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There ae recent successes of automated deduction
techniques in various applicaion domains, such as
mathematics, clasgcal and nommonaonic logics,
diagnosis, planning and within software engineaing.
We will briefly review some of them and olserve
that these successes have been made only after a
caeful analysis of the gplicaion domain as well as
the deduction system under consideration. The
purpose of this article is to argue that automated
deduction systems can be usefully applied in
pradice but it is necessary to have available a
variety of deduction methods, to understand their
properties and their computational power in order to
tailor them for the gopli cation urder consideration.

In the ealy days of automated deduction, reseach
concentrated on the development of general purpose
deduction systems. “Applicaions” were toy
examples, which did not scde up to redisticdly
sized problems. Nowadays, the theorem prover
community discovers applicaions again. The key to
success quite often is the spedfic knowledge of the
applicaion domain which is used to ogimise the
deduction systems, i.e. the knowledge is used to
guide the search for aproof or amodel.

Indeed, there ae some recent impressve results
which show that such deductive systems are even
able to handle redistic problems. Domains to be
mentioned here include mathematics (see Sedions
land 4.1), planning [18] (see Sedion 3.1), model
checkng (see Sedion3.2), diagnais (see
Sedion 3.3), software reuse[22] and verification
(see Sedion 3.4), or view deletion in daabases [2].
Another redisticdly sized problem solved by the
Protein prover [5] was the analysis of barking fees
rule sets, which was siccesdully tadkled with
constraints [44] (seeSedion 3.5).

1 A Success of Automated
Deduction

Recently, W. McCune proved with the aitomated
theorem prover EQP that ead Robbins algebra
satisfies S. Winker's ssoond condition. This implied,
that eadr Robhins algebra is Bodean and settled a
problem which had been open for more than
60yeas. This siccess even readied the New York
Times[36].

H. Robbins conjedure can be formulated very
briefly: In 1933 E.V. Hurtington presented a basis

for Boolean algebras consisting of the aciative
and commutative law for union and the eguation:

xOyOxdy=x

Shortly theredter, H. Robhins conjedured that
E.V. Huntington’s equation can be replaced with a
simpler one:

xOyOxOy=x

Many mathematicians—among them the famous
logician A. Tarski—have worked in order to dedde
H. Robhkins conjedure. The proof that solves the
problem was found on October 10, 1996 by the
theorem prover EQP developed at Argonne [33].
EQP is smilar in many ways to the more well known
program Otter. The main differences are that EQP
has assciative-commutative (AC) unificdion, is
restricted to eguational logic, and dfers
paramodulation strategies to handle eguality. So,
aso in thisfirst example, domain spedfic techniques
are exploited.

W. McCune used the output of EQP to guide his
deduction system Otter in order to produce aprodf.
Otter’s proof contained fairly complex terms which
were hard to understand o even to print in a
readable format. Proofs in mathematics are not a
value in their own right. Their main purpose is to
help humans to understand complex phenomena
Therefore, several authors tried to find simpler
representations of this proof—for proof cheding as
well as to gain deeper insights into the nature of
Robhins algebras.

Therefore

O(X1,X2,X3,X4) Xz O X1 O X, O X Z X3 0 Xy (0]

Because of commutativity and by Robbins axiom
O(X1.%2) (X1 > X2) N (X2 0 X1) = Xp.
Hence by commutativity

O(x1,X2) (X2 0 X1) 1 X1 - X2 = Xa. 2
Because of commutativity and by Robbins axiom
D(Xl,XZ) (Xl 0 X2) N X1 - X2 = Xo. (3)

Fig. 1: A part of the ILF output

A system cdled ILF, developed by I. Dahn within
the German focus program on Deduction, was able
to trandlate automaticdly the &ove depicted proof in
away that mathematicians can easily read and chedk
(seeFig. 1). Ultimately, the term depth in the proof




could be reduced from 14 to 4[17]. Using ILF, it is
very simple to analyse a proof and to change its
presentation. The first presentations generated hy
ILF reduced the wmplexity of formulae by
introducing abbreviations which are commonly used
for Bodlean agebras. This fadlitated a plausibility
chedk of the proof. Then, automated proof
transformations helped to separate the mathematicd
contents of that proof from the formal details. A
system which is also suited for this purpose is the
Omega system [10].

It is no question that this proof has been found by
means of a cdculus which has nothing to dowith the
way human mathematicians find or communicae
proofs.

What we would like to pant out with the aove
example is, that even if it is not the cae that
ressoning is done human-like, one can am a a
trandation of madine-oriented into human-like
ressoning. In this way, the incressed power of
automated reasoning systems is beaoming a new toal
for the thinking human.

In [46]—also based on the experience with the
solution  of H. Robhns problem—L. Wos
emphasises the different natures of human and
computer reasoning. He provides hints how to
combine both succesdully to bring rew kinds of
applicdions of automated deduction within read.
Thisis gmilar to our thesis that will be exemplified
in the rest of the text: Automated deduction can be
applied succesdully in pradicd applicaions by
using domain-spedfic tedhniques.

2 Theorem Proving Techniques

To apply automated deduction to red-world
problems, a sound knowledge of the underlying
deductive techniques and their spedfics is as
important as the knowledge of the gplicaion area
itself. We will concentrate here on two widespread
mainstreams of automated deduction with quite
impresdve pradicd results in recent yeas:. clasdcd
first-order theorem proving, and nonmonotonic
ressoning with its importance for logic
programming, databases and other applicaions.
Even in this marked areg there ae numerous
different methods with individual strengths for
certain tasks. We will sketch some of them aong
with fundamental properties. Examples of useful
combinations and refinements of these gproaces
that adapt deductive techniques to spedfic fields of
application will follow in Sedion 3.

2.1 Classical Reasoning

High-performance aittomated theorem provers
usually are based on refutations. As in the cae of
Otter [32], saturation-based resolution cdculi are
used to generate cnsequences urtil a ntradiction
is found, whereas Setheo [25] or Protein [5] apply
variants of model elimination [30], a tableau-based,

goal-driven proof procedure. Saturating proof
procedures usualy are proof-confluent, i.e. it is
never necessary to undo parts of the derivation
process whereas model elimination procedures
employ some kind of badktradking based on iterative
degoening.

On the other hand, tableau-based procedures often
are much less paceconsuming and thus handle
clause sets where resolution provers might run out of
memory. Furthermore, the goal-direded nature of
model elimination shows me similarity to logic
programming and, indeed, the restart model
elimination variant [4] enables a procedura realing
of digunctive dauses, asin Prolog for Horn clauses.
It has been demonstrated that these gproaches are
able to ded with interesting problems, and indeed
there is an increasing number of appli caions of these
high-performance aitomated theorem provers (see
Sedions 1 and 3).

In contrast to the dove mentioned systems which
are optimised for finding refutations, there is aso
work on model-based automated reasoning. Here,
the ideais to find a proof by means of bottom-up
model generation. One of the first systems, which
shows that a very simple proof procedure based on
model generation is able to outperform (in some
cases) refutation-based provers, was SATCHMO
[31]. Its main drawbadk—the limitation to range-
restricted clause sets—has been overcome by the
hyper-tableau cdculus [6].

Model generating cdculi are mnvenient if one is
not interested in the unsatisfiability of formulag but
in satisfying interpretations which may be further
specialised. Questions of this type ae tadkled by
model-based reasoning in the aeas of mathematics
[23], automated plannng [28] or diagnasis (see
Sedion3.3). Modds may adso serve @&
counterexamples for formulae @wumed to be
unsatisfiable, useful in domains like eg. software
verification where it is not guaranteed beforehand
that given spedficaions are rred (see &so
Sedion 4.1).

2.2 Nonmonotonic Reasoning

Originally, nonmonotonic reasoning was intended to
provide a fast but unsound approximation of
clasdcd reasoning in the presence of incomplete
knowledge. But the mplexity results of
nonmonotonic logics are located on the second level
of the paynomial hierarchy [26], so they are even
more mplicaed than the dasdcd entailment
problem. Therefore subsystems of genera
nonmonotonic logics on syntadicdly restricted
clases of formulae have been investigated, in
particular those that are based on logic programming
and extend the dasdcd class of Horn programs:
either by alowing (1) default negation (normal
programs), or (2) digunction (positive digunctive
programs), or (3) both negation and dsgunction
(general digunctive programs).



According to these different classes, various
semantics are possble. In Sedion 3.3 we will see
that minimal models are agood choice for diagnosis
tasks. In fad, these minima models gem from
theoreticd work in deductive databases [35]: the
semantics is cdled generalised closed world
assumption. Concerning default negation, there ae
various other posshilities (see [12]). Most notably
the well-founded semantics WFS and the stable
model semantics Stable. WFS is consistent (model
aways exists), permits god-direded computation
and has attradive complexty (quadratic in the
number of atoms) and it can be computed efficiently
using dternating fixpoints. Stable can become
inconsistent (programs may have no stable models)
and answering queries cannot be restricted to the
cdl-graph below that query.

While Stable is very closely related to default
logic, WFS can be seen as an approximation to the
intersedion of al stable models: an atom that isfalse
in one stable model but true in another one is
undefined acwrding to WFS. Let us mention two
very interesting systems for computing WFS and
Stable for non-digunctive programs. They constitute
the aurrent success sories of logic programming and
nonmonotonic reasoning. For the general digunctive
first-order case, a cdculusisdescribed in [20].

Firstly, there is XSB, a full-fledged programming
system, which redizes WFS wusing tabling
(developed from D. Warren and his group [41]). It
works for full first-order programs, but, obviously,
termination can only be guaranteal in spedal cases.
Nevertheless XSB is terminating for many programs
where usual Prolog systems fall into an infinite loop.
Tabling operates on low level data-structures but a
dedarative description hasbeen gvenin[11].

Sewndly, there is smodels, which works for range-
restricted function-free normal programs [37, 19]. It
is written in C++ and can handle redistic size
programs (tens of thousands of ground rules) with a
patentially large number of stable models.

3 Applications

Many Al critics say: If it works, it ain't Al. This
sedion will prove the oppaite: There are severa
red world problems siccesqully solved by
deduction-based systems. These gplicdions owe
their success to the well founded theoreticd
badkground and adive research done on the field of
deduction, espedaly to cdculi refinements
motivated by speda problem domains. We will
shortly describe how these gplicaions work and
which theoreticd methods have been used to tadle
them.

3.1 Planning

Developing automated methods for generating and
reasoning about plans and schedules, has been part
of Al reseach from the very beginning. The neel for

planning arises naturally when an agent is interested
in controlling the evolution of its environment.
Algorithmicdly, a planning problem has as input a
set of possble murses of adions, a predictive model
for the underlying dynamics, and a performance
measure for evaluating the aurses of adion. The
output or solution is one or more urses of adion
that satisfy the spedfied requirements for
performance. A planning problem thus involves
deddingwhat adionsto da and when to dothem.

In [28], a succesdul approach in automated
reasoning for planning hes been reported. Until then,
it was considered folklore that planning required
spedaised formalisms and algorithms which take
into acount the speda problems from this domain,
ase.g. the so cdled frame problem. It turned out that
propasitional theorem provers are &leto outperform
speda purpose planning systems. Here, stochastic
“greedy” search techniques are important.

More recently, [18] shows how to encode planning
problems into normal logic programs in such a way,
that stable models of the program correspond to
valid plans of the original program. In addition,
runnng smodels on the transformed program and
thus computing the stable models, outperforms
dedicated panning algorithms for the origina
problem. The gproach has me alvantages over
other approaches because the nonmonotonic
semantics alow to handle the frame problem
elegantly.

3.2 Model Checking

An important question, given a particular formal
spedficaion of a system, is whether this
spedficaion poseses certain properties. Often
these properties can be formaly expressd by
temporal logic formulae Model chedking is a
particular method (verification technique) to
determine such properties of a spedficaion and has
been used succesgully for finding design errors in
red-life systems[14].

Interesting properties of pradicd value often
involve fairness constraints and can be naturally
computed by evaluating aternating fixpoints. Now
one of the most canonicd temporal logics to express
aternating fixpoints is the modal p-cdculus [29].
Alternating fixpoints turn out to be the link to
nonmonotonic reasoning, in particular to the well-
founded semantics mentioned above, and lead to
another success sory of Al. Namely it has been
recently shown [40] that a new agorithm, cdled
LFAP, can be degantly implemented within XSB
thereby making we of XSB's gedfics. Standard
Prolog systems are not suitable for this because they
do not terminate and do not alow for negation. In
faa the pseudo-code is © clea and concise that a
complete proof of the arredness of LFAP can be
constructed easily. Even more important: the LFAP
under XSB clealy outperforms conventional model
chedkers on canonicd benchmarks [40].



3.3 Diagnosis

Model-based dagnosis of technicd systems provides
an interesting class of benchmark problems for two
reassons. Firstly, the examples which stem from
hardware design wually contain a large number of
clauses, which have to be handled efficiently in order
to solve redistic problems. Secondly, the diagnosis
task involves by definition minimal model reasoning.
Hence techniques from nonmonotonic reasoning can
be gplied (seeSedion 2.2).

Model-based diagnosis techniques were developed
by R. Reiter [43]. In this framework, a simulation
model of the technicd device under consideration is
constructed and is used to predict its normal
behaviour. By comparing this prediction with the
adual, observed behaviour it is possble to derive a
diagnosis. This approach uses a logicd description
of the device cdled the system description (SD),
formalised by a set of first-order formulae The
components of the device ae given by a set COMP,
which come with an associated behavioural mode:
Ab(c) denotes that component c¢ is faulty, while
- Ab(c) meansthat ¢ is behaving corredly.

For example, a digital circuit containing an OR-
gate component orl could be spedfied within SD by
the formula
=Ab(orl) - (hi(orl,0) « (hi(orl,il) Ohi(orl,i2))),
where o, i1 and i2 stand for the output and the two
inputs of the OR-gate, respedively. Besides SD ,
there is a set OBS of observations. These ae
formulae which describe the adual, observed
behaviour of the system (e.g. that certain inputs and
outputs of the the drcuit are high). A diagnosis task
now comes up if the observation contradicts the
system description, i.e. if SD 00 OBSis inconsistent.
Now, a diagnais of (SD, COMP, OBYS) is a set
A 0 COMP, such that SD 0 OBS O {Ab(c) | ¢ O A}
O{-Ab(c) | c OCOMP -A} is consistent. A is
cdled a minimal diagnasis, iff it is the minimal set
(wrt. 0O) with this property. There ae other
interesting ways to define the diagnosis task, e.g.
abductivediagnosis[15].

The set of all minimal diagnoses can be large for
complex tedhnicd devices. Therefore, stronger
criteria than minimaity are often wed to
discriminate further among the minimal diagnoses.
These aiteria ae usually based on the probability or
cadinality of diagnoses. In the remainder of this
sedion, however, we will use restrictions on the
cadinality of diagnoses. We say that a diagnosis
satisfies the n-fault asamption iff |A|<n. In
particular, one-fault diagnoses (n=1) are interesting,
becaise in some scenarios it is plausible that only
one component bre&ks at atime. In [3], it is $own
how such diagnosis tasks can be dficiently solved
with a general first-order deduction system: the
model-generating NIHIL prover, which is based on
the hyper-tableau caculus (seeSedion 2.1). It had to
be dightly modified for the cmmputation of minimal

models, as demanded by the diagnosis task. With
this modification alone, however, it turned out that
redigticdly sized examples from a standard
benchmark suite [27] could not be solved within
accetable time.

The key to the solution was to take alvantage of
additional domain dependent pruning tedhniques.
The ideaisto use aninitial interpretation Iy, which
is a mode of the arredly functioning device
(which, of course, contradicts with the observation
OBS). It can be wmputed efficiently by eg.
simulation devices. Now, lg can be used in a
compilation step to transform the given clause sets
for the diagnosis task in such a way that the
computation of diagnosisis guided by the deviations
of OBSfrom |, . This can have ahuge pruning effed,
becaise those parts of the system whose observed
behaviour is in acordance with |y never need to be
considered in the computation. To sum up, with the
combination of al the described techniques from the
automated deduction and the diagnasis worlds, the
mentioned benchmark examples could be solved hy
our standard prover; it performed competitive
(within one order of magnitude) with dedicaed
diagnosis g/stems.

3.4 Software Verification

Proof obligations arising diredly in red-world
software verificaion problems are far out of read of
automated deduction systems. Consequently, this is
the domain of interadive systems, such as K1V [42]
or 3TAP [9]. KIV includes an incomplete deduction
system which is cdled on user request for seleded
subproblems. According to the developers of K1V, it
would be very advantageous to have a more
powerful (i.e. “more complete” but till fast enough)
automated deduction system instead.

Coupling an automated deduction systemto KIV is
rather different from “standard” deductive tasks like
solving benchmark problems. In the combination
with K1V, there is a tough time limit for the proving
process Consequently, the theorems to be proven
may not be too hard (and in faa, typicdly they are
not). On the other side, raw proof time is not the
ultimate measure. More important is the aility to
relieve the KIV user from interadion steps. In a
typicd case study, 45 theorems could be proven by
KIV using the built-in prover after guidance with 52
user interadions.

The first experiments we caried out with Protein
and examples extraded from the KIV system did not
show optimal performance The same holds for other
provers (Otter, Setheo) which were tried by the KIV
developers. One source for improving the situation
comes from so-cdled simplifier rules. these ae
formulag that, by a speda syntax, contain
information how to wuse them, namely as
(conditiona) rewrite rules from left to right. For
example, one useful application of asimplifier ruleis
to expressa definitionlikein X<Y o (X<YDOX=



Y). By this rule, al occurrences of <-literals can be
eliminated.

Now, the important point is that the KIV system
readily includes such simplifier rules and thus need
not be atificially discovered. It is obvious that an
automated prover should ded with simplifier rules
properly, i.e. as conditional rewrite rules, but not as
ordinary clauses. Hence we extended the model
elimination cdculus and the Protein prover by a
general mechanism to incorporate such simplifier
rules adequately. A detailed description of the whole
approach can be found in [7]. In brief, we first
employ simplification as a preprocessng step on the
given input spedfication. This st is passd to the
prover then. The prover itself uses smplifier rules
for the proof seach, too. Here, simplifier rules are
applied not to clauses, but to the airrent proof
objed, i.e. the model elimination tree under
construction.

Algebraic Specs *‘(5’
Axioms

Lemmata PR

Theorems
Smplification rules
« Built-in smplification
incomplete ] many user interactions
« PROTEIN + Smplification
completeJ few user interactions

Fig. 2: Verificaion and AD — KIV

The various posshilities of incorporating
simplification into our model elimination framework
suggest an experimental evaluation. As mentioned,
we etended our Protein prover, and evaluated
various drategies for simplificaion using redistic
problems from the KIV domain. In sum, we
conclude that simplification has a lot of potential to
help here. Interestingly, the most complete setting
was also the most succesful one. Protein with
simplification scored best wrt. the number of
problems slved within the time limit of one minute,
followed by Setheo, Otter and Protein without
simplification. Using Protein with simplification (see
Fig.2), the KIV user can be relieved from 23 o 35
interadions to prove the 45 theorems in the
mentioned case study!

3.5 Validation of Banking Fees

The pradicd applications described so far have one
thing in common, they solve problems diredly
related to computer science (software verification,
model cheding) or technicd systems (diagnosis).
The following applicaion description is out of the
scope of computer science, it is about trading stocks
and bands. In detail, a Swiss credit institute uses a
set of natural language rules to cdculate the fees for
buying and selling stocks and shares for their
customers. Thisrule set is very large and it is nealy

not possble to chedk manualy if the rules are
corred.

Motivated by this red world problem, the
validation of rules for the computation of banking
fees, we set up atheoreticd framework consisting of
constraint logic programming and first-order
theorem proving tedhniques and developed a
prototypicd applicaion [44]. Once again, domain
spedfic knowledge (here: constraints) are esential
for the success of the gplicaion. The motivating
problem to be solved was to dedde whether the
cdculation rules used by the Swiss credit institute
are deterministic and total, i.e, is there & most one
fee that can be cdculated for a given transadion
(determinism), and is it aways paossble to cdculate
one fee for any arbitrary transadion (totality).
Although these questions are undeddable in general,
the restricted form of the investigated rule sets makes
them deddable and even tradable in pradise.

To tadkle this chalenge we ombined logic
programming and constraint solving in  an
straightforward manner, by making wse of the
constraint model elimination (CME) cdculus [8].
Because of the fad that model elimination [30Q] is a
linea and goal-direded cdculus, that is close to the
logic programming language Prolog, it allows us to
redize this cdculus on top d existing Prolog
systems by using the Prolog technology theorem
prover (PTTP) technique proposed by M. Stickel,
incorporated into the Protein system.

In our approach to dedde the determinism of the
rule set, given in first-order predicae logic, we
dightly modified these PTTP technique to compile
therule set into a mnstraint logic program. There ae
sub-compilation steps involved in the whole
transformation, like the transformation of full first-
order formulae into a Prolog program and most
important the awnotation of domain spedfic
congtraints. The result of this automated
transformation is a constraint logic program realy to
be exeauted by a Prolog system.

So we adually used our PTTP-based deduction
system Protein using the CME cdculus for the fina
proof task to show that there is no transadion with
two dfferent cdculated fees. Becaise of Protein's
cgpahility to cdculate answers, a smple query to the
congtraint logic program of the form — t(X,Fee),
t(X,Fes), Feg # Fee cdculates all transadions with
more than one possble fee ad therefore proves that
the investigated rule set is not deterministic. By
speda visudisation tools to dsplay the mode
elimination proof tree we ae &le to pick up the
nondeterministic rules as explanation and even more
we can generate acording reports using the ILF
system. The successof this applicaion is due to the
combination of constraint logic programming and
first-order reasoning, based on the model elimination
cdculus. Each approach aone is not powerful
enough to find the solution in reasonable time. The



procedure proposed here can easily be generalised to
analysing arbitrary rule sets.

4 Future Per spectives

Surely, there ae many more interesting areas where
deductive techniques can be gplied to, if these
techniques are geared to spedfic requirements of the
respedive gplicaion. Two chalenging examples
will be presented: the RoboCup roba socce
simulation and web information systems (see
Sedions 4.2 and 4.3).

Furthermore, future deductive systems sould take
into acoount that they might be used by persons who
are not experts of automated deduction. Therefore,
the systems themselves dould provide supparting
information for the user, when a task could not be
completed automaticdly. This is discused in the
next Sedion 4.1.

4.1 Debugging of Specifications

In automated deduction, the final goal isto adhieve a
fully automatic proof system: given a logicd
spedficaion of a problem, take ahigh-performance
deduction system, and let it find a solution.
Unfortunately, this does not work in pradice, not
only because deduction systems ladk finding the
proof within reasonable time, but also becaise the
spedficaion is error-prone. For the latter, in the
literature methods are proposed for deteding and
verifying errors in logic programs. But, in order to
enable such analyses, usualy termination of
computation is presupposed.

Since termination is not guaranteal in first-order
deduction, it should be fruitful to investigate
techniques which are dso applicable in the cae of
non-termination, e.g. by employing incremental,
model-based tedhniques as provided by the hyper-
tableau cdculus [6]. Models are highlevel
descriptions of what should hold in a given
spedficaion and therefore enable a problem-
oriented investigation wrt. criticd properties like
corredness completeness and sufficiency of
spedficaions. By virtue of an incremental model
construction procedure, this works even in cases
where deduction systems usualy do not terminate
(by successor failure).

In general, the scenario can be pictured as foll ows
(seeFig. 3): given aproblemin a cetain domain (1),
one wants to prove some theorem in it, say in
elementary algebra. Thus, at first, a formal
spedficaion in logics hasto be given of the problem
space ad the theorem at hand (3), maybe using
some theory libraries (2). By means of deductive
tods then, it is tried to find a proof for the given
theorem (4). Now, there ae three possbilities: a
proof of the theorem is found (6), or it is deteced
that a proof cannot be found automaticdly (5), or the
theorem prover does not terminate with any answer
and loopsin (4).

In the first case, the proof might be formatted and
output in natural language to get a readable solution
to the stated problem, as done by the systems ILF
[16] or Omega [10Q]. In the latter two cases,
information about what went wrong in the deduction
process is even more important. By inspedion of
partial models (8) that can be wnstructed for the
given axiomatisation, errors can be deteded as well
as other insufficiencies of the spedficaion. With this
information, a mrreded and tuned axiomatisation is
formalized (3), and another (now hopefully
succesgul) deduction run started (4). See 4so [24].

Fig. 3: Deduction life-cycle

One main problem of this approach is the
patentially large size of models to be computed and
inspeded. Therefore, tedhniques are neeled to
restrict the model construction to relevant subparts.
One muld make use of modules or libraries during
the spedficaion phase, which are drealy tested or
even proved to be wrred. For example, a ring
contains an additi ve group and a multi pli cative semi-
group. Therefore, one may use libraries pedfying
these parts and thereby avoid repeded inspedion of
certified spedfication modules, as siggested in [10].

Another case study in [24] describes the model-
guided tuning of spatial reasoning axioms [21] with
resped to a spedfic theorem proving task urtil an
automated proof is eventualy posshble. Further
benefit for debuggng by models can be gained hy
cheding spedficaion parts against known model
instances automaticdly. Finally, an important point
in this view is the visuali sation of partially computed
interpretations. Thus, this work can be integrated
into interadive proof frameworks with natural
language output, such asILF [16] or Omega[10].

It should be stressed, that the problem of incorred
or insufficient axiomatisations may occur in virtually
every applicdion area &so mentioned in Sedion 3,
where formal spedfications have to be developed, in
particular, mathematics [24], software veification
[42], diagnasis [43] or rule set validation [44].
Automated deduction can provide here engineeaing
suppart by dedarative, model-based debuggng.



4.2 Robot Soccer

Recently, there is growing interest in computer
soccea. The RoboCup initiative [38] is an attempt to
foster Al research by providing a standard problem
where awide range of technologies can be integrated
and examined. In the last few yeas, there were
several competitions in different leegues with red
robats, and there is also a simulation league. At the
University of Koblenz, there is ongoing research on
designing clients for the RoboCup simulation league
in Prolog and C++. We fed that logic and deduction
are gpropriate remedies for this task. A single
player is part of a tean and has to deduce
information about the situation. For example, players
have to remgnise when pasdng the ball is passble
or aplayer is off-side.

But, amost naturally, tasks to be solved by ateam
of autonomous agents are many-sided and complex.
To adchieve agoal, a single ggent has to use aset of
complementary subtasks. Some of these subtasks
consist of solving numericd equations to enable a
player to handle tasks like dribbling or adualy
passng the ball. On the other hand, we have to
derive new information from a given set of fads. So
we were led to the ideato combine the advantages of
procedural and logic programming and dedded for a
hybrid system. As a result, we implemented the
Robd_og Prolog extension. This extension is an
enhanced RoboCup socce server interface for
Prolog. Time aiticd and computational expensive
tasks are handled within the Robd_og module, as
well as the exchange of data. The developer of a
socce client accesses the cdculated data via Prolog
predicates. The module provides the aomic soccer
server commands and some more complex adions.
The Prolog engine handles the player's reasoning
and planning, i.e. to a catain degreeit models ared
socce player’s reasoning. However, it is difficult to
say, in how far cognitive adions that are done on a
subconscious level by humans, e.g. cdculating the
amount of power needed to pass (or stop) the ball,
can be expressed by logicd rules.

Currently, we ae investigating the problem of
modelling certain situations as patterns by means of
logic programs and our Protein system (see [39)).
For example, a situation where passng the ball is
posshle can be described as follows: one player has
the ball, and another player can be readed and there
is no payer in between. We modedled these
situations on top d the logicd relations left, right
and between (see &so [21]). A situation pattern is
redized as alogica description of spatial—and, to a
degree—temporal relations. Robd_og and Prolog
predicates will be used to define these relations. To
ensure robustness of our approad, further methods
can be used to aid the dedsion process if no match
is close eough Espedally, spatial reasoning
techniques will be helpful.

4.3 Intelligent Web Information Systems

Overwhelmed by the results the standard WWW
seach engines produce, it is time to develop more
intelligent and autonamous seach and information
gathering systems for the web. We need systems that
will freethe user from the time exhausting work of
foll owing thousands of document references, reading
ead of it in order to extrad relevant information
manually. Furthermore these systems sould provide
a set of analytic tools for the comparison of web
contents and the discovery of knowledge and
relations from the information retrieved.

So we focused our work on tedhniques for the
informetion extradion from web pages and in
particular how to develop a common extradion
language in combination with logic programs [45].
The result was a domain independent extradion
language. One basic fedure of this language besides
the mncepts like reaursion, is its ability to interad
with logic programs during the extradion process
(code alls). Therefore it alows us in conjunction
with logic programs to set up relations between web
pages, to reason about the contents of pages, to make
comparisons on extraded fads and to deduce new
fads. The most important point is, that we have a
common theoreticd well studied layer to work upon:
deduction and more spedfic logic programs. Hence
we ae @le to control the information extradion
processwith the asdstance of deductive reasoning.

Our future plan is to develop methods and
information systems that ease the search for fads in
the WWW and its analysis. These systems sould
have the following capabilities: (1) to reason and
dedde where to seach for good information source,
(2) to deduce new information from the one they
have found on the web, (3) to learn how to extrad
relevant information from new information sources
(web pages), (4) to discover unkrmown relationships
between the extraded information or between web-
pages (5) to guide the seach by background
knowledge, that has to be updated concerning the
experiences the system made, (6) to be &leto learn
the user’s query behaviour, to dffer the user related
information due to his interests automaticaly.

To fulfil these tasks, we can adopt different
methods and techniques from the fields of artificial
intelligence, like knowledge representation, logic
programmming, inductive logic programmning, and
data-mining. We cdl a system consisting of the
basic parts that are information extraction, deduction
of new fads and the aility to use background
knowledge, a LogicRoba. We have implemented a
LogicRoba [1] that searches private alvertisements
of a web vendor (see Fig. 4). The user can set up
congtraints concerning the clumns to seach, the
description of the item you are looking for, its price
and the telephone number of the person selling it.
The LogicRoba is fast enough to perform a red
online seach (without cading), so the user always
gets offered the latest advertisements.



. LogicRobot
U/ Such und Find This Rebotis powered by ECLIPSE and T oken—Templates
| i verwendeten Token-Templates und der LogicRobot Server
[ HELP !
Es kinnen jetzt auch Umlaute benutzt werdent!
LogicRobot Kentakt Bemd Thomas
Gross/Kleinschreibung beachten: <)Ja @Nein
Ausgebevom ODienstag Freitag  @Dienstag und Freitag
O Rubrikens chlagwort—Suche:
@ Rubriken-Suche BO51: Hardware o] :
< Gesuche oder 9 Angebote
Konteztsuche: <) ja® nein (nochim Autbaw...)
Beschrebung | Notebook und Pentium und 64 MB [
Preis 3000]
Telefon: 0261] SUCHEN

Fig. 4: The LogicRoba"s query-form

Currently we do reseach on combining the fields
of logic programning, inductive logic programning
and data mining to enhance our existing roba with
the @&ove described capabilities of learning
extradion patterns and the user’s query behaviour
and finally to discover new knowledge from the
extraded fads and relations between web pages.

5 Conclusion

In this article, we reviewed some recent successes of
automated deduction from an applicatiion point of
view. We described in detail examples from several
different domains. Clealy, this overview is not
exhaustive. Nevertheless all examples corrobarated
the thesis, that (1) the choice of the respedive
deduction technology together with (2) a caeful
inspedion of the gplication domain alows us to
solve pradicd applicaions by automated deduction
systems. Let us briefly summarise the gplicaions
mentioned in this article.

On the one hand, we investigated applicaions of
clasdcal automated reasoning. Software verification
and analysing rule sets are two examples that are
well-suited for goal-oriented top-down reasoning.
But in order to beacome successul in these domains
by means of automated deduction technology, we
need additional mecdhanisms, namely simplifier rules
and condgtraints, respedively (see Sedions
3.4and 3.5). For problems in mathematics and
diagnosis, model-generating bottom-up approaches
seem to be more feasible (seeSedions 1 and 4.1 and
Sedion 3.3). Again, domain spedfic procedures are
important, namely equality reasoning and initia
interpretations for guiding the search, respedively.

On the other hand, we mnsidered applications of
nonmmonaonic reasoning. Planning problems can be
solved by a stable model procedure, model chedking
is performed succesfully by means of the well-
founded semantics. But in both cases, a spedal
encoding of the problem at hand is mandatory. For
this, the interested reader is referred to the dted
literature. In general, we believe that understanding
such principles and having a good intuition about
them will be the key to the success for automated

deduction techniques in domains where dedicaed
systems are predominant, such as the mentioned
roba socce and intelligent web retrieval (see
Sedions 4.2 and 4.3).
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