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Abstract. We aim to demonstrate that automated deduction techniques, in par-
ticular those following the model computation paradigm, are very well suited for
database schema/query reasoning. Specifically, we present an approach to com-
pute completed paths for database or XPath queries. The database schema and a
query are transformed to disjunctive logic programs with default negation, using
a description logic as an intermediate language. Our underlying deduction sys-
tem, KRHyper, then detects if a query is satisfiable or not. In case of a satisfiable
query, all completed paths — those that fulfill all given constraints — are returned
as part of the computed models.

The purpose of computing completed paths is to reduce the workload on a query
processor. Without the path completion, a usual XPath query processor would
search the whole database for solutions to the query, which need not be the case
when using completed paths instead.

We understand this paper as a first step, that covers a basic schema/query rea-
soning task by model-based deduction. Due to the underlying expressive logic
formalism we expect our approach to easily adapt to more sophisticated problem
settings, like type hierarchies as they evolve within the XML world.

1 Introduction

Automated theorem proving is offering numerous tools and methods to be used in other
areas of computer science. An extensive overview about the state of the art and its po-
tential for applications is given in [7]. Very often there are special purpose reasoning
procedures which are used to reason for different purposes like knowledge representa-
tion [1] or logic programming [10].

The most popular methods used for practical applications are resolution-based pro-
cedures or model checking algorithms. In this paper we want to demonstrate that there
is a high potential for model based procedures for database schema reasoning. Model
based deduction can be based very naturally on tableau calculi [12], and in particular
on the developments that started with the SATCHMO approach [16], which was refined
later and extended in the hyper tableau calculus [6].

We start with the idea of representing a database schema as a description logic
knowledge base. This idea as such is not new and has been put forward in [8, 9]. How-
ever, we found that the services usually available in description logic reasoners do not
allow to express all constraints imposed by the schema in order to solve the tasks we
are looking at. Indeed, the work in [8, 9] aims at different purposes, where schema rea-
soning tasks can be reduced to satisfiability of description logic knowledge bases.



We are considering the tasks of testing and optimizing certain forms of database
queries as they arise in the XML world. To this end, a “pure” description logic ap-
proach was proposed before in [4]. In the present paper, the limitations of that approach
are overcome by translating a schema and a given XPath like query into a disjunctive
logic program (with default negation). The KRHyper system then detects if a query is
satisfiable or not. In case of a satisfiable query, all completed paths — those that fulfill
all given constraints — are returned as part of the computed models. The purpose of
computing completed paths is to reduce the workload on a query processor. Without
the path completion, a usual XPath query processor would search the whole database
for solutions to the query, which need not be the case when using completed paths
instead. The usage of a model generation theorem prover thus is motivated by the ap-
plications requirement to enumerate models/answers rather than querying the existence
of a model.

We start with a brief review of the hyper tableau prover.

2 Theorem Proving with Hyper Tableau

Features. The Hyper Tableau Calculus is a clause normal form tableau calculus [6],
which can be seen as a generalization of the SATCHMO-procedure [16]. Hyper tableau
have been used in various applications (for examples see [3,5]), where two aspects
turned out to be of importance: The result of the theorem prover is a model (if the
specification is satisfiable) and this model can be seen as the result of the prover’s
“computation”; it can be used by the system, where the prover is embedded, for further
computation steps. The second aspect is concerned with default negation. Although
an entire discipline, namely knowledge representation, is emphasizing the necessity
of non-monotonic constructs for knowledge representation, there are only very view
sophisticated systems dealing with such constructs [17, 11].

The hyper tableau theorem prover KRHyper allows application tasks to be specified
by using first order logic — plus possibly non-monotonic constructs — in clausal form.
While KRHyper can be used straightforwardly to prove theorems, it also allows the
following features, which are on one hand essential for knowledge based applications,
but on the other hand usually not provided by first order theorem provers:

1. Queries which have the listing of predicate extensions as answer are supported.

2. Queries may also have the different extensions of predicates in alternative models
as answer.

Large sets of uniformly structured input facts are handled efficiently.

Arithmetic evaluation is supported.

Default negation is supported.

The reasoning system can output proofs of derived facts.
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More details about these features can be found in [21]. Also, we only note that with
a simple transformation of the given rule set, KRHyper is sound, complete and termi-
nating with respect to the possible models [18] of a stratified disjunctive logic program
without function symbols (except constants).



A Small Example. Hyper tableau is a “bottom-up” method, which means that it gen-
erates instances of rule® heads from facts that have been input or previously derived.
If a hyper tableau derivation terminates without having found a proof, the derived facts
form a representation of a model of the input clauses.

The following example illustrates how our hyper tableau calculus based system,
KRHyper, proceeds to generate models. Figure 1 shows four subsequent stages of a

derivation for the following input clauses®:
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Fig. 1. Stages of a KRHyper derivation

KRHyper provides stratified default negation. The set of input clauses is partitioned
into strata, according to the predicates in their heads: if a clause ¢ has a head predicate
appearing in the scope of the negation operator “not” in the body of c;, then c; is in
a lower stratum than c;. In the example, we have two strata: the lower one containing
clauses (1), (2) and (3), the higher one clause (4).

As noted, a rule head may be a disjunction. In hyper tableau, disjunctions are han-
dled by exploring the alternative branches in a systematic way. This explains the tree
structure in Figure 1. Backtracking can be used to generate one model after the other.

Stage (I) shows the data structure maintained by the method, also called hyper
tableau, after the input fact (1) has been processed. One can view the calculus as at-
tempting to construct the representation of a model, the active branch, shown with bold
lines in the figure. At step (I), this model fragment contradicts for example with clause
(2): a model containing p(a) must also contain all instances of ¢(a,y) or of r(f(z)) or

3 We use an implication-style notation for clauses throughout this paper: A clause is viewed as
rule Head < Body, where Head consists of its positive literals, combined by “V”, and Body
consists of its negative literals, combined by “,” (and). Both the head and the body may be
empty.

4 Here and below, the letters x, y, z denote variables, while a, b, ¢ denote constants.



r(a). The model fragment is “repaired” by derivating consequences and attaching them
to the hyper tableau: The corresponding instance of clause (2) is attached to the hyper
tableau. Since it has a disjunctive head, the tableau splits into three branches. The first
branch is inspected and proved contradictory with clause (3) (the branch is said to be
closed). This state is shown in (II).

Computation now tracks back and works on the second branch. With the clauses
of the lower stratum, no further facts can be derived at this branch, which means that a
model for the stratum has been found, as shown in step (III). Computation then proceeds
with the next higher stratum: s(a) can be derived by clause (4). Since no further facts
can be derived, a model for the whole clause set has been found, represented by the
facts on the active branch: {p(a),r(f(z)),s(a)}, as shown in (IV).

If desired, the procedure can backtrack again and continue to find another model, as
shown in state (V). Another backtracking step then finally leads to the result, that there
is no further model.

We conclude by noting that the KRHyper system implements the calculus by a com-
bination of semi-naive rule evaluation with backtracking over alternative disjuncts and
iterative deepening over a term weight bound. It extends the language of first order logic
by stratified default negation and built-ins for arithmetic.

3 Flexible Database Queries for XML Data

Querying databases requires that users know the structure of a database. In fact, they
have to know the database schema in order to formulate valid queries. In the context
of complex structured data and large database schemas, knowing the complete schema
is not always possible. Querying data, therefore, may be a tedious task. This section
describes the application of the KRHyper System in order to enhance the flexibility of
database queries. In particular, we focus on XML databases and address the following
issues in querying XML databases:

— XML documents contain complex structured data, often rather nested. Users there-
fore have to navigate through these data.

— XML data usually is described by Document Type Definitions (DTDs) and more
recently, XML Schema is used. Different from DTDs, XML Schema offers in some
sense object oriented concepts as user defined types and aggregation as well as spe-
cialization relationships between them. During query processing and optimization
this schema knowledge may be used, e.g. in order to avoid evaluation of unsatisfi-
able queries.

— In an XML schema so called substitution groups define types that can be substi-
tuted for each other, comparable to union types in other (programming) languages,
though, with the difference that types which are substitutes for each other have to
be related via specialization.

— Existing querying languages like XQuery [20] offer navigational expressions on the
document level in order to access parts of an XML document. These languages do
not cope with type expressions. Type expressions may be helpful in order to query
instances of some general type T, resulting in instances of type T as well as of all
subtypes for T



Let us consider an example XML document representing a university with a library
and researchers working in the university. A library consists of books where each book
has a title, an author and an ISBN. Researchers have a name and an associated set of
publications e.g. articles, monographs or some general kind of publication.

An XML schema itself also is an XML document listing the complex types to-
gether with their elements referring to other (complex) types. Furthermore by means of
a so called restriction expression, it is possible to represent specialization relationships
between types. Instead of the linear, XML based description of an XML schema, we
use a more illustrative, graphical representation for the types and their relationship in a
schema. An XML Schema is represented by a schema graph, where nodes represent the
types and substitution groups of the schema and edges represent aggregation and spe-
cialization relationships between types. Starting from such a schema graph, we present
an approach that allows a user to query the data, even if only parts of a database schema
are known. Figure 2 shows an example schema graph.
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Fig. 2. Example schema graph.

This schema shows types like UNIVERSITY, PUBLICATION, AUTHOR etc. with their
elements referring to other types as well as specialization relationships between types.
For instance, the type UNIVERSITY has an element researcher of type RESEARCHER
and an element library of type LIBRARY. Furthermore, PUBLICATION is a general type
with specializations BOOK and ARTICLE. There is one substitution group SG(PUBL)
contained in this schema whose general type is PUBLICATION and potential substi-
tutes are ARTICLE and MONOGRAPH, actually specializations of PUBLICATION. In
the transformation given below, we will see that substitution groups are a means to
express a disjunction of disjoint concepts.

To keep the representation of schema graphs as well as the query processing simple,
we only consider (XML-)elements describing complex data structures but do not cope
with the term of (XML)-attributes. Nevertheless, we will use both terms in order to
refer to properties of data items.



3.1 From XML Schema to Description Logics

An XML database is described by an XML Schema. The schema is represented by a
graph. The nodes of the graph are the complex type identifiers; relationships between el-
ements and their corresponding subelement types are represented by aggregation edges
and “extension”-relationships, describing the generalization relationship between com-
plex types, are represented by so called is-a edges. XML Schema supports the modelling
of multiple complex types, that are extensions of the same general complex type within
a substitution group, comparable to a union type in other languages.
In the following we assume a possibly infinite set £ of labels.

Definition 1 (XML Schema). Ler C be a set of type names and SG be a disjoint set
of substitution group identifiers. An XML schema (or schema for short) is a graph
S = (CUSG, Ere| UEiga UEsGin UEsG-out,¥) where C and SG are the nodes, Eyg), Eiga,
Esc-in, Esg-out are disjoint sets of edges (representing attributes/elements edges, inheri-
tance edges, incoming edges to SG nodes, outgoing edges from SG nodes, respectively),
and r € C represents the root of the schema. Every schema must satisfy the following
properties:

1. (V, V) ¢ Ero)UEisa U Esg-in U Esg-out, for any node v.

2. Each edge in E and each edge in Esg.oyt is labeled with an element from L. All
other edges are not labeled.

3. (WV) € Esgin if and only if V' € SG (incoming edges to nodes in SG are precisely
those in Esg.in).

4. (vV') € Esg-out if and only if v € SG (outgoing edges from nodes in SG are precisely
those in Esg-out)-

The schema can be translated in a straightforward way to description logics as follows:>

Definition 2 (Schema to Description Logic). Ler S = (CUSG, Ere U Eisg U Eggoin U
EsG-out; ') be a schema. The TBox for S, T(S), is defined as the smallest set of inclusion
statements satisfying the following properties:

Translation of is-a links. Ifc € Cand {d|(c,d) €Eisa} ={d\,...,dn}, forsomen>1,
then T (S) contains the inclusion ¢ T dyU---Ud,,.

Translation of elements/attributes. If (c,d) € Ew and (c,d) is labeled with 1, then
T(S) contains the inclusion ¢ C 31 .d.

Translation of substitution groups. If (c,v) € Esg.in then T(S) contains the inclusion
cCv. IfveSGand{d| (v,d) € Esg-out} = {di,...,dn}, for some n > 1, then T (S)
contains the inclusion v E dy U --- Ud, and the inclusions d;Md; E L, for all i, j
with1 <i,j<nandi# j.

This translation conforms to concept and role formations found even in basic descrip-
tion logic languages like 4 £ C. Although the translation does not result in an 2L C
TBox (T'(S) might contain several inclusion statements with the same concept at the left
hand side), it is easy to see that the result of the transformation can easily be brought to
an 4 £ ¢ conforming TBox (possibly cyclic).

5 We use standard description logic notation, see [1].



At this point we will not discuss how to employ description logic reasoners to solve
the tasks we are interested in. This discussion will be postponed after our approach
based on model computation has been described.

3.2 From Description Logics to Model Computation

The following translation is the standard relational translation from description logics
to predicate logic. For our purpose, it is enough to work in a restricted setting, where
all inclusions in a TBox are of a particular form, which is obtained as the result of the
transformation in Definition 2.

Definition 3 (Description Logic to Rules — Basic Version). Ler S be a schema. The
rules for S, R(S), are defined as the smallest set of rules satisfying the following prop-
erties:

1. ifcCcrU---Uc, € T(S) then R(S) contains the rule ¢1(x) V- -+ V cp(x) < c(x)

2.if ¢ C 3l.d € T(S) then R(S) contains the rules l(x,fe1q4(x)) < c(x) and
d(fe14(x)) < c(x). (feiaq is a unary function symbol whose name contains c, |
and d, as indicated.)

3. ifcNd C L € T(S) then R(S) contains the rule false < c¢(x),d(x).

Using this transformation, simple graph reachability problems can be reduced easily
to model computation problems. Speaking in terms of the schema graph, to compute
a path, say, from a node ¢ to a node d in a schema S, it suffices to add to R(S) the
fact ¢(a) < (for some constant a) and the rules found < d(x) and false <—not found,
where found is a predicate symbol not occuring in R(S). Each model of the thus obtained
program corresponds to exactly one path from c to d in S. However, this approach works
only in a satisfactory way if the schema does not contain any circle.

Example 1 (Cycle). Consider a TBox consisting of the two inclusions ¢ C 3/.d and
d C Jk.c. It can be obtained by translating a suitable schema containing a circle. Its
translation to rules gives the following program:

1(x, fer.a(x)) < c(x) d(fera(x)) < c(x)
k(x, fa k.c(x)) < d(x) c(fake(x)) —d(x)

Now, any Herbrand model as computed by bottom-up procedures will be infinite and

contains c(a), ¢(fake(fer.a(a)))s c(fake(feaa(fare(fera(a))))) and so on. Therefore,
KRHyper and related procedures will not terminate.

3.3 Blocking by Transformation

In this section we give an improved transformation in order to guarantee termination of
the model computation. This will be achieved by a “loop check™ similar to the blocking
technique known from the description logic literature [14, e.g.]. The idea is to re-use an
individual already known to belong to a certain concept instead of adding a new indi-
vidual to it in order to satisfy an existentially quantified role constraint. In the example,
the individual a can be re-used instead of f; 4 (fc14(a)) in order to put f,; 4(a) into
the k-relation to some individual belonging to c. This re-use technique will be described
now. It will guarantee the termination of our reasoning algorithm.



Definition 4 (Description Logic to Rules — Improved Version). Let S be a schema.
The rules for S, R(S), are defined as the smallest set of rules satisfying the following
properties:

1. ifcCeilU---Uc, € T(S) then R(S) contains the rule ¢1(x)V ---V ¢, (x) «+ c(x)
2. R(S) contains the fact equal(x,x) «— .
3. ifcC31.d € T(S) then R(S) contains the following rules:

new, ;.4 (x) Volde s 4(x) < c(x) (1)
false < new,; 4(x),old.; 4(x) @

l(x, fal’d(x)) — newc,z,d(x) (3)
d(feua(x)) < new,q(x) “)

I(x,2) < oldc1.a(x),c(y),1(y,2),d(z) 5)

false < old,  4(x),not some, s 4 (6)

some. ;4 <— C(x)vl(xay)vd(y) (7)

false — new,;4(x),new.; 4(y),not equal(x,y) ®)

4. ifcd C L € T(S) then R(S) contains the rule false < c(x),d(x).

Some comments are due. The difference to the previous version is the translation of
inclusions of the form ¢ C 3/.d. In order to explain it, suppose that the concept ¢
is populated with some individual, say, a. That is, when constructing a model, ¢(a)
already holds true. Now, the program above distinguishes two complementary cases to
satisfy the constraint 31 .d for a: either a new /-connection is made between a and some
new individual in d, or an existing (“old”) /-connection between some individual from
c and from d is re-used. That exactly one of these cases applies is guaranteed by the
rules (1) and (2). The rules (3) and (4) are responsible to establish a new connection,
while the rule (5) is responsible to re-use an existing connection. To achieve the desired
effect, some more constraints are needed: as said, re-using an existing connection is
realized by applying the rule (5). It establishes the connection [(x,z), where x stands
for the object the connection is to be established from (a in the example), and z stands
for the re-used object from d. However, there is no guarantee per se that the rule’s
subgoals ¢(y), I(y,z) and d(z) are satisfied. This, however, is achieved by the rules (6)
and (7): whenever the program chooses to re-use an old connection, i.e. to build a model
containing this choice, by (6) and (7) this can succeed only if the mentioned subgoals
are satisfiable. Finally, the rule (8) acts as a “loop check”: with it, it is impossible that
between individuals belonging to the concepts ¢ and d more than one new /-connection
is made. Only new [-connections cause insertion of more complex atoms® and thus are
the only source for non-termination. With the rule (8) there is a finite bound on the
complexity then for a given program.

The program above is intended to be run by a bottom-up model computation pro-
cedure like KRHyper (Section 2). Together with some more rules and facts obtained
by further transformation steps this yields an algorithm that is similar to usual tableau

6 Complexity being measured as the tree depth of the atoms.



algorithms developed for description logics. On the one side, our translation and the
reasoning tasks to be solved do not quite match those in existing algorithms. This is be-
cause of the use of default negation to filter out nonintended models (see Section 3.5).
Another difficulty we encountered with existing systems is their inability to actually
output the computed models. From our application point of view this is problematic, as
the answer to the tasks to be solved is the model (see again Section 3.5).

On the other side, it suffices for our purpose to work with TBoxes that are quite
simple and do not involve constructs that are notoriously difficult to handle (like the
combination of inverse roles, transitive roles and number restrictions). This allows us
to use the above rather simple “loop checking” technique, which is inspired by the
blocking technique developed for an ABox/TBox reasoner in [14].

3.4 Query Language

Existing query languages use path queries that navigate along the structures of the XML
data. For instance, in order to access the name of all researchers of a university in XPath
[19] one may use the XPath expression /university/researchers/researcher/name.
Path queries usually allow some form of “abbreviation”. For instance, with
//researcher/name one addresses all descendants of the “root” that are researcher-
elements and navigate to their names. However, because path queries work directly on
the XML data and not on the schema, it is not possible to query those elements from
a data source that belongs to the same type or concept. In particular, in order to ask
e.g. for all kinds of publications, one would have to construct the union of path queries
navigating to publication, book, article and monograph, explicitly.

This problem has been addressed in [13] where concepts or type expressions, re-
spectively, have been added to the query language. Querying instances of types or con-
cepts is well known in object oriented databases. Furthermore, path expressions allow
to navigate through the nested structure of the data. We assume a syntax similar to that
applied in object oriented databases [15]. We aim at a query language that combines
schema expressions as used in object oriented query languages with a flexible naviga-
tion mechanism as given by “abbreviated” path expressions as e.g. provided by XPath.

Let A denote a set of attribute names.

Definition 5 (Query Syntax). A path term is an expression of the form clx] op,
ailxi]... op,, amlxm], where m > 0, c is a type name, a substitution group identifier
(cf- Def. 1) or the symbol T, op; € {.,!}, a; €A, and x,x;, fori=1,...,m are variables.

A conjunctive query expression is a conjunction of path terms p1 A ... A\ p,, where
n > 1. A disjunctive query expression is a disjunction of conjunctive query expressions
e1V...Ve, wheren > 1.

By simply a query expression we mean a disjunctive query expression, which includes
the case of a conjunctive query expression as a disjunction with one element.

A path term is an expression that starts in a concept and navigates through a schema
by a sequence of attributes. Variables are used to “hold” the spots during this navigation.
At the instance level, a path term describes a set of paths in a data source. The result
of a path term basically is a relationship, where all variables occuring in a path term
are bound to elements in the XML document. Actually, there are two possibilities to



traverse a schema. First, by explicit navigation that specifies a path step by step. We use
the “!”” operator for this kind of navigation. Second, a path term may specify only some
attributes occuring on one or several paths in a schema; then the “.” operator is used.

For instance, BOOK|b]!title[r] describes all instances b of type BOOK, with a title
t as subelement. The result, basically, is a binary relation containing values for b and
t. Compared to an XPath-expression, the operator matches *“/” and the “.”” opera-
tor can be compared to “//”. Different from an XPath expression, in our query syntax
variables can be specified and type expressions are possible. If a user does not want to
specify an explicit type, the most general type T can be taken. As will be shown below
(see Section 3.5), using type expressions in a query allows a user to query for different
elements described by the same general type in one simple expression. For instance,
BOOK]|p]!title[] retrieves all BOOK elements with their titles as well as all MONO-
GRAPH elements, because of the underlying specialization/subsumption relationship.

Furthermore, using type expressions in a query provide a query processor with a
possibility to validate purely by means of the schema if a query is satisfiable. Consider
another query: PUBLICATION|p].isbn[i] A T[p].proceedings[x]. This query asks for all
instances p of PUBLICATION with their isbn and their proceedings. Actually, there are
no such instances. This fact can be established automatically, as will be shown below.
This means it is useless to try this query on any concrete database satisfying the schema,
as the result will be empty anyway.

We conclude this section by informally describing the semantics of queries: we say
a query expression g = e V ---V e, (cf. Definition 5) is satisfiable in a schema S (cf.
Definition 1) iff there is a conjunctive query expression e;, (1 <i < n), and a substitution
¢ mapping each variable in ¢; to a type name or a substitution group identifier, such that
(i) S satisfies each path term in e¢;6 according to the just indicated semantics of the
operators “!” and “.”, and (ii) no type name or substitution group identifier is visited
more than twice on the traversal of S as specified by ¢;6. Any such substitution is called
a solution for q.

The rationale behind condition (ii) is to allow queries admitting solutions represent-
ing circles in the schema graph, but no circle should be followed more than once.

€y

3.5 Translating Queries to Rules

The translation of a path term p of the form c[x] op; ai[x1]--- op,, am[xm] (cf. Defini-
tion 5) is the following list of atoms ¢r(p):

C(X), trsel(xv op ai [)C]]), trsel(XI, opy aZ[XZ]); cee 7trsel(xm717 op,, am[xm]) 5
where
a(x,y) ifop="
trsei(x, op aly]) = < role filler_ref trans(x,z), a(z,y) ifop=. ,

where z is a fresh variable

The purpose of ¢r(p) is to translate the path term p into a sequence of subgoals that
correspond to traversing the schema as prescribed by p and thereby assigning values to

10



the variables mentioned in p. Notice the translation distinguishes between the operators
“r . The former stands for the presence of an attribute immediately at the current

ey

. and
point of the traversal and thus translates into a corresponding role filler subgoal. The
latter is similar, but it allows to follow an arbitrary number of attributes first, by means
of the role filler_ref_trans relation.

(1) The translation of a conjunctive query expression p; A...A p,, where n > 1
and each p; (for i = 1,...,n) is of the form just mentioned and written as p; =
c'[x']op,'d [x}]- - op},.a;,. x| consists of the following rules:

) « role filler_ref trans(init, x!), ¢! (x!),
tr(pl)w .. 7tr(pn)

solution_path(x', (x! X

myo -t vmy

Observe that the selector x' mentioned in the first path term py, is treated in a special
way. Its type c! is treated as the “start type”, and a path from the root to it is computed
in the first argument of the solution_path predicate.

The translation of a disjunctive conjunctive query expression e; V...V e, is the
union of the translation of each e, fori=1,...,n.

(2) The following rules constrain the admissible models to those that contain at least
one “solution path”:
false «— not some_solution_path
some_solution_path < solution_path(x, y)

(3) Let E¢ be a set of attribute names as mentioned in Definition 1. The set E is reified
by the set of rules

T (Erer) = {rolefiller(x,y) < I(x,y) | [ is the label of some attribute in Eyg }
The reflexive-transitive closure of T (Eye) is obtained as follows:

role_filler_ref_trans(x,x) <
role_filler_ref_trans(x,z) «— role filler(x,y), rolefiller_ref_trans(y,z)

In the following definition all transformations introduced so far are collected and com-
bined. It states the complete transformation applied to a schema and a query.

Definition 6 (Transformation of a Schema and a Query). Ler S = (CUSG, Eg U
Eisa UEsG.in UEsG-out; ) be a schema as in Definition 1 and q a query expression. The
transformation of S and g consists of the union of R(S) of Definition 4, the result of the
transformation step (1) applied to q, the rules from (2), the rules from (3) (both T (Eg)
and the rules for the reflexive-transitive closure of T (Erel)), and the facts

T(x) root(init) «—

As said earlier, the purpose of our model based approach is to detect if a XPath like
query is satisfiable or not. In case of a satisfiable query, a fully completed path — one
that fulfills all given constraints — is returned as part of the model. Furthermore, every
such fully completed path will be computed. The following theorem states this result
more formally and summarizes important properties of our transformation.
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Theorem 1 (Soundness and Solution Completeness). Let S be a schema as in Defi-
nition 1 and q a query expression. Let T be a tableau derived by KRHyper applied to
the transformation of S and q. Then the following holds:

1. Every open branch in T contains an (at least one) atom of the form
solution_path(z, (¢1,...,t,)) and it denotes a solution for q, by means of the sub-
stitution {x/t,x1/t1,...,xn/tn}, where x,...,x, are the variables occuring in some
conjunctive query expression of g, in this order.

2. For every solution {x/t,x1/t1,...,x,/ta} for q there is an open branch in T con-
taining the atom solution_path(z, (t1,...,t,))-

From the theorem it follows easily that T does not contain an open branch (i.e. T is
closed) iff ¢ is not satisfiable in S, as expected.

In the statement of the theorem it is implicitly assumed that the tableau construction
by KRHyper terminates. That this is indeed the case was argued for in Section 3.3. The
other properties stated can be shown with a careful analysis of the properties of the
transformation of S and ¢g. The idea is show that traversing the schema according to
a given solution is simulated by the model construction, and vice versa. An important
detail concerns solutions representing circles in the schema graph. As explained at the
end of Section 3.4, following circles once is admissible, which matches exactly with
what the blocking technique in Section 3.3 achieves.

3.6 Example

The query expression BOOK][b]!title[t] from above translates into the following pro-
gram:

T(x) « (1)
root(init) « ()
solution_path(b,) < role filler_ref_trans(init, b), 3)

BOOK(b), role filler_ref_trans(b, 7). title(z, ¢)

false < not some_solution_path “)
some_solution_path < solution_path(x,y) (5)
role filler_ref trans(x,x) « (6)
role filler_ref_trans(x, z) < role filler(x,y), (7

role filler_ref trans(y, z)

role filler(x,y) < university(x,y) (8)
: : )
rolefiller(x,y) < isbn(x,y) (10)

Notice the rule (3) is the translation of the given (single conjunct) query expression
according to the scheme (1) above. The rules starting from (6) stem from the translation
of the schema graph in Figure 2 according to the scheme (3).
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Now, suppose that this rule set is combined with the translation of the schema graph
in Figure 2 according to Definitions 2 and 3 (or Definition 4 instead). The unique model
contains

solution_path ( feooks, books,B00K ( fLIBRARY book BOOKS (
JUNIVERSITYlibrary,LIBRARY (fROOT university,UNIVERsITY (init) ) )),
JPUBLICATION jitle, STRING ( fBOOKS, books,BOOK ( fLIBRARY book,BOOKS (
JUNIVERSITY,liorary,LIBRARY (fROOT university,UNIVERsITY (iNit) ) )) ) )

Observe that the path from the ROOT concept to the BOOK concept is coded in the
names of the Skolem function symbols in the first argument of solution_path. This path
is extended towards a path to the title attribute in the second argument; this extension
encodes, in terms of the schema graph, moving from the BOOK type to its supertype
PUBLICATION and then moving to the title attribute. We note that the query expression
BOOK]bp].title[f] would have given the same result.

As a second example consider PUBLICATION|p].isbn[i] A T[p].proceedings|x]
from above. Its translation according to scheme (1) is

solution_path(p, (i,x)) < role filler_ref_trans(init, p), . 3)
PUBLICATION(p),isbn(p, i),

T(p),proceedings(p,x)

The rest of the transformation is the same as in the previous examples and is omitted.
This time, the solution_path relation is empty, as the body of rule (3) cannot be satis-
fied. But then, with rules (4) and (5) this rule set is unsatisfiable. This is the expected
result, because, as mentioned above, the query expression is unsatisfiable (in terms of
the schema graph).’

4 Conclusion

In this paper we aimed to demonstrate that automated deduction techniques, in particu-
lar those following the model computation paradigm, are very well suited for database
schema/query reasoning. We started by showing how to represent an XML schema
graph in basic description logic. This representation then is transformed into the predi-
cate logic language of the first order theorem prover KRHyper. We also proposed a flex-
ible query language containing constructs for path specification similar as in the XPath
query language, and we showed how to transform the querly language into KRHyper’s
input language. The models computed by KRHyper then encode fully specified XML
path queries. The purpose of computing fully specified XML path queries is to reduce
the workload on a query processor, because, in general, fully specified queries involve
much less search on the database than XPath queries. To our knowledge an approach
comparable to ours, based on model based deduction, has not been considered before.
An obvious question concerns the correctness of our approach, i.e. termination,
soundness and completeness of the combination of KRHyper and the transformed

7 The runtime of KRHyper on both examples is negligible.
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database schema and query. While termination has been argued for in Section 3.3, it
is hardly possible to establish the other two properties: there is no formal semantics of
XML path queries in the literature. However,

We found description logic to be helpful as an intermediate language to represent
XML schema graphs. Moreover, our transformation includes a blocking technique com-
parable to those used in description logic reasoners [14, e.g.]. However, we went beyond
the “classical” description paradigm in two aspects. The first aspect concerns the use
of models to represent the solutions of the given problem of computing paths (as ex-
plained). As a second aspect, we found default negation very helpful to formulate con-
straints on acceptable models. From this point of view, we believe having shown there
are applications for description logics where model computation and default negation
is an issue. We perceive our approach to knowledge representation also as an original
contribution of our work. A similar direction was proposed only recently in [2], where
related ideas as presented here are exploited in the context of natural language process-
ing. In a wider context, we speculate that Semantic Web applications would profit from
knowledge representation languages as discussed here.

We understand this paper as a first step, that covers a basic schema/query reasoning
task by model-based deduction. Due to the underlying expressive logic formalism we
expect our approach to easily adapt to more sophisticated problem settings, like type
hierarchies as they evolve within the XML world. One big advantage of such a declar-
ative approach over, say, explicitly programmed algorithms is the possibility to easily
add further constraints. We intend to explore this potential in future work.
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