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Abstract

In this paper we investigate relationships between top-down and bottom
up approaches to computation with disjunctive logic programs (DLPis@
bottom-up calculus considered, hyper tableaux, is depicted in its grarmd v
sion and its relation to fixed point approaches from the literature issiiv
gated. For the top-down calculus we use restart model elimination (RRUE)
show as our main result that hyper tableaux provide a bottom-up semantics
for it. This generalizes the well-known result linking theoperator to SLD-
resolution fordefiniteprograms towarddisjunctiveprograms. Furthermore
we discuss that hyper tableaux can be seen as an extension of SLO-resolution.
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1 Introduction

For disjunctive logic programs (DLPs) there are severgbpsals for defining inter-
preters, like the nearHorn-Prolog family [Lov87], SLI-Réagion [LMR92], SLO-
Resolution [Raj89], model tree construction [FM91] or eesmodel elimination
(RME) [BF94a, BFS95]. There have also been different apgres to assign least
fixpoints to DLPs, like the state semantics [MR90], a senearitiased on model
trees [FM91] and approaches to give a fixed point semantisgeoial interpreters,
e.g. in [Fur92, Dec91, RS90].

This paper is concerned with relationships among theseapbes.

In previous work the authors introduced the family of RMEccdil as goal
oriented interpreters for positive disjunctive logic prags [BF94a]; more re-
cently, we investigated variants of RME for computanmgswergo queries for DLPs
[BFS95]. RME is related to Plaisted’'s MPRF [Pla88] and Lawel's nearHorn
Prolog [Lov87]. The idea throughout these calculi is to eatelause Ay V -- -V
Am < By A--- ABy only through one of the head literabs,...,An, but never
through one of the body literalB,,...,B,. Thus, a natural procedural reading
of clauses is better supported than in e.g. model elimingtiov78].

RME can be implemented by using the PTTP [Sti90] techniqungs dffers the
advantage that in case of Horn programs the procedute underlying PROLOG
system. Only the non-Horn part of a disjunctive logic progres treated by a
compiler such that at run time a PROLOG program is executedrbgfficient
PROLOG system (for details see [BF94b]).

Recently a bottom-up proof procedure for non-ground pasibLPs, the hy-
per tableaux calculus, was presented in [BFN96]. The ptgmsyer shows that this



proof procedure can be understood as a direct implementafithe most promi-

nent fixpoint iteration techniques. Since it suffices for purposes to restrict to
the ground case of Hyper tableaux, and Hyper tableaux driaithis case with
the well-known SATCHMO procedure [MB88], our results apmhySATCHMO as

well.

In Section 2 we summarize the bottom-up ground hyper taklealgulus from
[BFN96] and in the subsequent Section 3 we compare this lgaldo fixpoint
iteration techniques from [MR90] and [FM91].

In Section 4 we will show how a hyper tableaux refutation cariransformed
into a RME refutation. This result links the bottom-up to @-ttown semantics
for DLPs, and thus generalizes the standard result in [lIe8Ying that any finite
iteration of theT-operator fordefinite programs can be simulated top-town in a
SLD-refutation. In Section 5 we relate SLO-Resolution topElytableaux, and
conclude that Hyper tableaux are more general.

Preliminaries

Clausesi.e. multisets of literals, are usually written as the ulistionA; Vv --- v
AnV-ByV---V =B, oras animplicatio,...,An < B1,...,B, (Mm>0,n>0).
A clause withm > 1 is also called g@rogram clauseand a clause wittm= 0 is
called anegativeclause. Agroundclause or literal contains no variables. With
we denote the complement of a litetal Two literalsL andK arecomplementary
if L = K. As usual, arinterpretationfor an (implicitly) given signature is always
represented by the set of atoms being in it. A clauseC' is the smallest factor
of clauseC iff C' is the shortest subclause®@fuch thaC =C'.

We consider finite ordered tredswhere every node is labeled with a literal,
except the root. Such trees are also catizleaux The labeling function is de-
noted byAt, or simplyA, but in the sequel we will often confuse nodes with their
labels. Abranchof a tableadr is a sequencBl, ..., N, (n> 0) of nodes inl such
thatNp is the root ofT, N; is the immediate predecessorMf 1 for 0<i < n, and
Ny is a leaf of T. A branchb = Ny,...,Ny is calledregular iff A(N;) # A(N;) for
1<i,j<nandi # j, otherwise it is calledrregular. A tableau isregular iff each
of its branches is regular, otherwise iirieegular. The set obranch literalsof b is
lit(b) = {A(N1),...,A(Nn)}. We find it convenient to use a branch in place where a
literal set is required, and mean its branch literals. Fstaince, we will write ex-
pressions likeA € b instead ofA € lit(b). A clauseC is called atableau clause (in
T)iffthereisanodéN in T with A(Ny) V- VA(N,) =C, where{N,...,N,} are all
children ofN. By Td we mean the tableauk’ which results fromT by updating
the labeling function such that (N) = (Ar(N))d, whered is some substitution
(i.e. we applyd to the labels).

A selection functioris a total functionf which maps an open tableau to one of
its open branches. Iff(T) = b we also say tha is selected in T by.fFortunately,
there is no restriction on which selection function to usa. iRstance, one can use
a selection function which always selects the “leftmostriah.



2 Hyper Tableaux

In [BFN96] we introduced a variant of clausal normal formléatux called “hy-
per tableaux”. Hyper tableaux keep many desirable feamfremalytic tableaux
(structure of proofs, reading off models in special casdglewaking advantage of
central ideas from (positive) hyper resolution. In the giease, hyper tableaux
coincide with the well-known SATCHMO [MB88] procedure; ftie first-order
case, hyper tableaux have significant advantages (see [FN%r the purposes
of the present paper, however, where we use hyper tableanodel a semantics
of positive disjunctive programs, it is sufficient to treaetground case only. A
top-down proof procedure, which is able to handle the firdeocase and, hence,
to compute answers is given later in Section 4.

In order to make the present paper self-contained we willlrecsimplified
ground version of the calculus. For the rest of this papalways denotes a possi-
bly infinite! ground clause set, unless stated otherwssis; also referred to as the
input clause set

Definition 2.1 (Hyper Tableaux)
Let f be a selection function. We consider tableaux where eactthia labeled as
either “open” or “closed” Hyper tableauxor $ are inductively defined as follos

Initialization Step: The empty tree, consisting of the root node only, is a hyper
tableau fors. Its single branch is labeled as “open”.

Hyper Extension Step: If

1. T is an open hyper tableau fgr f(T) = b (i.e. bis the open branch selected
inT by f), and

2. C=Ay,...,An< By,...,Byisaclause frony (m> 0,n > 0), calledextend-
ing clausein this context, and

3. {B4,...,Bn} C b (referred to afiyper conditiof

then the tred”’ is a hyper tableau faf, whereT’ is obtained fronil' by extension
of b by C replacebin T by thenewbranches

(b,A7)...,(b,Am),(b,—Bi)...,(b,—Bn)

and then label every new bran¢h,A;)..., (b,An) with positive leaf as “open”,
and label every new branch,—B;)...,(b,—By) with negative leaf as “closed”.
We will write the fact thafl’ can be obtained frori by a hyper extension step
in the way defined a$ ¢ T', and say tha€ is applicableto b (or T). Note that
the selection function does not appear explicitly in thiatien; instead we prefer
to let f be given implicitly by the context.
A hyper tableau iglosedif each of its branches is closed, otherwise ibjEn
O

1The ability to handlenfinite sets of clauses allows easy treatment of the firstraraise.
2The inductive definition will be such that a branch is clogéi tontains a pair of complemen-
tary literals.



The hyper condition of an extension expresses dflafwhich are possibly zero)
body literals have to be satisfied by the branch to be extendlbid similarity to
hyperresolutioncoined the name “hyper tableaux”.

The central property of an open brarizts that it can be mapped to an interpre-
tation in the usual way, i.e. by taking the positive literad$ astrue and all others
asfalse for infinite derivations we take the chain limit of the inaging branches.
Together with an appropriafairnessnotion for derivations (roughly: at least one
open branch has to be expanded as long as possible withdatingpregularity)
we get the completeness of hyper tableaux (see again [BFN96]

Definition 2.2 (Hyper Tableaux Derivation)
Let f be a selection function. A (possible infinite) sequetge.., Ty, ... of hyper
tableaux forS is called a(hyper tableaux) derivation frons iff T, is obtained by
an initialization step, and far> 1, T_1 Fy,_, ¢, Ti for some claus€i_; € . This
is also written as

Tibp,c Too - Tabo,G Tnya-

A derivation is calledegular iff every tableau in the derivation is regular (cf. Sec-
tion. 1), otherwise itigrregular. A derivation is called ghyper tableaux) refutation
if it contains a closed tableadl

Note that extension steps are no longer applicable to acclogeer tableaux.

Figure 1 shows an example refutation. This example also detraies that
hyper tableaux handle more than one negative clause. Bit thisossible to have
integrity constraints in the input clause set, and not jusg@m clauses.
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Figure 1: A hyper tableau fd? andG given in the figure. Notice that the formuta
stands for the two clauses- A and « B. For simplicity of presentation, negative
leaf nodes stemming from program clauses are not drawn.

3 Statesand Model Trees

In this section we relate hyper tableaux to the fixpoint seiogn



3.1 States

We summarize state semantics from [LMR92]. lSétbe a possibly infinite set of
ground program clauses.

DHB, the disjunctive Herbrand base {6t is the set of disjunctions that can be
formed by atoms of the Herbrand basesof. The transformatiof : 2PHB — 2DHB
is given by

(D) ={CeDHB|C + By,...,ByeST, V1<i<n:BVvCeD,
C"=CyV...vCyvC/, Cisthe smallest factor "}

A statefor ST is a subset oDHB. An expanded state Sfbr ST is a state, such
thatST = exST), where

expST) = {C e DHB|C € STor3C' € ST:C'is a subclause ¢t}

In [LMR92] it is shown that the operatdr is continuous, hence its least fixpoint
exists and théfp-Operator yield$ 1 w.

We do not introduce model states explicitly, moreover wetbsé& characteri-
zation as fixpoints and logical consequences:

Theorem 3.1 (Lobo et al. 92)
LetS™ be a set of program clauses &hd DHB. Thens™ |=C iff C € exp(Ifp(I")).

Definition 3.2 (Cut of T)
Let T be a hyper tableau fgf. A clauseC is acut of T iff

(1) Vbopenbranchof : 3N e€b: 3L € C such that(N) =L, and
(2) VLeC: Jbopenbranchol : AN eb: A(N) =L.

O

That is, in order to get a cut we pick a literal from every opesnich.

Now assume thas is in goal normal form By this we mean the transformation
of every clause of the form- B;,...,By into G < By,...,By,, whereG is a new
predicate symbol, and furthermore adding the clau&eas the only goal. By
ST we denote the sef without the purely negative clauses. The&h consists of
program clauses only and consequently is satisfiable.

The following lemma relates hyper tableaux derivationE-iterations.

Lemma 3.3
For everyi andC € 't i there is a hyper tableali such that there is a c@ of T
wereC is the smallest factor @@'.

3Obviously, this operator is dependent of the progtgim we assume this will be clear from the
context.



Proof. Induction oni.

Induction start i= 0: The sef’ 1 0 contains all smallest factors of (disjunctive) facts
from S*. LetAy,...,A, + be such a fact, then construct a hyper tableau with an
initial step and a hyper extension step using this fact. Thé\g, ..., A, « of this
tableau has the desired property.

Induction step i i+ 1: If CeTl1Ti+1, we know by definition of” thatC is
the smallest factor o€, V...V C,VC/, such thaC' «+ By,...,By € ST and{B; Vv
Ci,-..,BnVCy} CT1i. The induction hypothesis gives us that there exist hyper
tableauxTs, ..., Tn, such thaB; v C; is the smallest factor of a c&; v Cj of T;.

All we have to do is to link these tableaux together to one hygldeau: Select
a branchb; from tableauT; which contains the literaB;. Take the lealN; of this
branch and use it as the new root of the tabl€au. The result is again a hyper
tableau. If this linking is done foj from 1 ton we get withT,,; a hyper tableau
which contains a branch with literal, ..., B,. Hence, the clausg’ < By,...,By
is applicable, and in the resulting tableau there is £€utC; V - - - C, with smallest
factorC. Q.E.D.

As an example, assume the following set of clauses- {bV c,a < b,a<« c}.
There is a hyper tableau which consists of the two branchés{Wja} and{c,a}
as sets of labels of its nodes. A set of cuts of this tré@iga,aVv b,bVvc,aVv c}.
Note that there is no sequence assumed in which the litecaisdifferent branches
have to occur within a cut. The iteration of theoperator gives 1+ 0= {bV c},
ri={bvcavc,avb}andlrt2={bvcavcavbal =rtw.

Having this close relation between hyper tableaux and troiiit iteration
over states we can use this result to prove completenessafdhyper tableaux.
Note that a proof for full first order clauses is given fromagch in [BFN96],
which includes a fairness consideration. Here we only waustablish the close
relationship between the approaches.

Theorem 3.4 (Completeness of Hyper Tableaux)
For every unsatisfiable ground clause $éh goal normal form there is a closed
hyper tableau fos.

Proof. Clearly, ST = G. From Theorem 3.1 we learn th@te exgIfp()). Since
G is an atom it must be contained lfip(I") alone. Sincd is continuous, we can
apply a standard result from fixpoint theory to conclifdél") = 't w. Hence there
is ani suchthaG e 't i.

Lemma 3.3 gives us the existence of a hyper tableawith a cutC’, such that
G is the smallest factor a’. HenceC' has the formGV ...V G; in other words
every branch of the tableau contains the litggal This tableau can be closed by
using the goal clauseG. Q.E.D.

3.2 Mode Trees

The other approach we want to relate hyper tableaux to, isffettom-up evalua-
tion of disjunctive deductive databases. In [FM91] and §2}a bottom-up conse-



quence operatdrM for disjunctive deductive databases is given which actseté s
of interpretations, thus yielding models for the given detlauses. In [SMR95]
this approach is related to the consequence operator @s sthich we discussed
above. Fernandez and Minker also introduce model trees a@sualis to compute
this operator, this is done in detail in [LMR92]. We will densirate that this is
related closely to the hyper tableaux calculus.
The consequence operafof over sets of Herbrand interpretations is given by
U ZA N 2 M(1) = min(r"NT (1))
rINT . DHB_, oHB FNT(I) = U, MOD(T (1))
whereMOD gives all models of a state and min filters out the minimal nimdEhe
latter operator looks harmless; however this is a rathatycstep. Its definition is
given by: mi(I)={l € 1| -3Je€ 1:JCI}. In [BFN96] we gave a proof that
the branches of a hyper tableau correspond to partial mofl¢ie program and in
particular that in fair derivations branches corresponchtalels. In [Nie96] it is
demonstrated how the computation of the min-operator baséiis definition can
be avoided.
In the following we additionally depict the relation betweene step with the
M operator and hyper extension.

Definition 3.5

Let T be a hyper tableau arllan open branch. Aomplete extension of T at b
wrt. a set of program clauses™ is a treeT’ which can be obtained frofi by
applying as long as possibilayper extension steps with clauses frsmsuch that

(a) only branched' are selected which contamas a prefix, and (b) in the hyper
condition only literals fromb are used, and (c) no extension step introduces an
irregular branchd

The following lemma establishes the connection of partiahbhes, i.e. models
from a hyper tableau to the iterations using éoperator.

Lemma 3.6

LetT be a hyper tableau consisting of one single brdamahd lefT’ be a complete
extension ofT atb wrt. a set of program clauses". Then{lit(t/) |t € T'} C
MOD(T (lit(b)))

Note that sincéd is a single branch of a hyper tableau &reach literal from litb)
is contained irS" as a positive unit clause.

4 Hype Tableaux and Restart Model Elimination

Unlike hyper tableaux, the RME calculus is a goal orientedrjreter for positive
disjunctive logic programs [BF94a, BFS95]. Itis a very siengxtension of model
elimination, which allows a procedural reading of disjuvetclauses. This is pos-
sible, because the calculus does not need any contrapssifhor a discussion of

4Obviously, ass* can be infinite, this derivation is possibly infinite. In tbisse we take the chain
limit of a branch to define the interpretation assigned tede [BFN96] for details.



these aspects the reader is referred to the above citeatliter Here we are inter-
ested only in the relation between RME to hyper tableaux,thackfore we only
present its simplest variant.

RME is implemented by using the PTTP technique and hencéeitsofhe ad-
vantage that in case of Horn programs the procedtee underlying PROLOG
system. Only the non-Horn part of a disjunctive logic progiia treated by a com-
piler such that at run time a PROLOG program is executed byfaieat PROLOG
system (for details see [BF94b]).

RME is atop-towncalculus, i.e. derivations start with a (negative) goaliséa
and end at the (positive) facts. Our main result below showe dény closed hy-
per tableau can be transformed into a RME refutation. Thissfiormation will
essentially “reverse” a hyper tableau from the leaves tadbg where a splitting
in hyper tableaux corresponds to a “restart step” in RME.

This result is in close relationship to the standard resu]t.io87] saying that
any finite iteration of thél -operator ovedefiniteprograms can be simulated top-
town in a SLD-refutation. In fact, we generalize this resalthe non-Horn case.

41 Restart Mode Elimination

We will briefly review the RME calculus as presented in [BFP4idowever, for
ease of presentation we will use a slightly different notatbased on tableaux
(Section 1) and following the style of Definition 2.1.

Definition 4.1 (Restart Model Elimination)
Let S be a finite, but not necessarily ground, clause set. We astang can be
partitioned iR S = P U { < Q}, where thequery < Q s a purely negative clause,
i.e. itis of the form« By,..., By, andP is satisfiable.

Restart model elimination tableaux (RME tableaux) withssition o for §
are inductively defined as follows:

Initialization step: A clausal tableau obtained by extending the root node of the
empty tree by the query— Q € S is a hyper tableau fa$ with substitutiono = €

(the empty substitution). In this context- Q is also called thgoal clauseof the
tableau. All branches are labeled as “open”.

Linked extension step: If

1. T is an open RME tableau fo$ with substitutionor, f(T) =b (i.e.bis
selected inl by f) with negative open leaf nodeA, and

2.C=Aq,...,An < Bq,...,B, is a new variant of a clause fro (m> 1,
n > 0), calledextending clausen this context, and

3. gis a most general unifier fgk and somed; (where 1< i < m),

then the literal tred’o is a RME tableau fors with substitutionoto, whereT’ is
obtained fromT by extendingb by C, and then labeling the new branches

(b,A1),...,(B,A_1),(b,Ais1),...,(0,An),...,(b,=B1),..., (b,—By)

5¢(J” denotes disjoint union.




as “open”, and labeling the new branghA;) as “closed”.

Reduction step: If

1. Tisanopen RME tableau fgrwith substitutionor, f(T) = b with negative
open leaf node-A, and

2. A e bis a positive literal irb, and
3. ois a most general unifier fagk andA’,

then the literal tre@’o is a RME tableau fors with substitutionoto, whereT’ is
obtained fromT by labelingb as “closed®

Restart step: If

1. T is an open RME tableau fa$ with substitutiono, f(T) = b (i.e. b is
selected inl by f) with positive open leaf noda, and

2. C=+«By,...,Byis a new variant of some negative clause frém

then the literal tred”’ is a RME tableau fors with substitutionot, whereT' is
obtained fromT by extendingo by C.
The notions oflerivationandrefutationare taken from Definition 2.2

As an example consider the clause set in

Figure 1 again. Figure 2 contains a RME ‘ ————  Extension step
refutation. B Reduction step
In [BFS95] we investigated the computa- /\ L Restart step

tion of answers by means of variants of RME. B C<
For the present paper we only restate one an- 1

swer completeness result. For this we need /AN
the notion of an answer: ¥ Q is a query, A B
and@y,...,8, are substitutions for the vari- * 1

ables fromQ, thenQ8; Vv ...V QB is anan- -B D AL
swer (for P) An answerQ0;1 V...V Q6 is
acorrect answeiif P |=V(Q01V ...V QBp).
Now let a RME refutation ofS with goal
clause+ Q and substitutioro be given. As- Figure 2: A RME refutation of the
sume that this refutation contaims occur- clause set of Example 5.

rences of the query, i.e. it contains one initial-

ization step anth— 1 restart steps with the clause Qpj, wherep; is the renaming
substitution of this steg is the empty substitution for the initialization step). Let
Oi = PiOldon(p,)- ThenQoy V...V Qonm is acomputed answe(for P).

That is, we simply collect applications of the instantiagery clause to obtain
the answer. This idea is, of course, not new. For resolutjoastion answering was
invented in the early paper [Gre69]; the idea is to attackvanéterals to trace the
usages of the query in the resolution proof (see also [CL73].

d
* > -

5Here, reduction steps are applied from negative leaf l§¢cepositive ancestor literals; it would
also be sound (but not neccessary for completeness) to@thyetion steps from positive leaf literals
to negative ancestor literals. See [BF94a].



Theorem 4.2 (Answer-completeness of RME)
LetS, P and < Q as in Definition 4.1, and leit be a selection function; 1€)61 V
...V QB be a correct answer f®F. Then there exists a RME refutation §fwith
computed answédo1V ...V Qo such thaQo1V...V Qo entailsQB1v...vQo;,
ie.

FoVie {1,...,m;3je{1,...,1} Quid = Q8.

Informally, the theorem states that for every given corgtwer we can find a
computed answer which can be instantiated by meansswigde substitutiond to

a subclause of the given answer, and hence implies it. Tarotis result we
have to demandne singlesubstitutiond which maps any of the instantiated query
clauses— Qpjo used in extension steps to the respective clause on thedyloue.
Refinements and improvements of this result can be foundHSES).

4.2 Mapping Hyper Tableaux to Restart Model Elimination

As mentioned in the introduction to this section, our masuteis a mapping from
hyper tableaux to RME. Together with the results of the nevisections we thus
have a top-down interpreter for the fixpoint semantics oftp@sdisjunctive pro-
grams.

Theorem 4.3 (Top-Down Semantics for Hyper Tableaux)

Let Ty be a closed hyper tableau containing the tableau clasiseset G = +
Bi,-..,Bn be some tableau clauseTn (which hence closes a branch). Then there
is a RME refutation o with goal clausés.

Proof. Let Sy be the multiset of tableau clauses occurringin Let k(S ) denote
the number of occurrences of positive literals4n minus the number of non-
negative clausésn Sy (k(S4) is a measure for the “Hornness” §f;; it is related
to the well-knownexcess literal parameterNow we prove the claim by induction
onk(Sw).

Base case: (S4) = 0. Sy and thus alsq$ must be a set of Horn clauses. In
this case the theorem rephrases in our setting the well-krmmrresponding result
from [Ll0o87], which links theT -operator for definite programs to SLD-Resolution.
A proof from scratch is in the full version of this paper.

Induction step: kSn) > 0. As the induction hypothesis assume the result to hold
for closed hyper tableau for clause sgfs satisfyingk(s!;) < k(Sn). Figure 3
depicts the proof.

Some ancestor nodeof the tableau clausé = < By, ..., B, must have one or
more positive brother nodes, because othergisavould be a Horn multiset. Let
C=(Aq4,...,An,A«+ B) € Sy be the tableau clause where the néds contained
in. Here,B is understood as a (possibly empty) sequence of positerali. Below
we will also write expressions likeB and mean the clausgg. z —B.

"The notiontableau clausés defined in the “Preliminaries” section
8A non-negative clausis a clause containing at least one positive literal.
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Figure 3: Proof of Theorem 4.3.

We split Ty into m+ 1 closed hyper tableaux: the hyper tabledjjxs obtained
from Ty by replacing the tableau clauSey A <— B (and thus deleting the subtrees
belowAy,...,An), and the hyper tableau‘F{f“’ is obtained fromTly by replacingC
by A; (fori=1,...,m). The other parts ofy are kept unchanged for for the splitted
tableaux.

Let 54 and S/} be the tableau clause multisets corresponding/t@nd T;'.

It holds thatk(s}) < k(Su) andk(Sfy) < k(Sk). Notice thatTy; still containsG.
Hence, by the induction hypothesis, there is a RME refutafi§),° of S4 with
goal clauses.

Similarly, by applying the induction hypothesegimes we learn that there are
RME refutationsTze of S/ with some respective goal clausesg; € 5. Since
splitting does not affect the negative clauses it holds4haf; € 5. Hence Ti\e is
a RME refutation ofs U {A; «}. Notice that positive unit clauses lilé <— can be
used in RME refutations only to close branches, withoubuhiicing new subgoals
(as indicated in Figure 3).

Now we can put things together. Considel,= again. It (possibly) uses the
clauseA < B. However, this clause is (possibly) not contained irin order to turn
Thve into a RME refutation ofs, we first replace every occurrence of the tableau
clauseA < B in T4ye by C. This leaves us with open branches ending in (possibly
several occurrences of),... Am. Now, at each of these branches endingyinve
can restart with the clause- Gi. Then we append below the upcoming tableau
clause~G; the refutationT4,= and we replace possible extension stepsTfi,c
with A; < by reduction steps to the branch litefalwhere the restart occurred. As
a result we get the desired RME refutatiGgye of S with goal clausés. Q.E.D.

9To be precise, there is a RME refutation havify,e as its last element; but we will confuse
this.



We consider the result of this Section —Theorem 4.3— asitial investigation
in the relationship between hyper tableaux and RME. It wdaddnteresting to
investigate the complexity of this mapping and to improv€itrrently eaclsingle
hyper extension step might resultnmanyextension and restart steps. It might be
possible to improve the situation by additional RME inferemules like factoring.

5 SLO-Resolution

In [Raj89] SLO-Resolution is introduced as a generalizatid SLD-Resolution.
This interesting approach offers a goal-directed apprdacthe interpretation of
positive disjunctive programs. In a subsequent paper,s@kfg and Yusuf offer a
modification of the WAM for an implementation.

At a first glance, SLO Resolution seems to be an alternatitieet@pproach to
disjunctive logic programming as we offer it. It is goal dited and it very close
related to the state semantics. In fact the completenessd isroery much as the
one from SLD-resolution, only the fixpoint semantics is eliént.

However there are two drawbacks which are fixed by our approac

e When restricted to Horn clauses, the calculus is not equivailo SLD-
resolution, and

e thereis only a ground completeness result; itis clear th&t-8solution can
not answer the query- p(x) with respect to the program(a), p(b) «.

RME is an extension of SLD-resolution and we have answer tefemess
of various variants. In this section we will demonstratet t8aO-resolution is
very close related to bottom-up hyper tableaux. We show lwogimulate SLO-
resolution, by simply inverting the signs of all literalstkthen apply hyper tableaux.
We do not claim that this transformation is original, it hagb used e.g. in [Yah96]
to turn a bottom-up prover into a goal-directed top-down; anereover we want
to point out that this simple technique can be used to simualat to extend SLO-
resolution.

The following definitions are taken from [Raj89].

A goal for a disjunctive program is of the form— (Cy,...,Cy,), wheren> 0
and theC; are positive clauses.

Definition 5.1

Let P be a positive disjunctive logic program and I8tbe a goal. An SLO-
derivation fromP with goal G consists of a (finite or infinite) sequence of goals
Go= G, Gy, .., such that for all > 0, G; 1 is obtained fronG; =« (Cy,...,Cpn,...,C)
as follows:

1. Cyis aclause irG;. C, is called the selected clause.
2. C<-By,...,Bqis a program clause iR.

3. C subsume€£, with most general unifie®.



4. Gi11 is the goak— (C]_,. .+,Cmn=1,B1VCp,..., BqVCm,Cm+1,. .. ,Ck)e

As usual derivations of the empty clause fr@wusingP are called refutations; one
also says that the go@ succeeds foP.
O

In [Raj89], Rajesakar gives a ground completeness resitiltduction over the
fixpoint operatofl” on states. Without loss of generality we assume in the fatigw
only goals of the formx— C whereC is a positive disjunction. Note that a negative
clause+ A1,..., A, is different from a goak— A1 V ...V Ay; the latter is standing
for a set of negative units.

Definition 5.2
The dualP? of a clauseP = Aq,...,A, < Ba,...,Bn is obtained by inverting the
arrow, i.e. P4 = Bjy,...,Bm <+ Aq,...,A,. This could be alternatively formulated,
by saying that signs of every literal B=A;V...VA,V-B1 V...V =By are
complemented to g&d = -A; V...V A, VB V...V By

Note that the dual of a go&@ =« Ay V...V A, is the set of clause§A; +
, ..., An<}, sinceG, written in clause form is the set of negative urfits-
A1, ..., <« Ap}. Thistransformation is extended to set of clauses in anooisvi
way. O

It is very easy to see that this transformation leaves wsfeiility invariant.
The following is a SLO-derivation d? with goal G from Example 1.

+— AVB (5)
+— CVAvB, DVAVB from 5) and 1) (6)
+— DVAVB from 6) and 2) (7)
— from 7) and 3) (8)

In order to use the hyper tableaux calculus to simulate taisaktion we con-
struct the dual prograf® and goalGY.

Pd: C,D«+AB
+ B,C
+~—AD
GY: A B+«

Applying hyper tableaux to this clause set gives a closed
tableau depicted on the right. The starting goal 5 in the SLO- A
refutation corresponds to the fist two extension steps \Wwighwo ‘
factsA < andB «+ from the dual goaGY, resulting in the tableau B
with the two nodes\ andB. The SLO-step yielding in line 6 the / \
goal< CVAVB, DVAYVB corresponds to a hyper extension
step withC, D «+ A B. The two branches from the tableau in the © D

*



right figure are coded in line 6 by the two clauses in the goaé T
step resulting in goal 7 corresponds to the extension stép«wiB,C and the last
step to the extension with- A,D.

Lemma 5.3

Given a ground SLO-derivation frof with ground goak— C and derived goal
+Cu,...,Cn. Then there is a hyper table@ufor P® and a substitutiow such that
for allb € T there is &; containingLo, for any labeL fromb.

Based on the previous lemma we are currently investigatovg 8LO-resolution
can be improved by applying the concepts of hyper tableayxhB it is possible
to make SLO-resolution complete with respect to logicalsemuences and to get
rid of some of the rigidly treated variables.

6 Conclusion

We investigated the relation between the top-down restadetelimination (RME)
and the bottom-up hyper tableaux calculus. As our main t&eswk demonstrated
that this hyper tableaux calculus can be seen as a fixpoirdrgars for DLPs and
that restart model elimination provides a correspondipgdown proof procedure.

We want to point out that hyper tableaux can be used as wedfficient model
generation. This is of particular interest, when non-moniut extensions for DLP
have to be implemented. As a base for this, we are currenistigating two
kinds of minimal reasoning. One uses the hyper tableawulksdor computing
minimal models: in [Nie96] it is shown how minimal models ch@ computed
without keeping and comparing models in memory, by means of hypézaak.
The other approach from [Ara96] uses RME as a base calculgsrpute the
generalized closed world assumption.

Future work will be the incorporation of negation into DLR®I&0 investigate
more closely the relation between hyper tableaux and RME.
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