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There are recent successes of automated deduction
techniques in various application domains, such as
mathematics, classical and nonmonotonic logics,
diagnosis, planning and within software engineering.
We will briefly review some of them and observe
that these successes have been made only after a
careful analysis of the application domain as well as
the deduction system under consideration. The
purpose of this article is to argue that automated
deduction systems can be usefully applied in
practice, but it is necessary to have available a
variety of deduction methods, to understand their
properties and their computational power in order to
tailor them for the application under consideration.

 In the early days of automated deduction, research
concentrated on the development of general purpose
deduction systems. “Applications” were toy
examples, which did not scale up to realistically
sized problems. Nowadays, the theorem prover
community discovers applications again. The key to
success quite often is the specific knowledge of the
application domain which is used to optimise the
deduction systems, i.e. the knowledge is used to
guide the search for a proof or a model.

Indeed, there are some recent impressive results
which show that such deductive systems are even
able to handle realistic problems. Domains to be
mentioned here include mathematics (see Sections
1 and 4.1), planning [18] (see Section 3.1), model
checking (see Section 3.2), diagnosis (see
Section 3.3), software reuse [22] and verification
(see Section 3.4), or view deletion in databases [2].
Another realistically sized problem solved by the
Protein prover [5] was the analysis of banking fees
rule sets, which was successfully tackled with
constraints [44] (see Section 3.5).

1 A Success of Automated
Deduction
Recently, W. McCune proved with the automated
theorem prover EQP that each Robbins algebra
satisfies S. Winker’s second condition. This implied,
that each Robbins algebra is Boolean and settled a
problem which had been open for more than
60 years. This success even reached the New York
Times [36].

H. Robbins’ conjecture can be formulated very
briefly: In 1933, E.V. Huntington presented a basis

for Boolean algebras consisting of the associative
and commutative law for union and the equation:

Shortly thereafter, H. Robbins conjectured that
E.V. Huntington’s equation can be replaced with a
simpler one:

Many mathematicians—among them the famous
logician A. Tarski—have worked in order to decide
H. Robbins’ conjecture. The proof that solves the
problem was found on October 10, 1996, by the
theorem prover EQP developed at Argonne [33].
EQP is similar in many ways to the more well known
program Otter. The main differences are that EQP
has associative-commutative (AC) unification, is
restricted to equational logic, and offers
paramodulation strategies to handle equality. So,
also in this first example, domain specific techniques
are exploited.

W. McCune used the output of EQP to guide his
deduction system Otter in order to produce a proof.
Otter’s proof contained fairly complex terms which
were hard to understand or even to print in a
readable format. Proofs in mathematics are not a
value in their own right. Their main purpose is to
help humans to understand complex phenomena.
Therefore, several authors tried to find simpler
representations of this proof—for proof checking as
well as to gain deeper insights into the nature of
Robbins algebras.

Fig. 1: A part of the ILF output

A system called ILF, developed by I. Dahn within
the German focus program on Deduction, was able
to translate automatically the above depicted proof in
a way that mathematicians can easily read and check
(see Fig. 1). Ultimately, the term depth in the proof

x ∪ y ∪ x ∪ y = x

x ∪ y ∪ x ∪ y = x

Therefore

∀∀(x1,x2,x3,x4) x3 ∪∪ x1 ∪∪ x2 ∪∪ x4 ≠≠ x3 ∪∪ x4      (1)

Because of commutativity and by Robbins axiom
∀∀(x1,x2) (x1 →→ x2) ∩∩ (x2 ∪∪ x1) = x2.
Hence by commutativity

∀∀(x1,x2) (x2 ∪∪ x1) ∩∩ x1 →→ x2 = x2.      (2)

Because of commutativity and by Robbins axiom

∀∀(x1,x2) (x1 ∪∪ x2) ∩∩ x1 →→ x2 = x2.      (3)

 _____________     _____
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could be reduced from 14 to 4 [17]. Using ILF, it is
very simple to analyse a proof and to change its
presentation. The first presentations generated by
ILF reduced the complexity of formulae by
introducing abbreviations which are commonly used
for Boolean algebras. This facilit ated a plausibilit y
check of the proof. Then, automated proof
transformations helped to separate the mathematical
contents of that proof from the formal details. A
system which is also suited for this purpose is the
Omega system [10].

It is no question that this proof has been found by
means of a calculus which has nothing to do with the
way human mathematicians find or communicate
proofs.

What we would like to point out with the above
example is, that even if it is not the case that
reasoning is done human-like, one can aim at a
translation of machine-oriented into human-like
reasoning. In this way, the increased power of
automated reasoning systems is becoming a new tool
for the thinking human.

In [46]—also based on the experience with the
solution of H. Robbins’ problem—L. Wos
emphasises the different natures of human and
computer reasoning. He provides hints how to
combine both successfully to bring new kinds of
applications of automated deduction within reach.
This is similar to our thesis that will be exempli fied
in the rest of the text: Automated deduction can be
applied successfully in practical applications by
using domain-specific techniques.

2 Theorem Proving Techniques
To apply automated deduction to real-world
problems, a sound knowledge of the underlying
deductive techniques and their specifics is as
important as the knowledge of the application area
itself. We will concentrate here on two widespread
mainstreams of automated deduction with quite
impressive practical results in recent years: classical
first-order theorem proving, and nonmonotonic
reasoning with its importance for logic
programming, databases and other applications.
Even in this marked area, there are numerous
different methods with individual strengths for
certain tasks. We will sketch some of them along
with fundamental properties. Examples of useful
combinations and refinements of these approaches
that adapt deductive techniques to specific fields of
application will follow in Section 3.

2.1 Classical Reasoning
High-performance automated theorem provers
usually are based on refutations. As in the case of
Otter [32], saturation-based resolution calculi are
used to generate consequences until a contradiction
is found, whereas Setheo [25] or Protein [5] apply
variants of model elimination [30], a tableau-based,

goal-driven proof procedure. Saturating proof
procedures usually are proof-confluent, i.e. it is
never necessary to undo parts of the derivation
process, whereas model elimination procedures
employ some kind of backtracking based on iterative
deepening.

On the other hand, tableau-based procedures often
are much less space-consuming and thus handle
clause sets where resolution provers might run out of
memory. Furthermore, the goal-directed nature of
model elimination shows some similarity to logic
programming and, indeed, the restart model
elimination variant [4] enables a procedural reading
of disjunctive clauses, as in Prolog for Horn clauses.
It has been demonstrated that these approaches are
able to deal with interesting problems, and indeed
there is an increasing number of applications of these
high-performance automated theorem provers (see
Sections 1 and 3).

In contrast to the above mentioned systems which
are optimised for finding refutations, there is also
work on model-based automated reasoning. Here,
the idea is to find a proof by means of bottom-up
model generation. One of the first systems, which
shows that a very simple proof procedure based on
model generation is able to outperform (in some
cases) refutation-based provers, was SATCHMO
[31]. Its main drawback—the limitation to range-
restricted clause sets—has been overcome by the
hyper-tableau calculus [6].

Model generating calculi are convenient if one is
not interested in the unsatisfiabilit y of formulae, but
in satisfying interpretations which may be further
specialised. Questions of this type are tackled by
model-based reasoning in the areas of mathematics
[23], automated planning [28] or diagnosis (see
Section 3.3). Models may also serve as
counterexamples for formulae assumed to be
unsatisfiable, useful in domains like e.g. software
verification where it is not guaranteed beforehand
that given specifications are correct (see also
Section 4.1).

2.2 Nonmonotonic Reasoning
Originally, nonmonotonic reasoning was intended to
provide a fast but unsound approximation of
classical reasoning in the presence of incomplete
knowledge. But the complexity results of
nonmonotonic logics are located on the second level
of the polynomial hierarchy [26], so they are even
more complicated than the classical entailment
problem. Therefore subsystems of general
nonmonotonic logics on syntactically restricted
classes of formulae have been investigated, in
particular those that are based on logic programming
and extend the classical class of Horn programs:
either by allowing (1) default negation (normal
programs), or (2) disjunction (positive disjunctive
programs), or (3) both negation and disjunction
(general disjunctive programs).
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According to these different classes, various
semantics are possible. In Section 3.3 we will see
that minimal models are a good choice for diagnosis
tasks. In fact, these minimal models stem from
theoretical work in deductive databases [35]: the
semantics is called generalised closed world
assumption. Concerning default negation, there are
various other possibiliti es (see [12]). Most notably
the well -founded semantics WFS and the stable
model semantics Stable. WFS is consistent (model
always exists), permits goal-directed computation
and has attractive complexity (quadratic in the
number of atoms) and it can be computed eff iciently
using alternating fixpoints. Stable can become
inconsistent (programs may have no stable models)
and answering queries cannot be restricted to the
call -graph below that query.

While Stable is very closely related to default
logic, WFS can be seen as an approximation to the
intersection of all stable models: an atom that is false
in one stable model but true in another one is
undefined according to WFS. Let us mention two
very interesting systems for computing WFS and
Stable for non-disjunctive programs. They constitute
the current success stories of logic programming and
nonmonotonic reasoning. For the general disjunctive
first-order case, a calculus is described in [20].

Firstly, there is XSB, a full -fledged programming
system, which realizes WFS using tabling
(developed from D. Warren and his group [41]). It
works for full first-order programs, but, obviously,
termination can only be guaranteed in special cases.
Nevertheless XSB is terminating for many programs
where usual Prolog systems fall i nto an infinite loop.
Tabling operates on low level data-structures but a
declarative description has been given in [11].

Secondly, there is smodels, which works for range-
restricted function-free normal programs [37, 19]. It
is written in C++ and can handle realistic size
programs (tens of thousands of ground rules) with a
potentially large number of stable models.

3 Applications
Many AI critics say: If it works, it ain’ t AI. This
section will prove the opposite: There are several
real world problems successfully solved by
deduction-based systems. These applications owe
their success to the well founded theoretical
background and active research done on the field of
deduction, especially to calculi refinements
motivated by special problem domains. We will
shortly describe how these applications work and
which theoretical methods have been used to tackle
them.

3.1 Planning
Developing automated methods for generating and
reasoning about plans and schedules, has been part
of AI research from the very beginning. The need for

planning arises naturally when an agent is interested
in controlli ng the evolution of its environment.
Algorithmically, a planning problem has as input a
set of possible courses of actions, a predictive model
for the underlying dynamics, and a performance
measure for evaluating the courses of action. The
output or solution is one or more courses of action
that satisfy the specified requirements for
performance. A planning problem thus involves
deciding what actions to do, and when to do them.

In [28], a successful approach in automated
reasoning for planning has been reported. Until then,
it was considered folklore that planning required
specialised formalisms and algorithms which take
into account the special problems from this domain,
as e.g. the so called frame problem. It turned out that
propositional theorem provers are able to outperform
special purpose planning systems. Here, stochastic
“greedy” search techniques are important.

More recently, [18] shows how to encode planning
problems into normal logic programs in such a way,
that stable models of the program correspond to
valid plans of the original program. In addition,
running smodels on the transformed program and
thus computing the stable models, outperforms
dedicated planning algorithms for the original
problem. The approach has some advantages over
other approaches because the nonmonotonic
semantics allow to handle the frame problem
elegantly.

3.2 Model Checking
An important question, given a particular formal
specification of a system, is whether this
specification possesses certain properties. Often
these properties can be formally expressed by
temporal logic formulae. Model checking is a
particular method (verification technique) to
determine such properties of a specification and has
been used successfully for finding design errors in
real-li fe systems [14].

Interesting properties of practical value often
involve fairness constraints and can be naturally
computed by evaluating alternating fixpoints. Now
one of the most canonical temporal logics to express
alternating fixpoints is the modal µ-calculus [29].
Alternating fixpoints turn out to be the link to
nonmonotonic reasoning, in particular to the well -
founded semantics mentioned above, and lead to
another success story of AI. Namely it has been
recently shown [40] that a new algorithm, called
LFAP, can be elegantly implemented within XSB
thereby making use of XSB’s specifics. Standard
Prolog systems are not suitable for this because they
do not terminate and do not allow for negation. In
fact the pseudo-code is so clear and concise that a
complete proof of the correctness of LFAP can be
constructed easily. Even more important: the LFAP
under XSB clearly outperforms conventional model
checkers on canonical benchmarks [40].
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3.3 Diagnosis
Model-based diagnosis of technical systems provides
an interesting class of benchmark problems for two
reasons. Firstly, the examples which stem from
hardware design usually contain a large number of
clauses, which have to be handled eff iciently in order
to solve realistic problems. Secondly, the diagnosis
task involves by definition minimal model reasoning.
Hence techniques from nonmonotonic reasoning can
be applied (see Section 2.2).

Model-based diagnosis techniques were developed
by R. Reiter [43]. In this framework, a simulation
model of the technical device under consideration is
constructed and is used to predict its normal
behaviour. By comparing this prediction with the
actual, observed behaviour it is possible to derive a
diagnosis. This approach uses a logical description
of the device, called the system description (SD),
formalised by a set of first-order formulae. The
components of the device are given by a set COMP,
which come with an associated behavioural mode:
Ab(c) denotes that component c is faulty, while
¬Ab(c) means that c is behaving correctly.

For example, a digital circuit containing an OR-
gate component or1 could be specified within SD by
the formula

¬Ab(or1) → (hi(or1,o) ↔ (hi(or1,i1) ∨ hi(or1,i2))),

where o, i1 and i2 stand for the output and the two
inputs of the OR-gate, respectively. Besides SD ,
there is a set OBS of observations. These are
formulae which describe the actual, observed
behaviour of the system (e.g. that certain inputs and
outputs of the the circuit are high). A diagnosis task
now comes up if the observation contradicts the
system description, i.e. if SD ∪ OBS is inconsistent.
Now, a diagnosis of (SD, COMP, OBS) is a set
∆ ⊆ COMP, such that SD ∪ OBS ∪ { Ab(c) | c ∈ ∆}
∪ { ¬Ab(c) | c ∈ COMP - ∆} is consistent. ∆ is
called a minimal diagnosis, iff it is the minimal set
(wrt. ⊆) with this property. There are other
interesting ways to define the diagnosis task, e.g.
abductive diagnosis [15].

The set of all minimal diagnoses can be large for
complex technical devices. Therefore, stronger
criteria than minimality are often used to
discriminate further among the minimal diagnoses.
These criteria are usually based on the probabilit y or
cardinality of diagnoses. In the remainder of this
section, however, we will use restrictions on the
cardinality of diagnoses. We say that a diagnosis
satisfies the n-fault assumption iff |∆| ≤ n . In
particular, one-fault diagnoses (n=1) are interesting,
because in some scenarios it is plausible that only
one component breaks at a time. In [3], it is shown
how such diagnosis tasks can be eff iciently solved
with a general first-order deduction system: the
model-generating NIHIL prover, which is based on
the hyper-tableau calculus (see Section 2.1). It had to
be slightly modified for the computation of minimal

models, as demanded by the diagnosis task. With
this modification alone, however, it turned out that
realistically sized examples from a standard
benchmark suite [27] could not be solved within
acceptable time.

The key to the solution was to take advantage of
additional domain dependent pruning techniques.
The idea is to use an initial interpretation I0 , which
is a model of the correctly functioning device
(which, of course, contradicts with the observation
OBS). It can be computed eff iciently by e.g.
simulation devices. Now, I0 can be used in a
compilation step to transform the given clause sets
for the diagnosis task in such a way that the
computation of diagnosis is guided by the deviations
of OBS from I0 . This can have a huge pruning effect,
because those parts of the system whose observed
behaviour is in accordance with I0 never need to be
considered in the computation. To sum up, with the
combination of all the described techniques from the
automated deduction and the diagnosis worlds, the
mentioned benchmark examples could be solved by
our standard prover; it performed competitive
(within one order of magnitude) with dedicated
diagnosis systems.

3.4 Software Verification
Proof obligations arising directly in real-world
software verification problems are far out of reach of
automated deduction systems. Consequently, this is
the domain of interactive systems, such as KIV [42]
or 3TAP [9]. KIV includes an incomplete deduction
system which is called on user request for selected
subproblems. According to the developers of KIV, it
would be very advantageous to have a more
powerful (i.e. “more complete” but still fast enough)
automated deduction system instead.

Coupling an automated deduction system to KIV is
rather different from “standard” deductive tasks like
solving benchmark problems. In the combination
with KIV, there is a tough time limit for the proving
process. Consequently, the theorems to be proven
may not be too hard (and in fact, typically they are
not). On the other side, raw proof time is not the
ultimate measure. More important is the abilit y to
relieve the KIV user from interaction steps. In a
typical case study, 45 theorems could be proven by
KIV using the built -in prover after guidance with 52
user interactions.

The first experiments we carried out with Protein
and examples extracted from the KIV system did not
show optimal performance. The same holds for other
provers (Otter, Setheo) which were tried by the KIV
developers. One source for improving the situation
comes from so-called simplifi er rules: these are
formulae, that, by a special syntax, contain
information how to use them, namely as
(conditional) rewrite rules from left to right. For
example, one useful application of a simpli fier rule is
to express a definition li ke in X ≤ Y ↔ (X < Y ∨ X =
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Y). By this rule, all occurrences of ≤-literals can be
eliminated.

Now, the important point is that the KIV system
readily includes such simpli fier rules and thus need
not be artificially discovered. It is obvious that an
automated prover should deal with simpli fier rules
properly, i.e. as conditional rewrite rules, but not as
ordinary clauses. Hence we extended the model
elimination calculus and the Protein prover by a
general mechanism to incorporate such simpli fier
rules adequately. A detailed description of the whole
approach can be found in [7]. In brief, we first
employ simpli fication as a preprocessing step on the
given input specification. This set is passed to the
prover then. The prover itself uses simpli fier rules
for the proof search, too. Here, simpli fier rules are
applied not to clauses, but to the current proof
object, i.e. the model elimination tree under
construction.

Fig. 2: Verification and AD – KIV

The various possibiliti es of incorporating
simpli fication into our model elimination framework
suggest an experimental evaluation. As mentioned,
we extended our Protein prover, and evaluated
various strategies for simpli fication using realistic
problems from the KIV domain. In sum, we
conclude that simpli fication has a lot of potential to
help here. Interestingly, the most complete setting
was also the most successful one. Protein with
simpli fication scored best wrt. the number of
problems solved within the time limit of one minute,
followed by Setheo, Otter and Protein without
simpli fication. Using Protein with simpli fication (see
Fig.2), the KIV user can be relieved from 23 of 35
interactions to prove the 45 theorems in the
mentioned case study!

3.5 Validation of Banking Fees
The practical applications described so far have one
thing in common, they solve problems directly
related to computer science (software verification,
model checking) or technical systems (diagnosis).
The following application description is out of the
scope of computer science, it is about trading stocks
and bonds. In detail , a Swiss credit institute uses a
set of natural language rules to calculate the fees for
buying and selli ng stocks and shares for their
customers. This rule set is very large and it is nearly

not possible to check manually if the rules are
correct.

Motivated by this real world problem, the
validation of rules for the computation of banking
fees, we set up a theoretical framework consisting of
constraint logic programming and first-order
theorem proving techniques and developed a
prototypical application [44]. Once again, domain
specific knowledge (here: constraints) are essential
for the success of the application. The motivating
problem to be solved was to decide whether the
calculation rules used by the Swiss credit institute
are deterministic and total, i.e., is there at most one
fee that can be calculated for a given transaction
(determinism), and is it always possible to calculate
one fee for any arbitrary transaction (totality).
Although these questions are undecidable in general,
the restricted form of the investigated rule sets makes
them decidable and even tractable in practise.

To tackle this challenge we combined logic
programming and constraint solving in an
straightforward manner, by making use of the
constraint model elimination (CME) calculus [8].
Because of the fact that model elimination [30] is a
linear and goal-directed calculus, that is close to the
logic programming language Prolog, it allows us to
realize this calculus on top of existing Prolog
systems by using the Prolog technology theorem
prover (PTTP) technique proposed by M. Stickel,
incorporated into the Protein system.

In our approach to decide the determinism of the
rule set, given in first-order predicate logic, we
slightly modified these PTTP technique to compile
the rule set into a constraint logic program. There are
sub-compilation steps involved in the whole
transformation, like the transformation of full first-
order formulae into a Prolog program and most
important the annotation of domain specific
constraints. The result of this automated
transformation is a constraint logic program ready to
be executed by a Prolog system.

So we actually used our PTTP-based deduction
system Protein using the CME calculus for the final
proof task to show that there is no transaction with
two different calculated fees. Because of Protein’s
capabilit y to calculate answers, a simple query to the
constraint logic program of the form ← t(X,Fee1),
t(X,Fee2), Fee1 ≠ Fee2 calculates all transactions with
more than one possible fee and therefore proves that
the investigated rule set is not deterministic. By
special visualisation tools to display the model
elimination proof tree we are able to pick up the
nondeterministic rules as explanation and even more
we can generate according reports using the ILF
system. The success of this application is due to the
combination of constraint logic programming and
first-order reasoning, based on the model elimination
calculus. Each approach alone is not powerful
enough to find the solution in reasonable time. The

••  Built-in simplification
incomplete ⇒⇒ many user interactions

••  PROTEIN + Simplification
complete ⇒⇒ few user interactions

   Axioms
   Lemmata
   Theorems
   Simplification rules
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procedure proposed here can easily be generalised to
analysing arbitrary rule sets.

4 Future Perspectives
Surely, there are many more interesting areas where
deductive techniques can be applied to, if these
techniques are geared to specific requirements of the
respective application. Two challenging examples
will be presented: the RoboCup robot soccer
simulation and web information systems (see
Sections 4.2 and 4.3).

Furthermore, future deductive systems should take
into account that they might be used by persons who
are not experts of automated deduction. Therefore,
the systems themselves should provide supporting
information for the user, when a task could not be
completed automatically. This is discussed in the
next Section 4.1.

4.1 Debugging of Specifications
In automated deduction, the final goal is to achieve a
fully automatic proof system: given a logical
specification of a problem, take a high-performance
deduction system, and let it find a solution.
Unfortunately, this does not work in practice, not
only because deduction systems lack finding the
proof within reasonable time, but also because the
specification is error-prone. For the latter, in the
literature methods are proposed for detecting and
verifying errors in logic programs. But, in order to
enable such analyses, usually termination of
computation is presupposed.

Since termination is not guaranteed in first-order
deduction, it should be fruitful to investigate
techniques which are also applicable in the case of
non-termination, e.g. by employing incremental,
model-based techniques as provided by the hyper-
tableau calculus [6]. Models are high-level
descriptions of what should hold in a given
specification and therefore enable a problem-
oriented investigation wrt. critical properties like
correctness, completeness, and suff iciency of
specifications. By virtue of an incremental model
construction procedure, this works even in cases
where deduction systems usually do not terminate
(by success or failure).

In general, the scenario can be pictured as follows
(see Fig. 3): given a problem in a certain domain (1),
one wants to prove some theorem in it, say in
elementary algebra. Thus, at first, a formal
specification in logics has to be given of the problem
space and the theorem at hand (3), maybe using
some theory libraries (2). By means of deductive
tools then, it is tried to find a proof for the given
theorem (4). Now, there are three possibiliti es: a
proof of the theorem is found (6), or it is detected
that a proof cannot be found automatically (5), or the
theorem prover does not terminate with any answer
and loops in (4).

In the first case, the proof might be formatted and
output in natural language to get a readable solution
to the stated problem, as done by the systems ILF
[16] or Omega [10]. In the latter two cases,
information about what went wrong in the deduction
process is even more important. By inspection of
partial models (8) that can be constructed for the
given axiomatisation, errors can be detected as well
as other insuff iciencies of the specification. With this
information, a corrected and tuned axiomatisation is
formalized (3), and another (now hopefully
successful) deduction run started (4). See also [24].

Fig. 3: Deduction li fe-cycle

One main problem of this approach is the
potentially large size of models to be computed and
inspected. Therefore, techniques are needed to
restrict the model construction to relevant subparts.
One could make use of modules or libraries during
the specification phase, which are already tested or
even proved to be correct. For example, a ring
contains an additive group and a multiplicative semi-
group. Therefore, one may use libraries specifying
these parts and thereby avoid repeated inspection of
certified specification modules, as suggested in [10].

Another case study in [24] describes the model-
guided tuning of spatial reasoning axioms [21] with
respect to a specific theorem proving task until an
automated proof is eventually possible. Further
benefit for debugging by models can be gained by
checking specification parts against known model
instances automatically. Finally, an important point
in this view is the visualisation of partially computed
interpretations. Thus, this work can be integrated
into interactive proof frameworks with natural
language output, such as ILF [16] or Omega [10].

It should be stressed, that the problem of incorrect
or insuff icient axiomatisations may occur in virtually
every application area also mentioned in Section 3,
where formal specifications have to be developed, in
particular, mathematics [24], software verification
[42], diagnosis [43] or rule set validation [44].
Automated deduction can provide here engineering
support by declarative, model-based debugging.
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4.2 Robot Soccer
Recently, there is growing interest in computer
soccer. The RoboCup initiative [38] is an attempt to
foster AI research by providing a standard problem
where a wide range of technologies can be integrated
and examined. In the last few years, there were
several competitions in different leagues with real
robots, and there is also a simulation league. At the
University of Koblenz, there is ongoing research on
designing clients for the RoboCup simulation league
in Prolog and C++. We feel that logic and deduction
are appropriate remedies for this task. A single
player is part of a team and has to deduce
information about the situation. For example, players
have to recognise when passing the ball i s possible
or a player is off-side.

But, almost naturally, tasks to be solved by a team
of autonomous agents are many-sided and complex.
To achieve a goal, a single agent has to use a set of
complementary subtasks. Some of these subtasks
consist of solving numerical equations to enable a
player to handle tasks like dribbling or actually
passing the ball . On the other hand, we have to
derive new information from a given set of facts. So
we were led to the idea to combine the advantages of
procedural and logic programming and decided for a
hybrid system. As a result, we implemented the
RoboLog Prolog extension. This extension is an
enhanced RoboCup soccer server interface for
Prolog. Time critical and computational expensive
tasks are handled within the RoboLog module, as
well as the exchange of data. The developer of a
soccer client accesses the calculated data via Prolog
predicates. The module provides the atomic soccer
server commands and some more complex actions.
The Prolog engine handles the player’s reasoning
and planning, i.e. to a certain degree it models a real
soccer player’s reasoning. However, it is diff icult to
say, in how far cognitive actions that are done on a
subconscious level by humans, e.g. calculating the
amount of power needed to pass (or stop) the ball ,
can be expressed by logical rules.

Currently, we are investigating the problem of
modelling certain situations as patterns by means of
logic programs and our Protein system (see [39]).
For example, a situation where passing the ball i s
possible can be described as follows: one player has
the ball , and another player can be reached and there
is no player in between. We modelled these
situations on top of the logical relations left, right
and between (see also [21]). A situation pattern is
realized as a logical description of spatial—and, to a
degree—temporal relations. RoboLog and Prolog
predicates will be used to define these relations. To
ensure robustness of our approach, further methods
can be used to aid the decision process, if no match
is close enough. Especially, spatial reasoning
techniques will be helpful.

4.3 Intelligent Web Information Systems
Overwhelmed by the results the standard WWW
search engines produce, it is time to develop more
intelli gent and autonomous search and information
gathering systems for the web. We need systems that
will free the user from the time exhausting work of
following thousands of document references, reading
each of it in order to extract relevant information
manually. Furthermore these systems should provide
a set of analytic tools for the comparison of web
contents and the discovery of knowledge and
relations from the information retrieved.

So we focused our work on techniques for the
information extraction from web pages and in
particular how to develop a common extraction
language in combination with logic programs [45].
The result was a domain independent extraction
language. One basic feature of this language besides
the concepts like recursion, is its abilit y to interact
with logic programs during the extraction process
(code calls). Therefore it allows us in conjunction
with logic programs to set up relations between web
pages, to reason about the contents of pages, to make
comparisons on extracted facts and to deduce new
facts. The most important point is, that we have a
common theoretical well studied layer to work upon:
deduction and more specific logic programs. Hence
we are able to control the information extraction
process with the assistance of deductive reasoning.

Our future plan is to develop methods and
information systems that ease the search for facts in
the WWW and its analysis. These systems should
have the following capabiliti es: (1) to reason and
decide where to search for good information source,
(2) to deduce new information from the one they
have found on the web, (3) to learn how to extract
relevant information from new information sources
(web pages), (4) to discover unknown relationships
between the extracted information or between web-
pages (5) to guide the search by background
knowledge, that has to be updated concerning the
experiences the system made, (6) to be able to learn
the user’s query behaviour, to offer the user related
information due to his interests automatically.

To fulfil these tasks, we can adopt different
methods and techniques from the fields of artificial
intell igence, li ke knowledge representation, logic
programming, inductive logic programming, and
data-mining. We call a system consisting of the
basic parts that are information extraction, deduction
of new facts and the abilit y to use background
knowledge, a LogicRobot. We have implemented a
LogicRobot [1] that searches private advertisements
of a web vendor (see Fig. 4). The user can set up
constraints concerning the columns to search, the
description of the item you are looking for, its price
and the telephone number of the person selling it.
The LogicRobot is fast enough to perform a real
online search (without caching), so the user always
gets offered the latest advertisements.
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Fig. 4: The LogicRobot´s query-form

Currently we do research on combining the fields
of logic programming, inductive logic programming
and data mining to enhance our existing robot with
the above described capabiliti es of learning
extraction patterns and the user’s query behaviour
and finally to discover new knowledge from the
extracted facts and relations between web pages.

5 Conclusion
In this article, we reviewed some recent successes of
automated deduction from an application point of
view. We described in detail examples from several
different domains. Clearly, this overview is not
exhaustive. Nevertheless, all examples corroborated
the thesis, that (1) the choice of the respective
deduction technology together with (2) a careful
inspection of the application domain allows us to
solve practical applications by automated deduction
systems. Let us briefly summarise the applications
mentioned in this article.

On the one hand, we investigated applications of
classical automated reasoning. Software verification
and analysing rule sets are two examples that are
well -suited for goal-oriented top-down reasoning.
But in order to become successful in these domains
by means of automated deduction technology, we
need additional mechanisms, namely simpli fier rules
and constraints, respectively (see Sections
3.4 and 3.5). For problems in mathematics and
diagnosis, model-generating bottom-up approaches
seem to be more feasible (see Sections 1 and 4.1 and
Section 3.3). Again, domain specific procedures are
important, namely equality reasoning and initial
interpretations for guiding the search, respectively.

On the other hand, we considered applications of
nonmonotonic reasoning. Planning problems can be
solved by a stable model procedure, model checking
is performed successfully by means of the well -
founded semantics. But in both cases, a special
encoding of the problem at hand is mandatory. For
this, the interested reader is referred to the cited
literature. In general, we believe that understanding
such principles and having a good intuition about
them will be the key to the success for automated

deduction techniques in domains where dedicated
systems are predominant, such as the mentioned
robot soccer and intelli gent web retrieval (see
Sections 4.2 and 4.3).
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