Improving Answer Set Based Planning
by Bidirectional Search

Peter Baumgartner Anupam Mediratta *
Max-Planck-Institut fir Informatik IBM India Research Lab
Stuhlsatzenhausweg 85 Block 1, Indian Institute of Technology
D-66123 Saarlircken Hauz khas, Delhi 110016
Germany India
Email: baumgart@mpi-sb.mpg.de Email: anupamme@in.ibm.com
Abstract

Solving Al planning problems by transformation into (notjrlagic programs and computing an-
swer sets (stable models) has gained considerable interesthe last years. We investigate in this
context a classical Al search technique, bidirectionatdeavhere search is performed both from
the initial facts towards the goal and vice versa. Our cbation is to show how bidirectional search
can be realized in the logic programming/answer set pamadigplanning. This seems not having
been investigated so far. We report on practical experimentplanning problems from an AIPS
competition and show how our approach helps speeding upldn@ipg process. We perceive our
contribution mainly as gechniquethat is compatible with and complementary to existing esitams
and improvements, rather than as a concrete planning system

Keywords:

Planning and Scheduling, Search Techniques, Theoremrigrovi

*This work was done when the author was a student of IIT Guwahatiiaitdd/University of Koblenz for his internship.

|mproving Answer Set Based Planning
by Bidirectional Search

Abstract

Solving Al planning problems by transformation into (notjrlagic programs and computing an-
swer sets (stable models) has gained considerable interesthe last years. We investigate in this
context a classical Al search technique, bidirectionatdeavhere search is performed both from
the initial facts towards the goal and vice versa. Our cbation is to show how bidirectional search
can be realized in the logic programming/answer set panmadigplanning. This seems not having
been investigated so far. We report on practical experimentplanning problems from an AIPS
competition and show how our approach helps speeding uplén@ipg process. We perceive our
contribution mainly as éechniquehat is compatible with and complementary to existing esims
and improvements, rather than as a concrete planning system

Keywords:

Planning and Scheduling, Search Techniques, Theoremrfgrovi

1 Introduction

Planning is among the most prominent search space explofatbblems in Al. The search space of a problem
instance is determined by an initial state, a (possiblyiglrispecified) goal state, and operators that transform
one state to another. Solving a planning problem means &rdite a sequence of operator applications that
take the initial state to one that contains the goal state.pfactical side of solving planning problems is to cope
with the (usually) huge search space. In order to make a plgraystem fast, techniques like decomposing a
problem into independent subproblems and heuristics tdegiie search are needed. The heuristics used in
leading systems like FFHoffmann and Nebel, 20§ ven narrow down the search to such a high degree that
completeness may be Idsand also there is no guarantee thahartestplan will be computed. Nethertheless,
systems like FF show impressive overall performance.

Our approach is on a different line: it is complete and alsdsfia shortest plan. The price to be paid is that
it cannot solve many difficult planning problems solved bg fastest systems. However, our goal in this
paper is not to report on a competitive planner. Merely weridtto contribute newechniquedor search
space pruning, which may be used in addition to existingrtiegles. We investigate our technique within the
paradigm of “planning as answer set programming”. This ¢gligra has gained considerably renewed interest
over the last yearkEiter et al, 2004; 2003; Broget al, 2003; Niemeh, 1999; Lifschitz, 2002; Dimopolous
et al, 1997. A planning problem then is translated to a normal logic paog and the stable models of the
logic program encode the solutions (the plans). It was nigt damonstrated that this way efficient planning

1FF includes a complete backup strategy.

systems can be built. In addition, it is easy to incorporatevkedge about the domain under consideration
or heuristical knowledge by just adding appropriate rutethe logic program. These approaches often gain
their speed through parallelizing sequences of operatglicapions, which also leads to non-minimal plans
in general. With our contribution we suggest nasmplementarymprovements to the “planning as logic
programming”. Although we study these in isolation, therad reason not to expect they could be combined
with the known techniques and heuristics.

1.1 Ideaof Our Contribution

In the main part of this paper we will describe a novel tratnstescheme from STRIPS-like planning problems
to logic programs. Before proceeding to that part, we wifilain the main ideas on a rather abstract level; they
are illustrated in Figure 1.

Steps Syoal
Nmax

‘ Backward plan
i

Forward plan

' Pruned

y backward plan

Ninter |-~~~ S5 =T £ Savedsearch space
D RFS and EBS search space
D RFS search space
oL

D EFS search space

log(States)

Figure 1: Dividing the search space.

The programs resulting from the translation encode bitiveal search space exploration: forward search (or
“exact forward search”, EFS, as called in Figure 1) from agiinitial situationSy;; towards a given goal
situationSyoq is combined with backward search (or “exact backward séaEBS, in Figure 1), fromSyoa
towardsSpit.2 The motivation for bidirectional search can be explainefbews: assume as given a planning
problem that can be solved witlimax Operator applications to get fronit t0 Syoar Suppose further, for
simplicity, that in every situatiom different operator applications are possible. The segrahesthus consists
of m'max sjtuations when performing forward search alone (or bac@saarch alone). Now leir be some
“intermediate timepoint” G< niner < Nmax- It shall be used to separate forward from backward seartein
following way: in a first phase, forward search is perforneddmpute and colleall situations reachable from
St IN Niner StePs. In the second phase then backward search is perfomtnieti starts fron§,oa and is limited

to performnmax — Ninter Steps. The search stops as soon as one situation is deratdththbeen computed as a

2Instead ofa goal situation, planning problems often are underspecified and sges#yof goal situations instead.
While our approach works in this more general setting, we ignore it in tifosebecause it is not essential to describe the
main idea.

result of the forward search before. It is easy to see thasehech space now consistsnafinter 4 mfimax—Tinter
situations. This expression is minimal whefer = ”'gax (to be rounded ihmax is an odd number). Taking

Ninter = anax thus yields a search space sizermrlnza—x, which, in general, is much smaller thammax, This
advantage is contrasted by the obvious drawback of posgiblyibitive memory requirements. However, as
our experiments show, this is not always the case, and soegtidepending from the domain, even values
close tonmax can be used. In the past, there has been some work done iedbioliral planning. For instance,
Prodigy[Velosoet al, 1999 has been one of the successful bidirectional planner buahdidadvantage of
incompleteness, which is not present in our planner.

Bidirectional search supports another improvement on tipwhich is also realized in our approach. It works
by inserting another phase we call “relaxed forward seafRFS, between the EFS and EBS phases. It derives
certain information from the situations derived by EFS sat tBBS can take advantage of for search space
pruning. The “relaxed” forward search phase computegpgmoximationfrom above of all possible situations
reachable withimmax — Ninter Steps from the situations derived by EFS. As said, the perposo prune the
search space of the subsequent EBS phase. Because, dulwgabdsearch, any (partial) plan derived then
can be ignored for further extension if it leads to a situatatsideof this approximation. In order to take
advantage of this idea, the cost of computing the approximatould be much lower than the cost of exact
forward search from timepoifiner to Nmax. Our approach follows the one realized in the FF sydidoffmann

and Nebel, 200l1by ignoring the delete list of the operators: on moving frone ctate to the next, fluents get
added, but never deletédComputing such approximations can be done efficiently, mdgatic time.

To our knowledge, the idea of separating the search spadhareby taking advantage of an approximation as
described above has not been considered before in plarinipgrticular we believe it is a novel contribution
to the answer set approach to planning.

2 Trandating Strips Planning Problems

We work in a basic Strips planning setting. In the following only recast usual definitions in a way suitable to
describe our approach. We assume disjoint signaturibsesft symboloperator namesobjectsandvariables
Each fluent symbol is equipped with a fixed arityflAentis an expression of the forf(sy,...,s,), wheref

is an n-ary fluent symbol and eash(i = 1,...,n) is either an object or a variable. When eacls an object,
the fluent is called ground fluent Unless stated differently, in the sequel the leftelenotes a fluent symbol,
N denotes an operator nantegdenotes an object angly, zdenote variables. Indices are used as needed.

A planning problentonsists of the following information: (Iitial situation: a set of ground fluentS;; — (2)
goal situation:a set of ground fluentS;o4 — (3) maximum time stepequired for achieving the goal situation,
Nmax. @ hatural number — (dptermediate time pointifer: @ natural number — (5) A finite set of objedds
containing at least the objects mentioned in the operatmb- (6) A finite set obperators each consisting
of the following:

e An operator namél and a list of variablegy, .. ., x,, for somen > 0 (standing for the objects the operator
3Notice that “situations” may come up that are not derivable otherwisthelblocksworld domain, for instance, several

blocks may then be stapled on top ddiagleblock. The only requirement to preserve completeness is that evevalle
situation is contained in some such “situation”.

works on). We assume this list of variables comprises at thassariables mentioned in the following:
e Preconditions: a set of fluene (the fluents that have to be true in order to apply the opérator
e Add list: a set of fluent&\dd (the fluents which become true on the application of the dpgra
e Delete list: a set of fluentSel (the fluents which become false on the application of theatpey.

Each operatoDpthus is a tuple of the forfiN(xa, .. .,X,), Pre,Add, Del).

We state only informally that solving a planning problemsameto determine a sequence of operator instances
that take the initial situation to any situation satisfyinbat is specified by the goal situation.

Example 2.1 (Blocksworld Problem) LetSyit = {On(b,table),On(a,b),Cleara)}, Syoa= {On(b,a) }, Nmax=
2, Ninter = 1,0 = {a, b, table} and the single operator Mofey, z) be as follow$ (“move blockx fromy on top
of Z’): Pre: On(x,y),Clearx), Cleai(z) Add: On(x, z), Cleary) Del: Clealz),0On(x,y) O

As stated above, a planning problem contains the two pasaBE®tax and nNiner. The parametenyax limits

the search for plans consisting of at mogtx steps, and the parametgg acts as timepoint that separates
EFS from RFS and EBS. Notice that botf,er andnmax are parameters to the translation scheme below. A
complete plan search procedure would itergtg, over the natural numbers in a, say, incremental way, chose
some value fonjyer ON each iteration, apply the transformation and executeesalt until success. Such a
scheme is easy to realize and is not described in the seqoelevér, not so trivial is the choice Ofyer for

a given value ohnax: While nmax may be chosen arbitrarily in principle, a “good” choice maavily impact
performance (see Section 3 below).

Next, we are going to describe the announced translatiotaofhpg problems. They translate into a single
logic program, which, when executed in a bottom-up wayijzealthe EFS, RFS and EBS phases in this order.
Of course, certain information has to be passed from EFS ®, RRd from RFS to EBS to realize the idea
explained in Section 1.1. To this end, additional rules comtmplay.

2.1 Exact Forward Search

Initialization. For each fluenf (01,...,0n) € Spit include a factf _0(0g, ... ,0n,init). They express that the
initial situation, written as a collection of facts, holdgienepoint 0. Notice the additional last argument, which,
in general, encodes a partial plan up to the timepoint meatian the index to the fluent. In the example we
thus get the facts Qf(b, tableinit), On.0(a, b, init) and ClearO(a, init).

Operator application. An operator can be applied if all the fluents in its precoodisi are satisfied and
a specific additional condition is satisfied (to be explaibetbw). More precisely, consider an operator
(N, (X1,...,%),Pre,Add Del), wherePre consists ofm fluents written agre’ (s’l,...,qij), forj=1,....m
and somek; > 0. Each operator of a given planning problem is transforroeitié following set of rules (left
4Actually, this formalization is not quite correct, as it does not reflect theautable) should hold in every situation.

In our experiments we therefore usslahtly different, correct formulation. For space reasons we neglect thisame
other details that are irrelevant for our results.

side), for everyt =0, ..., Ninter — 1, Wheret’ =t + 1. The right side shows the transformation for the example
(the time parametetsandt’ are left uninstantiated; arguments to predicates withtablgitters are variables).

N_t(xq,...,%n,Plan «— Movet(X,Y,Z,Plan —
pret t(sf,..., 5, Plan,..., ont(X,Y,Plan),
pre™t(sy,. ... s, Plan). Cleart(X,Plan), Cleart(Z,Plan.

Successor State Axioms. Every member of the add list of an operator becomes true wihemperator
is applied. L_et(N, (X1,...,%n),Pre,Add Del) be an operator as above, and assudd consist ofm fluents
written asadd (s‘l, ... ,511(1_), for j =1,...,mand some; > 0. Then,Addis transformed into the following set

of rules (left side), for every=0, ..., niner— 1 and everyj = 1,...,m, wheret’ =t + 1. The right side shows
the transformation for the On fluent in the add list of the Moperator (the transformation of the Clear fluent
is omitted). As above, this transformation is to be done f@rg operator in the given planning problem.

add t'(sl,... 731,- N(Xa,..., %, Plan) — ont'(X,Z,Move(X,Y,Z,Plan) «—
N_t(Xg,..., %, Plan). Movet(X,Y,Z,Plan).

Frame Axioms. The problem of formalizing frame axioms has a long traditiothe planning literature. In
the context of model-based planning, different solutioagehbeen suggested. The main issue is at every time
point to retain the truth value of those fluents that are nes@nt in neither the add list nor delete list of the
operator applied at this time point. If a fluent is in the adl dif the operatdrthen it must become true after
the operator is applied. Because a state is represented asttbf fluents being “true” in it (and those being
“false” are absent), a fluent in the operator’s add list i$ jnserted into the representation of the successor
state, as prescribed by the successor state axioms abové.affluent is not there, rules for moving fluents
from a state to a successor state are needed. The rules amidetd according to two distinguished cases: for
every pair of a fluent and an operator, the fluent lies in thetddist of this fluent — or it does not.

To capture the first case suppds, ..., X,) is in the delete list of an operator namigdfor some fluent symbol
f and variables, ..., x.. Then, the following rules are emitted (left side), for gve=0,.. ., Nineer— 1, where
t' =t+1andy,..., Yk are fresh variables. As above, the right side shows an exampl

ft' (v, .-, Yk N(Xa, ..., %0, Plan) « ont’'(X1,Y1,Move(X,Y,Z,Plan «

N_t(xa,...,%n, Plan), Move t(X,Y,Z,Plan),
ft(y1,...,Yk Plan), Oont(X1,Y1,Plan),
not equal[xy, ..., %], [Y1,---,Yk])- not equa([X1,Y1],[X,Y]).

Recall the requirement that the list of variablgs. .., x, in an operator description must include all variables
mentioned, in particular, in the fluents in its delete liskserefore, each variablg, ..., X, is equal to one of
X1,.-.,%1. The informal meaning of the rule now can be explained agvial suppose that the rule body is
satisfied. The variables, ..., x, are instantiated with concrete objects then, and the quoreing instance of
the subgoaN_t(xy, ..., xn, Plan) means that the operathris to be applied to those objects. Becayse. ., Yk

are fresh variables, the subgdat(yi,. .., Yk, Plan applies to every fluent of this form holding at the current

5To be correct, it is an operatarstancebut not an operator (definition). In the sequel, we will often simply séain
“operator” when an operator instance is meant; this should not givéorisenfusion.

state. Now, if an instance dft(yi,..., Yk, Plan is such that the equality as expressed in the last subgoal doe
not hold, i.e. the subgoal itself is satisfied, then thisdnse is not in the instantiated delete list of the opefator
Therefore, it must be retained in the successor state, asssaqul by the rule head. Conversely, if the equality
mentioned does hold, then the fluent instance is in the itiatad delete list, and therefore the fluent instance
is not retained in the successor state.

To capture the second case, suppog&easay fluent symbolf such that the delete list of an operator named
does not contain a fluent with the symtolThat the truth value of such fluents is preserved under egtjpin
of N is expressed by the following rule, whefe=t + 1 andy;, . .., yk are fresh variables.

f (Y1, Vi, N(Xa, . .-, Xn, Plan) < N_t(xg, ..., X, Plan), f_t(yi,...,yk,Plan).

Notice this does transformation does not apply in the exampmbblem because the delete list of the operator
Move mentions all fluents, On and Clear. These transformatare to be applied for any pair of operator
and fluent symbol in the given planning problem. We would ikemphasize that thanks to having default
negation at disposal in our language, the representatitimediame axioms is very compact. Notice tht
states reachable imnax Steps, together with all plans leading to them are compUtéds therefore natural to
expect memory problems &g,.x grows. Recall, however, that forward planning is not emptbjo search a
plan with nmax Steps, but only to compute plans wither Steps, anahiner may be chosen much smaller.

2.2 Rough Forward Search

As explained in Section 1.1, the RFS phase is a kind of forygéadning, however where the delete list of the
operators are ignored. EFS starts from the timepwigt. Technically, this translates into rules of the following
form (for all n-ary fluent symbold): Rough f _Ninter(X1, - .., Xn) < f_Ninter(X1, ..., Xn). In the example, we thus
get for instance (ifnineer = 1) the rule Rouglon 1(X,Y) «— On.1(X,Y). (This example indicates another
notational convention, namely, that the “fluents” compuigdrFS are prefixed by “Rough) In comparison

to the EFS transformation in Section 2.1, the frame axioragather trivial now. They now just express that
all fluents are preserved. As a further simplification, pla@sd not be remembered, because onlysifusation

is needed for the purpose of pruning, not the plan leading Bedcause the transformation for RFS is similar
as for EFS, we do not include it here for space reasons.

2.3 Exact Backward Search

Initialization. For each fluent (01,...,0n) € Syoainclude a fact Goalf _Nmax(01,...,0n). They just express
the goal specification to be reached at timepoindx. In the example we thus get the fact Gah 2(b, a).
Notice that this time no additional argument position hedda plan is added. It is not needed, because plans
are encoded directly as models (different plans are encededifferent models). As a general notational
convention, the predicate symbols in the EBS phase are pdafiith “Goal”.

6The equality predicate is specified as equal) — and thus means syntactic equality. The translation scheme is such
that no floundering problem can occur under a bottom-up evaluati@mszh

"By using a built-in comparable to Prolog’s findall, which is available in the syste use , it is possible to store only
oneplan for each situation derivable.

Operator application. In a backward search strategy, an operator can be appliedwbads) when any
one of the fluents in its add list is true in the current simmat{because, conceptually, applying it forwards
from the previous timepoint achieves that fluent, which rilgé necessary to find the plan), and none of
the fluents in its delete list hold in the current situatiorqduse, conceptually, having applying it forwards
from the previous timepoint cannot achieve the currentsibn then). More precisely, consider an operator
(N, (X1,...,X%),Pre,Add Del), wherePre consists ofp fluents written aspreq(v?, ... ,vﬁq), forg=1,...,pand
somerq > 0, andAdd consists ofm fluents written asaddj(sjl,...,qij), for j =1,...,mand somek; > 0,

andDel consists ofl fluents written asjef(uil,...,uioi), fori=1,...,1 and somep; > 0. Each operator of a
given planning problem is transformed to the following setutes (left side), for every = 1,...,mand every
t = Ninter, - - - ,Nmax— 1, wheret’ =t + 1. The right side shows one transformation result for thergpta (the
time parametersandt’ are left uninstantiated).

GoalN t(xg, ..., %)) VNo_GoalN t(Xy,...,Xn) « GoalMovet(X,Y,Z) Vv No_GoalMovet(X,Y,Z) —
add t'(sh,....), ont'(X,2),
] /
not deft'(u,...,u5), ..., not Clea/r_t (2),
not def t/(ul,...,u}) not Ont'(X,Y),
(U, -+, Ug)
Roughpre t(vi,....v}),..., RoughOnt(X, Y),

RoughCleart(X),
RoughpreP_t(v},...,vi,). RoughCIeaLtEZ)).

Notice the disjunction in the head of the rule. It specifieethir the operator named shall be applied —
or not (the “Na” case). Additional rules are emitted, saying that at eatlepioint (excephiner) exactlyone
operator instance is applied (again, omitted for spaceoreds The use of disjunction is not essential and
the nondeterminism it stands for can easily be expressedrimal logic programs as well (as mainly used
in answer set programming). We have chosen this formulatienause our interpreter, the KRHyper system
[Wernhard, 200Bsupports it nativelf. KRHyper's modeldor the rules generateby the translation coincides
with the possible model semantics, which in turn would cimiaavith the stable model semantics when having
used normal logic programs as the target language. Thuspwetdeave “essentially” the standard paradigm
of using normal logic programs for planning purposes.

Notice also the subgoals in the rules prefixed with “Ratighhey realize the search space pruning as explained
in Section 1.1: in order for the operator to be applicable, ribw situation it derives, as determined by its
precondition list (cf. “Successor state axioms” just bglawst be approximated from above in the RFS phase.

Successor state axioms. Whenever the left disjunction Gadl _t(x, .. .,X,) of a disjunctive rule is chosen,
this means we operator is to be applied (backwards), andehimecpreconditions of this operator must be
added as new goals to the current situation. This transiatesules of the form Goapre t(sy,...,s) «—
GoalN_t(xy,...,Xn)., for each fluenpre_t(sy, ...,) in the precondition list, for every operator.

Further rules. The transformations given above form the core of our apgro&eyond, additional rules
are emitted: notably, rules to take care of the frame axi@oméwhat dual to the rules for the frame axioms
as for EFS above), rules to determine if EBS generates a @dalig to some situation as derived by EFS, and
some rules for bookkeeping purposes. We omit the correspghicansformation for space reasons.

8Additionally, KRHyper requirestratified (disjunctive) programs, a property which is satisfied by our transdtion.
The main point to achieve this is to include the timepoints within the names of tHeates.

Time
Ninter
Nmax
Problem
Time
Ninter
Nmax

(continued) (continued)

AR AR
N N R[N N N|| Problem

0.079 1 3 6-2 0.841 6 10 1-1 0089 O 3 34 0.397 8 10
0087 2 3 62 1364 7 10 1-1 009 1 3 34 0405 9 10
0.089 2 3 6-2 2.669 8 10 1-1 0093 2 3 34 0.401 10 10
0401 O 8 6-2 3.282 9 10 1-1 0091 3 3 743 73969 8 15
0399 1 8 6-2 42 10 10 2-4 0352 O 7 4-3 5.702 9 15
0393 2 8 72 52264 0 10 2-4 0552 1 7 43 1.735 10 15
52 0378 3 8 7-2 18048 1 10 24 0266 2 7 43 1626 11 15
5-2 0382 4 8 7-2 6.665 2 10 2-4 0229 3 7 43 1548 12 15
52 0374 5 8 7-2 1.954 3 10 2-4 0217 4 7 4-3 1579 13 15
5-2 0446 6 8 7-2 1.223 4 10 2-4 0221 5 7 43 1581 14 15
52 0514 7 8 7-2 1.276 5 10 2-4 0207 6 7 4-3 1568 15 15
52 0569 8 8 72 2889 6 10 24 0207 7 7 7532 7714 11 15
6-2 0184 0 10 82 1.248 1 8 34 1834 3 10 52 5.072 12 15
6-2 0163 1 10 8-2 1.004 2 8 34 1975 4 10 522 4929 13 15
6-2 0141 2 10 8-2 1.045 3 8 34 0561 5 10 52 4804 14 15
6-2 061 3 10 8-2 1.014 4 8 3-4 0438 6 10 5-2 4919 15 15
6-2 071 4 10 92 20.97 6 13 3-4 0424 7 10
6-2 069 5 10

(b) Elevator domain.
(a) Blocksworld domain.

Table 1: Results for our planner.

3 Experimental Resultsand Analysis

In order to assess the practical relevance of our approaehawe implemented (in Prolog) the transformation
scheme of Section 2. We have tried our system on various garabfrom different domains picked up from
the competition at AIPS’08. As the actual system to run the resulting logic programs we lthosen the
KRHyper deduction systefWernhard, 2008 which can be used as a reasonably fast interpreter for norma
logic programs. We report here on the results for the blocklhand the elevator domains of the AIPS'00
competition, as here our systems performs best. We havearedhthe results of our planner with some of the
benchmark planners which participated in AIPS’00.

Blocksworld Domain. The results for the blocksworld domain are displayed in @dl§h). Here, “Problem

N — M” means theM-th variant of a problem set witN blocks (taken from AIPS’00). Because the length
of a minimal plan is not known in advance, we employed an memgtal scheme of planning problems with
Nmax=1,2,3,..., until a plan is found. The “Time” entries in Table 1 denotesa¢ccumulatedimes over these
runs. We experimented with different settings fpfer, dependent from the (current) value mfax. Results
were generally best when settinge to half of nmay, Sometimes +1 or -1. This is also shown in Table fa).
For the problem 9- 2 our planner could only find a solution within reasonablestiwhen settinginer = 6, as
shown. From the results we conclude that for this domain @lirdztional search technique yields much better
results than pure forward or pure backward search alone.

9Seeht t p: // wwy. cs. t or ont 0. edu/ ai ps2000/ .
109Due to the lack of space we do not display the valus;gf; for eachnmax.

£ - E g £ - z 2

g 2 § g = - k5 2 g S g

o] . C < = o () o] . C < — =

© 5 S S o e © 5= S £ o 3

o Oon > T o w0 o Ooa > (T > N
4-2 0.11 0.081 0.01 0.3 0.16 1-1 0.124 0.038 0.02 0.40 0.00
5-2 0522 0.189 0.01 1.6 0.63 2-4 0.289 0.047 0.04 040 0.01
6-2 0.851 0.789 0.03 8.5 3.00 34 0559 0.015 0.06 040 0.13

7-2 1706 0.136 0.05 40.7 18.66 4-3 2.16 0.097 0.12 043 1.68
8-2 1.401 0.087 0.02 178 - 5-2 6.702 0.126 0.15 0.44 1.27

(a) Blocksworld domain. (b) Elevator domain.

Table 2: Comparison of our planner with others with respetinte to generate the plan.

These results were compared with different planners [yaating in the AIPS’00 competition. Since the archi-
tecture on which our system was run is different to the ond irs&1PS’00 we had to normalize the results. By
running, as a sample, Hoffman’s planner (FF) on our hardwareetermined a machine-factor of 1.4, which
we used to normalize the results reported at AIPS’00 (Talidd@s care of this).

For comparing, we have used mainly two principles: the tialen to find a plan, whether the plan length is
optimal (i.e. shortest) or not. Table 2(a) and Figure 2(apsthe comparison of our planner with some others
(names as mentioned in the AIPS’00 competition). Of thergthenners, Yochan and Hoffman were faster, but
their plan length is not optimal whereas our planner alwagslipces shortest length plans. This can be seen in
Figure 2, which compares the plan length of different plasnélere, since our planner, Propplan and Stoerr
compute optimal length plan, their graphs overlap. So, tmige lines are visible instead of the five expected
ones. In this figure, 1,2,...5 on theaxis correspond to the five problems, for which results arepared in
Table 2. Propplan and Stoerr were taken into account betatisef them are logic based and hence somewhat
similar to our methodology. From Table 2(a) one can see tliaplanner is significantly faster.

Plan length

Plan Length

Problem

Problem

(a) Plan length (Blocks World). (b) Plan length (Elevator Domain)
Figure 2: Comparison of our planner with some others.

Elevator Domain. The elevator domain is about planning servicing passerfgergansport from their

origin to their destination floors. We used the operator défims exactly as in the AIPS’00 competition. The
results are displayed in Table 1(b) (for an explanation eftdble entries see above the blocksworld domain).
It can be observed that for this domain an almost pure forsaadch strategy is the best. More precisely, best
results were obtained whem is between 0.7Mmax and nmax (depending on the problem). So, an almost
forward search strategy works relatively best in this domai

We evaluated our planner and compared it with others in tbeatdr domain, using the same criteria as for
the blocksworld domain. Table 2(b) and Figure 2(b) show thmparison of our planner with some others.
Relativization of results was done in this domain also bysthime factor as in Blocks World. Among the other
planners, Flin and Yochan were faster but their plan lengih mot optimal. This was not the case with our
planner, as can be seen in Figure 2(b), which compares thdeigth found by different planners. Soweare
is better than our system in time and computes optimal leplgths. Yrefanid takes approximately the same
time for different levels of problems: so, it takes more tithan our planner when the problem level is easy,
but takes less time when the problem level is difficult. Buéfénid does not compute optimal length plans.

4 Conclusion

We described a novel technique to improve answer-set bdaadipg systems. It is based on bidirectional
search, splitting the search space at an intermediate time i and approximative forward planning.
From the results we conclude that the technique is effeetigehas its merits in terms of completeness and
calculating shortest length plans. The parametgs opens up options for a planner to be tuned towards
specific domains. Apparently, it will play an equally imgont role in domains other than described here.

References

[Brogi et al, 2003 A. Brogi, V. S. Subrahmanian, and C. Zaniolo. A Deductivedbatse Approach to A.l.
Planning.Journal of Intelligent Information Systen20(3):215-253, 2003.

[Dimopolouset al, 1997 Y. Dimopolous, B. Nebel, and J.dtler. Encoding Planning Problems in Nonmono-
tonic Logic Programs. liEuropean Conference on Planning (ECP-93pringer, 1997.

[Velosoet al, 1999 M. Veloso, J. Carbonell, A. Perez, D. Borrajo, E. Fink, J.tB. Integrating Planning
and Learning: The PRODIGY Architecture. Journal of Theoretical and Experimental Al, 7(1), 1995

[Eiteret al, 2003 Th. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleresogi¢ programming approach
to knowledge-state planning, Il: the DLV syste#utif. Intell., 144(1-2):157-211, 2003.

[Eiteret al, 2004 Th. Eiter, W. Faber, N. Leone, G. Pfeifer, and A. Polleresogi¢ programming approach
to knowledge-state planning: Semantics and compleX@M Trans. Comput. Logj&(2):206—-263, 2004.

[Hoffmann and Nebel, 2091J. Hoffmann and B. Nebel. The FF Planning System: Fast Plare@gon
Through Heuristic Searcllournal of Artificial Intelligence Research4:253-302, 2001.

[Lifschitz, 2003 V. Lifschitz. Answer set programming and plan generatiah.138:39-54, 2002.

[Niemek, 1999 I. Niemek. Logic programs with stable model semantics as a constpaggramming
paradigm.Annals of Mathematics and Artificial Intelligenc@b(3-4):241-273, 1999.

[Wernhard, 200B C. Wernhard. System Description: KRHyper. Fachberich083, Univ. Koblenz, 2003.

10

