
Improving Answer Set Based Planning
by Bidirectional Search

Peter Baumgartner
Max-Planck-Institut f̈ur Informatik

Stuhlsatzenhausweg 85
D-66123 Saarbr̈ucken

Germany
Email: baumgart@mpi-sb.mpg.de

Anupam Mediratta ∗

IBM India Research Lab
Block 1, Indian Institute of Technology

Hauz khas, Delhi 110016
India

Email: anupamme@in.ibm.com

Abstract

Solving AI planning problems by transformation into (normal) logic programs and computing an-
swer sets (stable models) has gained considerable interestover the last years. We investigate in this
context a classical AI search technique, bidirectional search, where search is performed both from
the initial facts towards the goal and vice versa. Our contribution is to show how bidirectional search
can be realized in the logic programming/answer set paradigm to planning. This seems not having
been investigated so far. We report on practical experiments on planning problems from an AIPS
competition and show how our approach helps speeding up the planning process. We perceive our
contribution mainly as atechniquethat is compatible with and complementary to existing extensions
and improvements, rather than as a concrete planning system.

Keywords:

Planning and Scheduling, Search Techniques, Theorem Proving

∗This work was done when the author was a student of IIT Guwahati and visited University of Koblenz for his internship.



2



Improving Answer Set Based Planning
by Bidirectional Search

Abstract

Solving AI planning problems by transformation into (normal) logic programs and computing an-
swer sets (stable models) has gained considerable interestover the last years. We investigate in this
context a classical AI search technique, bidirectional search, where search is performed both from
the initial facts towards the goal and vice versa. Our contribution is to show how bidirectional search
can be realized in the logic programming/answer set paradigm to planning. This seems not having
been investigated so far. We report on practical experiments on planning problems from an AIPS
competition and show how our approach helps speeding up the planning process. We perceive our
contribution mainly as atechniquethat is compatible with and complementary to existing extensions
and improvements, rather than as a concrete planning system.

Keywords:

Planning and Scheduling, Search Techniques, Theorem Proving

1 Introduction

Planning is among the most prominent search space exploration problems in AI. The search space of a problem
instance is determined by an initial state, a (possibly partially specified) goal state, and operators that transform
one state to another. Solving a planning problem means to determine a sequence of operator applications that
take the initial state to one that contains the goal state. The practical side of solving planning problems is to cope
with the (usually) huge search space. In order to make a planning system fast, techniques like decomposing a
problem into independent subproblems and heuristics to guide the search are needed. The heuristics used in
leading systems like FF[Hoffmann and Nebel, 2001] even narrow down the search to such a high degree that
completeness may be lost1, and also there is no guarantee that ashortestplan will be computed. Nethertheless,
systems like FF show impressive overall performance.

Our approach is on a different line: it is complete and also finds a shortest plan. The price to be paid is that
it cannot solve many difficult planning problems solved by the fastest systems. However, our goal in this
paper is not to report on a competitive planner. Merely we intend to contribute newtechniquesfor search
space pruning, which may be used in addition to existing techniques. We investigate our technique within the
paradigm of “planning as answer set programming”. This paradigm has gained considerably renewed interest
over the last years[Eiter et al., 2004; 2003; Brogiet al., 2003; Niemel̈a, 1999; Lifschitz, 2002; Dimopolous
et al., 1997]. A planning problem then is translated to a normal logic program, and the stable models of the
logic program encode the solutions (the plans). It was not only demonstrated that this way efficient planning

1FF includes a complete backup strategy.

1



systems can be built. In addition, it is easy to incorporate knowledge about the domain under consideration
or heuristical knowledge by just adding appropriate rules to the logic program. These approaches often gain
their speed through parallelizing sequences of operator applications, which also leads to non-minimal plans
in general. With our contribution we suggest new,complementaryimprovements to the “planning as logic
programming”. Although we study these in isolation, there is no reason not to expect they could be combined
with the known techniques and heuristics.

1.1 Idea of Our Contribution

In the main part of this paper we will describe a novel translation scheme from STRIPS-like planning problems
to logic programs. Before proceeding to that part, we will explain the main ideas on a rather abstract level; they
are illustrated in Figure 1.

Sinit

Sgoal
Steps

0

nmax

ninter

0
log(States)

Backward plan

Forward plan

backward plan
Pruned

EFS search space

RFS search space

RFS and EBS search space

Savedsearch space

Figure 1: Dividing the search space.

The programs resulting from the translation encode bidirectional search space exploration: forward search (or
“exact forward search”, EFS, as called in Figure 1) from a given initial situationSinit towards a given goal
situationSgoal is combined with backward search (or “exact backward search”, EBS, in Figure 1), fromSgoal

towardsSinit .2 The motivation for bidirectional search can be explained asfollows: assume as given a planning
problem that can be solved withnmax operator applications to get fromSinit to Sgoal. Suppose further, for
simplicity, that in every situationmdifferent operator applications are possible. The search space thus consists
of mnmax situations when performing forward search alone (or backward search alone). Now letninter be some
“intermediate timepoint” 0≤ ninter ≤ nmax. It shall be used to separate forward from backward search inthe
following way: in a first phase, forward search is performed to compute and collectall situations reachable from
Sinit in ninter steps. In the second phase then backward search is performed, which starts fromSgoal and is limited
to performnmax−ninter steps. The search stops as soon as one situation is derived that has been computed as a

2Instead ofa goal situation, planning problems often are underspecified and specifya setof goal situations instead.
While our approach works in this more general setting, we ignore it in this section because it is not essential to describe the
main idea.

2



result of the forward search before. It is easy to see that thesearch space now consists ofmninter +mnmax−ninter

situations. This expression is minimal whenninter = nmax
2 (to be rounded ifnmax is an odd number). Taking

ninter = nmax
2 thus yields a search space size 2·m

nmax
2 , which, in general, is much smaller thanmnmax. This

advantage is contrasted by the obvious drawback of possiblyprohibitive memory requirements. However, as
our experiments show, this is not always the case, and sometimes, depending from the domain, even values
close tonmax can be used. In the past, there has been some work done in bidirectional planning. For instance,
Prodigy[Velosoet al., 1995] has been one of the successful bidirectional planner but hada disadvantage of
incompleteness, which is not present in our planner.

Bidirectional search supports another improvement on top of it, which is also realized in our approach. It works
by inserting another phase we call “relaxed forward search”, RFS, between the EFS and EBS phases. It derives
certain information from the situations derived by EFS so that EBS can take advantage of for search space
pruning. The “relaxed” forward search phase computes anapproximationfrom above of all possible situations
reachable withinnmax− ninter steps from the situations derived by EFS. As said, the purpose is to prune the
search space of the subsequent EBS phase. Because, during backward search, any (partial) plan derived then
can be ignored for further extension if it leads to a situation outsideof this approximation. In order to take
advantage of this idea, the cost of computing the approximation should be much lower than the cost of exact
forward search from timepointninter to nmax. Our approach follows the one realized in the FF system[Hoffmann
and Nebel, 2001] by ignoring the delete list of the operators: on moving from one state to the next, fluents get
added, but never deleted.3 Computing such approximations can be done efficiently, in quadratic time.

To our knowledge, the idea of separating the search space andthereby taking advantage of an approximation as
described above has not been considered before in planning.In particular we believe it is a novel contribution
to the answer set approach to planning.

2 Translating Strips Planning Problems

We work in a basic Strips planning setting. In the following,we only recast usual definitions in a way suitable to
describe our approach. We assume disjoint signatures offluent symbols, operator names, objectsandvariables.
Each fluent symbol is equipped with a fixed arity. Afluent is an expression of the formf (s1, . . . ,sn), where f
is an n-ary fluent symbol and eachsi (i = 1, . . . ,n) is either an object or a variable. When eachsi is an object,
the fluent is called aground fluent. Unless stated differently, in the sequel the letterf denotes a fluent symbol,
N denotes an operator name,o denotes an object andx,y,z denote variables. Indices are used as needed.

A planning problemconsists of the following information: (1)initial situation: a set of ground fluentsSinit – (2)
goal situation:a set of ground fluentsSgoal – (3)maximum time stepsrequired for achieving the goal situation,
nmax: a natural number – (4)intermediate time point ninter: a natural number – (5) A finite set of objectsO
containing at least the objects mentioned in the operators below – (6) A finite set ofoperators, each consisting
of the following:

• An operator nameN and a list of variablesx1, . . . ,xn, for somen≥ 0 (standing for the objects the operator

3Notice that “situations” may come up that are not derivable otherwise. Inthe blocksworld domain, for instance, several
blocks may then be stapled on top of asingleblock. The only requirement to preserve completeness is that every derivable
situation is contained in some such “situation”.

3



works on). We assume this list of variables comprises at least the variables mentioned in the following:

• Preconditions: a set of fluentsPre (the fluents that have to be true in order to apply the operator).

• Add list: a set of fluentsAdd (the fluents which become true on the application of the operator).

• Delete list: a set of fluentsDel (the fluents which become false on the application of the operator).

Each operatorOp thus is a tuple of the form〈N(x1, . . . ,xn),Pre,Add,Del〉.

We state only informally that solving a planning problems means to determine a sequence of operator instances
that take the initial situation to any situation satisfyingwhat is specified by the goal situation.

Example 2.1 (Blocksworld Problem) LetSinit = {On(b, table),On(a,b),Clear(a)}, Sgoal= {On(b,a)}, nmax=
2, ninter = 1, O= {a,b, table} and the single operator Move(x,y,z) be as follows4 (“move blockx from y on top
of z”): Pre: On(x,y),Clear(x),Clear(z) Add: On(x,z),Clear(y) Del: Clear(z),On(x,y)

As stated above, a planning problem contains the two parametersnmax andninter. The parameternmax limits
the search for plans consisting of at mostnmax steps, and the parameterninter acts as timepoint that separates
EFS from RFS and EBS. Notice that bothninter andnmax are parameters to the translation scheme below. A
complete plan search procedure would iteratenmax over the natural numbers in a, say, incremental way, chose
some value forninter on each iteration, apply the transformation and execute theresult until success. Such a
scheme is easy to realize and is not described in the sequel. However, not so trivial is the choice ofninter for
a given value ofnmax: while nmax may be chosen arbitrarily in principle, a “good” choice may heavily impact
performance (see Section 3 below).

Next, we are going to describe the announced translation of planning problems. They translate into a single
logic program, which, when executed in a bottom-up way, realizes the EFS, RFS and EBS phases in this order.
Of course, certain information has to be passed from EFS to RFS, and from RFS to EBS to realize the idea
explained in Section 1.1. To this end, additional rules comeinto play.

2.1 Exact Forward Search

Initialization. For each fluentf (o1, . . . ,on) ∈ Sinit include a factf 0(o1, . . . ,on, init). They express that the
initial situation, written as a collection of facts, holds at timepoint 0. Notice the additional last argument, which,
in general, encodes a partial plan up to the timepoint mentioned in the index to the fluent. In the example we
thus get the facts On0(b, table, init), On 0(a,b, init) and Clear0(a, init).

Operator application. An operator can be applied if all the fluents in its preconditions are satisfied and
a specific additional condition is satisfied (to be explainedbelow). More precisely, consider an operator
〈N,(x1, . . . ,xn),Pre,Add,Del〉, wherePre consists ofm fluents written asprej(sj

1, . . . ,s
j
k j

), for j = 1, . . . ,m
and somek j ≥ 0. Each operator of a given planning problem is transformed to the following set of rules (left

4Actually, this formalization is not quite correct, as it does not reflect that Clear(table) should hold in every situation.
In our experiments we therefore use aslightly different, correct formulation. For space reasons we neglect this and some
other details that are irrelevant for our results.

4



side), for everyt = 0, . . . ,ninter−1, wheret ′ = t +1. The right side shows the transformation for the example
(the time parameterst andt ′ are left uninstantiated; arguments to predicates with capital letters are variables).

N t(x1, . . . ,xn,Plan) ←
pre1 t(s1

1, . . . ,s
1
k1

,Plan), . . . ,
prem t(sm

1 , . . . ,sm
km

,Plan).

Move t(X,Y,Z,Plan) ←
On t(X,Y,Plan),
Clear t(X,Plan), Clear t(Z,Plan).

Successor State Axioms. Every member of the add list of an operator becomes true when the operator
is applied. Let〈N,(x1, . . . ,xn),Pre,Add,Del〉 be an operator as above, and assumeAdd consist ofm fluents
written asaddj(sj

1, . . . ,s
j
k j

), for j = 1, . . . ,m and somek j ≥ 0. Then,Add is transformed into the following set

of rules (left side), for everyt = 0, . . . ,ninter−1 and everyj = 1, . . . ,m, wheret ′ = t +1. The right side shows
the transformation for the On fluent in the add list of the Moveoperator (the transformation of the Clear fluent
is omitted). As above, this transformation is to be done for every operator in the given planning problem.

addj t ′(sj
1, . . . ,s

j
k j

,N(x1, . . . ,xn,Plan)) ←

N t(x1, . . . ,xn,Plan).

On t ′(X,Z,Move(X,Y,Z,Plan)) ←
Move t(X,Y,Z,Plan).

Frame Axioms. The problem of formalizing frame axioms has a long traditionin the planning literature. In
the context of model-based planning, different solutions have been suggested. The main issue is at every time
point to retain the truth value of those fluents that are not present in neither the add list nor delete list of the
operator applied at this time point. If a fluent is in the add list of the operator5 then it must become true after
the operator is applied. Because a state is represented as the set of fluents being “true” in it (and those being
“false” are absent), a fluent in the operator’s add list is just inserted into the representation of the successor
state, as prescribed by the successor state axioms above. But if a fluent is not there, rules for moving fluents
from a state to a successor state are needed. The rules are determined according to two distinguished cases: for
every pair of a fluent and an operator, the fluent lies in the delete list of this fluent – or it does not.

To capture the first case supposef (x′1, . . . ,x
′
k) is in the delete list of an operator namedN, for some fluent symbol

f and variablesx′1, . . . ,x
′
k. Then, the following rules are emitted (left side), for every t = 0, . . . ,ninter−1, where

t ′ = t +1 andy1, . . . ,yk are fresh variables. As above, the right side shows an example.

f t ′(y1, . . . ,yk,N(x1, . . . ,xn,Plan)) ←
N t(x1, . . . ,xn,Plan),
f t(y1, . . . ,yk,Plan),
not equal([x′1, . . . ,x

′
k], [y1, . . . ,yk]).

On t ′(X1,Y1,Move(X,Y,Z,Plan) ←
Move t(X,Y,Z,Plan),
On t(X1,Y1,Plan),
not equal([X1,Y1], [X,Y]).

Recall the requirement that the list of variablesx1, . . . ,xn in an operator description must include all variables
mentioned, in particular, in the fluents in its delete lists.Therefore, each variablex′1, . . . ,x

′
k is equal to one of

x1, . . . ,xn. The informal meaning of the rule now can be explained as follows: suppose that the rule body is
satisfied. The variablesx1, . . . ,xn are instantiated with concrete objects then, and the corresponding instance of
the subgoalN t(x1, . . . ,xn,Plan) means that the operatorN is to be applied to those objects. Becausey1, . . . ,yk

are fresh variables, the subgoalf t(y1, . . . ,yk,Plan) applies to every fluent of this form holding at the current

5To be correct, it is an operatorinstancebut not an operator (definition). In the sequel, we will often simply speakof an
“operator” when an operator instance is meant; this should not give riseto confusion.

5



state. Now, if an instance off t(y1, . . . ,yk,Plan) is such that the equality as expressed in the last subgoal does
not hold, i.e. the subgoal itself is satisfied, then this instance is not in the instantiated delete list of the operator6.
Therefore, it must be retained in the successor state, as expressed by the rule head. Conversely, if the equality
mentioned does hold, then the fluent instance is in the instantiated delete list, and therefore the fluent instance
is not retained in the successor state.

To capture the second case, suppose ak-ary fluent symbolf such that the delete list of an operator namedN
does not contain a fluent with the symbolf . That the truth value of such fluents is preserved under application
of N is expressed by the following rule, wheret ′ = t +1 andy1, . . . ,yk are fresh variables.

f t ′(y1, . . . ,yk,N(x1, . . . ,xn,Plan)) ← N t(x1, . . . ,xn,Plan), f t(y1, . . . ,yk,Plan).

Notice this does transformation does not apply in the example problem because the delete list of the operator
Move mentions all fluents, On and Clear. These transformations are to be applied for any pair of operator
and fluent symbol in the given planning problem. We would liketo emphasize that thanks to having default
negation at disposal in our language, the representation ofthe frame axioms is very compact. Notice thatall
states reachable innmax steps, together with all plans leading to them are computed.7 It is therefore natural to
expect memory problems asnmax grows. Recall, however, that forward planning is not employed to search a
plan withnmax steps, but only to compute plans withninter steps, andninter may be chosen much smaller.

2.2 Rough Forward Search

As explained in Section 1.1, the RFS phase is a kind of forwardplanning, however where the delete list of the
operators are ignored. EFS starts from the timepointninter. Technically, this translates into rules of the following
form (for all n-ary fluent symbolsf ): Rough f ninter(x1, . . . ,xn)← f ninter(x1, . . . ,xn). In the example, we thus
get for instance (ifninter = 1) the rule RoughOn 1(X,Y) ← On 1(X,Y). (This example indicates another
notational convention, namely, that the “fluents” computedby RFS are prefixed by “Rough”.) In comparison
to the EFS transformation in Section 2.1, the frame axioms are rather trivial now. They now just express that
all fluents are preserved. As a further simplification, plansneed not be remembered, because only thesituation
is needed for the purpose of pruning, not the plan leading to it. Because the transformation for RFS is similar
as for EFS, we do not include it here for space reasons.

2.3 Exact Backward Search

Initialization. For each fluentf (o1, . . . ,on)∈ Sgoal include a fact Goalf nmax(o1, . . . ,on). They just express
the goal specification to be reached at timepointnmax. In the example we thus get the fact GoalOn 2(b,a).
Notice that this time no additional argument position holding a plan is added. It is not needed, because plans
are encoded directly as models (different plans are encodedas different models). As a general notational
convention, the predicate symbols in the EBS phase are prefixed with “Goal ”.

6The equality predicate is specified as equal(x,x) ← and thus means syntactic equality. The translation scheme is such
that no floundering problem can occur under a bottom-up evaluation scheme.

7By using a built-in comparable to Prolog’s findall, which is available in the system we use , it is possible to store only
oneplan for each situation derivable.

6



Operator application. In a backward search strategy, an operator can be applied (backwards) when any
one of the fluents in its add list is true in the current situation (because, conceptually, applying it forwards
from the previous timepoint achieves that fluent, which might be necessary to find the plan), and none of
the fluents in its delete list hold in the current situation (because, conceptually, having applying it forwards
from the previous timepoint cannot achieve the current situation then). More precisely, consider an operator
〈N,(x1, . . . ,xn),Pre,Add,Del〉, wherePre consists ofp fluents written aspreq(vq

1, . . . ,v
q
rq), for q = 1, . . . , p and

somerq ≥ 0, andAdd consists ofm fluents written asaddj(sj
1, . . . ,s

j
k j

), for j = 1, . . . ,m and somek j ≥ 0,

andDel consists ofl fluents written asdeli(ui
1, . . . ,u

i
oi
), for i = 1, . . . , l and someoi ≥ 0. Each operator of a

given planning problem is transformed to the following set of rules (left side), for everyj = 1, . . . ,mand every
t = ninter, . . . ,nmax−1, wheret ′ = t + 1. The right side shows one transformation result for the example (the
time parameterst andt ′ are left uninstantiated).

Goal N t(x1, . . . ,xn)∨No Goal N t(x1, . . . ,xn) ←

addj t ′(s1
1, . . . ,s

j
k j

),

not del1 t ′(u1
1, . . . ,u

1
o1

), . . . ,

not dell t ′(ul
1, . . . ,u

l
ol

),

Roughpre1 t(v1
1, . . . ,v

1
r1

), . . . ,
Roughprep t(vp

1, . . . ,vp
rp).

Goal Move t(X,Y,Z)∨No Goal Move t(X,Y,Z) ←
On t ′(X,Z),
not Clear t ′(Z),
not On t ′(X,Y),
RoughOn t(X,Y),
RoughClear t(X),
RoughClear t(Z).

Notice the disjunction in the head of the rule. It specifies whether the operator namedN shall be applied –
or not (the “No” case). Additional rules are emitted, saying that at each timepoint (exceptninter) exactlyone
operator instance is applied (again, omitted for space reasons). The use of disjunction is not essential and
the nondeterminism it stands for can easily be expressed in normal logic programs as well (as mainly used
in answer set programming). We have chosen this formulation, because our interpreter, the KRHyper system
[Wernhard, 2003] supports it natively.8 KRHyper’s modelsfor the rules generatedby the translation coincides
with the possible model semantics, which in turn would coincide with the stable model semantics when having
used normal logic programs as the target language. Thus, we do not leave “essentially” the standard paradigm
of using normal logic programs for planning purposes.

Notice also the subgoals in the rules prefixed with “Rough”. They realize the search space pruning as explained
in Section 1.1: in order for the operator to be applicable, the new situation it derives, as determined by its
precondition list (cf. “Successor state axioms” just below) must be approximated from above in the RFS phase.

Successor state axioms. Whenever the left disjunction GoalN t(x1, . . . ,xn) of a disjunctive rule is chosen,
this means we operator is to be applied (backwards), and hence the preconditions of this operator must be
added as new goals to the current situation. This translatesinto rules of the form Goalpre t(s1, . . . ,sk) ←
Goal N t(x1, . . . ,xn)., for each fluentpre t(s1, . . . ,sk) in the precondition list, for every operator.

Further rules. The transformations given above form the core of our approach. Beyond, additional rules
are emitted: notably, rules to take care of the frame axioms (somewhat dual to the rules for the frame axioms
as for EFS above), rules to determine if EBS generates a plan leading to some situation as derived by EFS, and
some rules for bookkeeping purposes. We omit the corresponding transformation for space reasons.

8Additionally, KRHyper requiresstratified(disjunctive) programs, a property which is satisfied by our transformation.
The main point to achieve this is to include the timepoints within the names of the predicates.

7



P
ro

bl
em

T
im

e

n i
nt

er

n m
ax

4-2 0.079 1 3
4-2 0.087 2 3
4-2 0.089 2 3
5-2 0.401 0 8
5-2 0.399 1 8
5-2 0.393 2 8
5-2 0.378 3 8
5-2 0.382 4 8
5-2 0.374 5 8
5-2 0.446 6 8
5-2 0.514 7 8
5-2 0.569 8 8
6-2 0.184 0 10
6-2 0.163 1 10
6-2 0.141 2 10
6-2 0.61 3 10
6-2 0.71 4 10
6-2 0.69 5 10

(continued)

6-2 0.841 6 10
6-2 1.364 7 10
6-2 2.669 8 10
6-2 3.282 9 10
6-2 4.2 10 10
7-2 52.264 0 10
7-2 18.048 1 10
7-2 6.665 2 10
7-2 1.954 3 10
7-2 1.223 4 10
7-2 1.276 5 10
7-2 2.889 6 10
8-2 1.248 1 8
8-2 1.004 2 8
8-2 1.045 3 8
8-2 1.014 4 8
9-2 20.97 6 13

(a) Blocksworld domain.

P
ro

bl
em

T
im

e

n i
nt

er

n m
ax

1-1 0.089 0 3
1-1 0.095 1 3
1-1 0.093 2 3
1-1 0.091 3 3
2-4 0.352 0 7
2-4 0.552 1 7
2-4 0.266 2 7
2-4 0.229 3 7
2-4 0.217 4 7
2-4 0.221 5 7
2-4 0.207 6 7
2-4 0.207 7 7
3-4 18.34 3 10
3-4 1.975 4 10
3-4 0.561 5 10
3-4 0.438 6 10
3-4 0.424 7 10

(continued)

3-4 0.397 8 10
3-4 0.405 9 10
3-4 0.401 10 10
4-3 73.969 8 15
4-3 5.702 9 15
4-3 1.735 10 15
4-3 1.626 11 15
4-3 1.548 12 15
4-3 1.579 13 15
4-3 1.581 14 15
4-3 1.568 15 15
5-2 7.714 11 15
5-2 5.072 12 15
5-2 4.929 13 15
5-2 4.804 14 15
5-2 4.919 15 15

(b) Elevator domain.

Table 1: Results for our planner.

3 Experimental Results and Analysis

In order to assess the practical relevance of our approach, we have implemented (in Prolog) the transformation
scheme of Section 2. We have tried our system on various problems from different domains picked up from
the competition at AIPS’00.9 As the actual system to run the resulting logic programs we have chosen the
KRHyper deduction system[Wernhard, 2003], which can be used as a reasonably fast interpreter for normal
logic programs. We report here on the results for the blocksworld and the elevator domains of the AIPS’00
competition, as here our systems performs best. We have compared the results of our planner with some of the
benchmark planners which participated in AIPS’00.

Blocksworld Domain. The results for the blocksworld domain are displayed in Table 1(a). Here, “Problem
N−M” means theM-th variant of a problem set withN blocks (taken from AIPS’00). Because the length
of a minimal plan is not known in advance, we employed an incremental scheme of planning problems with
nmax= 1,2,3, . . ., until a plan is found. The “Time” entries in Table 1 denotes theaccumulatedtimes over these
runs. We experimented with different settings forninter, dependent from the (current) value ofnmax. Results
were generally best when settingninter to half of nmax, sometimes +1 or -1. This is also shown in Table 1(a).10

For the problem 9−2 our planner could only find a solution within reasonable time when settingninter = 6, as
shown. From the results we conclude that for this domain our bidirectional search technique yields much better
results than pure forward or pure backward search alone.

9Seehttp://www.cs.toronto.edu/aips2000/.
10Due to the lack of space we do not display the value ofninter for eachnmax.

8



P
ro

bl
em

O
ur

P
la

nn
er

Yo
ch

an

H
of

fm
an

n

P
ro

pp
la

n

S
to

er
r

4-2 0.11 0.081 0.01 0.3 0.16
5-2 0.522 0.189 0.01 1.6 0.63
6-2 0.851 0.789 0.03 8.5 3.00
7-2 1.706 0.136 0.05 40.7 18.66
8-2 1.401 0.087 0.02 178 -

(a) Blocksworld domain.

P
ro

bl
em

O
ur

P
la

nn
er

Yo
ch

an

F
lin

Y
re

fa
ni

d

S
ow

ea
re

1-1 0.124 0.038 0.02 0.40 0.00
2-4 0.289 0.047 0.04 0.40 0.01
3-4 0.559 0.015 0.06 0.40 0.13
4-3 2.16 0.097 0.12 0.43 1.68
5-2 6.702 0.126 0.15 0.44 1.27

(b) Elevator domain.

Table 2: Comparison of our planner with others with respect to time to generate the plan.

These results were compared with different planners participating in the AIPS’00 competition. Since the archi-
tecture on which our system was run is different to the one used in AIPS’00 we had to normalize the results. By
running, as a sample, Hoffman’s planner (FF) on our hardwarewe determined a machine-factor of 1.4, which
we used to normalize the results reported at AIPS’00 (Table 2takes care of this).

For comparing, we have used mainly two principles: the time taken to find a plan, whether the plan length is
optimal (i.e. shortest) or not. Table 2(a) and Figure 2(a) show the comparison of our planner with some others
(names as mentioned in the AIPS’00 competition). Of the other planners, Yochan and Hoffman were faster, but
their plan length is not optimal whereas our planner always produces shortest length plans. This can be seen in
Figure 2, which compares the plan length of different planners. Here, since our planner, Propplan and Stoerr
compute optimal length plan, their graphs overlap. So, onlythree lines are visible instead of the five expected
ones. In this figure, 1,2,. . . 5 on theX axis correspond to the five problems, for which results are compared in
Table 2. Propplan and Stoerr were taken into account becauseboth of them are logic based and hence somewhat
similar to our methodology. From Table 2(a) one can see that our planner is significantly faster.

(a) Plan length (Blocks World). (b) Plan length (Elevator Domain)
Figure 2: Comparison of our planner with some others.

Elevator Domain. The elevator domain is about planning servicing passengersfor transport from their

9



origin to their destination floors. We used the operator definitions exactly as in the AIPS’00 competition. The
results are displayed in Table 1(b) (for an explanation of the table entries see above the blocksworld domain).
It can be observed that for this domain an almost pure forwardsearch strategy is the best. More precisely, best
results were obtained whenninter is between 0.7*nmax andnmax (depending on the problem). So, an almost
forward search strategy works relatively best in this domain.

We evaluated our planner and compared it with others in the elevator domain, using the same criteria as for
the blocksworld domain. Table 2(b) and Figure 2(b) show the comparison of our planner with some others.
Relativization of results was done in this domain also by thesame factor as in Blocks World. Among the other
planners, Flin and Yochan were faster but their plan length was not optimal. This was not the case with our
planner, as can be seen in Figure 2(b), which compares the plan length found by different planners. Soweare
is better than our system in time and computes optimal lengthplans. Yrefanid takes approximately the same
time for different levels of problems: so, it takes more timethan our planner when the problem level is easy,
but takes less time when the problem level is difficult. But Yrefanid does not compute optimal length plans.

4 Conclusion

We described a novel technique to improve answer-set based planning systems. It is based on bidirectional
search, splitting the search space at an intermediate time point “ninter” and approximative forward planning.
From the results we conclude that the technique is effectiveand has its merits in terms of completeness and
calculating shortest length plans. The parameterninter opens up options for a planner to be tuned towards
specific domains. Apparently, it will play an equally important role in domains other than described here.

References

[Brogi et al., 2003] A. Brogi, V. S. Subrahmanian, and C. Zaniolo. A Deductive Database Approach to A.I.
Planning.Journal of Intelligent Information Systems, 20(3):215–253, 2003.

[Dimopolouset al., 1997] Y. Dimopolous, B. Nebel, and J. K̈ohler. Encoding Planning Problems in Nonmono-
tonic Logic Programs. InEuropean Conference on Planning (ECP-97). Springer, 1997.

[Velosoet al., 1995] M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, J. Blythe. Integrating Planning
and Learning: The PRODIGY Architecture. InJournal of Theoretical and Experimental AI, 7(1), 1995.

[Eiteret al., 2003] Th. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach
to knowledge-state planning, II: the DLV system.Artif. Intell., 144(1-2):157–211, 2003.

[Eiteret al., 2004] Th. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleres. A logic programming approach
to knowledge-state planning: Semantics and complexity.ACM Trans. Comput. Logic, 5(2):206–263, 2004.

[Hoffmann and Nebel, 2001] J. Hoffmann and B. Nebel. The FF Planning System: Fast Plan Generation
Through Heuristic Search.Journal of Artificial Intelligence Research, 14:253–302, 2001.

[Lifschitz, 2002] V. Lifschitz. Answer set programming and plan generation.AI, 138:39–54, 2002.

[Niemel̈a, 1999] I. Niemel̈a. Logic programs with stable model semantics as a constraint programming
paradigm.Annals of Mathematics and Artificial Intelligence, 25(3-4):241–273, 1999.

[Wernhard, 2003] C. Wernhard. System Description: KRHyper. Fachbericht 14–2003, Univ. Koblenz, 2003.

10


