: TZ : Ti—|—l
Ed inferencerule
H--0—
Replace B — false

unit2

7z 0 —
ﬁedinferencerule

Fig. 15. A casein the proof of Proposition 30 (ground case).

how to deduce anew inference rule by which the application of L~ in D" can be omitted.

We will show that there exists a (Z')9-derivation D" <, D", whereZ’ =7 or 7'
is obtained from Z by application of a mandatory transformation rule from Lin. Then
we define D' := D[D"] ; i+1. By monotonicity of > 7, (Proposition 9) then it follows
D' <1i» D, which wasto be shown.

Since L € punit(Z) by definition L — false € Z. Let I — false be a new variant,
variable digoint from the premise { T}, L', Ey, .. ., Ey, |} of the applied inference rule.
Since Ly = L'y and L"” is a variant of L there exists a ground substitution ~" with
L"+" = L'y'. Since L isanew variant, 7' can be supposed not to act upon the variables
of L". Hence L"v'v" = L'y'~". Since /4" isaunifier for L" and L' there exists a most
general unifier o for I/’ and L’ and substitution ¢ such that

Gélvar(L’)Uvar(L”) = ’717”|va'r(L’)U7}ar(L”) (**)

By the existence of this MGU, the mandatory Unit2 transformation rule can be applied
to T}, L', Ey,..., By — C € T and L' — false € T. The result is the new inference
rule

R = (T},Ei,..., B, — C)o

Now either a variant of R aready is contained in Z, and in this case define 7' := 7.
Otherwise defineZ’ := 7 U { R}.

Let 6" be the restriction of ' to the domain var({ T}, Ei, ..., B, , C}) \ var(L).
Together with (**) it follows

(T B, Bl Cho88' = { T} By, Bl Cho'y = ATh Bl By, CHY

paper.tex; 31/08/1995; 11:12; no v.; p.68



68 Peter Baumgartner
By these equalities we can build the desired derivation

~Em,
D= (T —>‘R66’ 0’7)

withrule R68" € 779.

Note that D" and D" coincide in top and derived literals. Hence the replacement as
suggested above can be done. It remains to show D" <, D". By definition of >,
this is the same as to show compl(D") <yyw compl(D"); for this proof the weights
of the involved inference rules can be neglected, since decreasingnessfollows alone from
properties of multiset orderings:

compl(D") = {0, compl(LyE1--- Ep,)}
— {0, {0} U compl(Bx -+ B}
=nmuw {0, compl(Ey -+ Ep, )}
= compl(D")

Case 2: (Ly = T1). We distinguish the cases (2.1) Dy # ¢ (i.e. D1 is not the empty
sequence of derivations) and (2.2) Dy = «.
Case 2.1: D beginswith the derivation step

KEy-Enm,
D" = (Ly —>‘(K' LBy By = C )Y Cv') *)
where (L', K', By, ..., Ey, )y — Cv' € 79 isaground instance of the rule
L' K' El ... E. Scler "= 1y, K'Y = K, B}y = E; (forj = 1...m;)
and Cv' = Tz or 07 = false. The further reasoning holds for both cases. Itisin close
analogy to thecase Ly € D;.

We will show that there exists a (Z')9-derivation D" <, D", whereZ’' =7 or 7'
is obtained from Z by application of a mandatory transformation rule from Lin. Then
we define D' := D[D"], 1. By monotonicity of > ;, (Proposition 9) then it follows
D' <1:n D, which wasto be shown.

Since L € punit(T) by definition L — false € Z. Let I — false be a new variant.
Asin case 1, the mandatory Unit2 transformation rule can be applied to L — false and
LK Ej,..., By, — C €1,yieding

R = (K',Ei,...,E, — C)o
where o is the MGU for L” and L' used in that deduction step. Now either a variant
of R aready is contained in Z, and in this case define Z' := Z. Otherwise define 7/ .=
TU{R}.
Asin case 1 there exists ground substitutions 6¢', «' and v such that

{K',Ei,..., B}, Chos6' = {K',Ey,...,E}, , Chy'y" = {K',Ei,..., Ep, C}
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By these equalities we can build the desired derivation

m._ By Emy
D (K :Réél C’}/)

with rule R66" € 79.

Note that D" and D" coincide in top and derived literals. Hence the replacement as
suggested above can be done. It remainsto show D" <p;, D". Thisproof isliterally the
same as the corresponding proof in case 1 above, except that Ly isto be replaced by K.
This completes the proof for the case D; # ¢.

Case2.2: (D1 = ¢€). It holds that » > 0. Proof: Suppose, to the contrary that » = O.
Then the refutation consists of a single derivation step with therule Ty — false € Z9.
On the other side from Ty € punit(Z9) it follows Ty — false € Z9. But then Z were
not consistent, since no interpretation can satisfy both, 77 and T;. However T isgiven as
consistent. Contradiction.

The given derivation D can be written more specifically as(n > 0, cf. Figure 16) :

Dp41

D
D=(Ly=u_myy T2--- Tn =% Tun1 Tni2)  (*)

where T, # false, (L' — Tj)y' € I9 isaground instance of therule L' — T, € Z,
L'y = Lyand Ty = To.

D: L~vH T O T3
@erencerule
H —
B — false
Shorten unitl
— false
New top literal
N Tb > O T3

Fig. 16. A casein the proof of Lemma 30 (ground case)

Since L € punit(T) by definition L — false € Z. Let I’ — false be a new variant,
variable disjoint from the premise {L'} of the applied inference rule. Since Ly = L'/
and L' is avariant of L there exists a ground substitution " with L''+" = L'+'. Since
L" is a new variant, v’ can be supposed not to act upon the variables of L”. Hence
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L'"y'~" = L'y'4". Sincey'~" isaunifier for L” and I/ there exists amost general unifier
o for L' and L' and substitution 6 such that

Uélvar(L’)Uvar(L”) = ’717”|var(L’)Uvar(L”) (**)

By the existence of this MGU, the mandatory Unit1 transformation rule can be applied
to L/ — T5 € Z and L" — false € Z. Theresultisthe new inferencerule

R = Tjo' — false

Now either a variant of R aready is contained in Z, and in this case define 7' .= 7.
Otherwise defineZ’ := 7 U { R}.
Now let ¢ betherestriction of +' to the domain var( T) \ var(L'). Together with (**)
it follows
Ty088' = Tpy'y"(= Ty = T2)  (***)
Thus with R € T’ it follows T, € punit((Z')?). By this fact we can cut off the first
derivation stepin D, yielding

Dpy1

D

which isaderivation from M U punit((Z')?) as desired.

It remains to prove D' <;, D. By definition of -, thisis the same as to show
compl(D") <yuw compl(D); for this proof the weights of the involved inference
rules can be neglected, since decreasingness follows alone from properties of multiset
orderings:

compl(D) = {0, compl(e), compl(D3), ..., compl(Dpi1)}
{0,{}, compl(D2), ..., compl(Dn11)}
=nuw {0, compl(D2), ..., compl(Dyi1)}
= compl(D")

By concluding this final casethe lemmais proven.

PROPOSITION 31. Let S be a punit-normalizing transformation systemwrt. A/, and let
7 be a completed inference system wrt. S. Whenever there exists a ground derivation
D= (L=7 Mupunit(ze) L) With D € N then there also exists a ground derivation

D' = (K=7Zgu L) withD’ < D, D' € M and someK € M.

Proof. By Noetherian induction on derivationswrt. the well-founded derivation order-
ing associated to S. If used(D) N punit(Z9) = () then no literal from punit(Z9) isused
in D then D isalso aderivation from M aone. Hencewetake D' = D.

Otherwise, by definition of punit-normalizing transformation systems there exists a
derivation D" = (L :EIHW’MUPW%«I,,)Q) L'y with D" < D, where (1) Z" = Z or (2)
ItsZU{P — C} =1T" by somemandatory transformation rule from S.
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Incasel D" isalso aZ9-derivation of M U punit(Z9); now consider case 2: since Z
is completed it holds by Definition23 P — C € Z or (22) P — C is »-redundant in
Z.Incase2.17" = T and hence D" is also aZ9-derivation of M U punit(Z7). In case
2.2 P — (' isnot of theform L — false (such rules are by definition never redundant).
Hence punit(Z") = punit(Z). If no ground instance of P — C isused in D" then D"
is also a Z9-derivation of M U punit(Z9), otherwise by definition of redundancy there
exists a ground derivation D" = (L ==74 yupunit((zyey L) With D" < D" (note that
thisisaZ9-derivation). From D" < D" < D it follows by downward closure of A/ also
D" € N and D" € N'. Thus, in any case there exists aZ9-derivation of M U punit(Z9)
whichiscontained in N and which is strictly smaller wrt. - than the given derivation.

Now apply the induction hypothesisto that derivation.

SECTION 8

LEMMA 38. (Top literal lemma)Let Z be a completed inference systemwrt. the trans-
formation system Lin. Suppose there exists a linear ground derivation D = (Ly =74
L, € LinG) withL; € M. Let T € M such that T € used(M). Then there exists a linear
ground derivation D’ = (T =74 Ln).

Proof. Let the given derivation be

Yegr LMt (15

My, T My,
D=(I128L,. 2505 —tvp, Lin
where n > 1 (otherwise the claim is trivid), ¥ € {1...n} and R;7y; is a ground
instance of R; = le, TI,M]é — L%—f—l €1, Ly = L;C’j/l, T = Tl’j/]_, M = M]é’j/l and
Lgt1 = Liam.
We do induction on the top distance & of the derivation step using T'.

Base case: If k = 1 then thefirst derivation stepis L; %H%m L,. By swapping

T and Ly it can be replaced by the derivation step 7 =22 ;. _ I, which yields the

desired linear derivation.
Induction step: For the induction step suppose that ¥ > 1 and the claim to hold for
derivations with top distance strictly smaller than k. D then can be written as

D,

A

A
25 L, (16)

M My_, . My T M,
le =1> L2 e =k>2 Lk_% élgﬂz Lk :’”>—Rﬂl {’k—l—l
Dy Ds
where n > 3 and Ry, isaground instanceof Ry = Lj,_4,M},_; — L}, € Z, Ly_1 =
Ly 172, My_1 = Mj_qy2 and Ly = Ljy, (cf. Figure 17). Without loss of generality

suppose that R; is variable digjoint from R,. Consequently we may assume that the
domains of v; and -, are digoint, too. Hence R1y1y, = Rivy1 and Ray1y2 = Rovyo.
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T
Lo Ly B L 28 L
— \/%/jﬂ """
Replace:
R2RR1 deduce
Ly . L1
— — Dj
T ~B-0-N- ILpn
% B
R
R is deleted and
:777777777777777777777777777771 replacedbyderivation
Lo L1 |
U= — U |
T o -0 - Lgya
= = - =8

,,,,,,,,,,,,,,,,

Induction:  BK becomestop literal

,,,,,,,,,,,,,,,,,,

Wiy

Fig. 17. Illustration of proof of Lemma 38 (ground case).

Together with Li,y1 = Ly = L~ it follows that Liy1v2 = Ly = L{v17y.. In other
words, 12 is a unifier. Hence there exists a MGU ¢ and a substitution ¢ such that
Y172 = 06 dom(y17,)- BY the existence of this MGU, the Deduce transformation rule can
be applied to Ry and R» by unifying L}, and Lj with o. The result is the inference rule
R = (T',L}y_y, M]_q, M} — L} ,,)o. Since Deduceisamandatory transformation rule
and Z iscompleted (1) R € Z or (2) R is > 1;,-redundant in Z. In case (1) the derivation
D, in (16) can be replaced by the one step derivation

I T My_q My, I
_ :—
k—1 (T, L _ M), ML —L Yob Lk+1
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using Ré. Since § is a ground substitution R6 € 79 and the replacement resultsin aZ 9
derivation with same structure. Furthermore, itstop distanceis k — 1. Hencewe can apply
the induction hypothesisto obtain the desired derivation.

In case (2) things are more complicated. First consider the (Z U { R} )?-derivation

Ly My_q My,
T >~Rs Lry1

Since R is = 1 -redundant in Z by definition there exists aZ9-derivation

Dy=(T :>I9,Mk_1UMkU{Lk—1} L)

Note that M;_., My C M. Now concatenate to Ds := D4 - D3 and obtain a linear
derivation of the form

D5 = (T :>Ig,MU{Lk,1} Ln)

Next the applications of the literal {L;_1} in Ds haveto be eliminated. This can be done
one at ancther by the procedure described below. Once this is done we obtain the desired
linear derivation of theform T =7, ,; Ln.

If Ly_q isnot usedin Ds weare done. Otherwise let

L4 N,
De = Ds|y 1141 = (K; :1>'Rl,7l K1)

be such aderivation step using L 1. Swapping K; and L;_1 implies the existence of the
Z9-derivation

K N
D7 = (Lk—l :>_Rl7'7l KH_]_)

Now concatenate D, - D7 to obtain the Z9-derivation
M- My, _ K; N,
Dg= (L1 = Lp... = Ly ——tp . Kip1)

Thetop distance of K; in Dgisk — 1 hencewe can apply the induction hypothesisto Dg
and obtain alinear Z9-derivation

Do = (K; =574 3 Ki11)

Nextbuild D10 := Ds[Dg]» 1 1+1.i.€. replacethederivation step using Lj 1 by aderivation
not using L 1. Hence the number of applications of theliteral L, 1 has decreased by 1,
which guaranteesthe termination of the just described procedure when applied repeatedly
in order to eliminate all applications of L;_1. Hence the desired derivation exists.

In order to prove the lifting lemma below we need the following lemma:

LEMMA 47. Let o, 8 be substitutionsand M be a literal set. Then

(Blvar(Ma) ) Ivar(M) = Blvar(m)
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Proof. Let z be avariable. It suffices to show that both substitutions yield the same
result when applied to z. We distinguish two digjoint cases.

1. z ¢ var(M). Trivial, since both substitutionsyield z.

2. z € var(M). By definition of restriction of substitution it sufficesto show
xa(ﬁlvar(Ma)) =zaf

From z € var(M) it follows var(za) C var(Ma) (*). Now we compute

raf = xa(/@‘var(xa)) (:) ma(/glvar(Ma))
which was to be shown.

Now we can prove the lifting lemma.
LEMMA 43. (Lifting lemmafor linear refutations) Let L; bealiteral, M bealiteral set
and -y be a ground substitution for L; and M. If there exists a non-trivial linear refutation
L1y =>*Ig’M7 falsethen there exists alinear first-order refutation Ly =>§,’M,a false such
thato <~ [var(M)].

Proof. Let the given refutation be

M- M, Mn
D = (Ll’)/ :1;(L’1,M{—>L’2)fy’ L2 g L3Ln :gfalse)

Induction on the length n of the derivation.

Basecase: If n = 1thendefiney” = v+'. Sincetheusedinferenceruleisanew variant
we can assume that the domains of v and ' aredisjoint. Henceit holdsthat L1y = L}+"
and Myy" = M{~". Thus~" isaunifier for {L1} U M; and {L}} U M]. Thusthere also
existsaMGU o7 and asubstitution 61 such that 0161 gom () = " (*). Using this MGU
we can build the first-order refutation

M
DI = (Ll $L117M{_,L1270-1 false)

with answer substitution 1. It remains to show that o; satisfies the claimed property.
From (*) and 7" = ~v+" it follows 0161] gom(y) = V" |dom(y) = - Since ~y acts on every
variablein M itholds dom(vy) 2 var(M), andthus 0161 y4r(ar) = V|var(ar) fOllOws. But
then by definition o1 <~ [var(M)] which was to be shown.

Induction step: For the induction step let » > 1 and suppose the result to hold for
derivations with length < n. Consider the first derivation step in D. Define«” = v+ in
the same way as for the base case. Additionally to the properties for 4 given above, it
holdsthat Lyy" = L, = L’y. Define again o1 and 61 in the same way and with the same
properties as in the base case. Now deleting the first derivation step from D and using
o161 instead of y and +/ resultsin the refutation

Lho18y "2 Lo Ly M2 fise
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By theinduction hypothesiswecanlift this(still linear) refutation to a(linear) refutation

Myay Mnoyopon-1
= Ry,0, L3---Ln Rn,on Jolse

/
201

with answer substitution
02030y < 61 [var(Moq)]

i.e. for some ¢, 0203+ Tn0lyar(moy) = Otlvar(rroy) (**)- Since o1 is an appropriate
unifier (asin the base case) we can prepend this derivation with the first-order derivation

M , :
step Iy ﬁLll’Mll_’L’zUl L201 to obtain

Moio2--0pn_1

M ;M \
Ly :]>L’1,M1’—>L’2,01 Lyor =2 Ry, Lz... Ly Rn,on false

whichisalinear first-order refutation of L1 asdesired with answer substitution o1o003 - - - 7,
It remains to show that the answer substitution satisfies the claimed property. Now we
compute

Lem@a 47

010203" "+ 0n6|vaT(M) o1(o203 - 0n6|va'r(Mal))|'ua'r(M)

)
= Ul(él‘var(Mm))“ar(M)

Lemma47
= 0'161‘ var(M)

(see base case) = 7' var(M)

But then by definition 01 < [var(M )] which was to be shown.

paper.tex; 31/08/1995; 11:12; no v.; p.76



