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Darwin is the first implementation of the Model Evolution Calculus by Baumgartner
and Tinelli. The Model Evolution Calculus lifts the DPLL procedure to first-order logic.
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1. Introduction

In propositional satisfiability the DPLL procedure1,2 is the most popular and suc-

cessful method for building complete SAT solvers. Its success is due to its simplicity,

its polynomial space requirements, and the fact that, as a search procedure, it is

amenable to powerful but also relatively inexpensive heuristics and constraint prop-

agation techniques for reducing the search space. Thanks to these heuristics and to

very careful engineering, the best SAT solvers today can successfully attack real-

world problems with hundreds of thousands of variables and clauses.

Although the DPLL method is usually described procedurally, its essence can

be captured declaratively by means of a sequent-style calculus.3 The DPLL calculus

has been recently lifted to the first-order level in (Ref. 4). The result is a sound and

complete calculus, called the Model Evolution calculus, or ME calculus for short,

for the unsatisfiability of first-order clauses (without equality).a

One of the main motivations for developing the Model Evolution calculus was

the possibility of migrating to the first-order level some of those very effective search

techniques developed by the SAT community for the DPLL procedure. This paper

describes Darwin, a first implementation of the calculus designed to incorporate

these techniques — or better, their first-order equivalents. The current version of

Darwin implements a first-order version of unit propagation,6 a form of simplifica-

tion, and backjumping, a form of intelligent backtracking which seems to have been

used for the first time for a first-order theorem prover in (Ref. 7). The incorporation

of another staple technique for DPLL-based solvers, lemma learning, is planned for

the next version.

Although Darwin is not as well developed as other theorem provers for previous

calculi, it borrows many advanced techniques from the first-order theorem proving

world — such as term indexing, subterm sharing, redundancy elimination, and so

on.

The overall rationale for developing this system was to get an initial sense of

the performance potential of the ME calculus, to constitute a robust code base

for further improvements on the implementation, and for future extensions of the

calculus.

This paper presents a fairly high level description of Darwin’s architecture and

implementation, usually providing more details only on those implementation as-

pects that are specific to the ME calculus — as opposed to first-order calculi in

general. The paper starts with a brief description of the ME calculus in Section 2.

Darwin’s main proof procedure and how it relates to the ME calculus is explained

in Section 3. Implementation issues are discussed in Section 4. Section 5 describes

our experimental evaluation of Darwin and compares its performance to that of

other state-of-the-art theorem provers. Section 6 concludes with further research

directions.

aThe ME calculus extends and significantly improves on the FDPLL calculus,5 which was the
first successful attempt to lift the DPLL calculus to the first-order level.
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2. The Model Evolution Calculus

In this section, we introduce the Model Evolution calculus and its main features,

concentrating on those aspects that are relevant to the understanding of the imple-

mentation. More details on the calculus can be found in Refs. 4 and 8.

The DPLL procedure can be described as one that attempts to find a model of

a given formula, input as a set of clauses, by starting with a default interpretation

in which all input atoms are false, and incrementally modifying it until it becomes

a model of the input formula, or all alternative modifications have been considered

with no success. TheME calculus is a lifting of this model evolution process to the

first-order level.

The goal of the calculus is to construct a Herbrand model of a given set Φ

of clauses, if any such model exists. To do that, during a derivation the calculus

maintains a context Λ, a finite set of (possibly non-ground) literals. The context

Λ is a finite — and compact — representation of a Herbrand interpretation IΛ,

serving as a candidate model for Φ. The denoted interpretation IΛ might not be a

model of Φ because it does not satisfy some instances of clauses in Φ. The purpose

of the main rules of the calculus is to detect this situation and either repair IΛ, by

modifying Λ so that it becomes a model of Φ, or recognize that IΛ is unrepairable

and fail. In addition to these rules, the calculus contains a number of simplification

rules whose purpose is, like in the DPLL procedure, to simplify the clause set and,

as a consequence, speed up the computation.

The rules of the calculus manipulate sequents of the form Λ ` Φ, where Λ is

the current context and Φ is the current clause set. The initial sequent is made of

a context standing for an initial interpretation, and of the input clause set. We use

the notation as in Λ, L ` Φ, C to stand for the sequent Λ ∪ {L} ` Φ ∪ {C}.

To describe the rules we need to introduce a few technical preliminaries

first.

2.1. Technical Preliminaries

Contexts are finite sets of possibly non-ground literals built over terms as usual,

however over two types of variables: universal variables — or simply variables —

drawn from an infinite set X and denoted here by x, y, z, and parametric variables

— or simply, parameters — drawn from an infinite set V disjoint with X and

denoted here by u, v, w. Context literals are either universal, that is parameter-

free, or parametric, that is, variable-free. By contrast, clause literals, that is, literals

occurring in the clause set Φ of a sequent, are all parameter-free. For all purposes,

the literals of a context can be considered variable and parameter disjoint with each

other — in tableaux terms, neither parameters nor variables are rigid.

Each context can be seen as the finite specification of a certain Herbrand inter-

pretation. Roughly speaking, within a context both universal and parametric literals

stand for their ground instances. However, a universal literal stands for all of its

ground instances with no exceptions, whereas a parametric literal stands for all of
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its instances that are not instances of another literal in the context with opposite

sign.

The precise way in which context literals denote ground instances and how that

is used to associate a Herbrand model to a context is formally defined in Refs. 4

and 8. Operationally, the main difference between universal and parametric literals

in a context is that the former impose stronger restrictions on the extension of the

context with additional literals (see Refs. 4 and 8 again for more details). Here

we will limit ourselves to introduce a few notions that involve parameters and are

needed to describe the rules of the calculus.

Let us consider the set of substitutions defined over the set X ∪ V . We say that a

substitution is parameter-preserving, or p-preserving for short, if its restriction to the

set V of parameters is a renaming over V in the standard sense — i.e., it is a bijection

of V onto itself. A substitution is a p-renaming if it is a p-preserving renaming. In

other words, a p-preserving substitution maps parameters only to parameters, and

in a bijective way, but can map variables to any term. A p-renaming substitution

maps parameters to parameters, variables to variables, and is bijective.

We say that a term s is a p-preserving variant of a term t, or p-variant for

short, if there is a p-renaming ρ such that sρ = t. We say that s is p-preserving

more general than t, iff there is a p-preserving substitution σ such that sσ = t. If t

is a term we denote by Var(t) the set of t’s variables and by Par(t) the set of t’s

parameters. These definitions, stated for terms, also apply to literals and clauses in

the obvious way.

We assume an infinite supply of Skolem constants disjoint with the set of con-

stants occurring in any given input clause set. We write Lsko to denote the result

of applying some substitution to the literal L that replaces each variable in L by a

fresh Skolem constant.b We write L to the denote the complement of L.

A literal L is contradictory with a context Λ iff there is a p-variant K of some

literal in Λ and a p-preserving substitution σ such that Lσ = Kσ.

Definition 2.1. (Context Unifier) Let Λ be a context and

C = L1 ∨ · · · ∨ Lm ∨ Lm+1 ∨ · · · ∨ Ln

a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context unifier

of C against Λ with remainder Lm+1σ ∨ · · · ∨ Lnσ iff there are fresh p-preserving

variants K1, . . . , Kn of context literals such that

(1) σ is a most general simultaneous unifier of {K1, L1}, . . . , {Kn, Ln},

(2) for all i = 1, . . . , m, (Par(Ki))σ ⊆ V ,

(3) for all i = m + 1, . . . , n, (Par(Ki))σ 6⊆ V .

A context unifier σ of C against Λ with remainder Lm+1σ ∨ · · · ∨Lnσ is admissible

iff for all distinct i, j = m + 1, . . . , n, Liσ is either universal or parametric and

bNote that parameters are left untouched in Lsko.
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Var(Liσ)∩Var(Ljσ) = ∅. Each of the literals Lm+1σ, . . . , Lnσ is called a remainder

literal.

Admissible context unifiers are needed in the main derivation rule of the calculus,

the Split rule. An important property of admissible context unifiers is that they

can be always derived from non-admissible ones with the help of an appropriate

renaming.

Example 2.1. Consider the context Λ = {¬p(u, v, w), ¬q(u′, v′)} and the clause

C = p(x, y, a)∨q(x, a). The substitution σ = {u 7→ x, v 7→ y, w 7→ a, u′ 7→ x, v′ 7→ a}

is a context unifier of C against Λ. All the literals of its instance Cσ = C are

remainder literals. Now, σ is not admissible because its remainder literals p(x, y, a)

and q(x, a) are not variable disjoint. This problem can be solved by replacing both

occurrences of x by, say, u. However, the resulting remainder p(u, y, a) ∨ q(u, a)

(of the context unifier σ′ = σ · {x 7→ u}) is not admissible either, because its

literal p(u, y, a) contains both a variable and a parameter. As above, replacing the

offending variable y by a parameter, say, v will solve the problem, and the remainder

p(u, v, a) ∨ q(u, a) (of the context unifier σ′′ = σ′ · {y 7→ v}) is admissible.

The existence of a context unifier Λ between a context and a clause indicates

that the interpretation IΛ denoted by Λ may falsify the clause.c The rules of theME

calculus use context unifiers as a way to discover that the interpretation associated

with the current context falsifies one of the current clauses, and decide how to

“repair” the context.

Context unifiers are at the core of theME calculus because they are used by all

of its non-optional derivation rules. In fact, context unification is the computational

bottleneck of our current implementation as most of Darwin’s run time is spent

on computing context unifiers. Darwin’s algorithm and data structure to compute

context unifiers are described in Section 4.7.

2.2. The Derivation Rules

The derivation rules of theME calculus are described below. We describe the rules

as given in (Ref. 8), since those described in (Ref. 4) are a somewhat simplified but

less powerful version. Except for Compact, which is a simplification rule that applies

only to contexts with variables/parameters, all the other rules are direct first-order

liftings of the rules of the DPLL calculus in (Ref. 3), and reduce to those rules when

the input clause set is ground.

Split
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L Λ, (Lσ)
sko
` Φ, C ∨ L

if (∗)

cMore accurately, the clause is falsified if the context unifier is also productive (see Ref. 4). But
we can gloss over this issue here.
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where (∗) =























C 6= �, (� is the empty clause)

σ is an admissible context unifier of C ∨ L against Λ

with remainder literal Lσ,

neither Lσ nor (Lσ)
sko

is contradictory with Λ

Split is the only non-deterministic rule of the calculus. As mentioned earlier, the

existence of a context unifier σ of C∨L against Λ indicates that IΛ possibly falsifies

(C∨L)σ. The left conclusion of the rule tries to fix this potential problem by adding

to the context a literal Lσ from σ’s remainder. The alternative right conclusion —

needed for soundness in case the repair on the left turns out to be unsuccessful

— adds instead the skolemized complement of Lσ, i.e. the result of replacing all

universal variables of Lσ, if any, by fresh Skolem constants. The addition of (Lσ)
sko

prevents later splittings on L but leaves the possibility of repairing the context by

adding another of σ’s remainder literals. When the rule is applicable, we call Lσ a

split literal.

Assert
Λ ` Φ, C ∨ L

Λ, Lσ ` Φ, C ∨ L
if











































σ is a context unifier of C against

Λ with an empty remainder,

Lσ is universal and

non-contradictory with Λ,

there is no K ∈ Λ s. t. K is

p-preserving more general than Lσ

When Assert applies, the only way to find a model for the clause set based on

the current context or any extension of it is to satisfy every ground instance of

Lσ. The addition of Lσ makes sure that this is the case. Applications of Assert are

highly desirable in practice because (i) they strongly constrain further changes to

the context, thereby limiting the non-determinism caused by the Split rule, and (ii)

they cause more applications of the three simplification rules below. When the rule

is applicable, we call Lσ an assert literal.

Subsume
Λ, K ` Φ, L ∨ C

Λ, K ` Φ
if K is p-preserving more general than L.

Subsume removes clauses that are “permanently satisfied” by the context, that

is, satisfied by the interpretation denoted by the current context or any context

that extends the current one. Subsume is not needed for completeness but can in

principle improve the performance of an implementation by reducing the number

of clauses to be considered.
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Resolve
Λ ` Φ, L ∨ C

Λ ` Φ, C
if















there is a context unifier σ of L

against Λ with an empty remainder

such that Cσ = C

Resolve simplifies the clause set by removing literals from clauses. Like Subsume

it is not needed for completeness. Resolve is the only rule of the calculus that is not

implemented in its full generality in Darwin. In the current implementation Resolve

is only applied for the special case in which there is a K in Λ s.t. K is p-preserving

more general than L. This unification test is done once for each literal L in Φ.d

Thus, the check is more efficient than in the general case. Comparative evaluations

with an early version of Darwin indicate that the restricted version fares better in

general, despite its more limited applicability.

Compact
Λ, K, L ` Φ

Λ, K ` Φ
if K is p-preserving more general than L

In the rule’s premise the literals K and L are meant to be distinct. Compact,

which is another optimization rule, simplifies the context by removing literals that

are parameter-preserving instances of other literals. Such literals are redundant and

can be safely eliminated.

Close
Λ ` Φ, C

Λ ` �
if















Φ 6= ∅ or C 6= �,

there is a context unifier σ of C against Λ

with an empty remainder

Close detects a context which falsifies the clause set and cannot be modified in

order to satisfy it. When the rule is applicable, we call σ a closing context unifier.

2.3. Derivation Tree

Similarly to sequent calculi, derivations the ME calculus are formally defined in

terms of derivation trees.

Definition 2.2. (Derivation Tree) A derivation tree is a labeled tree inductively

defined as follows:

(1) a one-node tree is a derivation tree iff its root is labeled with a sequent of the

form Λ ` Φ, where Λ is a context and Φ is a clause set;

dSince variable names in clauses are normalized in Darwin, it is possible for the same literal to
occur in different clauses of Φ.
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(2) A tree T′ is a derivation tree iff it is obtained from a derivation tree T by adding

to a leaf node N in T new successor nodes N1, . . . , Nm so that the sequents

labeling N1, . . . , Nm can be derived by applying a rule of the calculus to the

sequent labeling N . In this case, we say that T′ is derived from T.

A branch in a derivation tree is closed if its leaf is labeled by a sequent of the

form Λ ` �; otherwise, the branch is open. A derivation tree is closed if each of

its branches is closed, and it is open otherwise. A derivation is a possibly infinite

sequence of derivation trees (Ti)i<κ, such that for all i with 0 < i < κ, Ti is derived

from Ti−1. For a given input clause set Φ, derivations are started with the single

node tree containing the sequence ¬v ` Φ. Here, the pseudo-literal ¬v causes the

interpretation denoted by the context to falsify every atom by default.

A derivation ending with a closed derivation tree is a proof of the unsatisfiability

of Φ. An exhausted branch is a witness of the satisfiability of Φ, because it defines

a model of the initial clause set. When the branch is finite this model is simply the

interpretation induced by the context in the last node of the branch.

The formal definition of exhausted branch in ME is rather technical and based

on the notion of limit tree of a derivation;e we refer the reader to (Ref. 4, 8) for it.

Intuitively, however, it states that a branch in a limit tree is exhausted whenever,

for each non-optional rule of the calculus that applies to a node N in the branch, the

intended, if not literal, effect of the rule is achieved in some node down the branch.

For instance, the intended effect of Split is that the possibility to falsify its selected

clause by means of the context literals used in the context unifier is removed in

some descendant node.

An important aspect to guarantee refutational completeness is to equip the cal-

culus with a suitable notion of fairness . ForME this simply states that a derivation

is fair it its limit tree is closed or has an exhausted branch. A proof procedure for

the calculus is fair if it generates only fair derivations. We explain how Darwin

produces fair derivations in the next section, where we present its proof procedure.

3. The Proof Procedure

The proof procedure implemented in Darwin follows the main loop described be-

low. Similarly to DPLL, Darwin’s procedure basically explores the limit tree of a

derivation in the calculus in a depth-first fashion. For fairness concerns, however, in

Darwin this exploration is bounded, and done repeatedly with increasingly larger

bounds. The present bounds are on the complexity of potential Assert or Split liter-

als, as explained in Subsection 4.4.

At any moment, the procedure stores in its data structures a (sub)branch of

the limit tree where split nodes, that is, nodes to which Split has been applied,

correspond to choice points. The procedure grows the current branch until:

eThis is obtained as the graph-theoretic union of all the trees in the derivation.
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• the branch can be closed, in which case it backtracks to a previous choice point

and regrows the branch in the alternative direction, or

• the branch cannot be grown further, which means that the branch is exhausted

and a model of the input set has been found, or

• a certain limit is reached, in which case the procedure moves on to another

branch or restarts with an increased limit, depending on the current search

strategy.f

During the computation, in addition to the current context and the set of current

clauses, the procedure maintains a set of candidate literals, literals that could be

added to the context as a consequence of the application of the Assert or Split rule.

Before entering the main loop, the candidate set is initialized with all the literals

that could be added to the initial context by an application of Assert. By definition

of Assert, these are exactly the literals occurring in unit input clauses.

The main loop of Darwin’s proof procedure consists of the following steps:

(1) Candidate Selection. If the candidate set contains no candidates suitable

for an application of Split or Assert, the procedure ends returning the current

context, which denotes a model of the input clause set.g If all applicable candi-

dates exceed the current complexity bound, the procedure abandons the current

branch and continues the search with an increased bound, as described in Sec-

tion 4.4. Otherwise, it chooses an applicable candidate from the candidate set

according to the selection heuristics described in Section 4.8. The heuristics

is based on various metrics, but it always prefers Assert candidates over Split

candidates, in order to minimize the creation of choice points.

(2) Context Evolution. If the selected literal is a Split literal, a choice point is

created — corresponding to the left part of the application of the Split rule.

Then, the literal is added to the context, the Compact rule is exhaustively

applied to the new context, and the Subsume and Resolve rules are exhaustively

applied to the current clause set using the newly added context literal.

(3) Context Unifier Computation. All possible context unifiers between current

clauses and the new context are computed which involve the new context literal.

If this leads to the computation of a closing context unifier, the current branch

is immediately closed, forcing the procedure to backtrack.

(4) Backtracking. If a closing context unifier is found in the previous step, the

current context does not satisfy the input clause set and is unrepairable. The

procedure then backtracks to a previous choice point, undoing all changes to

the context, the clause set, and the candidate set done from that choice point

fThe available strategies are described in Subsection 4.4
gNote that initially suitable candidates, i.e., candidates meeting the preconditions of Split or
Assert, might be no longer applicable after new literals have been added to the context, because
for instance they have become subsumed by or contradictory with the new extended context.
Instead of purging the candidate set of these literals, Darwin simply tests that a candidate is still
applicable at the time it is selected, discarding it and selecting another one if it is not.
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on. Since the choice point corresponds to the left part of the application of the

Split rule which added a literal L to the context, the right part of the application

is then tried. The skolemized complement of L is selected for addition to the

context and the computation continues with Step 2.

If there are no more choice points to backtrack to, the input set has been proven

unsatisfiable, and the procedure quits.

(5) Candidate Generation. If no closing context unifier is found in Step 3, the

procedure extracts from the computed context unifiers all literals suitable for

an application of Assert and from each remainder the best literal suitable for an

application of Split, adds them to the candidate set, and goes back to Step 1.

Selecting only one candidate per remainder in Step 5 above is enough for com-

pleteness. Here is the informal explanation of why — see (Ref. 9) for more details.

Recall that a remainder literal L from an instance C ′ of an input clause C needs to

be added to the current context only if C ′ is falsified by that context. Now, if L is

eventually added to the context as the current branch grows, C ′ will be satisfied,

and so no further remainder literals from it need be considered. If L is never selected

for addition, it is because at some point another remainder literal of C ′ becomes

satisfied, L becomes satisfied or L becomes contradictory with another literal K in

the current context — and stays so in every extension of that context. In the first

two cases, C ′ is again satisfied by the current context. In the third case, it is possible

to show that when adding K to the context, the system will be able to compute a

context unifier from C with a remainder that differs from the original one only for

the absence of L from it. This shorter remainder, when non-empty, will provide a

new candidate literal different from L.

A high-level pseudocode description of the proof procedure is provided in

Figure 1. For simplicity, we describe a non-restarting (unfair) recursive version

of the procedure implementing näıve chronological backtracking, which does not

impose any complexity bound on candidate literals.

When it terminates, the procedure either returns a set of literals, representing

the most recent context and denoting a model of the input clause set, or raises the

exception CLOSED, to denote that the clause set is unsatisfiable. In the backjumping

version, the exception CLOSED would also carry dependency information that allows

the procedure to skip certain choice points. In principle, the computation of new

candidates and the application of the Subsume, Resolve, and Compact simplification

rules (lines 14-16 in the pseudocode) could be done in any order. We chose the given

order because, first, the computation of new candidates may trigger Close and thus

avoid the application of the simplification rules, and second, it better reflects our

implementation, which requires that new candidates are computed before Resolve

is applied.
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Darwin
1 function darwin Φ

2 // input: a clause set Φ

3 // output: either ”unsatisfiable”

4 // or a set of literals encoding a model of Φ

5 let Λ = ∅ // set of literals

6 let L = ¬v // (pseudo) literal providing default interpretation

7 let CS = set of assert literals consisting of the unit clauses in Φ

8 // the initial candidate set

9 try me(Φ,Λ,L,CS)

10 catch CLOSED -> "unsatisfiable"

11

12 function me(Φ,Λ,L,CS)

13 // L is to be added to the context

14 let CS ′ = add_new_candidates(Φ,Λ,L,CS)

15 let Φ′ = Φ simplified by Subsume and Resolve with L

16 let Λ′ = (Λ simplified by Compact with L) ∪ {L}

17 if there is no candidate applicable for Assert or Split ∈ CS ′ then

18 Λ′ // Λ′ encodes a model of Φ′

19 else

20 let K = select_best(CS ′,Λ′)

21 if K is an assert literal then

22 me(Φ′,Λ′,K,CS ′ \ {K}) // assert K

23 else

24 try

25 me(Φ′,Λ′,K,CS ′ \ {K}) // left split on K

26 catch CLOSED ->

27 me(Φ′,Λ′,K
sko
,CS ′ \ {K}) // right split on K

28

29 function add_new_candidates(Φ,Λ,L,CS)

30 adds to CS all assert literals from context unifiers involving L

31 and one split literal from each remainder of a context unifier involving L

32 raises the exception CLOSED if it finds a closing context unifier

33

34 function select_best(CS,Λ)

35 returns the best applicable assert or split literal in CS

Fig. 1. Darwin’s proof procedure as pseudo code.
Fig. 1. Darwin’s proof procedure as pseudo code.
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The following example is intended to demonstrate the working of the proof

procedure.

Example 3.1. Let Φ be the following clause set.

p(x, a) ∨ s(a) (1)

q(x, y) ∨ q(y, x) (2)

r(f(x, y)) ∨ ¬p(x, y) (3)

¬p(a, a) ∨ ¬q(x, y) ∨ ¬r(f(a, y)) (4)

After initializing its variables Λ and L, the proof procedure in Figure 1 first deter-

mines an initial set of candidates CS . Because Φ contains no unit clause, CS is the

empty set and the function me is called as me(Φ, ∅,¬v, ∅).

The set of new candidates CS ′ determined then consists of the two split literals

p(x, a) and q(u, v). They respectively originate from clause 1 and from clause 2,

each paired with two disjoint variants of ¬v.

Simplification on Φ has no effect, and so Φ′ is the same as Φ. The current

context Λ′ becomes {¬v}. Because CS ′ contains applicable candidates, line 20 is

reached, and the selection heuristics chooses p(x, a) as the literal K to consider

for the next inference step — the literal p(x, a) is preferred over the other split

literal, q(u, v), because it is universal, while q(u, v) is not; cf. Section 4.8 for de-

tails. Because p(x, a) is a split literal, line 25 is reached, which results in the call

me(Φ, {¬v}, p(x, a), {q(u, v)}). In this call, the new assert candidate r(f(x, a)) is

determined (from p(x, a) and clause 3) and thus added to the given candidate set,

yielding CS′ = {r(f(x, a)), q(u, v)}. This time, simplification does have an effect:

with the given literal p(x, a), which belongs to the current context as noted on line

7, clause 1 is subsumed, and the first literal of clause 4 is resolved away. The new

clause set Φ′ thus is

q(x, y) ∨ q(y, x) (2)

r(f(x, y)) ∨ ¬p(x, y) (3)

¬q(x, y) ∨ ¬r(f(a, y)) (4’)

Next, p(x, a) is moved to the current context, yielding Λ′ = {¬v, p(x, a)}. The

execution of the pseudocode reaches line 20, and among the current candidates

CS′ = {r(f(x, a)), q(u, v)} the literal r(f(x, a)) is selected by the heuristics for fur-

ther processing — see again Section 4.8. Since r(f(x, a)) is an assert literal, line 22

is reached and me(Φ, {¬v, p(x, a)}, r(f(x, a)), {q(u, v)}) is called. On execution, the

newly asserted literal r(f(x, a)) together with the clause 4’ gives rise to the new as-

sert candidate ¬q(x, a). Notice that in the underlying Assert rule application the con-

text literal r(f(x, a)) gets instantiated to r(f(a, a)).h Now, ¬q(x, a) is chosen to be

asserted, and the next call thus is me(Φ, {¬v, p(x, a), r(f(x, a))},¬q(x, a), {q(u, v)}).

Because for the context {¬v, p(x, a), r(f(x, a)),¬q(x, a)} a closing context unifier

hWith a parametric literal like r(f(u, a)) instead, ¬q(x, a) could not be derived as an assert
candidate.
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exists (using clause 2), the exception CLOSED is raised. Notice that the parametric

literal p(u, v) from the set of candidate literals was never chosen to derive this closed

branch.

The exception raised is caught by the first recursive call of me. Its execu-

tion thus reaches line 27 and tries the right alternative of that Split applica-

tion. Because the split literal was p(x, a) the corresponding call to me uses the

complement of the Skolemized version of p(x, a), say, ¬p(c, a). On the execution

of me(Φ, {¬v},¬p(c, a), {q(u, v)}), the new assert candidate s(a) is derived from

¬p(c, a) and clause (1). It will indeed be asserted, and for the next call to me only

one candidate will be available, which is the split literal q(u, v). After choosing

it and calling me again no more candidate can be determined. The execution of

me thus terminates and returns the context {¬v,¬p(c, a), s(a), p(u, v)} to indicate

satisfiability of the given clause set.

This context contains a literal with a Skolem constant: ¬p(c, a). Since c is not

part of the the input signature Σ = {p, s, q, r, f, a}, the literal ¬p(c, a) can be in fact

removed, and the resulting context {¬v, s(a), p(u, v)} will still describe a (Σ-)model

of the input clause set.i Darwin reports the latter context instead of the previous

one because it is more informative to the user.

4. Implementation

The description of the proof procedure in the previous section omits most imple-

mentation details and also leaves room for certain improvements. We provide some

of these details as implemented in Darwin next, generally focusing more on those

that are significant for its performance.

4.1. Programming Language

Darwin is implemented in OCaml,j a fast, strongly-typed functional language based

on ML. OCaml, and thus Darwin, is available for several Unix-like operating systems

including Linux and Mac OS X, and for the Windows family. OCaml has previously

been successfully used for the implementation of the theorem prover KRHyper10

at the University of Koblenz-Landau and for the solver ICS11 at SRI International,

among others.

Though the programming background of the second author, the main developer

of Darwin, was mostly in OO-style C++, he quickly enjoyed using OCaml. Among

other things OCaml’s strong-typing, garbage collection, extremely short compile

times, and informative news group made up for the paradigm shift. At the cur-

rent stage of development we find that the higher level of abstraction provided by

iIt follows from the way an interpretation is associated to a context4 that the truth value of a
Σ-literal is independent from the non-Σ-literals in a context, which are precisely those containing
Skolem constants.
jSee http://caml.inria.fr/.
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OCaml constructs — and thus the better readability and maintainability of the

code, compared to, e.g., C — amply compensate for possible performance losses

when compared to implementations in lower level languages such as C.

4.2. Term Database

During the derivation tens of thousands of terms might exist at the same time, easily

consuming hundreds of megabytes of memory. The same term or subterm might be

used in many places, occurring for instance in different context unifiers or candidate

literals. Many of these terms are dropped soon after creation, e.g., in backtracking

or when a newly computed remainder is detected to be non-productive, causing a

lot of garbage collection. To reduce the high memory consumption Darwin uses a

database technique similar to the ones used for instance in Otter,12 Vampire,13 and

E.14

This technique ensures that each (sub)term physically exists at most once in the

system, i.e., all occurrences of the same term are references to the same physical

instance, leading to perfect (sub)term sharing.

Terms are represented as tree-like data-structures. Building a term is done by

creating a tree where the root node consists of a function or predicate symbol and its

children nodes consist of subterms. Terms are managed by the term database. Term

creation is done solely inside the database, all other parts of the system request terms

from the database (by passing the function/predicate symbol and the subterms),

but never directly create them. If a requested term is already contained in the

database (a reference to) it is simply returned. Otherwise, the term is transparently

created and then returned.k

Compared to a näıve representation of terms, this allows for vastly reduced

memory consumption because of the perfect sharing of the common subterms. Terms

are stored in a normalized manner in the database. This leads, for instance, to a

unique representation of remainder literals. The significance of this property lies in

the fact that remainder literals are the only kind of literals created by the system

during proof search.

Internally, the terms are stored in a set of weak references. Weak references are

ignored by the garbage collector. Thus, as long as a term is used and referenced

anywhere in the system from outside the database it is kept alive. But as soon as

the only remaining references to the term are from inside the database the term

becomes automatically available for garbage collection, as it is considered to be

unreferenced and thus disposable.l

The consultation of the database for each term creation and the management of

the weak set introduces noticeable overhead. However, the retrieval of a term from

the database is done by means of an efficient hashing on the terms, we gain the

kThis technique is sometimes called hash consing in the literature.
lWe are thankful to one of the reviewers of an earlier version of this paper15 who suggested the
use of OCaml’s weak references to us.
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reduction of the term equality test to a constant-time pointer equality test, and we

save in garbage collection. Thus, besides the memory savings, the term database

even leads on average to a slight performance improvement.

Our tests have shown that as a percentage of the total, the space required to

store the clause sets along the current branch, which is essentially constant during

the computation, is insignificant. Also small is the space needed for contexts, which

rarely grow to more than a few thousand literals. The data structures most respon-

sible for the memory consumption are the set of partial context unifiers, described

later, and the set of candidate literals. Candidate literals consistently take most of

the space. In contrast, partial context unifiers can take from almost no memory to

as much memory as the candidate set.

4.3. Backjumping and Dynamic Backtracking

The simplest backtracking strategy for a search procedure is (näıve) chronological

backtracking, which backtracks to the most recent choice point in the current branch

of the search tree. A more effective form of chronological backtracking, implemented

instead in Darwin, is backjumping, which takes into account dependencies between

choice points. The idea of backjumping is best explained in terms of the calculus:

suppose the derivation subtree below a left node introduced by a Split rule applica-

tion is closed and the literal added on the left conclusion by that application is not

needed to establish that the subtree is closed. Then, the Split rule application can

be viewed as not being carried out at all. The proof procedure thus may neglect the

corresponding choice point on backtracking and proceed to the previous one.

Backjumping is well known to be one of the most effective improvements for

propositional SAT solvers. Its implementation is not too difficult and is based on

keeping track of which context literals and clauses are involved in particular in Assert

and Close rule applications. Backjumping is an example of a successful propositional

technique that directly lifts to the proof procedure of Darwin.

A smarter technique than backjumping has been proposed under the name of

dynamic backtracking by Ginsberg.16 It can be adapted to our proof procedure and is

currently implemented in Darwin as an alternative to backjumping. The idea is that

a choice point not involved in establishing that a branch is closed is not discarded as

in backjumping, but it is kept if it does not depend on any discarded choice points.

Conceptually, the choice points are no longer seen as nodes in a tree but as nodes

of a dependency graph. Discarding a choice point does not automatically invalidate

all later choice points in a branch, only those dependent on it. Thus dropping and

possibly recomputing a still valid and potentially useful part of the derivation is

avoided.

A disadvantage of dynamic backtracking versus backjumping is that its imple-

mentation is more involved and requires a more complex type of dependency analy-

sis. Furthermore, some implementation optimizations based on the assumption that

on backtracking only the most recently added context literals are retracted are not
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possible anymore. This causes non-negligible runtime overhead, leading in general

to worse performance than backjumping despite the fact that dynamic backtracking

sometimes produces shorter derivations.

4.4. Iterative Deepening over Term Depth

Since the ME calculus is refutationally complete only for fair derivations, a proof

procedure for it is complete only if it gives rise to fair derivations. The completeness

of Darwin’s proof procedure is ensured by performing a sort of iterative deepening

search. In contrast to standard iterative deepening, however, Darwin’s iterative

deepening is not on the depth of the search tree but of the term depth of the

candidate literals.m

Specifically, the proof procedure never adds to the context a literal whose term

depth exceeds a current term depth bound. Note that by the design of the inference

rules, it is impossible for a context to contain two or more p-variants of the same

literal. This implies the termination of any exhaustive sequence of inference rule

applications under the term depth bound. Thus, when all inference rules have been

applied exhaustively with respect to the current bound without closing the current

branch, the proof procedure has to check if the current branch is incomplete, that is,

if during the generation of the branch a candidate literal has been ignored because

it exceeded the current depth bound. If the current path is not incomplete, a model

of the input set has been found and is reported. Otherwise, the procedure behaves

according to one of the following strategies, as initially selected by the user.

(1) Eager Restart. Any candidate literals that exceed the depth bound are

dropped immediately. After producing an incomplete branch, the procedure

simply restarts from scratch, but with an increased depth bound.

(2) Deferred Restart. As with the previous strategy, none of the candidate lit-

erals that exceed the depth bound are kept around. However, this time the

procedure does not immediately restart on discovering an incomplete branch.

Instead, it treats the branch as if it was closed and backtracks to the most re-

cent choice point up to which no candidates had been dropped due to the depth

limit, and continues the exploration of the remaining search space from there. If

the procedure then generates an exhausted branch which is neither closed nor

incomplete, it simply ends, reporting a model for the input clause set. Other-

wise, it continues as before until it has explored the whole search space. Only

at that point, when all remaining branches have been found to be either closed

or incomplete, does the procedure restart, with an increased depth bound.

(3) Reluctant Restart. This strategy stresses the search for models even more

by not immediately dropping candidates exceeding the depth bound, but in-

stead saving them until the current branch is determined to be incomplete.

Then, these candidates are tested against the context for applicability, as they

mBy term depth we mean the depth of a literal when seen as a tree.
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might well be not applicable anymore — because for instance they are now

being subsumed by the shallower context literals. If none of them is applicable

anymore, the branch can be considered complete and so a model is reported.

Otherwise, the procedure considers those candidates that are still applicable,

and backtracks to the most recent choice point where one of these still applicable

candidates had been computed. Then it continues as in Strategy 2.

By eagerly dropping candidates exceeding the depth bound, Strategy 1 and 2

significantly decrease the memory requirements for a range of problems which have

a refutation or a model using only comparatively shallow terms, but have lots of

candidates with deeper terms.

Strategy 2 is less suited for unsatisfiable problems, as the futile search for a

model is prolonged even further by deferring the restart. This may pay off instead

for satisfiable problems, as the search for a model within a low depth limit is pursued

more intensely, possibly avoiding unnecessary restarts.

Considering only the still applicable candidates often allows Strategy 3 to de-

termine a more recent choice point than Strategy 2 would — the information on

whether candidates are still applicable once a branch is complete is simply not

available to Strategy 2. Compared with Strategy 2, Strategy 3 loses the memory

savings achieved by eagerly dropping candidates, and suffers the overhead of repeat-

edly checking exceeding candidates for applicability. On the other hand, it further

increases the likelihood of finding a model within a low depth limit.n Since in the

current implementation Strategy 3 has a considerably worse performance than the

previous two strategies, its use seems sensible only if finding shallow models is a top

priority.

Another considerable advantage of Strategy 2 and Strategy 3 is that they poten-

tially diverge less often on satisfiable problems. Strategy 3 can be further modified

to consider as non-applicable any candidates that are satisfied by the context. Thus,

by exploring all possible branches within the term depth bound (modulo pruning

due to intelligent backtracking), the proof procedure is guaranteed to find a finite

exhausted branch, if one exists, and to return the corresponding model. With the

previous strategies on the other hand, the procedure can diverge even in the pres-

ence of a finite exhausted branch because it can end up (incrementally) expanding

the same infinite branch. However, experiments showed that this variation merely

adds significant computational overhead, but does not produce better derivations.

All the three restart strategies above can be formally shown to generate fair

derivations. Intuitively, the idea is simply that (i) all applicable candidate literals

within the current depth bound are guaranteed to be added to the context, and (ii)

for each candidate literal whose depth exceeds the current bound, there is a later

iteration of the proof procedure in which either a model is found or the candidate’s

depth is within the current bound.

nAnother potential advantage of the strategy is that keeping discarded literals for a branch some-
times allows the proof procedure to close the branch earlier. See Section 4.10 for details.



January 4, 2006 14:33 WSPC/INSTRUCTION FILE 00255

38 P. Baumgartner, A. Fuchs & C. Tinelli

Currently, no information from a previous round is kept after a restart. A valu-

able improvement of Darwin, with any of the three restart strategies we described,

might be to compute permanent lemma clauses as a side effect of derivations, as

commonly done in SAT solvers, and keep them across restarts. As in the proposi-

tional case, the idea is that the kept lemmas would help cutting the search space

by preventing later repetitions of certain sets of (Split) choices that are guaranteed

to lead to a closed branch.

Another potential improvement would be to use Strategy 1, but to avoid restart-

ing altogether and instead keep growing the current branch under an increased term

depth bound. Unfortunately, due to the way context unifiers are now computed (See

Sec. 4.7) there is no easy way to recompute only the dropped candidates. Thus, ei-

ther all candidates have to be kept until needed, even if they exceed the depth bound,

or all candidates have to be recomputed after an increase of the depth bound. A gen-

eral drawback of this approach compared to Strategy 1 is that it tends to produce

significantly longer derivations because the candidate selection heuristics cannot

consider from the beginning the candidates that become available only after the

increase in the depth bound. Thus, although at first glance saving on computation

by reusing the existing derivation seems worthwhile, in our experience with Darwin

this helps only very rarely in practice. In most cases simply dropping candidates,

restarting, and applying the heuristics to all candidates during the whole derivation

leads to considerably better performance. This conforms to what can be expected

from an iterative deepening approach.

Alternative measures of literal complexity than the term depth could be con-

sidered as well. For instance, the hyper tableau prover KRHyper10 uses iterative

deepening over term weights, computed as the number of symbols in a term. The

resolution prover Otter12 offers sophisticated control facilities to weigh a term. Dar-

win supports iterative deepening over fixed term weights as an alternative to the

term depth approach. As we show in Section 5 however, using the term depth bound

is usually better.

Some other provers limit the derivation tree length, i.e. the maximum length

of a derivation branch. We have not tried this strategy in Darwin yet. So there is

considerable room for further experimentation.

4.5. Initial Default Interpretation

As mentioned in Section 2.3, the pseudo-literal ¬v that constitutes the initial context

assigns by default false to all ground atoms. Instead of ¬v, the pseudo-literal v may

be used, assigning true to all ground atoms. It is indeed often plausible to take v,

given that many theorem proving benchmarks consist of an “axiom part”, and a

“theorem part” which quite often consists of one or more negative clauses. These

theorem clauses are falsified in the interpretation associated with the pseudo-literal

v. Now, the calculus considers for Split rule applications only clause instances that

are falsified in the current interpretation. This means that then theorems are used
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early in the derivation, de-emphasizing, in particular, the use of positive clauses

from the axiom part. This way, the calculus becomes more goal-oriented than it

would be with {¬v} as the initial context.

Nevertheless, using v has several drawbacks. First, problems are often specified

in a rule-like way, i.e. a0, . . . , an ← b0, . . . , bm where in general n < m. As ¬v unifies

with each ai, whereas v unifies with each bi, v yields considerably more partial and

complete context unifiers (see Section 4.7). Thus, significantly more time is spent

in context unifier computation, and many more candidates are computed, leading

to a (sometimes vast) increase in memory usage. Secondly, ¬v is more suited for

developing models that can be described with a relatively small set of atoms, whereas

v is more suited for models that satisfy most of the ground atoms. The former case

seems to be more common for the problems tested so far.

All in all, the performance and memory consumption on TPTP problems is in

general much better with ¬v than with v.15

4.6. Unification

Unification operations in theorem provers often require that the participating literals

have no variables in common. For Darwin this is in particular the case when context

unifiers are computed, i.e. when a clause is unified with fresh variants of context

literals. Renaming variables by physically creating a new term is expensive in terms

of memory and performance. There are several methods in use to avoid this.

For instance, SPASS does not explicitly rename common variables, but instead

uses a modified unification algorithm and computes different substitutions for each

participating clause or literal.17 Otter and KRHyper use so called contexts — not to

be confused with contexts in the sense ofME and Darwin. A compile time limit is

imposed on the number of variables per term, e.g. 64 variables per term in the case

of KRHyper. A variable is represented by a number lower than the limit. A context

defines a multiplier, a number unique to this context. For the purpose of unification

each literal, resp. clause, is associated with its own context. During unification a

variable is identified by its effective id which is computed as the limit multiplied by

the associated context multiplier, plus the variable’s id.o

Darwin extends this idea avoiding the compile time limitation.p Again, a variable

is represented by a number, and for unification each literal is associated with a

second number, here called offset instead of context multiplier. Now, the effective

id of a variable is not computed as a number but is simply the pair of the offset

and the variable’s id. For example, if the clause p(x) ∨ p(f(x)) is unified with two

variants of the context literal ¬p(u), the offset 0 may be associated with the clause,

and the offsets 1 resp. 2 with the two occurrences of the context literal. Then the

pairs 0:p(x) and 1:¬p(u) are unified, and the pairs 0:p(f(x)) and 2:¬p(u) are unified,

oFor details see unify.c of Otter’s source, resp. term.ml of KRHyper’s source.
pLike similar compile time limitations this is a serious problem when working with a closed source
application and still an inconvenience with an open source one.
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yielding the unifier {0:x 7→ 1:u, 2:u 7→ 0:f(1:u)} where 1:u and 2:u are in fact two

different variables.

4.7. Context Unifiers

Recall that Step 3 of Darwin’s proof procedure computes all possible context uni-

fiers involving the context literal just added. To be precise, the system computes

context unifiers of input clauses in order to identify literals that can be added to the

context by the Split rule, and computes context unifiers of subsets of input clauses

in order to identify literals that can be added by the Assert rule. To speed up this

computation, context unifiers are partially precomputed and cached as described

below. For simplicity, we start by describing the computation of context unifier for

Split only. Figure 2 illustrates this process and its embedding in the proof procedure.
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Fig. 2. Computation of context unifiers and its embedding in the proof procedure.

Each input literal — i.e., a literal in the input clause set — has an associated

list of partial context unifiers. A partial context unifier is merely a unifier between

the input literal and a literal from the current context. According to the unification

mechanism described in Subsection 4.6, the literals of a clause are numbered starting

with 1. During unification, the offset 0 is assigned to the clause and thus the input

literal, while the input literal’s number in the clause is used as the offset of the

context literal. This makes it easy to merge several partial context unifiers between

different literals of a clause and the same context literal. Note that the computation

of partial context unifiers does not happen per clause but per input literal, thus if a
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literal occurs at the same position in several clauses its partial context unifier will

be computed and stored only once for all occurrences.

The bindings of the stored partial context unifiers are kept in a database similar

to the term database. Especially for Bernays-Schönfinkel and some Horn problems,

where mostly very similar terms are computed, the unifiers tend to share most

bindings. Using the database leads to significant memory savings.

When a new literal K is selected for addition to the context (Step (1) in the proof

procedure, Step ¬ in Figure 2), the system computes all partial context unifiers

between (a fresh variant of) K and each literal in the current clause set. Then

it stores each computed unifier, when it exists, in the list of the corresponding

input literal. This is depicted in Figure 2 as Step ­, however for only one input

literal. After that, for each literal L that unifies with K and for each input clause C

containing L, the system attempts to find all possible context unifiers of C against

the current context. This is done as follows.

Assume that C is of the form L ∨ L1 ∨ · · · ∨ Ln, θ is the partial context unifier

between L and K, and Si is the set of partial context unifiers stored in Li’s list for i =

1, . . . , n. Then the system considers each tuple of partial unifiers in {θ}×S1×· · ·×Sn

and attempts to merge the elements of that tuple into a single unifier (Step ® in

Figure 2). When the merge succeeds, the resulting substitution is a context unifier

of C against the current context.q

To minimize recomputation, the merged unifiers are computed incrementally by

traversing the partial context unifier lists for the clause C in a depth-first fashion.

The root node of the depth-first traversal is θ, its children are all the partial context

unifiers of L1, the children of each of the root’s children are all the partial context

unifiers of L2, and so on. Partial context unifiers are merged incrementally as they

are visited along a path of this search tree, and the merged unifier computed along

a path is reused for all the extensions of that path. Clearly, less work is done if

the tree is slim at the root, as less merge operations are then necessary. To achieve

this the lists associated with the literals L1, . . . , Ln in C are actually first ordered

by increasing length before starting the traversal. This is indicated in Figure 2 by

boxes of growing length for S1 to Sn in this order.

Each newly computed context unifier determines a remainder (Step ¯ in Fig-

ure 2), and every such (non-empty) remainder provides one new candidate literal,

selected as explained in Section 4.8, that gets added to the candidate set in Step 5

of the proof procedurer (Step ° in Figure 2, where the new candidate literal is

denoted as K ′).

For each candidate literal L, the system maintains a reference to the input clause

and the context literals used to compute the context unifier and the remainder

qThe context unifier is converted into an admissible context unifier afterwards. The underlying
algorithm is illustrated in Example 2.1 and explained in detail in (Ref. 9). But we can ignore this
issue here.
rRecall from Section 3 that it is enough to consider only one Split literal per remainder without
affecting the calculus’ completeness.
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that contained L. This allows it to quickly recompute the context unifier and the

remainder later, if needed.s

The computation of Assert candidates is done in a similar way thanks to the

following expedient. Recall that to apply Assert to a clause L∨C it is necessary to

compute a context unifier for the subclause C only. To do that we use a fictitious

context literal, let us call it Assert here, that unifies with any input literal but can

be used only once in the computation of each context unifier.t After the context

unifier has been computed, the result of applying that unifier to the clause literal

that had been paired with Assert is a possible Assert candidate. This way, Assert

and Split candidates can be computed at the same time using the very same incre-

mental algorithm described earlier for merging partial context unifiers. This leads

in practice to significant performance gains with respect to computing Assert and

Split candidates separately.

At times, it is convenient not to interleave the computation of Assert and Split

candidates. In fact, since Assert candidates are always preferred to Split candidates

by the selection heuristics, it makes sense to delay the computation of Split candi-

dates as long as Assert candidates exist. Such delaying pays off when a derivation

branch can be closed by a sequence of Assert applications, and in particular when

a problem can be proven unsatisfiable by means of Assert alone, which is the case

for instance for Horn input sets. Thus, the current version of Darwin starts by

computing only Assert candidates until a Split is really needed. From that point on

Split and Assert candidates are computed together, as described above. This simple

combination yields in general a better performance than either computing Split and

Assert candidates separately or interleaving their computation from the beginning.

It is interesting to point out hat contrary to what is done in Darwin, the ME

calculus does not require the computation of all the possible context unifiers in-

volving a given context literal: the Split inference rule (and similarly Assert) admits

implementations that compute remainders only locally, during the Split rule appli-

cation, and discard them afterwards. Thus, for a given context, the possible context

unifiers of a clause could be computed, say, one after the other until an admissible

one is found. At this point Split could be applied using that unifier and the unifier

could then be immediately discarded. Memory consumption under such a scheme

would be obviously greatly reduced.

Nevertheless, the approach used in Darwin has a big advantage: because at

any point in the derivation all the theoretically necessary context unifiers and their

remainders are known, they are available for inspection and comparison. Given that

both the choice of a remainder from the set of all possible (admissible) remainders,

sIn an earlier version of Darwin, described in (Ref. 15), more information was kept for the “best”
candidates, called active candidates, such as for example the complete remainder. The separation
into active and passive candidates has been dropped as it merely increased the complexity of the
system without improving its performance.
tSo, for instance, with the clause L∨C above, if paired with L, Assert cannot be paired with any
literal in C.
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and the choice of a literal from it to split with are don’t-care nondeterministic

choices, arbitrary heuristics can be employed for their computation. Furthermore,

for each pairing of an input literal L with a context literal, the computation of

the context unifier for the clause containing L is attempted in Darwin exactly once

in the current derivation tree branch. This avoids the recomputation of the same

context unifier that would happen in the more näıve scheme indicated above.

These considerations are the main rationale for the data structures and algo-

rithms described above. Computing context unifiers incrementally and non-locally

is clearly memory intensive, as all possible partial unifiers are kept in memory.

However, all of our experiments so far indicate that the current levels of memory

consumption does not impair the performance of the system. But more experimental

results explicitly monitoring memory consumption are probably needed.

4.8. Selection Heuristics

As explained in the previous section, all theoretically necessary remainders are at

any point in the derivation available for inspection. This supports the effortless

implementation of heuristics to select a literal to split with. The heuristics for se-

lecting a literal from the candidate set to be added to the context is based on the

following criteria. The overall heuristics is determined by the induced lexicographic

ordering over these criteria, with Universality being the most significant criterion,

and Generation the least significant one. Assert is always preferred over Split in

order to emphasize redundancy elimination.

(1) Universality. Universal Split literals (which includes ground literals as well) are

preferred to parametric Split literals as the addition of universal literals impose

stronger constraints on the current context, generally leading to context unifiers

with smaller remainders and to fewer applicable Split candidates later.

(2) Remainder Size. Recall that candidate literals for Split are drawn from the

remainder of some context unifier. Now, if the problem is satisfiable, at least one

remainder literal of every remainder must be satisfied by the context. Because

of this, candidate literals originating from smaller remainders are preferred over

literals from larger remainders. The rationale is that backtracking is minimized

this way. For an extreme case, note that for Split literals coming from a singleton

remainder applying the right side of Split is pointless because it immediately

produces a closed branch. In fact, Darwin does not even generate a choice point

when it adds such literals to the context.

(3) Term Weight. The number of symbols in a literal has shown to be useful infor-

mation that should be exploited. This emphasizes the use of “lighter” literals.

Because variables are excluded from counting, additional preference is given

to literals with variables instead of parameters or other terms at the variable

positions.

(4) Generation. This is a measure of how close in the derivation the candidate is

to the original clause set. The generation of a context literal is −1 for ¬v, and



January 4, 2006 14:33 WSPC/INSTRUCTION FILE 00255

44 P. Baumgartner, A. Fuchs & C. Tinelli

the generation of the corresponding candidate otherwise. The generation of a

candidate is the maximum of the generations of the context literals used in its

context unifier incremented by one. That is, candidates whose context unifier

is solely based on ¬v are of generation 0.

Candidates with a smaller generation are preferred. The intention is to keep

the derivation close to the problem set, similar to bidirectional search. For some

problems this is the key to their solutions; on average it is a slight improvement.

Recall that the term depth is not needed as part of the heuristics as it is implicitly

imposed by the depth bound (see Section 4.4).

The lexicographic ordering on candidate literals induced by the criteria above

is not total. To simplify debugging and the comparison of different data structures,

we make it total by using as last ordering criterion an arbitrary, but fixed, total

ordering on the candidates based on an enumeration of the input clauses and of the

context literals.

Criteria 1 and 3 above are also applied in Step 5 of the proof procedure when

choosing a literal from a remainder as the candidate literal for that remainder.

4.9. Term Indexing

The current context is basically a set of literals. The preconditions of Split, Assert,

and Subsume require, in essence, to search the context for literals that unify with,

subsume, or are subsumed by a given literal. Some of these queries are applied to

every computed candidate at least once in order to immediately drop invalid, e.g.

subsumed, candidates. In order to avoid a linear scan of the context to perform

each of these checks, Darwin uses by default term indexing for the context based

on substitution trees.18

Substitution trees index terms by abstracting over identical subterms. For ex-

ample, the terms f(g(a)) and f(g(b)) are represented by a node containing f(g(x))

and two children containing the substitutions {x 7→ a} and {x 7→ b}. Thus, for

the term f(h(a)) the non-unifiability is detected at the node f(g(x)) for both chil-

dren. In general, substitution trees seem to be best suited for deep terms containing

variables. For shallow ground terms, e.g., for clause sets stemming from Bernays-

Schönfinkel problems, using the current implementation of substitution trees makes

Darwin actually slower than using no term indexing at all.

For comparison, an alternative indexing scheme based on imperfect discrimi-

nation trees19 has been implemented. Discrimination trees index on common term

prefixes, where a term is seen as a sequence of symbols given by its pre-order traver-

sal, and for imperfect discrimination trees all variables are represented by the same

special constant. In the current implementation, their performance is quite close

to that of substitution trees for non-Horn problems and slightly superior for Horn

problems. As the crucial productivity check (Ref. 8) is currently only implemented

for substitution trees, those are still the preferred choice for non-Horn problems.
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4.10. Close Look-ahead

A branch is detected as unsatisfiable as soon as Close applies, which happens when

a context unifier with an empty remainder is computed for a clause in the current

clause set. It is easy to see however that when in the current branch of the derivation

two contradictory Assert candidates are computed, asserting one of them would

immediately close the branch. Now, due to the fact that candidate literals wait

for their turn in the candidate set, in unlucky cases two contradictory candidates

might be ignored for a long time. To avoid this problem, Assert candidates and Split

candidates from remainders containing only one literal are stored in a term index

(Section 4.9). Each new candidate is checked against the index for a contradiction.

As soon as this check succeeds Close can be triggered by adding the new candidate

to the context.

If all candidates were stored in the look-ahead index the introduced overhead

of maintenance and contradiction checks would in general far outweigh the benefits

of a shortened derivation. Empirically, an index size of about 10,000 for candidates

obeying the current term depth bound has turned out to introduce only moderate

overhead while making problems solvable which were previously out of reach. It is

not clear yet if including the candidates exceeding the depth bound in the look-ahead

mechanism as well is worthwhile. This adds such significant overhead in general that

some problems are no longer solved in a reasonable amount of time.u On the other

hand, some previously unsolvable problems become instead solvable.

4.11. Horn Problems

The ME calculus allows for several optimizations for the important class of Horn

problems. First,ME is complete for Horn problems without the Split rule, i.e., ex-

tending the context by means of Assert alone is sufficient.9 Therefore, with Horn

clause sets, Darwin does not compute any Split context unifiers. Second, negative

Assert literals can also be ignored without losing completeness if the default inter-

pretation is {¬v}. Thus, the current context is only extended by asserting positive

literals. For many problems this saves time, by avoiding the fruitless assertion of

negative literals, which are satisfied by the context {¬v} anyway, and the sub-

sequent possible computation of further unnecessary Assert candidates. Note that

while never asserted, negative Assert candidates do still play a role as they are used

for the Close look-ahead (See Section 4.10).

5. Performance Evaluation

We evaluated the performance of Darwin against the TPTP problem library version

2.7.v Since Darwin’s input language covers only clause logic, and Darwin does not

uThe overhead is caused mostly by index maintenance operations, as candidate literals are removed
from the index when selected or during backtracking.
vSee http://www.tptp.org/.
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(yet) have dedicated inference rules for equality, we concentrated on the clausal

problems without equality. In order to compare Darwin with other current provers

we list the results for a subset of the last CASC competition, CASC-J2,w and we

evaluated those provers over a subset of the TPTP. All tests were run on a Pentium

IV 2.4Ghz computer with 512MB of RAM. The imposed time limit was 300 seconds

for the tests on the clausal problems of the TPTP without equality, and 500 seconds

for the CASC tests; the memory limit was 500 MB in both cases. Experiments

showed that this is comparable to the setup of the CASC-J2 competition, where

AMD Athlon XP 2200+, 1.8Ghz computers with 512MB of RAM where used with

a time limit of 600 seconds.

Table 1. Several Darwin configurations over the TPTPv2.7

Name # Default Eager Reluctant Exceeding Weight
Problems Restart Restart Look-ahead Limit

HNE - SAT 63 24/0.1 – 24/0.1 24/0.1 24/0.1
HNE - UNSAT 680 602/4.9 – 597/6.5 592/4.9 602/7.8

HNE - Total 758 626/4.8 – 621/6.3 616/4.7 627/7.6

NNE - SAT 400 345/2.4 333/1.7 346/2.4 346/2.4 330/3.3
NNE - UNSAT 654 552/7.1 552/6.3 537/6.8 560/7.2 491/5.4

NNE - Total 1172 897/5.3 885/4.6 883/5.1 906/5.3 821/4.6

Note: The problem classes consist of clausal problems without equality and are divided in
Horn problems (“HNE”) and non-Horn problems (“NNE”), and in satisfiable (“SAT”) and
unsatisfiable (“UNSAT”) problems. Note that some problems are classified as unknown or
open instead of satisfiable or unsatisfiable, so the total numbers of problems is higher than
the sum of satisfiable and unsatisfiable problems. “#Problems” gives the number of problems
in a class, table entries are of the form “Number of problems solved”/“average CPU time”.
See text for an explanation of the different Darwin configurations; for an evaluation of older
features see (Ref. 15) and (Ref. 9).

Table 1 summarizes the results for several configurations of Darwin. “Default”

represents the default configuration, in which all derivation rules are used, back-

jumping is used for backtracking, the initial context is {¬v}, iterative deepening is

over the term depth, the initial term depth bound is 2, Close look-ahead is performed

only for candidates within the depth bound, and restarting follows the non-eager

Strategy 2 described in Section 4.4.

All other configurations differ by exactly one option. Specifically, “Eager

Restart” uses the restart strategy 1, “Reluctant Restart” uses the restart strat-

egy 3, “Exceeding Look-ahead” includes candidates exceeding the depth bound in

the Close look-ahead, and “Weight Limit” does iterative deepening over the term

weight. Notice that for Horn problems eager restarting and the default strategy are

identical, as the derivation tree degenerates to a branch (see Section 4.11), and so

backtracking to another branch is not possible.

wSee http://www.tptp.org/CASC/J2/
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As expected, “Eager Restart” is faster for unsatisfiable problems but solves less

satisfiable problems than the default strategy. The “Reluctant Restart” strategy is

worst. Disappointingly, it solves only one more satisfiable problem than the default

strategy. “Exceeding Look-ahead” adds a significant overhead, so that even a num-

ber of problems solved with the default configuration are lost. On the other hand, a

larger number of problems which are too hard for the default configuration can be

solved almost instantly, so some measure of when to apply the look-ahead is needed.

For NNE problems, iterative deepening over the term weight is clearly inferior to

iterative deepening over the term depth. For Horn problems, it is still much slower

but it solves the same number of problems. More interestingly, the two methods

differ in the actually solved problems. For example, the Horn problem PUZ050-1

is solved in less than 70 seconds with term weight, but not at all with term depth,

with 73260 applications of Asserts, while computing 194762 Assert candidates. It

has a rating of 1.0 and the classification “unknown”, denoting that the problem is

very hard for most provers.x This problem is also the reason that the number of

satisfiable and unsatisfiable problems do not sum up to the total number of solved

problems in Table 1. Combined, the two approaches solve 650 problems. All in all,

the default configuration seems to be a reasonable choice, unless specific information

about the problem at hand indicates another configuration.

Table 2. Several provers over the TPTPv2.7

Name # Darwin DCTP DCTP Vampire E Spass
Problems 1.1 1.31 10.21p 7.0 0.82 2.1

HNE - SAT 63 24/0.1 34/0.0 35/1.0 30/19.0 32/0.1 29/0.1
HNE - UNSAT 680 602/4.9 538/5.1 599/7.7 662/14.4 644/2.9 539/9.9

HNE - Total 758 626/4.8 572/4.8 634/7.4 693/14.7 676/2.8 568/9.4

NNE - SAT 400 345/2.4 290/6.2 342/10.0 176/25.4 234/6.8 220/14.4
NNE - UNSAT 654 552/7.1 510/7.3 589/7.1 635/7.5 604/6.4 521/10.5

NNE - Total 1172 897/5.3 800/6.9 931/8.2 812/11.6 838/6.5 741/11.7

Note: The structure of the table is analog to Table 1. Darwin was run in the default configuration,
while the other provers were run with the same settings as in the CASC-J2 competition, i.e.
DCTP 10.21p with the time limit set to 300. DCTP 1.31 with “-negpref -complexity -fullrewrite
-alternate -resisol”, Vampire 7.0 with “–mode casc-j2 -t 300”, E 0.82 with “-s -xAuto -tAuto”,
and Spass 2.1 with “-PProblem=0 -PGiven=0 -PStatistic=0 -Auto”.

In Table 2 Darwin is compared with state-of-the-art first-order theorem provers.

Of the selected provers, DCTP implements the disconnection tableaux calculus,20

where DCTP 1.31 uses a single strategy, while DCTP 10.21p employs several strate-

gies and restarting. The other provers are based on saturation methods such as res-

olution and superposition. Regarding the total number of problems solved, Darwin

performs in the mid range for Horn problems without equality, and is second only

xIt is solved by Vampire 7.0 as well, though.
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to the multi-strategy version of DCTP for non-Horn problems without equality,

which we consider to be a very good result. Regarding the average time spent on

the problems solved, the differences among the provers are not that significant.

We must mention though that about 300 of the NNE problems belong to the

Bernays-Schönfinkel class, a class for which Darwin and DCTP are decision proce-

dures, while the other provers are not. Interestingly, Darwin is the weakest prover

for satisfiable Horn problems, but fares best for satisfiable non-Horn problems. In

general, Darwin and DCTP seem to be much stronger for satisfiable non-Horn prob-

lems than the saturation provers Vampire and E, but much weaker for unsatisfiable

problems. For example, Darwin basically instantly solves a number of hard (rating

0.86) satisfiable problems, which are too hard for Vampire, E, and DCTP 10.21p,

or take a few minutes to be solved by DCTP 10.21p. One of these, SYN803-1, is

found to be satisfiable within a term depth of 2 in 0.0 seconds, with 2 applications

of Assert, 1 of Split, and 2 of Subsume, producing a final context consisting of merely

three literals. For most unsatisfiable problems Vampire or E are faster, but for ex-

ample FLD052-4 is solved in 2.3 seconds by Darwin, in 33.7 seconds by Vampire,

and not at all by E and DCTP. It it is proven unsatisfiable by means of Assert (932

applications) alone. Unsatisfiable Bernays-Schönfinkel problems like GRP128-2.006

(8 Close, 428 Assert, 7 Split) and GRP128-3.005 are almost immediately solved by

Darwin and DCTP, and not at all or using significantly more resources by Vampire

and E.

In these comparisons one should take into consideration that Darwin uses only

one strategy, whereas DCTP-10.21p, Vampire, and E use different strategies based

on the specific problem, which helps to increase the number of problems solved.

Finally, In Table 3 Darwin is evaluated on some of the divisions of the CASC-

J2 competition restricted to clausal problems. The actual problems used in the

Table 3. Some problem divisions of the CASC-J2 competition

Name #Problems Darwin DCTP DCTP Vampire E Otter

1.1 1.31 10.21p 7.0 0.82 3.3

HNE 35 18 19 27 35 31 13
HEQ 35 2 3 8 31 31 3
EPS 40 40 37 40 9 – –
EPT 40 38 35 39 37 – –
NNE 35 17 12 22 34 32 3
SNE 50 19 19 25 – – –

Note: Problem names: HNE – (unsat.) Horn with No Equality; HEQ – (unsat.)
Horn with some (but not pure) Equality; EPS – (sat.) Effectively Propositional
non-theorems); EPT – (unsat.) Effectively Propositional Theorems; NNE – (unsat.)
Non-Horn with No Equality; SNE - SAT with No Equality. “#Problems” gives the
number of problems in a class, table entries are of the form “Number of problems
solved”. Darwin was run in the default configuration; the results of the other provers
are taken from the CASC-J2 web page, “–” means that a prover did not participate
in this class.
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competition are randomly selected from so-called eligible TPTP problems. A prob-

lem is eligible, if additionally to meeting its division’s requirements its rating clas-

sifies it as neither trivial nor too hard. Furthermore, each division must contain

some previously unseen problems and must not include an excessive number of very

similar problems.y

As expected, Darwin fares extremely well in the divisions EPS and EPT, which

consist of satisfiable and unsatisfiable clause sets with a finite Herbrand universe,

i.e., essentially the Bernays-Schönfinkel class. The only competitive prover for these

problems is DCTP, especially in its multi-strategy version. As could also be expected

from CASC’s bias towards unsatisfiable problems, Darwin turns out to be very

weak for Horn problems with equality, and also comparatively weak for Horn and

non-Horn problems without equality, though significantly better than Otter. Note

that while Darwin performs quite well for SNE problems when compared with the

other provers listed, systems specialized in satisfiable problems such as Paradox and

Gandalf are clearly superior, solving almost all SNE problems.

Updates of experimental results and more detailed information, including Dar-

win’s time and memory consumption individually for each problem, can be found

on Darwin’s web page.z

6. Conclusions and Future Work

The purpose of this paper was to describe the design of the Darwin theorem prover,

its proof procedure, data structures and algorithms. One of the main motivations

for developing Darwin’s calculus, Model Evolution, was the possibility of migrat-

ing to the first-order level some of those very effective techniques developed by the

SAT community for the DPLL procedure. This goal has been achieved to a certain

degree: the current version of Darwin implements a first-order version of unit propa-

gation, a form of simplification, and backjumping, a form of intelligent backtracking.

These features, which are considered absolutely critical for the good performance of

propositional DPLL-based SAT solvers, where the most immediately implementable

given that the Model Evolution calculus itself 4,8 was already designed with them

in mind.

Yet, much remains to be done. Various alternatives and modifications to Dar-

win’s data structures and algorithms have been identified in Section 4. Among

these, perhaps the most significant one concerns the selection heuristics explained

in Section 4.8.

We plan to to adapt to Darwin a few more of the heuristics that have proven

useful with the propositional DPLL procedure. For instance, we are considering im-

plementing a literal selection heuristics that prefers candidates from recent conflict

sets, i.e., literals recently responsible for the closure of a previous branch.21 Since

ySee http://www.tptp.org/CASC/J2/Design.html#Problems .
zCurrently at http://goedel.cs.uiowa.edu/Darwin/ .
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conflict sets are already computed in Darwin as they are used for backtracking (see

Section 4.3), this heuristics should be quite easy to incorporate. The incorporation

of another staple technique for DPLL-based solvers, lemma learning, is planned for

the next version. Adding lemmas, however, will require some more theoretical work

at the calculus level first.

As another extension we are currently investigating ways to equip the calculus

with dedicated inference rules for (efficient) equality reasoning. When implemented,

this will address the issue that Darwin generally performs poorly in domains with

equality.

Fairness of derivations is currently achieved through iterative deepening over

term depth or term weight. It would be interesting to experiment with alternatives

like iterative deepening over derivation length. Different iterative deepening strate-

gies are known to have a drastic impact on the search space exploration of model

elimination provers,22 and it is reasonable to expect the same for Darwin.

We also reported on practical experiments carried out with problems from the

CADE-J2 system competition, as well as on results on parts of the TPTP problem

library. When assessing the performance of Darwin compared to other provers, we

believe one should take into account that the Model Evolution calculus is a very

recent development. A great deal of know-how has been developed over the last

decades for the implementation in particular of resolution and model elimination

based systems. Although the techniques employed there can be partially exploited

(and we tried so for Darwin), new algorithms and data structure tailored for the

Model Evolution calculus, such as those used in Darwin for computing context

unifiers, are probably needed. Similarly, more work is necessary to identify successful

proof strategies and heuristics for the calculus. The same applies to other instance-

based methods such as, e.g., the disconnection tableau calculus,20 which presently

seems to be the only calculus of this kind for which a competitive prover exists.23

Despite a lack of established know-how, we find our first experimental results very

encouraging. In particular, Darwin performs very well on clause sets stemming from

Bernays-Schönfinkel problems. It is among the best provers for the EPS and EPT

divisions of the TPTP library. More generally, it is also among the best provers over

the non-equational divisions of TPTP.
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