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Abstract

In this paper we investigate relationships between top-down and bottom-
up approaches to computation with disjunctive logic programs (DLPs). The
bottom-up calculus considered, hyper tableaux, is depicted in its ground ver-
sion and its relation to fixed point approaches from the literature is investi-
gated. For the top-down calculus we use restart model elimination (RME)and
show as our main result that hyper tableaux provide a bottom-up semantics
for it. This generalizes the well-known result linking theT-operator to SLD-
resolution fordefiniteprograms towardsdisjunctiveprograms. Furthermore
we discuss that hyper tableaux can be seen as an extension of SLO-resolution.
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1 Introduction

For disjunctive logic programs (DLPs) there are several proposals for defining inter-
preters, like the nearHorn-Prolog family [Lov87], SLI-Resolution [LMR92], SLO-
Resolution [Raj89], model tree construction [FM91] or restart model elimination
(RME) [BF94a, BFS95]. There have also been different approaches to assign least
fixpoints to DLPs, like the state semantics [MR90], a semantics based on model
trees [FM91] and approaches to give a fixed point semantics tospecial interpreters,
e.g. in [Fur92, Dec91, RS90].

This paper is concerned with relationships among these approaches.
In previous work the authors introduced the family of RME calculi as goal

oriented interpreters for positive disjunctive logic programs [BF94a]; more re-
cently, we investigated variants of RME for computinganswersto queries for DLPs
[BFS95]. RME is related to Plaisted’s MPRF [Pla88] and Loveland’s nearHorn
Prolog [Lov87]. The idea throughout these calculi is to enter a clauseA1 3 4 4 4 3
Am 5 B1 6 4 4 4 6 Bn only through one of the head literalsA1 7 8 8 8 7Am, but never
through one of the body literalsB1 7 8 8 8 7Bn. Thus, a natural procedural reading
of clauses is better supported than in e.g. model elimination [Lov78].

RME can be implemented by using the PTTP [Sti90] technique. This offers the
advantage that in case of Horn programs the procedureis the underlying PROLOG
system. Only the non-Horn part of a disjunctive logic program is treated by a
compiler such that at run time a PROLOG program is executed byan efficient
PROLOG system (for details see [BF94b]).

Recently a bottom-up proof procedure for non-ground positive DLPs, the hy-
per tableaux calculus, was presented in [BFN96]. The present paper shows that this



proof procedure can be understood as a direct implementation of the most promi-
nent fixpoint iteration techniques. Since it suffices for ourpurposes to restrict to
the ground case of Hyper tableaux, and Hyper tableaux coincide in this case with
the well-known SATCHMO procedure [MB88], our results applyto SATCHMO as
well.

In Section 2 we summarize the bottom-up ground hyper tableaux calculus from
[BFN96] and in the subsequent Section 3 we compare this calculus to fixpoint
iteration techniques from [MR90] and [FM91].

In Section 4 we will show how a hyper tableaux refutation can be transformed
into a RME refutation. This result links the bottom-up to a top-down semantics
for DLPs, and thus generalizes the standard result in [Llo87] saying that any finite
iteration of theT-operator fordefiniteprograms can be simulated top-town in a
SLD-refutation. In Section 5 we relate SLO-Resolution to Hyper tableaux, and
conclude that Hyper tableaux are more general.

Preliminaries

Clauses, i.e. multisets of literals, are usually written as the disjunctionA1 3 4 4 4 3
Am 3 �B1 3 4 4 4 3 �Bn or as an implicationA1 7 8 8 8 7Am 5 B1 7 8 8 8 7Bn (m

�
0, n

�
0).

A clause withm
�

1 is also called aprogram clause, and a clause withm � 0 is
called anegativeclause. Agroundclause or literal contains no variables. WithL
we denote the complement of a literalL. Two literalsL andK arecomplementary
if L � K. As usual, aninterpretationfor an (implicitly) given signature is always
represented by the set of atoms beingtrue in it. A clauseC� is the smallest factor
of clauseC iff C� is the shortest subclause ofC such thatC � C�.

We consider finite ordered treesT where every node is labeled with a literal,
except the root. Such trees are also calledtableaux. The labeling function is de-
noted byλT , or simplyλ, but in the sequel we will often confuse nodes with their
labels. Abranchof a tableauT is a sequenceN0 7 8 8 8 7Nn (n

�
0) of nodes inT such

thatN0 is the root ofT, Ni is the immediate predecessor ofNi�1 for 0 � i � n, and
Nn is a leaf ofT. A branchb � N0 7 8 8 8 7Nn is calledregular iff λ�Ni 	 
� λ�Nj 	 for
1 � i 7 j � n andi 
� j, otherwise it is calledirregular. A tableau isregular iff each
of its branches is regular, otherwise it isirregular. The set ofbranch literalsof b is
lit �b	 � �λ�N1	 7 8 8 8 7λ�Nn	�. We find it convenient to use a branch in place where a
literal set is required, and mean its branch literals. For instance, we will write ex-
pressions likeA 
 b instead ofA 
 lit �b	. A clauseC is called atableau clause (in
T) iff there is a nodeN in T with λ�N1	3 4 4 43λ�Nn	 � C, where�N1 7 8 8 8 7Nn� are all
children ofN. By Tδ we mean the tableauxT � which results fromT by updating
the labeling function such thatλT � �N	 � �λT �N		δ, whereδ is some substitution
(i.e. we applyδ to the labels).

A selection functionis a total functionf which maps an open tableau to one of
its open branches. Iff �T 	 � b we also say thatb is selected in T by f. Fortunately,
there is no restriction on which selection function to use. For instance, one can use
a selection function which always selects the “leftmost” branch.



2 Hyper Tableaux

In [BFN96] we introduced a variant of clausal normal form tableaux called “hy-
per tableaux”. Hyper tableaux keep many desirable featuresof analytic tableaux
(structure of proofs, reading off models in special cases) while taking advantage of
central ideas from (positive) hyper resolution. In the ground case, hyper tableaux
coincide with the well-known SATCHMO [MB88] procedure; forthe first-order
case, hyper tableaux have significant advantages (see [BFN96]). For the purposes
of the present paper, however, where we use hyper tableaux tomodel a semantics
of positive disjunctive programs, it is sufficient to treat the ground case only. A
top-down proof procedure, which is able to handle the first order case and, hence,
to compute answers is given later in Section 4.

In order to make the present paper self-contained we will recall a simplified
ground version of the calculus. For the rest of this paperS always denotes a possi-
bly infinite1 ground clause set, unless stated otherwise;S is also referred to as the
input clause set.
��������� ��	 
��
 �� �������� �
Let f be a selection function. We consider tableaux where each branch is labeled as
either “open” or “closed”.Hyper tableauxfor S are inductively defined as follows2:�������������� ���
 �

The empty tree, consisting of the root node only, is a hyper
tableau forS . Its single branch is labeled as “open”.��
 �� ��������� ���
 �

If

1. T is an open hyper tableau forS , f �T 	 � b (i.e.b is the open branch selected
in T by f ), and

2. C � A1 7 8 8 8 7Am 5 B1 7 8 8 8 7Bn is a clause fromS (m
�

0, n
�

0), calledextend-
ing clausein this context, and

3. �B1 7 8 8 8 7Bn� � b (referred to ashyper condition)

then the treeT � is a hyper tableau forS , whereT � is obtained fromT by extension
of b by C: replaceb in T by thenewbranches

�b7A1	 8 8 8 7 �b7Am	 7 �b7�B1	 8 8 8 7 �b7�Bn	
and then label every new branch�b7A1	 8 8 8 7 �b7Am	 with positive leaf as “open”,
and label every new branch�b7�B1	 8 8 8 7 �b7�Bn	 with negative leaf as “closed”.

We will write the fact thatT � can be obtained fromT by a hyper extension step
in the way defined asT �b�C T �, and say thatC is applicableto b (or T). Note that
the selection function does not appear explicitly in this relation; instead we prefer
to let f be given implicitly by the context.

A hyper tableau isclosedif each of its branches is closed, otherwise it isopen.�
1The ability to handleinfinite sets of clauses allows easy treatment of the first-order case.
2The inductive definition will be such that a branch is closed iff it contains a pair of complemen-

tary literals.



The hyper condition of an extension expresses thatall (which are possibly zero)
body literals have to be satisfied by the branch to be extended. This similarity to
hyperresolutioncoined the name “hyper tableaux”.

The central property of an open branchb is that it can be mapped to an interpre-
tation in the usual way, i.e. by taking the positive literalsof b astrue and all others
asfalse; for infinite derivations we take the chain limit of the increasing branches.
Together with an appropriatefairnessnotion for derivations (roughly: at least one
open branch has to be expanded as long as possible without violating regularity)
we get the completeness of hyper tableaux (see again [BFN96]).

��������� ��� 
��
 �� �������� ���������� �
Let f be a selection function. A (possible infinite) sequenceT1 7 8 8 8 7Tn 7 8 8 8 of hyper
tableaux forS is called a(hyper tableaux) derivation fromS iff T1 is obtained by
an initialization step, and fori � 1, Ti�1 �bi�1�Ci�1 Ti for some clauseCi�1 
 S . This
is also written as

T1 �b1 �C1 T2 4 4 4Tn �bn �Cn Tn�1 4 4 4
A derivation is calledregular iff every tableau in the derivation is regular (cf. Sec-
tion. 1), otherwise it isirregular. A derivation is called a(hyper tableaux) refutation
if it contains a closed tableau.

�
Note that extension steps are no longer applicable to a closed hyper tableaux.

Figure 1 shows an example refutation. This example also demonstrates that
hyper tableaux handle more than one negative clause. By thisit is possible to have
integrity constraints in the input clause set, and not just program clauses.

P: A�B � C�D �1�
B�C � �2�
A�D � �3�

G: � A� B �4�

B C

*

CB

	B

DA

A

DA

A

	A
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* *
	A 	B

B

*

B C

	B

Figure 1: A hyper tableau forP andG given in the figure. Notice that the formulaG
stands for the two clauses5 A and 5 B. For simplicity of presentation, negative
leaf nodes stemming from program clauses are not drawn.

3 States and Model Trees

In this section we relate hyper tableaux to the fixpoint semantics.



3.1 States

We summarize state semantics from [LMR92]. LetS � be a possibly infinite set of
ground program clauses.

DHB, the disjunctive Herbrand base forS � is the set of disjunctions that can be
formed by atoms of the Herbrand base ofS � . The transformationΓ : 2DHB � 2DHB

is given by3

Γ�D	 � �C 
 DHB
�
C� 5 B1 7 8 8 8 7Bn 
 S � 7 �1 � i � n : Bi 3Ci 
 D 7

C�� � C1 3 8 8 8 3Cn 3C� 7 C is the smallest factor ofC�� �
A statefor S� is a subset ofDHB. An expanded state STfor S � is a state, such

thatST� exp�ST	, where

exp�ST	 � �C 
 DHB
�
C 
 ST or �C� 
 ST : C� is a subclause ofC�

In [LMR92] it is shown that the operatorΓ is continuous, hence its least fixpoint
exists and thelfp-Operator yieldsΓ� ω.

We do not introduce model states explicitly, moreover we usetheir characteri-
zation as fixpoints and logical consequences:

������� � �	 
��� � �� ��� 	��
Let S � be a set of program clauses andC 
 DHB. ThenS � �� C iff C 
 exp�lfp�Γ		.
��������� � �� 

�� � �

T
�

Let T be a hyper tableau forS . A clauseC is acut of T iff

(1) �b open branch ofT : �N 
 b : �L 
 C such thatλ�N	 � L, and
(2) �L 
 C : �b open branch ofT : �N 
 b : λ�N	 � L 8

�
That is, in order to get a cut we pick a literal from every open branch.

Now assume thatS is in goal normal form. By this we mean the transformation
of every clause of the form5 B1 7 8 8 8 7Bn into G 5 B1 7 8 8 8 7Bn, whereG is a new
predicate symbol, and furthermore adding the clause�G as the only goal. By
S � we denote the setS without the purely negative clauses. ThenS � consists of
program clauses only and consequently is satisfiable.

The following lemma relates hyper tableaux derivations toΓ-iterations.
���� � � ��
For everyi andC 
 Γ� i there is a hyper tableauT such that there is a cutC� of T
wereC is the smallest factor ofC�.

3Obviously, this operator is dependent of the programS� ; we assume this will be clear from the
context.



���� � �
Induction oni.

Induction start i� 0: The setΓ� 0 contains all smallest factors of (disjunctive) facts
from S � . Let A1 7 8 8 8 7An 5 be such a fact, then construct a hyper tableau with an
initial step and a hyper extension step using this fact. The cut A1 7 8 8 8 7An 5 of this
tableau has the desired property.

Induction step i� i � 1: If C 
 Γ� i � 1, we know by definition ofΓ that C is
the smallest factor ofC1 3 8 8 8 3Cn 3C�, such thatC� 5 B1 7 8 8 8 7Bn 
 S � and�B1 3
C1 7 8 8 8 7Bn 3 Cn� � Γ� i. The induction hypothesis gives us that there exist hyper
tableauxT1 7 8 8 8 7Tn, such thatB j 3Cj is the smallest factor of a cutB j 3C�j of Tj .

All we have to do is to link these tableaux together to one hyper tableau: Select
a branchbj from tableauTj which contains the literalB j . Take the leafNj of this
branch and use it as the new root of the tableauTj�1. The result is again a hyper
tableau. If this linking is done forj from 1 ton we get withTn�1 a hyper tableau
which contains a branch with literalsB1 7 8 8 8 7Bn. Hence, the clauseC� 5 B1 7 8 8 8 7Bn

is applicable, and in the resulting tableau there is a cutC� 3C�1 3 4 4 4C�n with smallest
factorC. Q.E.D.

As an example, assume the following set of clausesS � � �b3 c7a 5 b7a 5 c�.
There is a hyper tableau which consists of the two branches with �b7a� and�c7a�
as sets of labels of its nodes. A set of cuts of this tree is�a3 a7a3 b7b3 c7a3 c�.
Note that there is no sequence assumed in which the literals from different branches
have to occur within a cut. The iteration of theΓ-operator givesΓ� 0 � �b3 c�,
Γ� 1 � �b3 c7a3 c7a3 b� andΓ� 2 � �b3 c7a3 c7a3 b7a� � Γ� ω.

Having this close relation between hyper tableaux and the fixpoint iteration
over states we can use this result to prove completeness of ground hyper tableaux.
Note that a proof for full first order clauses is given from scratch in [BFN96],
which includes a fairness consideration. Here we only want to establish the close
relationship between the approaches.
������� � �� 

��
�������� � � ��
 �� �������� �
For every unsatisfiable ground clause setS in goal normal form there is a closed
hyper tableau forS .
���� � �

Clearly,S � �� G. From Theorem 3.1 we learn thatG 
 exp�lfp �Γ		. Since
G is an atom it must be contained inlfp �Γ	 alone. SinceΓ is continuous, we can
apply a standard result from fixpoint theory to concludelfp�Γ	 � Γ� ω. Hence there
is ani such thatG 
 Γ� i.

Lemma 3.3 gives us the existence of a hyper tableauT with a cutC�, such that
G is the smallest factor ofC�. HenceC� has the formG3 8 8 8 3 G; in other words
every branch of the tableau contains the literalG. This tableau can be closed by
using the goal clause�G. Q.E.D.

3.2 Model Trees

The other approach we want to relate hyper tableaux to, is that of bottom-up evalua-
tion of disjunctive deductive databases. In [FM91] and [Fur92] a bottom-up conse-



quence operatorΓM for disjunctive deductive databases is given which acts on sets
of interpretations, thus yielding models for the given set of clauses. In [SMR95]
this approach is related to the consequence operator on states which we discussed
above. Fernandez and Minker also introduce model trees as a calculus to compute
this operator, this is done in detail in [LMR92]. We will demonstrate that this is
related closely to the hyper tableaux calculus.

The consequence operatorΓM over sets of Herbrand interpretations is given by
ΓM : 22HB � 22HB ΓM �I 	 � min�ΓINT �I 		
ΓINT : 2HB � 2HB ΓINT �I 	 � � I�I MOD�Γ�I 		

whereMOD gives all models of a state and min filters out the minimal models. The
latter operator looks harmless; however this is a rather costly step. Its definition is
given by: min�I 	 � �I 
 I

� ��J 
 I : J � I � 8 In [BFN96] we gave a proof that
the branches of a hyper tableau correspond to partial modelsof the program and in
particular that in fair derivations branches correspond tomodels. In [Nie96] it is
demonstrated how the computation of the min-operator basedon this definition can
be avoided.

In the following we additionally depict the relation between one step with the
ΓM operator and hyper extension.
��������� � ��
Let T be a hyper tableau andb an open branch. Acomplete extension of T at b
wrt. a set of program clausesS � is a treeT � which can be obtained fromT by
applying as long as possible4 hyper extension steps with clauses fromS� such that
(a) only branchesb� are selected which containb as a prefix, and (b) in the hyper
condition only literals fromb are used, and (c) no extension step introduces an
irregular branch.

�
The following lemma establishes the connection of partial branches, i.e. models

from a hyper tableau to the iterations using theΓMoperator.
���� � � ��
Let T be a hyper tableau consisting of one single branchb and letT � be a complete
extension ofT at b wrt. a set of program clausesS� . Then �lit �b� 	 �

b� 
 T � � �
MOD�Γ�lit �b			
Note that sinceb is a single branch of a hyper tableau forS� each literal from lit�b	
is contained inS� as a positive unit clause.

4 Hyper Tableaux and Restart Model Elimination

Unlike hyper tableaux, the RME calculus is a goal oriented interpreter for positive
disjunctive logic programs [BF94a, BFS95]. It is a very simple extension of model
elimination, which allows a procedural reading of disjunctive clauses. This is pos-
sible, because the calculus does not need any contrapositives. For a discussion of

4Obviously, asS� can be infinite, this derivation is possibly infinite. In thiscase we take the chain
limit of a branch to define the interpretation assigned to it;see [BFN96] for details.



these aspects the reader is referred to the above cited literature. Here we are inter-
ested only in the relation between RME to hyper tableaux, andtherefore we only
present its simplest variant.

RME is implemented by using the PTTP technique and hence it offers the ad-
vantage that in case of Horn programs the procedureis the underlying PROLOG
system. Only the non-Horn part of a disjunctive logic program is treated by a com-
piler such that at run time a PROLOG program is executed by an efficient PROLOG
system (for details see [BF94b]).

RME is atop-towncalculus, i.e. derivations start with a (negative) goal clause
and end at the (positive) facts. Our main result below shows how any closed hy-
per tableau can be transformed into a RME refutation. This transformation will
essentially “reverse” a hyper tableau from the leaves to theroot, where a splitting
in hyper tableaux corresponds to a “restart step” in RME.

This result is in close relationship to the standard result in [Llo87] saying that
any finite iteration of theT-operator overdefiniteprograms can be simulated top-
town in a SLD-refutation. In fact, we generalize this resultto the non-Horn case.

4.1 Restart Model Elimination

We will briefly review the RME calculus as presented in [BF94a]. However, for
ease of presentation we will use a slightly different notation based on tableaux
(Section 1) and following the style of Definition 2.1.
��������� � �	 
������� � ���� ���� ������� �
Let S be a finite, but not necessarily ground, clause set. We assumethatS can be
partitioned in5 S � P �

� � 5 Q�, where thequery 5 Q is a purely negative clause,
i.e. it is of the form 5 B1 7 8 8 8 7Bn, andP is satisfiable.

Restart model elimination tableaux (RME tableaux) with substitution σ for S

are inductively defined as follows:�������������� ���
 �
A clausal tableau obtained by extending the root node of the

empty tree by the query5 Q 
 S is a hyper tableau forS with substitutionσ � ε
(the empty substitution). In this context5 Q is also called thegoal clauseof the
tableau. All branches are labeled as “open”.
� ����� ��������� ���
 �

If

1. T is an open RME tableau forS with substitutionσT , f �T 	 � b (i.e. b is
selected inT by f ) with negative open leaf node�A, and

2. C � A1 7 8 8 8 7Am 5 B17 8 8 8 7Bn is a new variant of a clause fromS (m
�

1,
n
�

0), calledextending clausein this context, and

3. σ is a most general unifier forA and someAi (where 1� i � m),

then the literal treeT �σ is a RME tableau forS with substitutionσTσ, whereT � is
obtained fromT by extendingb by C, and then labeling the new branches

�b7A1	 7 8 8 8 7 �b7Ai�1	 7 �b7Ai�1	 7 8 8 8 7 �b7Am	 7 8 8 8 7 �b7�B1	 7 8 8 8 7 �b7�Bn	
5“ �
�

” denotes disjoint union.



as “open”, and labeling the new branch�b7Ai 	 as “closed”.
��������� ���
 �

If

1. T is an open RME tableau forS with substitutionσT , f �T 	 � b with negative
open leaf node�A, and

2. A� 
 b is a positive literal inb, and

3. σ is a most general unifier forA andA�,
then the literal treeT �σ is a RME tableau forS with substitutionσTσ, whereT � is
obtained fromT by labelingb as “closed”6
������� ���
 �

If

1. T is an open RME tableau forS with substitutionσ, f �T 	 � b (i.e. b is
selected inT by f ) with positive open leaf nodeA, and

2. C � 5 B1 7 8 8 8 7Bn is a new variant of some negative clause fromS ,

then the literal treeT � is a RME tableau forS with substitutionσT , whereT � is
obtained fromT by extendingb by C.

The notions ofderivationandrefutationare taken from Definition 2.2.
�

Extension step

Restart step
Reduction step	B

B C�
	A

BA 	C�
	B

	D

D A

	A

�

�

�

�

Figure 2: A RME refutation of the
clause set of Example 5.

As an example consider the clause set in
Figure 1 again. Figure 2 contains a RME
refutation.

In [BFS95] we investigated the computa-
tion of answers by means of variants of RME.
For the present paper we only restate one an-
swer completeness result. For this we need
the notion of an answer: if5 Q is a query,
and θ1 7 8 8 8 7θm are substitutions for the vari-
ables fromQ, thenQθ1 3 8 8 8 3 Qθm is anan-
swer (for P) An answerQθ1 3 8 8 8 3 Qθm is
a correct answerif P

�� � �Qθ1 3 8 8 8 3 Qθm	.
Now let a RME refutation ofS with goal
clause5 Q and substitutionσ be given. As-
sume that this refutation containsm occur-
rences of the query, i.e. it contains one initial-
ization step andm� 1 restart steps with the clause5 Qρi, whereρi is the renaming
substitution of this step (ρi is the empty substitution for the initialization step). Let
σi � ρiσ

�
dom�ρi �. ThenQσ1 3 8 8 8 3 Qσm is acomputed answer(for P).

That is, we simply collect applications of the instantiatedquery clause to obtain
the answer. This idea is, of course, not new. For resolution,question answering was
invented in the early paper [Gre69]; the idea is to attach answer literals to trace the
usages of the query in the resolution proof (see also [CL73].

6Here, reduction steps are applied from negative leaf literals to positive ancestor literals; it would
also be sound (but not neccessary for completeness) to allowreduction steps from positive leaf literals
to negative ancestor literals. See [BF94a].



������� � �� 
����������
�������� � � ����
Let S , P and 5 Q as in Definition 4.1, and letf be a selection function; letQθ1 3
8 8 8 3 Qθl be a correct answer forP. Then there exists a RME refutation ofS with
computed answerQσ13 8 8 83Qσm such thatQσ13 8 8 83Qσm entailsQθ13 8 8 83Qθl ,
i.e.

�δ � i 
 �17 8 8 8 7m� � j 
 �17 8 8 8 7 l � Qσiδ � Qθ j 8
Informally, the theorem states that for every given correctanswer we can find a
computed answer which can be instantiated by means of asinglesubstitutionδ to
a subclause of the given answer, and hence implies it. To obtain this result we
have to demandone singlesubstitutionδ which maps any of the instantiated query
clauses5 Qρiσ used in extension steps to the respective clause on the ground level.
Refinements and improvements of this result can be found in [BFS95].

4.2 Mapping Hyper Tableaux to Restart Model Elimination

As mentioned in the introduction to this section, our main result is a mapping from
hyper tableaux to RME. Together with the results of the previous sections we thus
have a top-down interpreter for the fixpoint semantics of positive disjunctive pro-
grams.

������� � �� 
��
 ����� ��� ������ ��� ��
 �� �������� �
Let TH be a closed hyper tableau containing the tableau clausesS7. Let G � 5
B1 7 8 8 8 7Bn be some tableau clause inTH (which hence closes a branch). Then there
is a RME refutation ofS with goal clauseG.
���� � �

Let SH be the multiset of tableau clauses occurring inTH . Let k�SH 	 denote
the number of occurrences of positive literals inSH minus the number of non-
negative clauses8 in SH (k�SH 	 is a measure for the “Hornness” ofSH ; it is related
to the well-knownexcess literal parameter). Now we prove the claim by induction
on k�SH 	.
Base case: k�SH 	 � 0. SH and thus alsoS must be a set of Horn clauses. In
this case the theorem rephrases in our setting the well-known corresponding result
from [Llo87], which links theT-operator for definite programs to SLD-Resolution.
A proof from scratch is in the full version of this paper.

Induction step: k�SH 	 � 0. As the induction hypothesis assume the result to hold
for closed hyper tableau for clause setsS �H satisfyingk�S �H 	 � k�SH 	. Figure 3
depicts the proof.

Some ancestor nodeA of the tableau clauseG � 5 B1 7 8 8 8 7Bn must have one or
more positive brother nodes, because otherwiseSH would be a Horn multiset. Let
C � �A1 7 8 8 8 7Am7A 5 B 	 
 SH be the tableau clause where the nodeA is contained
in. Here,B is understood as a (possibly empty) sequence of positive literals. Below
we will also write expressions like�B and mean the clause�B�B �B.

7The notiontableau clauseis defined in the “Preliminaries” section
8A non-negative clauseis a clause containing at least one positive literal.
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Figure 3: Proof of Theorem 4.3.

We splitTH into m� 1 closed hyper tableaux: the hyper tableauxTA
H is obtained

from TH by replacing the tableau clauseC by A 5 B (and thus deleting the subtrees
belowA17 8 8 8 7Am), and the hyper tableauxTAi

H is obtained fromTH by replacingC
by Ai (for i � 17 8 8 8 7m). The other parts ofTH are kept unchanged for for the splitted
tableaux.

Let SA
H andSAi

H be the tableau clause multisets corresponding toTA
H andTAi

H .
It holds thatk�SA

H 	 � k�SH 	 andk�SAi
H 	 � k�SH 	. Notice thatTA

H still containsG.
Hence, by the induction hypothesis, there is a RME refutation TA

RME
9 of SA

H with
goal clauseG.

Similarly, by applying the induction hypothesesm times we learn that there are
RME refutationsTAi

RME of SAi
H with some respective goal clauses5 Gi 
 SAi

H . Since
splitting does not affect the negative clauses it holds that5 Gi 
 S . Hence,TAi

RME is
a RME refutation ofS

� �Ai 5 �. Notice that positive unit clauses likeAi 5 can be
used in RME refutations only to close branches, without introducing new subgoals
(as indicated in Figure 3).

Now we can put things together. ConsiderTA
RME again. It (possibly) uses the

clauseA5 B. However, this clause is (possibly) not contained inS . In order to turn
TA

RME into a RME refutation ofS , we first replace every occurrence of the tableau
clauseA 5 B in TA

RME byC. This leaves us with open branches ending in (possibly
several occurrences of)A1,. . . ,Am. Now, at each of these branches ending inAi we
can restart with the clause5 Gi . Then we append below the upcoming tableau
clause�Gi the refutationTAi

RME and we replace possible extension steps inTAi
RME

with Ai 5 by reduction steps to the branch literalAi where the restart occurred. As
a result we get the desired RME refutationTRME of S with goal clauseG. Q.E.D.

9To be precise, there is a RME refutation havingTA
RME as its last element; but we will confuse

this.



We consider the result of this Section –Theorem 4.3– as aninitial investigation
in the relationship between hyper tableaux and RME. It wouldbe interesting to
investigate the complexity of this mapping and to improve it. Currently eachsingle
hyper extension step might result inmanyextension and restart steps. It might be
possible to improve the situation by additional RME inference rules like factoring.

5 SLO-Resolution

In [Raj89] SLO-Resolution is introduced as a generalization of SLD-Resolution.
This interesting approach offers a goal-directed approachfor the interpretation of
positive disjunctive programs. In a subsequent paper, Rajesakar and Yusuf offer a
modification of the WAM for an implementation.

At a first glance, SLO Resolution seems to be an alternative tothe approach to
disjunctive logic programming as we offer it. It is goal directed and it very close
related to the state semantics. In fact the completeness proof is very much as the
one from SLD-resolution, only the fixpoint semantics is different.

However there are two drawbacks which are fixed by our approach:

� When restricted to Horn clauses, the calculus is not equivalent to SLD-
resolution, and

� there is only a ground completeness result; it is clear that SLO-resolution can
not answer the query5 p�x	 with respect to the programp�a	 7p�b	 5 .

RME is an extension of SLD-resolution and we have answer completeness
of various variants. In this section we will demonstrate that SLO-resolution is
very close related to bottom-up hyper tableaux. We show how to simulate SLO-
resolution, by simply inverting the signs of all literals and then apply hyper tableaux.
We do not claim that this transformation is original, it has been used e.g. in [Yah96]
to turn a bottom-up prover into a goal-directed top-down one; moreover we want
to point out that this simple technique can be used to simulate and to extend SLO-
resolution.

The following definitions are taken from [Raj89].
A goal for a disjunctive program is of the form5 �C1 7 8 8 8 7Cn	 7 wheren

�
0

and theCi are positive clauses.

��������� � �	
Let P be a positive disjunctive logic program and letG be a goal. An SLO-
derivation fromP with goal G consists of a (finite or infinite) sequence of goals
G0 � G7G1 7 887 such that for alli

�
0,Gi�1 is obtained fromGi �5 �C1 7 8 8 8 7Cm7 8 8 8 7Ck	

as follows:

1. Cm is a clause inGi. Cm is called the selected clause.

2. C 5 B1 7 8 8 8 7Bq is a program clause inP.

3. C subsumesCm with most general unifierθ.



4. Gi�1 is the goal5 �C1 7 8 8 8 7Cm�1 7B1 3Cm7 8 8 8 7Bq 3Cm7Cm�1 7 8 8 8 7Ck	θ
As usual derivations of the empty clause fromG usingP are called refutations; one
also says that the goalG succeeds forP.�

In [Raj89], Rajesakar gives a ground completeness result byinduction over the
fixpoint operatorΓ on states. Without loss of generality we assume in the following
only goals of the form5 C whereC is a positive disjunction. Note that a negative
clause5 A1 7 8 8 8 7An is different from a goal5 A1 3 8 8 8 3 An; the latter is standing
for a set of negative units.
��������� � ��
The dualPd of a clauseP � A1 7 8 8 8 7An 5 B1 7 8 8 8 7Bm is obtained by inverting the
arrow, i.e. Pd � B1 7 8 8 8 7Bm 5 A1 7 8 8 8 7An. This could be alternatively formulated,
by saying that signs of every literal inP � A1 3 8 8 8 3 An 3 �B1 3 8 8 8 3 �Bm are
complemented to getPd � �A1 3 8 8 8 3 �An 3 B1 3 8 8 8 3 Bm.

Note that the dual of a goalG �5 A1 3 8 8 8 3 An is the set of clauses�A1 5
7 8 8 8 7 An 5 �, sinceG , written in clause form is the set of negative units�5
A1 7 8 8 8 7 5 An�. This transformation is extended to set of clauses in an obvious
way.

�
It is very easy to see that this transformation leaves unsatisfiability invariant.

The following is a SLO-derivation ofP with goalG from Example 1.

5 A3 B (5)

5 C3 A3 B7 D 3 A3 B from 5) and 1) (6)

5 D 3 A3 B from 6) and 2) (7)

5 from 7) and 3) (8)

In order to use the hyper tableaux calculus to simulate this derivation we con-
struct the dual programPd and goalGd.

Pd: C7D 5 A7B
5 B7C
5 A7D

Gd: A 5 B 5

A

B

C D
* *

Applying hyper tableaux to this clause set gives a closed
tableau depicted on the right. The starting goal 5 in the SLO-
refutation corresponds to the fist two extension steps with the two
factsA 5 andB 5 from the dual goalGd, resulting in the tableau
with the two nodesA andB. The SLO-step yielding in line 6 the
goal 5 C 3 A3 B7 D 3 A3 B corresponds to a hyper extension
step withC7D 5 A7B. The two branches from the tableau in the



right figure are coded in line 6 by the two clauses in the goal. The
step resulting in goal 7 corresponds to the extension step with 5 B7C and the last
step to the extension with5 A7D.

���� � � ��
Given a ground SLO-derivation fromP with ground goal5 C and derived goal
5 C1 7 8 8 8 7Cm. Then there is a hyper tableauT for Pd and a substitutionσ such that
for all b 
 T there is aCi containingLσ, for any labelL from b.

Based on the previous lemma we are currently investigating how SLO-resolution
can be improved by applying the concepts of hyper tableaux. By this it is possible
to make SLO-resolution complete with respect to logical consequences and to get
rid of some of the rigidly treated variables.

6 Conclusion

We investigated the relation between the top-down restart model elimination (RME)
and the bottom-up hyper tableaux calculus. As our main results, we demonstrated
that this hyper tableaux calculus can be seen as a fixpoint semantics for DLPs and
that restart model elimination provides a corresponding top-down proof procedure.

We want to point out that hyper tableaux can be used as well forefficient model
generation. This is of particular interest, when non-monotonic extensions for DLP
have to be implemented. As a base for this, we are currently investigating two
kinds of minimal reasoning. One uses the hyper tableaux calculus for computing
minimal models: in [Nie96] it is shown how minimal models canbe computed
without keeping and comparing models in memory, by means of hyper tableaux.
The other approach from [Ara96] uses RME as a base calculus tocompute the
generalized closed world assumption.

Future work will be the incorporation of negation into DLPs and to investigate
more closely the relation between hyper tableaux and RME.
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